1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10 */
11
12 #define pr_fmt(fmt) "LSM: " fmt
13
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/mman.h>
23 #include <linux/mount.h>
24 #include <linux/personality.h>
25 #include <linux/backing-dev.h>
26 #include <linux/string.h>
27 #include <linux/xattr.h>
28 #include <linux/msg.h>
29 #include <linux/overflow.h>
30 #include <linux/perf_event.h>
31 #include <linux/fs.h>
32 #include <net/flow.h>
33 #include <net/sock.h>
34
35 #include "lsm.h"
36
37 /*
38 * These are descriptions of the reasons that can be passed to the
39 * security_locked_down() LSM hook. Placing this array here allows
40 * all security modules to use the same descriptions for auditing
41 * purposes.
42 */
43 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
44 [LOCKDOWN_NONE] = "none",
45 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
49 [LOCKDOWN_HIBERNATION] = "hibernation",
50 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51 [LOCKDOWN_IOPORT] = "raw io port access",
52 [LOCKDOWN_MSR] = "raw MSR access",
53 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 [LOCKDOWN_DEBUGFS] = "debugfs access",
60 [LOCKDOWN_XMON_WR] = "xmon write access",
61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
64 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
65 [LOCKDOWN_KCORE] = "/proc/kcore access",
66 [LOCKDOWN_KPROBES] = "use of kprobes",
67 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
68 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
69 [LOCKDOWN_PERF] = "unsafe use of perf",
70 [LOCKDOWN_TRACEFS] = "use of tracefs",
71 [LOCKDOWN_XMON_RW] = "xmon read and write access",
72 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
73 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
74 };
75
76 bool lsm_debug __ro_after_init;
77
78 unsigned int lsm_active_cnt __ro_after_init;
79 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
80
81 struct lsm_blob_sizes blob_sizes;
82
83 struct kmem_cache *lsm_file_cache;
84 struct kmem_cache *lsm_inode_cache;
85
86 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
87
88 /*
89 * Identifier for the LSM static calls.
90 * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
91 * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
92 */
93 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
94
95 /*
96 * Call the macro M for each LSM hook MAX_LSM_COUNT times.
97 */
98 #define LSM_LOOP_UNROLL(M, ...) \
99 do { \
100 UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) \
101 } while (0)
102
103 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
104
105 #ifdef CONFIG_HAVE_STATIC_CALL
106 #define LSM_HOOK_TRAMP(NAME, NUM) \
107 &STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
108 #else
109 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
110 #endif
111
112 /*
113 * Define static calls and static keys for each LSM hook.
114 */
115 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...) \
116 DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM), \
117 *((RET(*)(__VA_ARGS__))NULL)); \
118 DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
119
120 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
121 LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
122 #include <linux/lsm_hook_defs.h>
123 #undef LSM_HOOK
124 #undef DEFINE_LSM_STATIC_CALL
125
126 /*
127 * Initialise a table of static calls for each LSM hook.
128 * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
129 * and a trampoline (STATIC_CALL_TRAMP) which are used to call
130 * __static_call_update when updating the static call.
131 *
132 * The static calls table is used by early LSMs, some architectures can fault on
133 * unaligned accesses and the fault handling code may not be ready by then.
134 * Thus, the static calls table should be aligned to avoid any unhandled faults
135 * in early init.
136 */
137 struct lsm_static_calls_table
138 static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
139 #define INIT_LSM_STATIC_CALL(NUM, NAME) \
140 (struct lsm_static_call) { \
141 .key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)), \
142 .trampoline = LSM_HOOK_TRAMP(NAME, NUM), \
143 .active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM), \
144 },
145 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
146 .NAME = { \
147 LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME) \
148 },
149 #include <linux/lsm_hook_defs.h>
150 #undef LSM_HOOK
151 #undef INIT_LSM_STATIC_CALL
152 };
153
154 /**
155 * lsm_file_alloc - allocate a composite file blob
156 * @file: the file that needs a blob
157 *
158 * Allocate the file blob for all the modules
159 *
160 * Returns 0, or -ENOMEM if memory can't be allocated.
161 */
lsm_file_alloc(struct file * file)162 static int lsm_file_alloc(struct file *file)
163 {
164 if (!lsm_file_cache) {
165 file->f_security = NULL;
166 return 0;
167 }
168
169 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
170 if (file->f_security == NULL)
171 return -ENOMEM;
172 return 0;
173 }
174
175 /**
176 * lsm_blob_alloc - allocate a composite blob
177 * @dest: the destination for the blob
178 * @size: the size of the blob
179 * @gfp: allocation type
180 *
181 * Allocate a blob for all the modules
182 *
183 * Returns 0, or -ENOMEM if memory can't be allocated.
184 */
lsm_blob_alloc(void ** dest,size_t size,gfp_t gfp)185 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
186 {
187 if (size == 0) {
188 *dest = NULL;
189 return 0;
190 }
191
192 *dest = kzalloc(size, gfp);
193 if (*dest == NULL)
194 return -ENOMEM;
195 return 0;
196 }
197
198 /**
199 * lsm_cred_alloc - allocate a composite cred blob
200 * @cred: the cred that needs a blob
201 * @gfp: allocation type
202 *
203 * Allocate the cred blob for all the modules
204 *
205 * Returns 0, or -ENOMEM if memory can't be allocated.
206 */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)207 int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
208 {
209 return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
210 }
211
212 /**
213 * lsm_inode_alloc - allocate a composite inode blob
214 * @inode: the inode that needs a blob
215 * @gfp: allocation flags
216 *
217 * Allocate the inode blob for all the modules
218 *
219 * Returns 0, or -ENOMEM if memory can't be allocated.
220 */
lsm_inode_alloc(struct inode * inode,gfp_t gfp)221 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
222 {
223 if (!lsm_inode_cache) {
224 inode->i_security = NULL;
225 return 0;
226 }
227
228 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
229 if (inode->i_security == NULL)
230 return -ENOMEM;
231 return 0;
232 }
233
234 /**
235 * lsm_task_alloc - allocate a composite task blob
236 * @task: the task that needs a blob
237 *
238 * Allocate the task blob for all the modules
239 *
240 * Returns 0, or -ENOMEM if memory can't be allocated.
241 */
lsm_task_alloc(struct task_struct * task)242 int lsm_task_alloc(struct task_struct *task)
243 {
244 return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
245 }
246
247 /**
248 * lsm_ipc_alloc - allocate a composite ipc blob
249 * @kip: the ipc that needs a blob
250 *
251 * Allocate the ipc blob for all the modules
252 *
253 * Returns 0, or -ENOMEM if memory can't be allocated.
254 */
lsm_ipc_alloc(struct kern_ipc_perm * kip)255 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
256 {
257 return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
258 }
259
260 #ifdef CONFIG_KEYS
261 /**
262 * lsm_key_alloc - allocate a composite key blob
263 * @key: the key that needs a blob
264 *
265 * Allocate the key blob for all the modules
266 *
267 * Returns 0, or -ENOMEM if memory can't be allocated.
268 */
lsm_key_alloc(struct key * key)269 static int lsm_key_alloc(struct key *key)
270 {
271 return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
272 }
273 #endif /* CONFIG_KEYS */
274
275 /**
276 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
277 * @mp: the msg_msg that needs a blob
278 *
279 * Allocate the ipc blob for all the modules
280 *
281 * Returns 0, or -ENOMEM if memory can't be allocated.
282 */
lsm_msg_msg_alloc(struct msg_msg * mp)283 static int lsm_msg_msg_alloc(struct msg_msg *mp)
284 {
285 return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
286 GFP_KERNEL);
287 }
288
289 /**
290 * lsm_bdev_alloc - allocate a composite block_device blob
291 * @bdev: the block_device that needs a blob
292 *
293 * Allocate the block_device blob for all the modules
294 *
295 * Returns 0, or -ENOMEM if memory can't be allocated.
296 */
lsm_bdev_alloc(struct block_device * bdev)297 static int lsm_bdev_alloc(struct block_device *bdev)
298 {
299 return lsm_blob_alloc(&bdev->bd_security, blob_sizes.lbs_bdev,
300 GFP_KERNEL);
301 }
302
303 #ifdef CONFIG_BPF_SYSCALL
304 /**
305 * lsm_bpf_map_alloc - allocate a composite bpf_map blob
306 * @map: the bpf_map that needs a blob
307 *
308 * Allocate the bpf_map blob for all the modules
309 *
310 * Returns 0, or -ENOMEM if memory can't be allocated.
311 */
lsm_bpf_map_alloc(struct bpf_map * map)312 static int lsm_bpf_map_alloc(struct bpf_map *map)
313 {
314 return lsm_blob_alloc(&map->security, blob_sizes.lbs_bpf_map, GFP_KERNEL);
315 }
316
317 /**
318 * lsm_bpf_prog_alloc - allocate a composite bpf_prog blob
319 * @prog: the bpf_prog that needs a blob
320 *
321 * Allocate the bpf_prog blob for all the modules
322 *
323 * Returns 0, or -ENOMEM if memory can't be allocated.
324 */
lsm_bpf_prog_alloc(struct bpf_prog * prog)325 static int lsm_bpf_prog_alloc(struct bpf_prog *prog)
326 {
327 return lsm_blob_alloc(&prog->aux->security, blob_sizes.lbs_bpf_prog, GFP_KERNEL);
328 }
329
330 /**
331 * lsm_bpf_token_alloc - allocate a composite bpf_token blob
332 * @token: the bpf_token that needs a blob
333 *
334 * Allocate the bpf_token blob for all the modules
335 *
336 * Returns 0, or -ENOMEM if memory can't be allocated.
337 */
lsm_bpf_token_alloc(struct bpf_token * token)338 static int lsm_bpf_token_alloc(struct bpf_token *token)
339 {
340 return lsm_blob_alloc(&token->security, blob_sizes.lbs_bpf_token, GFP_KERNEL);
341 }
342 #endif /* CONFIG_BPF_SYSCALL */
343
344 /**
345 * lsm_superblock_alloc - allocate a composite superblock blob
346 * @sb: the superblock that needs a blob
347 *
348 * Allocate the superblock blob for all the modules
349 *
350 * Returns 0, or -ENOMEM if memory can't be allocated.
351 */
lsm_superblock_alloc(struct super_block * sb)352 static int lsm_superblock_alloc(struct super_block *sb)
353 {
354 return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
355 GFP_KERNEL);
356 }
357
358 /**
359 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
360 * @uctx: a userspace LSM context to be filled
361 * @uctx_len: available uctx size (input), used uctx size (output)
362 * @val: the new LSM context value
363 * @val_len: the size of the new LSM context value
364 * @id: LSM id
365 * @flags: LSM defined flags
366 *
367 * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL
368 * simply calculate the required size to output via @utc_len and return
369 * success.
370 *
371 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
372 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
373 */
lsm_fill_user_ctx(struct lsm_ctx __user * uctx,u32 * uctx_len,void * val,size_t val_len,u64 id,u64 flags)374 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
375 void *val, size_t val_len,
376 u64 id, u64 flags)
377 {
378 struct lsm_ctx *nctx = NULL;
379 size_t nctx_len;
380 int rc = 0;
381
382 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
383 if (nctx_len > *uctx_len) {
384 rc = -E2BIG;
385 goto out;
386 }
387
388 /* no buffer - return success/0 and set @uctx_len to the req size */
389 if (!uctx)
390 goto out;
391
392 nctx = kzalloc(nctx_len, GFP_KERNEL);
393 if (nctx == NULL) {
394 rc = -ENOMEM;
395 goto out;
396 }
397 nctx->id = id;
398 nctx->flags = flags;
399 nctx->len = nctx_len;
400 nctx->ctx_len = val_len;
401 memcpy(nctx->ctx, val, val_len);
402
403 if (copy_to_user(uctx, nctx, nctx_len))
404 rc = -EFAULT;
405
406 out:
407 kfree(nctx);
408 *uctx_len = nctx_len;
409 return rc;
410 }
411
412 /*
413 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
414 * can be accessed with:
415 *
416 * LSM_RET_DEFAULT(<hook_name>)
417 *
418 * The macros below define static constants for the default value of each
419 * LSM hook.
420 */
421 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
422 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
423 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
424 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
425 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
426 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
427
428 #include <linux/lsm_hook_defs.h>
429 #undef LSM_HOOK
430
431 /*
432 * Hook list operation macros.
433 *
434 * call_void_hook:
435 * This is a hook that does not return a value.
436 *
437 * call_int_hook:
438 * This is a hook that returns a value.
439 */
440 #define __CALL_STATIC_VOID(NUM, HOOK, ...) \
441 do { \
442 if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
443 static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
444 } \
445 } while (0);
446
447 #define call_void_hook(HOOK, ...) \
448 do { \
449 LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
450 } while (0)
451
452
453 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...) \
454 do { \
455 if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
456 R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
457 if (R != LSM_RET_DEFAULT(HOOK)) \
458 goto LABEL; \
459 } \
460 } while (0);
461
462 #define call_int_hook(HOOK, ...) \
463 ({ \
464 __label__ OUT; \
465 int RC = LSM_RET_DEFAULT(HOOK); \
466 \
467 LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__); \
468 OUT: \
469 RC; \
470 })
471
472 #define lsm_for_each_hook(scall, NAME) \
473 for (scall = static_calls_table.NAME; \
474 scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++) \
475 if (static_key_enabled(&scall->active->key))
476
477 /* Security operations */
478
479 /**
480 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
481 * @mgr: task credentials of current binder process
482 *
483 * Check whether @mgr is allowed to be the binder context manager.
484 *
485 * Return: Return 0 if permission is granted.
486 */
security_binder_set_context_mgr(const struct cred * mgr)487 int security_binder_set_context_mgr(const struct cred *mgr)
488 {
489 return call_int_hook(binder_set_context_mgr, mgr);
490 }
491
492 /**
493 * security_binder_transaction() - Check if a binder transaction is allowed
494 * @from: sending process
495 * @to: receiving process
496 *
497 * Check whether @from is allowed to invoke a binder transaction call to @to.
498 *
499 * Return: Returns 0 if permission is granted.
500 */
security_binder_transaction(const struct cred * from,const struct cred * to)501 int security_binder_transaction(const struct cred *from,
502 const struct cred *to)
503 {
504 return call_int_hook(binder_transaction, from, to);
505 }
506
507 /**
508 * security_binder_transfer_binder() - Check if a binder transfer is allowed
509 * @from: sending process
510 * @to: receiving process
511 *
512 * Check whether @from is allowed to transfer a binder reference to @to.
513 *
514 * Return: Returns 0 if permission is granted.
515 */
security_binder_transfer_binder(const struct cred * from,const struct cred * to)516 int security_binder_transfer_binder(const struct cred *from,
517 const struct cred *to)
518 {
519 return call_int_hook(binder_transfer_binder, from, to);
520 }
521
522 /**
523 * security_binder_transfer_file() - Check if a binder file xfer is allowed
524 * @from: sending process
525 * @to: receiving process
526 * @file: file being transferred
527 *
528 * Check whether @from is allowed to transfer @file to @to.
529 *
530 * Return: Returns 0 if permission is granted.
531 */
security_binder_transfer_file(const struct cred * from,const struct cred * to,const struct file * file)532 int security_binder_transfer_file(const struct cred *from,
533 const struct cred *to, const struct file *file)
534 {
535 return call_int_hook(binder_transfer_file, from, to, file);
536 }
537
538 /**
539 * security_ptrace_access_check() - Check if tracing is allowed
540 * @child: target process
541 * @mode: PTRACE_MODE flags
542 *
543 * Check permission before allowing the current process to trace the @child
544 * process. Security modules may also want to perform a process tracing check
545 * during an execve in the set_security or apply_creds hooks of tracing check
546 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
547 * process is being traced and its security attributes would be changed by the
548 * execve.
549 *
550 * Return: Returns 0 if permission is granted.
551 */
security_ptrace_access_check(struct task_struct * child,unsigned int mode)552 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
553 {
554 return call_int_hook(ptrace_access_check, child, mode);
555 }
556
557 /**
558 * security_ptrace_traceme() - Check if tracing is allowed
559 * @parent: tracing process
560 *
561 * Check that the @parent process has sufficient permission to trace the
562 * current process before allowing the current process to present itself to the
563 * @parent process for tracing.
564 *
565 * Return: Returns 0 if permission is granted.
566 */
security_ptrace_traceme(struct task_struct * parent)567 int security_ptrace_traceme(struct task_struct *parent)
568 {
569 return call_int_hook(ptrace_traceme, parent);
570 }
571
572 /**
573 * security_capget() - Get the capability sets for a process
574 * @target: target process
575 * @effective: effective capability set
576 * @inheritable: inheritable capability set
577 * @permitted: permitted capability set
578 *
579 * Get the @effective, @inheritable, and @permitted capability sets for the
580 * @target process. The hook may also perform permission checking to determine
581 * if the current process is allowed to see the capability sets of the @target
582 * process.
583 *
584 * Return: Returns 0 if the capability sets were successfully obtained.
585 */
security_capget(const struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)586 int security_capget(const struct task_struct *target,
587 kernel_cap_t *effective,
588 kernel_cap_t *inheritable,
589 kernel_cap_t *permitted)
590 {
591 return call_int_hook(capget, target, effective, inheritable, permitted);
592 }
593
594 /**
595 * security_capset() - Set the capability sets for a process
596 * @new: new credentials for the target process
597 * @old: current credentials of the target process
598 * @effective: effective capability set
599 * @inheritable: inheritable capability set
600 * @permitted: permitted capability set
601 *
602 * Set the @effective, @inheritable, and @permitted capability sets for the
603 * current process.
604 *
605 * Return: Returns 0 and update @new if permission is granted.
606 */
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)607 int security_capset(struct cred *new, const struct cred *old,
608 const kernel_cap_t *effective,
609 const kernel_cap_t *inheritable,
610 const kernel_cap_t *permitted)
611 {
612 return call_int_hook(capset, new, old, effective, inheritable,
613 permitted);
614 }
615
616 /**
617 * security_capable() - Check if a process has the necessary capability
618 * @cred: credentials to examine
619 * @ns: user namespace
620 * @cap: capability requested
621 * @opts: capability check options
622 *
623 * Check whether the @tsk process has the @cap capability in the indicated
624 * credentials. @cap contains the capability <include/linux/capability.h>.
625 * @opts contains options for the capable check <include/linux/security.h>.
626 *
627 * Return: Returns 0 if the capability is granted.
628 */
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)629 int security_capable(const struct cred *cred,
630 struct user_namespace *ns,
631 int cap,
632 unsigned int opts)
633 {
634 return call_int_hook(capable, cred, ns, cap, opts);
635 }
636
637 /**
638 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
639 * @cmds: commands
640 * @type: type
641 * @id: id
642 * @sb: filesystem
643 *
644 * Check whether the quotactl syscall is allowed for this @sb.
645 *
646 * Return: Returns 0 if permission is granted.
647 */
security_quotactl(int cmds,int type,int id,const struct super_block * sb)648 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
649 {
650 return call_int_hook(quotactl, cmds, type, id, sb);
651 }
652
653 /**
654 * security_quota_on() - Check if QUOTAON is allowed for a dentry
655 * @dentry: dentry
656 *
657 * Check whether QUOTAON is allowed for @dentry.
658 *
659 * Return: Returns 0 if permission is granted.
660 */
security_quota_on(struct dentry * dentry)661 int security_quota_on(struct dentry *dentry)
662 {
663 return call_int_hook(quota_on, dentry);
664 }
665
666 /**
667 * security_syslog() - Check if accessing the kernel message ring is allowed
668 * @type: SYSLOG_ACTION_* type
669 *
670 * Check permission before accessing the kernel message ring or changing
671 * logging to the console. See the syslog(2) manual page for an explanation of
672 * the @type values.
673 *
674 * Return: Return 0 if permission is granted.
675 */
security_syslog(int type)676 int security_syslog(int type)
677 {
678 return call_int_hook(syslog, type);
679 }
680
681 /**
682 * security_settime64() - Check if changing the system time is allowed
683 * @ts: new time
684 * @tz: timezone
685 *
686 * Check permission to change the system time, struct timespec64 is defined in
687 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
688 *
689 * Return: Returns 0 if permission is granted.
690 */
security_settime64(const struct timespec64 * ts,const struct timezone * tz)691 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
692 {
693 return call_int_hook(settime, ts, tz);
694 }
695
696 /**
697 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
698 * @mm: mm struct
699 * @pages: number of pages
700 *
701 * Check permissions for allocating a new virtual mapping. If all LSMs return
702 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
703 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
704 * called with cap_sys_admin cleared.
705 *
706 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
707 * caller.
708 */
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)709 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
710 {
711 struct lsm_static_call *scall;
712 int cap_sys_admin = 1;
713 int rc;
714
715 /*
716 * The module will respond with 0 if it thinks the __vm_enough_memory()
717 * call should be made with the cap_sys_admin set. If all of the modules
718 * agree that it should be set it will. If any module thinks it should
719 * not be set it won't.
720 */
721 lsm_for_each_hook(scall, vm_enough_memory) {
722 rc = scall->hl->hook.vm_enough_memory(mm, pages);
723 if (rc < 0) {
724 cap_sys_admin = 0;
725 break;
726 }
727 }
728 return __vm_enough_memory(mm, pages, cap_sys_admin);
729 }
730
731 /**
732 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
733 * @bprm: binary program information
734 *
735 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
736 * properly for executing @bprm->file, update the LSM's portion of
737 * @bprm->cred->security to be what commit_creds needs to install for the new
738 * program. This hook may also optionally check permissions (e.g. for
739 * transitions between security domains). The hook must set @bprm->secureexec
740 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm
741 * contains the linux_binprm structure.
742 *
743 * If execveat(2) is called with the AT_EXECVE_CHECK flag, bprm->is_check is
744 * set. The result must be the same as without this flag even if the execution
745 * will never really happen and @bprm will always be dropped.
746 *
747 * This hook must not change current->cred, only @bprm->cred.
748 *
749 * Return: Returns 0 if the hook is successful and permission is granted.
750 */
security_bprm_creds_for_exec(struct linux_binprm * bprm)751 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
752 {
753 return call_int_hook(bprm_creds_for_exec, bprm);
754 }
755
756 /**
757 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
758 * @bprm: binary program information
759 * @file: associated file
760 *
761 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
762 * exec, update @bprm->cred to reflect that change. This is called after
763 * finding the binary that will be executed without an interpreter. This
764 * ensures that the credentials will not be derived from a script that the
765 * binary will need to reopen, which when reopend may end up being a completely
766 * different file. This hook may also optionally check permissions (e.g. for
767 * transitions between security domains). The hook must set @bprm->secureexec
768 * to 1 if AT_SECURE should be set to request libc enable secure mode. The
769 * hook must add to @bprm->per_clear any personality flags that should be
770 * cleared from current->personality. @bprm contains the linux_binprm
771 * structure.
772 *
773 * Return: Returns 0 if the hook is successful and permission is granted.
774 */
security_bprm_creds_from_file(struct linux_binprm * bprm,const struct file * file)775 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
776 {
777 return call_int_hook(bprm_creds_from_file, bprm, file);
778 }
779
780 /**
781 * security_bprm_check() - Mediate binary handler search
782 * @bprm: binary program information
783 *
784 * This hook mediates the point when a search for a binary handler will begin.
785 * It allows a check against the @bprm->cred->security value which was set in
786 * the preceding creds_for_exec call. The argv list and envp list are reliably
787 * available in @bprm. This hook may be called multiple times during a single
788 * execve. @bprm contains the linux_binprm structure.
789 *
790 * Return: Returns 0 if the hook is successful and permission is granted.
791 */
security_bprm_check(struct linux_binprm * bprm)792 int security_bprm_check(struct linux_binprm *bprm)
793 {
794 return call_int_hook(bprm_check_security, bprm);
795 }
796
797 /**
798 * security_bprm_committing_creds() - Install creds for a process during exec()
799 * @bprm: binary program information
800 *
801 * Prepare to install the new security attributes of a process being
802 * transformed by an execve operation, based on the old credentials pointed to
803 * by @current->cred and the information set in @bprm->cred by the
804 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This
805 * hook is a good place to perform state changes on the process such as closing
806 * open file descriptors to which access will no longer be granted when the
807 * attributes are changed. This is called immediately before commit_creds().
808 */
security_bprm_committing_creds(const struct linux_binprm * bprm)809 void security_bprm_committing_creds(const struct linux_binprm *bprm)
810 {
811 call_void_hook(bprm_committing_creds, bprm);
812 }
813
814 /**
815 * security_bprm_committed_creds() - Tidy up after cred install during exec()
816 * @bprm: binary program information
817 *
818 * Tidy up after the installation of the new security attributes of a process
819 * being transformed by an execve operation. The new credentials have, by this
820 * point, been set to @current->cred. @bprm points to the linux_binprm
821 * structure. This hook is a good place to perform state changes on the
822 * process such as clearing out non-inheritable signal state. This is called
823 * immediately after commit_creds().
824 */
security_bprm_committed_creds(const struct linux_binprm * bprm)825 void security_bprm_committed_creds(const struct linux_binprm *bprm)
826 {
827 call_void_hook(bprm_committed_creds, bprm);
828 }
829
830 /**
831 * security_fs_context_submount() - Initialise fc->security
832 * @fc: new filesystem context
833 * @reference: dentry reference for submount/remount
834 *
835 * Fill out the ->security field for a new fs_context.
836 *
837 * Return: Returns 0 on success or negative error code on failure.
838 */
security_fs_context_submount(struct fs_context * fc,struct super_block * reference)839 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
840 {
841 return call_int_hook(fs_context_submount, fc, reference);
842 }
843
844 /**
845 * security_fs_context_dup() - Duplicate a fs_context LSM blob
846 * @fc: destination filesystem context
847 * @src_fc: source filesystem context
848 *
849 * Allocate and attach a security structure to sc->security. This pointer is
850 * initialised to NULL by the caller. @fc indicates the new filesystem context.
851 * @src_fc indicates the original filesystem context.
852 *
853 * Return: Returns 0 on success or a negative error code on failure.
854 */
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)855 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
856 {
857 return call_int_hook(fs_context_dup, fc, src_fc);
858 }
859
860 /**
861 * security_fs_context_parse_param() - Configure a filesystem context
862 * @fc: filesystem context
863 * @param: filesystem parameter
864 *
865 * Userspace provided a parameter to configure a superblock. The LSM can
866 * consume the parameter or return it to the caller for use elsewhere.
867 *
868 * Return: If the parameter is used by the LSM it should return 0, if it is
869 * returned to the caller -ENOPARAM is returned, otherwise a negative
870 * error code is returned.
871 */
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)872 int security_fs_context_parse_param(struct fs_context *fc,
873 struct fs_parameter *param)
874 {
875 struct lsm_static_call *scall;
876 int trc;
877 int rc = -ENOPARAM;
878
879 lsm_for_each_hook(scall, fs_context_parse_param) {
880 trc = scall->hl->hook.fs_context_parse_param(fc, param);
881 if (trc == 0)
882 rc = 0;
883 else if (trc != -ENOPARAM)
884 return trc;
885 }
886 return rc;
887 }
888
889 /**
890 * security_sb_alloc() - Allocate a super_block LSM blob
891 * @sb: filesystem superblock
892 *
893 * Allocate and attach a security structure to the sb->s_security field. The
894 * s_security field is initialized to NULL when the structure is allocated.
895 * @sb contains the super_block structure to be modified.
896 *
897 * Return: Returns 0 if operation was successful.
898 */
security_sb_alloc(struct super_block * sb)899 int security_sb_alloc(struct super_block *sb)
900 {
901 int rc = lsm_superblock_alloc(sb);
902
903 if (unlikely(rc))
904 return rc;
905 rc = call_int_hook(sb_alloc_security, sb);
906 if (unlikely(rc))
907 security_sb_free(sb);
908 return rc;
909 }
910
911 /**
912 * security_sb_delete() - Release super_block LSM associated objects
913 * @sb: filesystem superblock
914 *
915 * Release objects tied to a superblock (e.g. inodes). @sb contains the
916 * super_block structure being released.
917 */
security_sb_delete(struct super_block * sb)918 void security_sb_delete(struct super_block *sb)
919 {
920 call_void_hook(sb_delete, sb);
921 }
922
923 /**
924 * security_sb_free() - Free a super_block LSM blob
925 * @sb: filesystem superblock
926 *
927 * Deallocate and clear the sb->s_security field. @sb contains the super_block
928 * structure to be modified.
929 */
security_sb_free(struct super_block * sb)930 void security_sb_free(struct super_block *sb)
931 {
932 call_void_hook(sb_free_security, sb);
933 kfree(sb->s_security);
934 sb->s_security = NULL;
935 }
936
937 /**
938 * security_free_mnt_opts() - Free memory associated with mount options
939 * @mnt_opts: LSM processed mount options
940 *
941 * Free memory associated with @mnt_ops.
942 */
security_free_mnt_opts(void ** mnt_opts)943 void security_free_mnt_opts(void **mnt_opts)
944 {
945 if (!*mnt_opts)
946 return;
947 call_void_hook(sb_free_mnt_opts, *mnt_opts);
948 *mnt_opts = NULL;
949 }
950 EXPORT_SYMBOL(security_free_mnt_opts);
951
952 /**
953 * security_sb_eat_lsm_opts() - Consume LSM mount options
954 * @options: mount options
955 * @mnt_opts: LSM processed mount options
956 *
957 * Eat (scan @options) and save them in @mnt_opts.
958 *
959 * Return: Returns 0 on success, negative values on failure.
960 */
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)961 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
962 {
963 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
964 }
965 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
966
967 /**
968 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
969 * @sb: filesystem superblock
970 * @mnt_opts: new mount options
971 *
972 * Determine if the new mount options in @mnt_opts are allowed given the
973 * existing mounted filesystem at @sb. @sb superblock being compared.
974 *
975 * Return: Returns 0 if options are compatible.
976 */
security_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)977 int security_sb_mnt_opts_compat(struct super_block *sb,
978 void *mnt_opts)
979 {
980 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
981 }
982 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
983
984 /**
985 * security_sb_remount() - Verify no incompatible mount changes during remount
986 * @sb: filesystem superblock
987 * @mnt_opts: (re)mount options
988 *
989 * Extracts security system specific mount options and verifies no changes are
990 * being made to those options.
991 *
992 * Return: Returns 0 if permission is granted.
993 */
security_sb_remount(struct super_block * sb,void * mnt_opts)994 int security_sb_remount(struct super_block *sb,
995 void *mnt_opts)
996 {
997 return call_int_hook(sb_remount, sb, mnt_opts);
998 }
999 EXPORT_SYMBOL(security_sb_remount);
1000
1001 /**
1002 * security_sb_kern_mount() - Check if a kernel mount is allowed
1003 * @sb: filesystem superblock
1004 *
1005 * Mount this @sb if allowed by permissions.
1006 *
1007 * Return: Returns 0 if permission is granted.
1008 */
security_sb_kern_mount(const struct super_block * sb)1009 int security_sb_kern_mount(const struct super_block *sb)
1010 {
1011 return call_int_hook(sb_kern_mount, sb);
1012 }
1013
1014 /**
1015 * security_sb_show_options() - Output the mount options for a superblock
1016 * @m: output file
1017 * @sb: filesystem superblock
1018 *
1019 * Show (print on @m) mount options for this @sb.
1020 *
1021 * Return: Returns 0 on success, negative values on failure.
1022 */
security_sb_show_options(struct seq_file * m,struct super_block * sb)1023 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1024 {
1025 return call_int_hook(sb_show_options, m, sb);
1026 }
1027
1028 /**
1029 * security_sb_statfs() - Check if accessing fs stats is allowed
1030 * @dentry: superblock handle
1031 *
1032 * Check permission before obtaining filesystem statistics for the @mnt
1033 * mountpoint. @dentry is a handle on the superblock for the filesystem.
1034 *
1035 * Return: Returns 0 if permission is granted.
1036 */
security_sb_statfs(struct dentry * dentry)1037 int security_sb_statfs(struct dentry *dentry)
1038 {
1039 return call_int_hook(sb_statfs, dentry);
1040 }
1041
1042 /**
1043 * security_sb_mount() - Check permission for mounting a filesystem
1044 * @dev_name: filesystem backing device
1045 * @path: mount point
1046 * @type: filesystem type
1047 * @flags: mount flags
1048 * @data: filesystem specific data
1049 *
1050 * Check permission before an object specified by @dev_name is mounted on the
1051 * mount point named by @nd. For an ordinary mount, @dev_name identifies a
1052 * device if the file system type requires a device. For a remount
1053 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount
1054 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1055 * mounted.
1056 *
1057 * Return: Returns 0 if permission is granted.
1058 */
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)1059 int security_sb_mount(const char *dev_name, const struct path *path,
1060 const char *type, unsigned long flags, void *data)
1061 {
1062 return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1063 }
1064
1065 /**
1066 * security_sb_umount() - Check permission for unmounting a filesystem
1067 * @mnt: mounted filesystem
1068 * @flags: unmount flags
1069 *
1070 * Check permission before the @mnt file system is unmounted.
1071 *
1072 * Return: Returns 0 if permission is granted.
1073 */
security_sb_umount(struct vfsmount * mnt,int flags)1074 int security_sb_umount(struct vfsmount *mnt, int flags)
1075 {
1076 return call_int_hook(sb_umount, mnt, flags);
1077 }
1078
1079 /**
1080 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1081 * @old_path: new location for current rootfs
1082 * @new_path: location of the new rootfs
1083 *
1084 * Check permission before pivoting the root filesystem.
1085 *
1086 * Return: Returns 0 if permission is granted.
1087 */
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)1088 int security_sb_pivotroot(const struct path *old_path,
1089 const struct path *new_path)
1090 {
1091 return call_int_hook(sb_pivotroot, old_path, new_path);
1092 }
1093
1094 /**
1095 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1096 * @sb: filesystem superblock
1097 * @mnt_opts: binary mount options
1098 * @kern_flags: kernel flags (in)
1099 * @set_kern_flags: kernel flags (out)
1100 *
1101 * Set the security relevant mount options used for a superblock.
1102 *
1103 * Return: Returns 0 on success, error on failure.
1104 */
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)1105 int security_sb_set_mnt_opts(struct super_block *sb,
1106 void *mnt_opts,
1107 unsigned long kern_flags,
1108 unsigned long *set_kern_flags)
1109 {
1110 struct lsm_static_call *scall;
1111 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1112
1113 lsm_for_each_hook(scall, sb_set_mnt_opts) {
1114 rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1115 set_kern_flags);
1116 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1117 break;
1118 }
1119 return rc;
1120 }
1121 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1122
1123 /**
1124 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1125 * @oldsb: source superblock
1126 * @newsb: destination superblock
1127 * @kern_flags: kernel flags (in)
1128 * @set_kern_flags: kernel flags (out)
1129 *
1130 * Copy all security options from a given superblock to another.
1131 *
1132 * Return: Returns 0 on success, error on failure.
1133 */
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)1134 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1135 struct super_block *newsb,
1136 unsigned long kern_flags,
1137 unsigned long *set_kern_flags)
1138 {
1139 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1140 kern_flags, set_kern_flags);
1141 }
1142 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1143
1144 /**
1145 * security_move_mount() - Check permissions for moving a mount
1146 * @from_path: source mount point
1147 * @to_path: destination mount point
1148 *
1149 * Check permission before a mount is moved.
1150 *
1151 * Return: Returns 0 if permission is granted.
1152 */
security_move_mount(const struct path * from_path,const struct path * to_path)1153 int security_move_mount(const struct path *from_path,
1154 const struct path *to_path)
1155 {
1156 return call_int_hook(move_mount, from_path, to_path);
1157 }
1158
1159 /**
1160 * security_path_notify() - Check if setting a watch is allowed
1161 * @path: file path
1162 * @mask: event mask
1163 * @obj_type: file path type
1164 *
1165 * Check permissions before setting a watch on events as defined by @mask, on
1166 * an object at @path, whose type is defined by @obj_type.
1167 *
1168 * Return: Returns 0 if permission is granted.
1169 */
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)1170 int security_path_notify(const struct path *path, u64 mask,
1171 unsigned int obj_type)
1172 {
1173 return call_int_hook(path_notify, path, mask, obj_type);
1174 }
1175
1176 /**
1177 * security_inode_alloc() - Allocate an inode LSM blob
1178 * @inode: the inode
1179 * @gfp: allocation flags
1180 *
1181 * Allocate and attach a security structure to @inode->i_security. The
1182 * i_security field is initialized to NULL when the inode structure is
1183 * allocated.
1184 *
1185 * Return: Return 0 if operation was successful.
1186 */
security_inode_alloc(struct inode * inode,gfp_t gfp)1187 int security_inode_alloc(struct inode *inode, gfp_t gfp)
1188 {
1189 int rc = lsm_inode_alloc(inode, gfp);
1190
1191 if (unlikely(rc))
1192 return rc;
1193 rc = call_int_hook(inode_alloc_security, inode);
1194 if (unlikely(rc))
1195 security_inode_free(inode);
1196 return rc;
1197 }
1198
inode_free_by_rcu(struct rcu_head * head)1199 static void inode_free_by_rcu(struct rcu_head *head)
1200 {
1201 /* The rcu head is at the start of the inode blob */
1202 call_void_hook(inode_free_security_rcu, head);
1203 kmem_cache_free(lsm_inode_cache, head);
1204 }
1205
1206 /**
1207 * security_inode_free() - Free an inode's LSM blob
1208 * @inode: the inode
1209 *
1210 * Release any LSM resources associated with @inode, although due to the
1211 * inode's RCU protections it is possible that the resources will not be
1212 * fully released until after the current RCU grace period has elapsed.
1213 *
1214 * It is important for LSMs to note that despite being present in a call to
1215 * security_inode_free(), @inode may still be referenced in a VFS path walk
1216 * and calls to security_inode_permission() may be made during, or after,
1217 * a call to security_inode_free(). For this reason the inode->i_security
1218 * field is released via a call_rcu() callback and any LSMs which need to
1219 * retain inode state for use in security_inode_permission() should only
1220 * release that state in the inode_free_security_rcu() LSM hook callback.
1221 */
security_inode_free(struct inode * inode)1222 void security_inode_free(struct inode *inode)
1223 {
1224 call_void_hook(inode_free_security, inode);
1225 if (!inode->i_security)
1226 return;
1227 call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1228 }
1229
1230 /**
1231 * security_dentry_init_security() - Perform dentry initialization
1232 * @dentry: the dentry to initialize
1233 * @mode: mode used to determine resource type
1234 * @name: name of the last path component
1235 * @xattr_name: name of the security/LSM xattr
1236 * @lsmctx: pointer to the resulting LSM context
1237 *
1238 * Compute a context for a dentry as the inode is not yet available since NFSv4
1239 * has no label backed by an EA anyway. It is important to note that
1240 * @xattr_name does not need to be free'd by the caller, it is a static string.
1241 *
1242 * Return: Returns 0 on success, negative values on failure.
1243 */
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,struct lsm_context * lsmctx)1244 int security_dentry_init_security(struct dentry *dentry, int mode,
1245 const struct qstr *name,
1246 const char **xattr_name,
1247 struct lsm_context *lsmctx)
1248 {
1249 return call_int_hook(dentry_init_security, dentry, mode, name,
1250 xattr_name, lsmctx);
1251 }
1252 EXPORT_SYMBOL(security_dentry_init_security);
1253
1254 /**
1255 * security_dentry_create_files_as() - Perform dentry initialization
1256 * @dentry: the dentry to initialize
1257 * @mode: mode used to determine resource type
1258 * @name: name of the last path component
1259 * @old: creds to use for LSM context calculations
1260 * @new: creds to modify
1261 *
1262 * Compute a context for a dentry as the inode is not yet available and set
1263 * that context in passed in creds so that new files are created using that
1264 * context. Context is calculated using the passed in creds and not the creds
1265 * of the caller.
1266 *
1267 * Return: Returns 0 on success, error on failure.
1268 */
security_dentry_create_files_as(struct dentry * dentry,int mode,const struct qstr * name,const struct cred * old,struct cred * new)1269 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1270 const struct qstr *name,
1271 const struct cred *old, struct cred *new)
1272 {
1273 return call_int_hook(dentry_create_files_as, dentry, mode,
1274 name, old, new);
1275 }
1276 EXPORT_SYMBOL(security_dentry_create_files_as);
1277
1278 /**
1279 * security_inode_init_security() - Initialize an inode's LSM context
1280 * @inode: the inode
1281 * @dir: parent directory
1282 * @qstr: last component of the pathname
1283 * @initxattrs: callback function to write xattrs
1284 * @fs_data: filesystem specific data
1285 *
1286 * Obtain the security attribute name suffix and value to set on a newly
1287 * created inode and set up the incore security field for the new inode. This
1288 * hook is called by the fs code as part of the inode creation transaction and
1289 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1290 * hooks called by the VFS.
1291 *
1292 * The hook function is expected to populate the xattrs array, by calling
1293 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1294 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each
1295 * slot, the hook function should set ->name to the attribute name suffix
1296 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1297 * to the attribute value, to set ->value_len to the length of the value. If
1298 * the security module does not use security attributes or does not wish to put
1299 * a security attribute on this particular inode, then it should return
1300 * -EOPNOTSUPP to skip this processing.
1301 *
1302 * Return: Returns 0 if the LSM successfully initialized all of the inode
1303 * security attributes that are required, negative values otherwise.
1304 */
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1305 int security_inode_init_security(struct inode *inode, struct inode *dir,
1306 const struct qstr *qstr,
1307 const initxattrs initxattrs, void *fs_data)
1308 {
1309 struct lsm_static_call *scall;
1310 struct xattr *new_xattrs = NULL;
1311 int ret = -EOPNOTSUPP, xattr_count = 0;
1312
1313 if (unlikely(IS_PRIVATE(inode)))
1314 return 0;
1315
1316 if (!blob_sizes.lbs_xattr_count)
1317 return 0;
1318
1319 if (initxattrs) {
1320 /* Allocate +1 as terminator. */
1321 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1322 sizeof(*new_xattrs), GFP_NOFS);
1323 if (!new_xattrs)
1324 return -ENOMEM;
1325 }
1326
1327 lsm_for_each_hook(scall, inode_init_security) {
1328 ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1329 &xattr_count);
1330 if (ret && ret != -EOPNOTSUPP)
1331 goto out;
1332 /*
1333 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1334 * means that the LSM is not willing to provide an xattr, not
1335 * that it wants to signal an error. Thus, continue to invoke
1336 * the remaining LSMs.
1337 */
1338 }
1339
1340 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1341 if (!xattr_count)
1342 goto out;
1343
1344 ret = initxattrs(inode, new_xattrs, fs_data);
1345 out:
1346 for (; xattr_count > 0; xattr_count--)
1347 kfree(new_xattrs[xattr_count - 1].value);
1348 kfree(new_xattrs);
1349 return (ret == -EOPNOTSUPP) ? 0 : ret;
1350 }
1351 EXPORT_SYMBOL(security_inode_init_security);
1352
1353 /**
1354 * security_inode_init_security_anon() - Initialize an anonymous inode
1355 * @inode: the inode
1356 * @name: the anonymous inode class
1357 * @context_inode: an optional related inode
1358 *
1359 * Set up the incore security field for the new anonymous inode and return
1360 * whether the inode creation is permitted by the security module or not.
1361 *
1362 * Return: Returns 0 on success, -EACCES if the security module denies the
1363 * creation of this inode, or another -errno upon other errors.
1364 */
security_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)1365 int security_inode_init_security_anon(struct inode *inode,
1366 const struct qstr *name,
1367 const struct inode *context_inode)
1368 {
1369 return call_int_hook(inode_init_security_anon, inode, name,
1370 context_inode);
1371 }
1372
1373 #ifdef CONFIG_SECURITY_PATH
1374 /**
1375 * security_path_mknod() - Check if creating a special file is allowed
1376 * @dir: parent directory
1377 * @dentry: new file
1378 * @mode: new file mode
1379 * @dev: device number
1380 *
1381 * Check permissions when creating a file. Note that this hook is called even
1382 * if mknod operation is being done for a regular file.
1383 *
1384 * Return: Returns 0 if permission is granted.
1385 */
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1386 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1387 umode_t mode, unsigned int dev)
1388 {
1389 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1390 return 0;
1391 return call_int_hook(path_mknod, dir, dentry, mode, dev);
1392 }
1393 EXPORT_SYMBOL(security_path_mknod);
1394
1395 /**
1396 * security_path_post_mknod() - Update inode security after reg file creation
1397 * @idmap: idmap of the mount
1398 * @dentry: new file
1399 *
1400 * Update inode security field after a regular file has been created.
1401 */
security_path_post_mknod(struct mnt_idmap * idmap,struct dentry * dentry)1402 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1403 {
1404 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1405 return;
1406 call_void_hook(path_post_mknod, idmap, dentry);
1407 }
1408
1409 /**
1410 * security_path_mkdir() - Check if creating a new directory is allowed
1411 * @dir: parent directory
1412 * @dentry: new directory
1413 * @mode: new directory mode
1414 *
1415 * Check permissions to create a new directory in the existing directory.
1416 *
1417 * Return: Returns 0 if permission is granted.
1418 */
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1419 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1420 umode_t mode)
1421 {
1422 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1423 return 0;
1424 return call_int_hook(path_mkdir, dir, dentry, mode);
1425 }
1426 EXPORT_SYMBOL(security_path_mkdir);
1427
1428 /**
1429 * security_path_rmdir() - Check if removing a directory is allowed
1430 * @dir: parent directory
1431 * @dentry: directory to remove
1432 *
1433 * Check the permission to remove a directory.
1434 *
1435 * Return: Returns 0 if permission is granted.
1436 */
security_path_rmdir(const struct path * dir,struct dentry * dentry)1437 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1438 {
1439 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1440 return 0;
1441 return call_int_hook(path_rmdir, dir, dentry);
1442 }
1443
1444 /**
1445 * security_path_unlink() - Check if removing a hard link is allowed
1446 * @dir: parent directory
1447 * @dentry: file
1448 *
1449 * Check the permission to remove a hard link to a file.
1450 *
1451 * Return: Returns 0 if permission is granted.
1452 */
security_path_unlink(const struct path * dir,struct dentry * dentry)1453 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1454 {
1455 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1456 return 0;
1457 return call_int_hook(path_unlink, dir, dentry);
1458 }
1459 EXPORT_SYMBOL(security_path_unlink);
1460
1461 /**
1462 * security_path_symlink() - Check if creating a symbolic link is allowed
1463 * @dir: parent directory
1464 * @dentry: symbolic link
1465 * @old_name: file pathname
1466 *
1467 * Check the permission to create a symbolic link to a file.
1468 *
1469 * Return: Returns 0 if permission is granted.
1470 */
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1471 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1472 const char *old_name)
1473 {
1474 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1475 return 0;
1476 return call_int_hook(path_symlink, dir, dentry, old_name);
1477 }
1478
1479 /**
1480 * security_path_link - Check if creating a hard link is allowed
1481 * @old_dentry: existing file
1482 * @new_dir: new parent directory
1483 * @new_dentry: new link
1484 *
1485 * Check permission before creating a new hard link to a file.
1486 *
1487 * Return: Returns 0 if permission is granted.
1488 */
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1489 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1490 struct dentry *new_dentry)
1491 {
1492 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1493 return 0;
1494 return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1495 }
1496
1497 /**
1498 * security_path_rename() - Check if renaming a file is allowed
1499 * @old_dir: parent directory of the old file
1500 * @old_dentry: the old file
1501 * @new_dir: parent directory of the new file
1502 * @new_dentry: the new file
1503 * @flags: flags
1504 *
1505 * Check for permission to rename a file or directory.
1506 *
1507 * Return: Returns 0 if permission is granted.
1508 */
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1509 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1510 const struct path *new_dir, struct dentry *new_dentry,
1511 unsigned int flags)
1512 {
1513 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1514 (d_is_positive(new_dentry) &&
1515 IS_PRIVATE(d_backing_inode(new_dentry)))))
1516 return 0;
1517
1518 return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
1519 new_dentry, flags);
1520 }
1521 EXPORT_SYMBOL(security_path_rename);
1522
1523 /**
1524 * security_path_truncate() - Check if truncating a file is allowed
1525 * @path: file
1526 *
1527 * Check permission before truncating the file indicated by path. Note that
1528 * truncation permissions may also be checked based on already opened files,
1529 * using the security_file_truncate() hook.
1530 *
1531 * Return: Returns 0 if permission is granted.
1532 */
security_path_truncate(const struct path * path)1533 int security_path_truncate(const struct path *path)
1534 {
1535 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1536 return 0;
1537 return call_int_hook(path_truncate, path);
1538 }
1539
1540 /**
1541 * security_path_chmod() - Check if changing the file's mode is allowed
1542 * @path: file
1543 * @mode: new mode
1544 *
1545 * Check for permission to change a mode of the file @path. The new mode is
1546 * specified in @mode which is a bitmask of constants from
1547 * <include/uapi/linux/stat.h>.
1548 *
1549 * Return: Returns 0 if permission is granted.
1550 */
security_path_chmod(const struct path * path,umode_t mode)1551 int security_path_chmod(const struct path *path, umode_t mode)
1552 {
1553 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1554 return 0;
1555 return call_int_hook(path_chmod, path, mode);
1556 }
1557
1558 /**
1559 * security_path_chown() - Check if changing the file's owner/group is allowed
1560 * @path: file
1561 * @uid: file owner
1562 * @gid: file group
1563 *
1564 * Check for permission to change owner/group of a file or directory.
1565 *
1566 * Return: Returns 0 if permission is granted.
1567 */
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1568 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1569 {
1570 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1571 return 0;
1572 return call_int_hook(path_chown, path, uid, gid);
1573 }
1574
1575 /**
1576 * security_path_chroot() - Check if changing the root directory is allowed
1577 * @path: directory
1578 *
1579 * Check for permission to change root directory.
1580 *
1581 * Return: Returns 0 if permission is granted.
1582 */
security_path_chroot(const struct path * path)1583 int security_path_chroot(const struct path *path)
1584 {
1585 return call_int_hook(path_chroot, path);
1586 }
1587 #endif /* CONFIG_SECURITY_PATH */
1588
1589 /**
1590 * security_inode_create() - Check if creating a file is allowed
1591 * @dir: the parent directory
1592 * @dentry: the file being created
1593 * @mode: requested file mode
1594 *
1595 * Check permission to create a regular file.
1596 *
1597 * Return: Returns 0 if permission is granted.
1598 */
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1599 int security_inode_create(struct inode *dir, struct dentry *dentry,
1600 umode_t mode)
1601 {
1602 if (unlikely(IS_PRIVATE(dir)))
1603 return 0;
1604 return call_int_hook(inode_create, dir, dentry, mode);
1605 }
1606 EXPORT_SYMBOL_GPL(security_inode_create);
1607
1608 /**
1609 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
1610 * @idmap: idmap of the mount
1611 * @inode: inode of the new tmpfile
1612 *
1613 * Update inode security data after a tmpfile has been created.
1614 */
security_inode_post_create_tmpfile(struct mnt_idmap * idmap,struct inode * inode)1615 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
1616 struct inode *inode)
1617 {
1618 if (unlikely(IS_PRIVATE(inode)))
1619 return;
1620 call_void_hook(inode_post_create_tmpfile, idmap, inode);
1621 }
1622
1623 /**
1624 * security_inode_link() - Check if creating a hard link is allowed
1625 * @old_dentry: existing file
1626 * @dir: new parent directory
1627 * @new_dentry: new link
1628 *
1629 * Check permission before creating a new hard link to a file.
1630 *
1631 * Return: Returns 0 if permission is granted.
1632 */
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1633 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1634 struct dentry *new_dentry)
1635 {
1636 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1637 return 0;
1638 return call_int_hook(inode_link, old_dentry, dir, new_dentry);
1639 }
1640
1641 /**
1642 * security_inode_unlink() - Check if removing a hard link is allowed
1643 * @dir: parent directory
1644 * @dentry: file
1645 *
1646 * Check the permission to remove a hard link to a file.
1647 *
1648 * Return: Returns 0 if permission is granted.
1649 */
security_inode_unlink(struct inode * dir,struct dentry * dentry)1650 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1651 {
1652 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1653 return 0;
1654 return call_int_hook(inode_unlink, dir, dentry);
1655 }
1656
1657 /**
1658 * security_inode_symlink() - Check if creating a symbolic link is allowed
1659 * @dir: parent directory
1660 * @dentry: symbolic link
1661 * @old_name: existing filename
1662 *
1663 * Check the permission to create a symbolic link to a file.
1664 *
1665 * Return: Returns 0 if permission is granted.
1666 */
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1667 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1668 const char *old_name)
1669 {
1670 if (unlikely(IS_PRIVATE(dir)))
1671 return 0;
1672 return call_int_hook(inode_symlink, dir, dentry, old_name);
1673 }
1674
1675 /**
1676 * security_inode_mkdir() - Check if creating a new directory is allowed
1677 * @dir: parent directory
1678 * @dentry: new directory
1679 * @mode: new directory mode
1680 *
1681 * Check permissions to create a new directory in the existing directory
1682 * associated with inode structure @dir.
1683 *
1684 * Return: Returns 0 if permission is granted.
1685 */
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1686 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1687 {
1688 if (unlikely(IS_PRIVATE(dir)))
1689 return 0;
1690 return call_int_hook(inode_mkdir, dir, dentry, mode);
1691 }
1692 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1693
1694 /**
1695 * security_inode_rmdir() - Check if removing a directory is allowed
1696 * @dir: parent directory
1697 * @dentry: directory to be removed
1698 *
1699 * Check the permission to remove a directory.
1700 *
1701 * Return: Returns 0 if permission is granted.
1702 */
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1703 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1704 {
1705 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1706 return 0;
1707 return call_int_hook(inode_rmdir, dir, dentry);
1708 }
1709
1710 /**
1711 * security_inode_mknod() - Check if creating a special file is allowed
1712 * @dir: parent directory
1713 * @dentry: new file
1714 * @mode: new file mode
1715 * @dev: device number
1716 *
1717 * Check permissions when creating a special file (or a socket or a fifo file
1718 * created via the mknod system call). Note that if mknod operation is being
1719 * done for a regular file, then the create hook will be called and not this
1720 * hook.
1721 *
1722 * Return: Returns 0 if permission is granted.
1723 */
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1724 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
1725 umode_t mode, dev_t dev)
1726 {
1727 if (unlikely(IS_PRIVATE(dir)))
1728 return 0;
1729 return call_int_hook(inode_mknod, dir, dentry, mode, dev);
1730 }
1731
1732 /**
1733 * security_inode_rename() - Check if renaming a file is allowed
1734 * @old_dir: parent directory of the old file
1735 * @old_dentry: the old file
1736 * @new_dir: parent directory of the new file
1737 * @new_dentry: the new file
1738 * @flags: flags
1739 *
1740 * Check for permission to rename a file or directory.
1741 *
1742 * Return: Returns 0 if permission is granted.
1743 */
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1744 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1745 struct inode *new_dir, struct dentry *new_dentry,
1746 unsigned int flags)
1747 {
1748 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1749 (d_is_positive(new_dentry) &&
1750 IS_PRIVATE(d_backing_inode(new_dentry)))))
1751 return 0;
1752
1753 if (flags & RENAME_EXCHANGE) {
1754 int err = call_int_hook(inode_rename, new_dir, new_dentry,
1755 old_dir, old_dentry);
1756 if (err)
1757 return err;
1758 }
1759
1760 return call_int_hook(inode_rename, old_dir, old_dentry,
1761 new_dir, new_dentry);
1762 }
1763
1764 /**
1765 * security_inode_readlink() - Check if reading a symbolic link is allowed
1766 * @dentry: link
1767 *
1768 * Check the permission to read the symbolic link.
1769 *
1770 * Return: Returns 0 if permission is granted.
1771 */
security_inode_readlink(struct dentry * dentry)1772 int security_inode_readlink(struct dentry *dentry)
1773 {
1774 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1775 return 0;
1776 return call_int_hook(inode_readlink, dentry);
1777 }
1778
1779 /**
1780 * security_inode_follow_link() - Check if following a symbolic link is allowed
1781 * @dentry: link dentry
1782 * @inode: link inode
1783 * @rcu: true if in RCU-walk mode
1784 *
1785 * Check permission to follow a symbolic link when looking up a pathname. If
1786 * @rcu is true, @inode is not stable.
1787 *
1788 * Return: Returns 0 if permission is granted.
1789 */
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)1790 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1791 bool rcu)
1792 {
1793 if (unlikely(IS_PRIVATE(inode)))
1794 return 0;
1795 return call_int_hook(inode_follow_link, dentry, inode, rcu);
1796 }
1797
1798 /**
1799 * security_inode_permission() - Check if accessing an inode is allowed
1800 * @inode: inode
1801 * @mask: access mask
1802 *
1803 * Check permission before accessing an inode. This hook is called by the
1804 * existing Linux permission function, so a security module can use it to
1805 * provide additional checking for existing Linux permission checks. Notice
1806 * that this hook is called when a file is opened (as well as many other
1807 * operations), whereas the file_security_ops permission hook is called when
1808 * the actual read/write operations are performed.
1809 *
1810 * Return: Returns 0 if permission is granted.
1811 */
security_inode_permission(struct inode * inode,int mask)1812 int security_inode_permission(struct inode *inode, int mask)
1813 {
1814 if (unlikely(IS_PRIVATE(inode)))
1815 return 0;
1816 return call_int_hook(inode_permission, inode, mask);
1817 }
1818
1819 /**
1820 * security_inode_setattr() - Check if setting file attributes is allowed
1821 * @idmap: idmap of the mount
1822 * @dentry: file
1823 * @attr: new attributes
1824 *
1825 * Check permission before setting file attributes. Note that the kernel call
1826 * to notify_change is performed from several locations, whenever file
1827 * attributes change (such as when a file is truncated, chown/chmod operations,
1828 * transferring disk quotas, etc).
1829 *
1830 * Return: Returns 0 if permission is granted.
1831 */
security_inode_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1832 int security_inode_setattr(struct mnt_idmap *idmap,
1833 struct dentry *dentry, struct iattr *attr)
1834 {
1835 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1836 return 0;
1837 return call_int_hook(inode_setattr, idmap, dentry, attr);
1838 }
1839 EXPORT_SYMBOL_GPL(security_inode_setattr);
1840
1841 /**
1842 * security_inode_post_setattr() - Update the inode after a setattr operation
1843 * @idmap: idmap of the mount
1844 * @dentry: file
1845 * @ia_valid: file attributes set
1846 *
1847 * Update inode security field after successful setting file attributes.
1848 */
security_inode_post_setattr(struct mnt_idmap * idmap,struct dentry * dentry,int ia_valid)1849 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1850 int ia_valid)
1851 {
1852 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1853 return;
1854 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
1855 }
1856
1857 /**
1858 * security_inode_getattr() - Check if getting file attributes is allowed
1859 * @path: file
1860 *
1861 * Check permission before obtaining file attributes.
1862 *
1863 * Return: Returns 0 if permission is granted.
1864 */
security_inode_getattr(const struct path * path)1865 int security_inode_getattr(const struct path *path)
1866 {
1867 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1868 return 0;
1869 return call_int_hook(inode_getattr, path);
1870 }
1871
1872 /**
1873 * security_inode_setxattr() - Check if setting file xattrs is allowed
1874 * @idmap: idmap of the mount
1875 * @dentry: file
1876 * @name: xattr name
1877 * @value: xattr value
1878 * @size: size of xattr value
1879 * @flags: flags
1880 *
1881 * This hook performs the desired permission checks before setting the extended
1882 * attributes (xattrs) on @dentry. It is important to note that we have some
1883 * additional logic before the main LSM implementation calls to detect if we
1884 * need to perform an additional capability check at the LSM layer.
1885 *
1886 * Normally we enforce a capability check prior to executing the various LSM
1887 * hook implementations, but if a LSM wants to avoid this capability check,
1888 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
1889 * xattrs that it wants to avoid the capability check, leaving the LSM fully
1890 * responsible for enforcing the access control for the specific xattr. If all
1891 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
1892 * or return a 0 (the default return value), the capability check is still
1893 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability
1894 * check is performed.
1895 *
1896 * Return: Returns 0 if permission is granted.
1897 */
security_inode_setxattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1898 int security_inode_setxattr(struct mnt_idmap *idmap,
1899 struct dentry *dentry, const char *name,
1900 const void *value, size_t size, int flags)
1901 {
1902 int rc;
1903
1904 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1905 return 0;
1906
1907 /* enforce the capability checks at the lsm layer, if needed */
1908 if (!call_int_hook(inode_xattr_skipcap, name)) {
1909 rc = cap_inode_setxattr(dentry, name, value, size, flags);
1910 if (rc)
1911 return rc;
1912 }
1913
1914 return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
1915 flags);
1916 }
1917
1918 /**
1919 * security_inode_set_acl() - Check if setting posix acls is allowed
1920 * @idmap: idmap of the mount
1921 * @dentry: file
1922 * @acl_name: acl name
1923 * @kacl: acl struct
1924 *
1925 * Check permission before setting posix acls, the posix acls in @kacl are
1926 * identified by @acl_name.
1927 *
1928 * Return: Returns 0 if permission is granted.
1929 */
security_inode_set_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)1930 int security_inode_set_acl(struct mnt_idmap *idmap,
1931 struct dentry *dentry, const char *acl_name,
1932 struct posix_acl *kacl)
1933 {
1934 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1935 return 0;
1936 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
1937 }
1938
1939 /**
1940 * security_inode_post_set_acl() - Update inode security from posix acls set
1941 * @dentry: file
1942 * @acl_name: acl name
1943 * @kacl: acl struct
1944 *
1945 * Update inode security data after successfully setting posix acls on @dentry.
1946 * The posix acls in @kacl are identified by @acl_name.
1947 */
security_inode_post_set_acl(struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)1948 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
1949 struct posix_acl *kacl)
1950 {
1951 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1952 return;
1953 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
1954 }
1955
1956 /**
1957 * security_inode_get_acl() - Check if reading posix acls is allowed
1958 * @idmap: idmap of the mount
1959 * @dentry: file
1960 * @acl_name: acl name
1961 *
1962 * Check permission before getting osix acls, the posix acls are identified by
1963 * @acl_name.
1964 *
1965 * Return: Returns 0 if permission is granted.
1966 */
security_inode_get_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)1967 int security_inode_get_acl(struct mnt_idmap *idmap,
1968 struct dentry *dentry, const char *acl_name)
1969 {
1970 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1971 return 0;
1972 return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
1973 }
1974
1975 /**
1976 * security_inode_remove_acl() - Check if removing a posix acl is allowed
1977 * @idmap: idmap of the mount
1978 * @dentry: file
1979 * @acl_name: acl name
1980 *
1981 * Check permission before removing posix acls, the posix acls are identified
1982 * by @acl_name.
1983 *
1984 * Return: Returns 0 if permission is granted.
1985 */
security_inode_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)1986 int security_inode_remove_acl(struct mnt_idmap *idmap,
1987 struct dentry *dentry, const char *acl_name)
1988 {
1989 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1990 return 0;
1991 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
1992 }
1993
1994 /**
1995 * security_inode_post_remove_acl() - Update inode security after rm posix acls
1996 * @idmap: idmap of the mount
1997 * @dentry: file
1998 * @acl_name: acl name
1999 *
2000 * Update inode security data after successfully removing posix acls on
2001 * @dentry in @idmap. The posix acls are identified by @acl_name.
2002 */
security_inode_post_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2003 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2004 struct dentry *dentry, const char *acl_name)
2005 {
2006 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2007 return;
2008 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2009 }
2010
2011 /**
2012 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2013 * @dentry: file
2014 * @name: xattr name
2015 * @value: xattr value
2016 * @size: xattr value size
2017 * @flags: flags
2018 *
2019 * Update inode security field after successful setxattr operation.
2020 */
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2021 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2022 const void *value, size_t size, int flags)
2023 {
2024 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2025 return;
2026 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2027 }
2028
2029 /**
2030 * security_inode_getxattr() - Check if xattr access is allowed
2031 * @dentry: file
2032 * @name: xattr name
2033 *
2034 * Check permission before obtaining the extended attributes identified by
2035 * @name for @dentry.
2036 *
2037 * Return: Returns 0 if permission is granted.
2038 */
security_inode_getxattr(struct dentry * dentry,const char * name)2039 int security_inode_getxattr(struct dentry *dentry, const char *name)
2040 {
2041 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2042 return 0;
2043 return call_int_hook(inode_getxattr, dentry, name);
2044 }
2045
2046 /**
2047 * security_inode_listxattr() - Check if listing xattrs is allowed
2048 * @dentry: file
2049 *
2050 * Check permission before obtaining the list of extended attribute names for
2051 * @dentry.
2052 *
2053 * Return: Returns 0 if permission is granted.
2054 */
security_inode_listxattr(struct dentry * dentry)2055 int security_inode_listxattr(struct dentry *dentry)
2056 {
2057 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2058 return 0;
2059 return call_int_hook(inode_listxattr, dentry);
2060 }
2061
2062 /**
2063 * security_inode_removexattr() - Check if removing an xattr is allowed
2064 * @idmap: idmap of the mount
2065 * @dentry: file
2066 * @name: xattr name
2067 *
2068 * This hook performs the desired permission checks before setting the extended
2069 * attributes (xattrs) on @dentry. It is important to note that we have some
2070 * additional logic before the main LSM implementation calls to detect if we
2071 * need to perform an additional capability check at the LSM layer.
2072 *
2073 * Normally we enforce a capability check prior to executing the various LSM
2074 * hook implementations, but if a LSM wants to avoid this capability check,
2075 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2076 * xattrs that it wants to avoid the capability check, leaving the LSM fully
2077 * responsible for enforcing the access control for the specific xattr. If all
2078 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2079 * or return a 0 (the default return value), the capability check is still
2080 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability
2081 * check is performed.
2082 *
2083 * Return: Returns 0 if permission is granted.
2084 */
security_inode_removexattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name)2085 int security_inode_removexattr(struct mnt_idmap *idmap,
2086 struct dentry *dentry, const char *name)
2087 {
2088 int rc;
2089
2090 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2091 return 0;
2092
2093 /* enforce the capability checks at the lsm layer, if needed */
2094 if (!call_int_hook(inode_xattr_skipcap, name)) {
2095 rc = cap_inode_removexattr(idmap, dentry, name);
2096 if (rc)
2097 return rc;
2098 }
2099
2100 return call_int_hook(inode_removexattr, idmap, dentry, name);
2101 }
2102
2103 /**
2104 * security_inode_post_removexattr() - Update the inode after a removexattr op
2105 * @dentry: file
2106 * @name: xattr name
2107 *
2108 * Update the inode after a successful removexattr operation.
2109 */
security_inode_post_removexattr(struct dentry * dentry,const char * name)2110 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2111 {
2112 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2113 return;
2114 call_void_hook(inode_post_removexattr, dentry, name);
2115 }
2116
2117 /**
2118 * security_inode_file_setattr() - check if setting fsxattr is allowed
2119 * @dentry: file to set filesystem extended attributes on
2120 * @fa: extended attributes to set on the inode
2121 *
2122 * Called when file_setattr() syscall or FS_IOC_FSSETXATTR ioctl() is called on
2123 * inode
2124 *
2125 * Return: Returns 0 if permission is granted.
2126 */
security_inode_file_setattr(struct dentry * dentry,struct file_kattr * fa)2127 int security_inode_file_setattr(struct dentry *dentry, struct file_kattr *fa)
2128 {
2129 return call_int_hook(inode_file_setattr, dentry, fa);
2130 }
2131
2132 /**
2133 * security_inode_file_getattr() - check if retrieving fsxattr is allowed
2134 * @dentry: file to retrieve filesystem extended attributes from
2135 * @fa: extended attributes to get
2136 *
2137 * Called when file_getattr() syscall or FS_IOC_FSGETXATTR ioctl() is called on
2138 * inode
2139 *
2140 * Return: Returns 0 if permission is granted.
2141 */
security_inode_file_getattr(struct dentry * dentry,struct file_kattr * fa)2142 int security_inode_file_getattr(struct dentry *dentry, struct file_kattr *fa)
2143 {
2144 return call_int_hook(inode_file_getattr, dentry, fa);
2145 }
2146
2147 /**
2148 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2149 * @dentry: associated dentry
2150 *
2151 * Called when an inode has been changed to determine if
2152 * security_inode_killpriv() should be called.
2153 *
2154 * Return: Return <0 on error to abort the inode change operation, return 0 if
2155 * security_inode_killpriv() does not need to be called, return >0 if
2156 * security_inode_killpriv() does need to be called.
2157 */
security_inode_need_killpriv(struct dentry * dentry)2158 int security_inode_need_killpriv(struct dentry *dentry)
2159 {
2160 return call_int_hook(inode_need_killpriv, dentry);
2161 }
2162
2163 /**
2164 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2165 * @idmap: idmap of the mount
2166 * @dentry: associated dentry
2167 *
2168 * The @dentry's setuid bit is being removed. Remove similar security labels.
2169 * Called with the dentry->d_inode->i_mutex held.
2170 *
2171 * Return: Return 0 on success. If error is returned, then the operation
2172 * causing setuid bit removal is failed.
2173 */
security_inode_killpriv(struct mnt_idmap * idmap,struct dentry * dentry)2174 int security_inode_killpriv(struct mnt_idmap *idmap,
2175 struct dentry *dentry)
2176 {
2177 return call_int_hook(inode_killpriv, idmap, dentry);
2178 }
2179
2180 /**
2181 * security_inode_getsecurity() - Get the xattr security label of an inode
2182 * @idmap: idmap of the mount
2183 * @inode: inode
2184 * @name: xattr name
2185 * @buffer: security label buffer
2186 * @alloc: allocation flag
2187 *
2188 * Retrieve a copy of the extended attribute representation of the security
2189 * label associated with @name for @inode via @buffer. Note that @name is the
2190 * remainder of the attribute name after the security prefix has been removed.
2191 * @alloc is used to specify if the call should return a value via the buffer
2192 * or just the value length.
2193 *
2194 * Return: Returns size of buffer on success.
2195 */
security_inode_getsecurity(struct mnt_idmap * idmap,struct inode * inode,const char * name,void ** buffer,bool alloc)2196 int security_inode_getsecurity(struct mnt_idmap *idmap,
2197 struct inode *inode, const char *name,
2198 void **buffer, bool alloc)
2199 {
2200 if (unlikely(IS_PRIVATE(inode)))
2201 return LSM_RET_DEFAULT(inode_getsecurity);
2202
2203 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2204 alloc);
2205 }
2206
2207 /**
2208 * security_inode_setsecurity() - Set the xattr security label of an inode
2209 * @inode: inode
2210 * @name: xattr name
2211 * @value: security label
2212 * @size: length of security label
2213 * @flags: flags
2214 *
2215 * Set the security label associated with @name for @inode from the extended
2216 * attribute value @value. @size indicates the size of the @value in bytes.
2217 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2218 * remainder of the attribute name after the security. prefix has been removed.
2219 *
2220 * Return: Returns 0 on success.
2221 */
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)2222 int security_inode_setsecurity(struct inode *inode, const char *name,
2223 const void *value, size_t size, int flags)
2224 {
2225 if (unlikely(IS_PRIVATE(inode)))
2226 return LSM_RET_DEFAULT(inode_setsecurity);
2227
2228 return call_int_hook(inode_setsecurity, inode, name, value, size,
2229 flags);
2230 }
2231
2232 /**
2233 * security_inode_listsecurity() - List the xattr security label names
2234 * @inode: inode
2235 * @buffer: buffer
2236 * @buffer_size: size of buffer
2237 *
2238 * Copy the extended attribute names for the security labels associated with
2239 * @inode into @buffer. The maximum size of @buffer is specified by
2240 * @buffer_size. @buffer may be NULL to request the size of the buffer
2241 * required.
2242 *
2243 * Return: Returns number of bytes used/required on success.
2244 */
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)2245 int security_inode_listsecurity(struct inode *inode,
2246 char *buffer, size_t buffer_size)
2247 {
2248 if (unlikely(IS_PRIVATE(inode)))
2249 return 0;
2250 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2251 }
2252 EXPORT_SYMBOL(security_inode_listsecurity);
2253
2254 /**
2255 * security_inode_getlsmprop() - Get an inode's LSM data
2256 * @inode: inode
2257 * @prop: lsm specific information to return
2258 *
2259 * Get the lsm specific information associated with the node.
2260 */
security_inode_getlsmprop(struct inode * inode,struct lsm_prop * prop)2261 void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2262 {
2263 call_void_hook(inode_getlsmprop, inode, prop);
2264 }
2265
2266 /**
2267 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2268 * @src: union dentry of copy-up file
2269 * @new: newly created creds
2270 *
2271 * A file is about to be copied up from lower layer to upper layer of overlay
2272 * filesystem. Security module can prepare a set of new creds and modify as
2273 * need be and return new creds. Caller will switch to new creds temporarily to
2274 * create new file and release newly allocated creds.
2275 *
2276 * Return: Returns 0 on success or a negative error code on error.
2277 */
security_inode_copy_up(struct dentry * src,struct cred ** new)2278 int security_inode_copy_up(struct dentry *src, struct cred **new)
2279 {
2280 return call_int_hook(inode_copy_up, src, new);
2281 }
2282 EXPORT_SYMBOL(security_inode_copy_up);
2283
2284 /**
2285 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2286 * @src: union dentry of copy-up file
2287 * @name: xattr name
2288 *
2289 * Filter the xattrs being copied up when a unioned file is copied up from a
2290 * lower layer to the union/overlay layer. The caller is responsible for
2291 * reading and writing the xattrs, this hook is merely a filter.
2292 *
2293 * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2294 * -EOPNOTSUPP if the security module does not know about attribute,
2295 * or a negative error code to abort the copy up.
2296 */
security_inode_copy_up_xattr(struct dentry * src,const char * name)2297 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2298 {
2299 int rc;
2300
2301 rc = call_int_hook(inode_copy_up_xattr, src, name);
2302 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2303 return rc;
2304
2305 return LSM_RET_DEFAULT(inode_copy_up_xattr);
2306 }
2307 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2308
2309 /**
2310 * security_inode_setintegrity() - Set the inode's integrity data
2311 * @inode: inode
2312 * @type: type of integrity, e.g. hash digest, signature, etc
2313 * @value: the integrity value
2314 * @size: size of the integrity value
2315 *
2316 * Register a verified integrity measurement of a inode with LSMs.
2317 * LSMs should free the previously saved data if @value is NULL.
2318 *
2319 * Return: Returns 0 on success, negative values on failure.
2320 */
security_inode_setintegrity(const struct inode * inode,enum lsm_integrity_type type,const void * value,size_t size)2321 int security_inode_setintegrity(const struct inode *inode,
2322 enum lsm_integrity_type type, const void *value,
2323 size_t size)
2324 {
2325 return call_int_hook(inode_setintegrity, inode, type, value, size);
2326 }
2327 EXPORT_SYMBOL(security_inode_setintegrity);
2328
2329 /**
2330 * security_kernfs_init_security() - Init LSM context for a kernfs node
2331 * @kn_dir: parent kernfs node
2332 * @kn: the kernfs node to initialize
2333 *
2334 * Initialize the security context of a newly created kernfs node based on its
2335 * own and its parent's attributes.
2336 *
2337 * Return: Returns 0 if permission is granted.
2338 */
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)2339 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2340 struct kernfs_node *kn)
2341 {
2342 return call_int_hook(kernfs_init_security, kn_dir, kn);
2343 }
2344
2345 /**
2346 * security_file_permission() - Check file permissions
2347 * @file: file
2348 * @mask: requested permissions
2349 *
2350 * Check file permissions before accessing an open file. This hook is called
2351 * by various operations that read or write files. A security module can use
2352 * this hook to perform additional checking on these operations, e.g. to
2353 * revalidate permissions on use to support privilege bracketing or policy
2354 * changes. Notice that this hook is used when the actual read/write
2355 * operations are performed, whereas the inode_security_ops hook is called when
2356 * a file is opened (as well as many other operations). Although this hook can
2357 * be used to revalidate permissions for various system call operations that
2358 * read or write files, it does not address the revalidation of permissions for
2359 * memory-mapped files. Security modules must handle this separately if they
2360 * need such revalidation.
2361 *
2362 * Return: Returns 0 if permission is granted.
2363 */
security_file_permission(struct file * file,int mask)2364 int security_file_permission(struct file *file, int mask)
2365 {
2366 return call_int_hook(file_permission, file, mask);
2367 }
2368
2369 /**
2370 * security_file_alloc() - Allocate and init a file's LSM blob
2371 * @file: the file
2372 *
2373 * Allocate and attach a security structure to the file->f_security field. The
2374 * security field is initialized to NULL when the structure is first created.
2375 *
2376 * Return: Return 0 if the hook is successful and permission is granted.
2377 */
security_file_alloc(struct file * file)2378 int security_file_alloc(struct file *file)
2379 {
2380 int rc = lsm_file_alloc(file);
2381
2382 if (rc)
2383 return rc;
2384 rc = call_int_hook(file_alloc_security, file);
2385 if (unlikely(rc))
2386 security_file_free(file);
2387 return rc;
2388 }
2389
2390 /**
2391 * security_file_release() - Perform actions before releasing the file ref
2392 * @file: the file
2393 *
2394 * Perform actions before releasing the last reference to a file.
2395 */
security_file_release(struct file * file)2396 void security_file_release(struct file *file)
2397 {
2398 call_void_hook(file_release, file);
2399 }
2400
2401 /**
2402 * security_file_free() - Free a file's LSM blob
2403 * @file: the file
2404 *
2405 * Deallocate and free any security structures stored in file->f_security.
2406 */
security_file_free(struct file * file)2407 void security_file_free(struct file *file)
2408 {
2409 void *blob;
2410
2411 call_void_hook(file_free_security, file);
2412
2413 blob = file->f_security;
2414 if (blob) {
2415 file->f_security = NULL;
2416 kmem_cache_free(lsm_file_cache, blob);
2417 }
2418 }
2419
2420 /**
2421 * security_file_ioctl() - Check if an ioctl is allowed
2422 * @file: associated file
2423 * @cmd: ioctl cmd
2424 * @arg: ioctl arguments
2425 *
2426 * Check permission for an ioctl operation on @file. Note that @arg sometimes
2427 * represents a user space pointer; in other cases, it may be a simple integer
2428 * value. When @arg represents a user space pointer, it should never be used
2429 * by the security module.
2430 *
2431 * Return: Returns 0 if permission is granted.
2432 */
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2433 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2434 {
2435 return call_int_hook(file_ioctl, file, cmd, arg);
2436 }
2437 EXPORT_SYMBOL_GPL(security_file_ioctl);
2438
2439 /**
2440 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2441 * @file: associated file
2442 * @cmd: ioctl cmd
2443 * @arg: ioctl arguments
2444 *
2445 * Compat version of security_file_ioctl() that correctly handles 32-bit
2446 * processes running on 64-bit kernels.
2447 *
2448 * Return: Returns 0 if permission is granted.
2449 */
security_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)2450 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2451 unsigned long arg)
2452 {
2453 return call_int_hook(file_ioctl_compat, file, cmd, arg);
2454 }
2455 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2456
mmap_prot(struct file * file,unsigned long prot)2457 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2458 {
2459 /*
2460 * Does we have PROT_READ and does the application expect
2461 * it to imply PROT_EXEC? If not, nothing to talk about...
2462 */
2463 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2464 return prot;
2465 if (!(current->personality & READ_IMPLIES_EXEC))
2466 return prot;
2467 /*
2468 * if that's an anonymous mapping, let it.
2469 */
2470 if (!file)
2471 return prot | PROT_EXEC;
2472 /*
2473 * ditto if it's not on noexec mount, except that on !MMU we need
2474 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2475 */
2476 if (!path_noexec(&file->f_path)) {
2477 #ifndef CONFIG_MMU
2478 if (file->f_op->mmap_capabilities) {
2479 unsigned caps = file->f_op->mmap_capabilities(file);
2480 if (!(caps & NOMMU_MAP_EXEC))
2481 return prot;
2482 }
2483 #endif
2484 return prot | PROT_EXEC;
2485 }
2486 /* anything on noexec mount won't get PROT_EXEC */
2487 return prot;
2488 }
2489
2490 /**
2491 * security_mmap_file() - Check if mmap'ing a file is allowed
2492 * @file: file
2493 * @prot: protection applied by the kernel
2494 * @flags: flags
2495 *
2496 * Check permissions for a mmap operation. The @file may be NULL, e.g. if
2497 * mapping anonymous memory.
2498 *
2499 * Return: Returns 0 if permission is granted.
2500 */
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)2501 int security_mmap_file(struct file *file, unsigned long prot,
2502 unsigned long flags)
2503 {
2504 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2505 flags);
2506 }
2507
2508 /**
2509 * security_mmap_addr() - Check if mmap'ing an address is allowed
2510 * @addr: address
2511 *
2512 * Check permissions for a mmap operation at @addr.
2513 *
2514 * Return: Returns 0 if permission is granted.
2515 */
security_mmap_addr(unsigned long addr)2516 int security_mmap_addr(unsigned long addr)
2517 {
2518 return call_int_hook(mmap_addr, addr);
2519 }
2520
2521 /**
2522 * security_file_mprotect() - Check if changing memory protections is allowed
2523 * @vma: memory region
2524 * @reqprot: application requested protection
2525 * @prot: protection applied by the kernel
2526 *
2527 * Check permissions before changing memory access permissions.
2528 *
2529 * Return: Returns 0 if permission is granted.
2530 */
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)2531 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2532 unsigned long prot)
2533 {
2534 return call_int_hook(file_mprotect, vma, reqprot, prot);
2535 }
2536
2537 /**
2538 * security_file_lock() - Check if a file lock is allowed
2539 * @file: file
2540 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2541 *
2542 * Check permission before performing file locking operations. Note the hook
2543 * mediates both flock and fcntl style locks.
2544 *
2545 * Return: Returns 0 if permission is granted.
2546 */
security_file_lock(struct file * file,unsigned int cmd)2547 int security_file_lock(struct file *file, unsigned int cmd)
2548 {
2549 return call_int_hook(file_lock, file, cmd);
2550 }
2551
2552 /**
2553 * security_file_fcntl() - Check if fcntl() op is allowed
2554 * @file: file
2555 * @cmd: fcntl command
2556 * @arg: command argument
2557 *
2558 * Check permission before allowing the file operation specified by @cmd from
2559 * being performed on the file @file. Note that @arg sometimes represents a
2560 * user space pointer; in other cases, it may be a simple integer value. When
2561 * @arg represents a user space pointer, it should never be used by the
2562 * security module.
2563 *
2564 * Return: Returns 0 if permission is granted.
2565 */
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)2566 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2567 {
2568 return call_int_hook(file_fcntl, file, cmd, arg);
2569 }
2570
2571 /**
2572 * security_file_set_fowner() - Set the file owner info in the LSM blob
2573 * @file: the file
2574 *
2575 * Save owner security information (typically from current->security) in
2576 * file->f_security for later use by the send_sigiotask hook.
2577 *
2578 * This hook is called with file->f_owner.lock held.
2579 *
2580 * Return: Returns 0 on success.
2581 */
security_file_set_fowner(struct file * file)2582 void security_file_set_fowner(struct file *file)
2583 {
2584 call_void_hook(file_set_fowner, file);
2585 }
2586
2587 /**
2588 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2589 * @tsk: target task
2590 * @fown: signal sender
2591 * @sig: signal to be sent, SIGIO is sent if 0
2592 *
2593 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2594 * process @tsk. Note that this hook is sometimes called from interrupt. Note
2595 * that the fown_struct, @fown, is never outside the context of a struct file,
2596 * so the file structure (and associated security information) can always be
2597 * obtained: container_of(fown, struct file, f_owner).
2598 *
2599 * Return: Returns 0 if permission is granted.
2600 */
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)2601 int security_file_send_sigiotask(struct task_struct *tsk,
2602 struct fown_struct *fown, int sig)
2603 {
2604 return call_int_hook(file_send_sigiotask, tsk, fown, sig);
2605 }
2606
2607 /**
2608 * security_file_receive() - Check if receiving a file via IPC is allowed
2609 * @file: file being received
2610 *
2611 * This hook allows security modules to control the ability of a process to
2612 * receive an open file descriptor via socket IPC.
2613 *
2614 * Return: Returns 0 if permission is granted.
2615 */
security_file_receive(struct file * file)2616 int security_file_receive(struct file *file)
2617 {
2618 return call_int_hook(file_receive, file);
2619 }
2620
2621 /**
2622 * security_file_open() - Save open() time state for late use by the LSM
2623 * @file:
2624 *
2625 * Save open-time permission checking state for later use upon file_permission,
2626 * and recheck access if anything has changed since inode_permission.
2627 *
2628 * We can check if a file is opened for execution (e.g. execve(2) call), either
2629 * directly or indirectly (e.g. ELF's ld.so) by checking file->f_flags &
2630 * __FMODE_EXEC .
2631 *
2632 * Return: Returns 0 if permission is granted.
2633 */
security_file_open(struct file * file)2634 int security_file_open(struct file *file)
2635 {
2636 return call_int_hook(file_open, file);
2637 }
2638
2639 /**
2640 * security_file_post_open() - Evaluate a file after it has been opened
2641 * @file: the file
2642 * @mask: access mask
2643 *
2644 * Evaluate an opened file and the access mask requested with open(). The hook
2645 * is useful for LSMs that require the file content to be available in order to
2646 * make decisions.
2647 *
2648 * Return: Returns 0 if permission is granted.
2649 */
security_file_post_open(struct file * file,int mask)2650 int security_file_post_open(struct file *file, int mask)
2651 {
2652 return call_int_hook(file_post_open, file, mask);
2653 }
2654 EXPORT_SYMBOL_GPL(security_file_post_open);
2655
2656 /**
2657 * security_file_truncate() - Check if truncating a file is allowed
2658 * @file: file
2659 *
2660 * Check permission before truncating a file, i.e. using ftruncate. Note that
2661 * truncation permission may also be checked based on the path, using the
2662 * @path_truncate hook.
2663 *
2664 * Return: Returns 0 if permission is granted.
2665 */
security_file_truncate(struct file * file)2666 int security_file_truncate(struct file *file)
2667 {
2668 return call_int_hook(file_truncate, file);
2669 }
2670
2671 /**
2672 * security_task_alloc() - Allocate a task's LSM blob
2673 * @task: the task
2674 * @clone_flags: flags indicating what is being shared
2675 *
2676 * Handle allocation of task-related resources.
2677 *
2678 * Return: Returns a zero on success, negative values on failure.
2679 */
security_task_alloc(struct task_struct * task,u64 clone_flags)2680 int security_task_alloc(struct task_struct *task, u64 clone_flags)
2681 {
2682 int rc = lsm_task_alloc(task);
2683
2684 if (rc)
2685 return rc;
2686 rc = call_int_hook(task_alloc, task, clone_flags);
2687 if (unlikely(rc))
2688 security_task_free(task);
2689 return rc;
2690 }
2691
2692 /**
2693 * security_task_free() - Free a task's LSM blob and related resources
2694 * @task: task
2695 *
2696 * Handle release of task-related resources. Note that this can be called from
2697 * interrupt context.
2698 */
security_task_free(struct task_struct * task)2699 void security_task_free(struct task_struct *task)
2700 {
2701 call_void_hook(task_free, task);
2702
2703 kfree(task->security);
2704 task->security = NULL;
2705 }
2706
2707 /**
2708 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
2709 * @cred: credentials
2710 * @gfp: gfp flags
2711 *
2712 * Only allocate sufficient memory and attach to @cred such that
2713 * cred_transfer() will not get ENOMEM.
2714 *
2715 * Return: Returns 0 on success, negative values on failure.
2716 */
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)2717 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
2718 {
2719 int rc = lsm_cred_alloc(cred, gfp);
2720
2721 if (rc)
2722 return rc;
2723
2724 rc = call_int_hook(cred_alloc_blank, cred, gfp);
2725 if (unlikely(rc))
2726 security_cred_free(cred);
2727 return rc;
2728 }
2729
2730 /**
2731 * security_cred_free() - Free the cred's LSM blob and associated resources
2732 * @cred: credentials
2733 *
2734 * Deallocate and clear the cred->security field in a set of credentials.
2735 */
security_cred_free(struct cred * cred)2736 void security_cred_free(struct cred *cred)
2737 {
2738 /*
2739 * There is a failure case in prepare_creds() that
2740 * may result in a call here with ->security being NULL.
2741 */
2742 if (unlikely(cred->security == NULL))
2743 return;
2744
2745 call_void_hook(cred_free, cred);
2746
2747 kfree(cred->security);
2748 cred->security = NULL;
2749 }
2750
2751 /**
2752 * security_prepare_creds() - Prepare a new set of credentials
2753 * @new: new credentials
2754 * @old: original credentials
2755 * @gfp: gfp flags
2756 *
2757 * Prepare a new set of credentials by copying the data from the old set.
2758 *
2759 * Return: Returns 0 on success, negative values on failure.
2760 */
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)2761 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
2762 {
2763 int rc = lsm_cred_alloc(new, gfp);
2764
2765 if (rc)
2766 return rc;
2767
2768 rc = call_int_hook(cred_prepare, new, old, gfp);
2769 if (unlikely(rc))
2770 security_cred_free(new);
2771 return rc;
2772 }
2773
2774 /**
2775 * security_transfer_creds() - Transfer creds
2776 * @new: target credentials
2777 * @old: original credentials
2778 *
2779 * Transfer data from original creds to new creds.
2780 */
security_transfer_creds(struct cred * new,const struct cred * old)2781 void security_transfer_creds(struct cred *new, const struct cred *old)
2782 {
2783 call_void_hook(cred_transfer, new, old);
2784 }
2785
2786 /**
2787 * security_cred_getsecid() - Get the secid from a set of credentials
2788 * @c: credentials
2789 * @secid: secid value
2790 *
2791 * Retrieve the security identifier of the cred structure @c. In case of
2792 * failure, @secid will be set to zero.
2793 */
security_cred_getsecid(const struct cred * c,u32 * secid)2794 void security_cred_getsecid(const struct cred *c, u32 *secid)
2795 {
2796 *secid = 0;
2797 call_void_hook(cred_getsecid, c, secid);
2798 }
2799 EXPORT_SYMBOL(security_cred_getsecid);
2800
2801 /**
2802 * security_cred_getlsmprop() - Get the LSM data from a set of credentials
2803 * @c: credentials
2804 * @prop: destination for the LSM data
2805 *
2806 * Retrieve the security data of the cred structure @c. In case of
2807 * failure, @prop will be cleared.
2808 */
security_cred_getlsmprop(const struct cred * c,struct lsm_prop * prop)2809 void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
2810 {
2811 lsmprop_init(prop);
2812 call_void_hook(cred_getlsmprop, c, prop);
2813 }
2814 EXPORT_SYMBOL(security_cred_getlsmprop);
2815
2816 /**
2817 * security_kernel_act_as() - Set the kernel credentials to act as secid
2818 * @new: credentials
2819 * @secid: secid
2820 *
2821 * Set the credentials for a kernel service to act as (subjective context).
2822 * The current task must be the one that nominated @secid.
2823 *
2824 * Return: Returns 0 if successful.
2825 */
security_kernel_act_as(struct cred * new,u32 secid)2826 int security_kernel_act_as(struct cred *new, u32 secid)
2827 {
2828 return call_int_hook(kernel_act_as, new, secid);
2829 }
2830
2831 /**
2832 * security_kernel_create_files_as() - Set file creation context using an inode
2833 * @new: target credentials
2834 * @inode: reference inode
2835 *
2836 * Set the file creation context in a set of credentials to be the same as the
2837 * objective context of the specified inode. The current task must be the one
2838 * that nominated @inode.
2839 *
2840 * Return: Returns 0 if successful.
2841 */
security_kernel_create_files_as(struct cred * new,struct inode * inode)2842 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
2843 {
2844 return call_int_hook(kernel_create_files_as, new, inode);
2845 }
2846
2847 /**
2848 * security_kernel_module_request() - Check if loading a module is allowed
2849 * @kmod_name: module name
2850 *
2851 * Ability to trigger the kernel to automatically upcall to userspace for
2852 * userspace to load a kernel module with the given name.
2853 *
2854 * Return: Returns 0 if successful.
2855 */
security_kernel_module_request(char * kmod_name)2856 int security_kernel_module_request(char *kmod_name)
2857 {
2858 return call_int_hook(kernel_module_request, kmod_name);
2859 }
2860
2861 /**
2862 * security_kernel_read_file() - Read a file specified by userspace
2863 * @file: file
2864 * @id: file identifier
2865 * @contents: trust if security_kernel_post_read_file() will be called
2866 *
2867 * Read a file specified by userspace.
2868 *
2869 * Return: Returns 0 if permission is granted.
2870 */
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)2871 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
2872 bool contents)
2873 {
2874 return call_int_hook(kernel_read_file, file, id, contents);
2875 }
2876 EXPORT_SYMBOL_GPL(security_kernel_read_file);
2877
2878 /**
2879 * security_kernel_post_read_file() - Read a file specified by userspace
2880 * @file: file
2881 * @buf: file contents
2882 * @size: size of file contents
2883 * @id: file identifier
2884 *
2885 * Read a file specified by userspace. This must be paired with a prior call
2886 * to security_kernel_read_file() call that indicated this hook would also be
2887 * called, see security_kernel_read_file() for more information.
2888 *
2889 * Return: Returns 0 if permission is granted.
2890 */
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)2891 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
2892 enum kernel_read_file_id id)
2893 {
2894 return call_int_hook(kernel_post_read_file, file, buf, size, id);
2895 }
2896 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
2897
2898 /**
2899 * security_kernel_load_data() - Load data provided by userspace
2900 * @id: data identifier
2901 * @contents: true if security_kernel_post_load_data() will be called
2902 *
2903 * Load data provided by userspace.
2904 *
2905 * Return: Returns 0 if permission is granted.
2906 */
security_kernel_load_data(enum kernel_load_data_id id,bool contents)2907 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
2908 {
2909 return call_int_hook(kernel_load_data, id, contents);
2910 }
2911 EXPORT_SYMBOL_GPL(security_kernel_load_data);
2912
2913 /**
2914 * security_kernel_post_load_data() - Load userspace data from a non-file source
2915 * @buf: data
2916 * @size: size of data
2917 * @id: data identifier
2918 * @description: text description of data, specific to the id value
2919 *
2920 * Load data provided by a non-file source (usually userspace buffer). This
2921 * must be paired with a prior security_kernel_load_data() call that indicated
2922 * this hook would also be called, see security_kernel_load_data() for more
2923 * information.
2924 *
2925 * Return: Returns 0 if permission is granted.
2926 */
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)2927 int security_kernel_post_load_data(char *buf, loff_t size,
2928 enum kernel_load_data_id id,
2929 char *description)
2930 {
2931 return call_int_hook(kernel_post_load_data, buf, size, id, description);
2932 }
2933 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
2934
2935 /**
2936 * security_task_fix_setuid() - Update LSM with new user id attributes
2937 * @new: updated credentials
2938 * @old: credentials being replaced
2939 * @flags: LSM_SETID_* flag values
2940 *
2941 * Update the module's state after setting one or more of the user identity
2942 * attributes of the current process. The @flags parameter indicates which of
2943 * the set*uid system calls invoked this hook. If @new is the set of
2944 * credentials that will be installed. Modifications should be made to this
2945 * rather than to @current->cred.
2946 *
2947 * Return: Returns 0 on success.
2948 */
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)2949 int security_task_fix_setuid(struct cred *new, const struct cred *old,
2950 int flags)
2951 {
2952 return call_int_hook(task_fix_setuid, new, old, flags);
2953 }
2954
2955 /**
2956 * security_task_fix_setgid() - Update LSM with new group id attributes
2957 * @new: updated credentials
2958 * @old: credentials being replaced
2959 * @flags: LSM_SETID_* flag value
2960 *
2961 * Update the module's state after setting one or more of the group identity
2962 * attributes of the current process. The @flags parameter indicates which of
2963 * the set*gid system calls invoked this hook. @new is the set of credentials
2964 * that will be installed. Modifications should be made to this rather than to
2965 * @current->cred.
2966 *
2967 * Return: Returns 0 on success.
2968 */
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)2969 int security_task_fix_setgid(struct cred *new, const struct cred *old,
2970 int flags)
2971 {
2972 return call_int_hook(task_fix_setgid, new, old, flags);
2973 }
2974
2975 /**
2976 * security_task_fix_setgroups() - Update LSM with new supplementary groups
2977 * @new: updated credentials
2978 * @old: credentials being replaced
2979 *
2980 * Update the module's state after setting the supplementary group identity
2981 * attributes of the current process. @new is the set of credentials that will
2982 * be installed. Modifications should be made to this rather than to
2983 * @current->cred.
2984 *
2985 * Return: Returns 0 on success.
2986 */
security_task_fix_setgroups(struct cred * new,const struct cred * old)2987 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
2988 {
2989 return call_int_hook(task_fix_setgroups, new, old);
2990 }
2991
2992 /**
2993 * security_task_setpgid() - Check if setting the pgid is allowed
2994 * @p: task being modified
2995 * @pgid: new pgid
2996 *
2997 * Check permission before setting the process group identifier of the process
2998 * @p to @pgid.
2999 *
3000 * Return: Returns 0 if permission is granted.
3001 */
security_task_setpgid(struct task_struct * p,pid_t pgid)3002 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3003 {
3004 return call_int_hook(task_setpgid, p, pgid);
3005 }
3006
3007 /**
3008 * security_task_getpgid() - Check if getting the pgid is allowed
3009 * @p: task
3010 *
3011 * Check permission before getting the process group identifier of the process
3012 * @p.
3013 *
3014 * Return: Returns 0 if permission is granted.
3015 */
security_task_getpgid(struct task_struct * p)3016 int security_task_getpgid(struct task_struct *p)
3017 {
3018 return call_int_hook(task_getpgid, p);
3019 }
3020
3021 /**
3022 * security_task_getsid() - Check if getting the session id is allowed
3023 * @p: task
3024 *
3025 * Check permission before getting the session identifier of the process @p.
3026 *
3027 * Return: Returns 0 if permission is granted.
3028 */
security_task_getsid(struct task_struct * p)3029 int security_task_getsid(struct task_struct *p)
3030 {
3031 return call_int_hook(task_getsid, p);
3032 }
3033
3034 /**
3035 * security_current_getlsmprop_subj() - Current task's subjective LSM data
3036 * @prop: lsm specific information
3037 *
3038 * Retrieve the subjective security identifier of the current task and return
3039 * it in @prop.
3040 */
security_current_getlsmprop_subj(struct lsm_prop * prop)3041 void security_current_getlsmprop_subj(struct lsm_prop *prop)
3042 {
3043 lsmprop_init(prop);
3044 call_void_hook(current_getlsmprop_subj, prop);
3045 }
3046 EXPORT_SYMBOL(security_current_getlsmprop_subj);
3047
3048 /**
3049 * security_task_getlsmprop_obj() - Get a task's objective LSM data
3050 * @p: target task
3051 * @prop: lsm specific information
3052 *
3053 * Retrieve the objective security identifier of the task_struct in @p and
3054 * return it in @prop.
3055 */
security_task_getlsmprop_obj(struct task_struct * p,struct lsm_prop * prop)3056 void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3057 {
3058 lsmprop_init(prop);
3059 call_void_hook(task_getlsmprop_obj, p, prop);
3060 }
3061 EXPORT_SYMBOL(security_task_getlsmprop_obj);
3062
3063 /**
3064 * security_task_setnice() - Check if setting a task's nice value is allowed
3065 * @p: target task
3066 * @nice: nice value
3067 *
3068 * Check permission before setting the nice value of @p to @nice.
3069 *
3070 * Return: Returns 0 if permission is granted.
3071 */
security_task_setnice(struct task_struct * p,int nice)3072 int security_task_setnice(struct task_struct *p, int nice)
3073 {
3074 return call_int_hook(task_setnice, p, nice);
3075 }
3076
3077 /**
3078 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3079 * @p: target task
3080 * @ioprio: ioprio value
3081 *
3082 * Check permission before setting the ioprio value of @p to @ioprio.
3083 *
3084 * Return: Returns 0 if permission is granted.
3085 */
security_task_setioprio(struct task_struct * p,int ioprio)3086 int security_task_setioprio(struct task_struct *p, int ioprio)
3087 {
3088 return call_int_hook(task_setioprio, p, ioprio);
3089 }
3090
3091 /**
3092 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3093 * @p: task
3094 *
3095 * Check permission before getting the ioprio value of @p.
3096 *
3097 * Return: Returns 0 if permission is granted.
3098 */
security_task_getioprio(struct task_struct * p)3099 int security_task_getioprio(struct task_struct *p)
3100 {
3101 return call_int_hook(task_getioprio, p);
3102 }
3103
3104 /**
3105 * security_task_prlimit() - Check if get/setting resources limits is allowed
3106 * @cred: current task credentials
3107 * @tcred: target task credentials
3108 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3109 *
3110 * Check permission before getting and/or setting the resource limits of
3111 * another task.
3112 *
3113 * Return: Returns 0 if permission is granted.
3114 */
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)3115 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3116 unsigned int flags)
3117 {
3118 return call_int_hook(task_prlimit, cred, tcred, flags);
3119 }
3120
3121 /**
3122 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3123 * @p: target task's group leader
3124 * @resource: resource whose limit is being set
3125 * @new_rlim: new resource limit
3126 *
3127 * Check permission before setting the resource limits of process @p for
3128 * @resource to @new_rlim. The old resource limit values can be examined by
3129 * dereferencing (p->signal->rlim + resource).
3130 *
3131 * Return: Returns 0 if permission is granted.
3132 */
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)3133 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3134 struct rlimit *new_rlim)
3135 {
3136 return call_int_hook(task_setrlimit, p, resource, new_rlim);
3137 }
3138
3139 /**
3140 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3141 * @p: target task
3142 *
3143 * Check permission before setting scheduling policy and/or parameters of
3144 * process @p.
3145 *
3146 * Return: Returns 0 if permission is granted.
3147 */
security_task_setscheduler(struct task_struct * p)3148 int security_task_setscheduler(struct task_struct *p)
3149 {
3150 return call_int_hook(task_setscheduler, p);
3151 }
3152
3153 /**
3154 * security_task_getscheduler() - Check if getting scheduling info is allowed
3155 * @p: target task
3156 *
3157 * Check permission before obtaining scheduling information for process @p.
3158 *
3159 * Return: Returns 0 if permission is granted.
3160 */
security_task_getscheduler(struct task_struct * p)3161 int security_task_getscheduler(struct task_struct *p)
3162 {
3163 return call_int_hook(task_getscheduler, p);
3164 }
3165
3166 /**
3167 * security_task_movememory() - Check if moving memory is allowed
3168 * @p: task
3169 *
3170 * Check permission before moving memory owned by process @p.
3171 *
3172 * Return: Returns 0 if permission is granted.
3173 */
security_task_movememory(struct task_struct * p)3174 int security_task_movememory(struct task_struct *p)
3175 {
3176 return call_int_hook(task_movememory, p);
3177 }
3178
3179 /**
3180 * security_task_kill() - Check if sending a signal is allowed
3181 * @p: target process
3182 * @info: signal information
3183 * @sig: signal value
3184 * @cred: credentials of the signal sender, NULL if @current
3185 *
3186 * Check permission before sending signal @sig to @p. @info can be NULL, the
3187 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or
3188 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3189 * the kernel and should typically be permitted. SIGIO signals are handled
3190 * separately by the send_sigiotask hook in file_security_ops.
3191 *
3192 * Return: Returns 0 if permission is granted.
3193 */
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)3194 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3195 int sig, const struct cred *cred)
3196 {
3197 return call_int_hook(task_kill, p, info, sig, cred);
3198 }
3199
3200 /**
3201 * security_task_prctl() - Check if a prctl op is allowed
3202 * @option: operation
3203 * @arg2: argument
3204 * @arg3: argument
3205 * @arg4: argument
3206 * @arg5: argument
3207 *
3208 * Check permission before performing a process control operation on the
3209 * current process.
3210 *
3211 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3212 * to cause prctl() to return immediately with that value.
3213 */
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)3214 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3215 unsigned long arg4, unsigned long arg5)
3216 {
3217 int thisrc;
3218 int rc = LSM_RET_DEFAULT(task_prctl);
3219 struct lsm_static_call *scall;
3220
3221 lsm_for_each_hook(scall, task_prctl) {
3222 thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3223 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3224 rc = thisrc;
3225 if (thisrc != 0)
3226 break;
3227 }
3228 }
3229 return rc;
3230 }
3231
3232 /**
3233 * security_task_to_inode() - Set the security attributes of a task's inode
3234 * @p: task
3235 * @inode: inode
3236 *
3237 * Set the security attributes for an inode based on an associated task's
3238 * security attributes, e.g. for /proc/pid inodes.
3239 */
security_task_to_inode(struct task_struct * p,struct inode * inode)3240 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3241 {
3242 call_void_hook(task_to_inode, p, inode);
3243 }
3244
3245 /**
3246 * security_create_user_ns() - Check if creating a new userns is allowed
3247 * @cred: prepared creds
3248 *
3249 * Check permission prior to creating a new user namespace.
3250 *
3251 * Return: Returns 0 if successful, otherwise < 0 error code.
3252 */
security_create_user_ns(const struct cred * cred)3253 int security_create_user_ns(const struct cred *cred)
3254 {
3255 return call_int_hook(userns_create, cred);
3256 }
3257
3258 /**
3259 * security_ipc_permission() - Check if sysv ipc access is allowed
3260 * @ipcp: ipc permission structure
3261 * @flag: requested permissions
3262 *
3263 * Check permissions for access to IPC.
3264 *
3265 * Return: Returns 0 if permission is granted.
3266 */
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)3267 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3268 {
3269 return call_int_hook(ipc_permission, ipcp, flag);
3270 }
3271
3272 /**
3273 * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3274 * @ipcp: ipc permission structure
3275 * @prop: pointer to lsm information
3276 *
3277 * Get the lsm information associated with the ipc object.
3278 */
3279
security_ipc_getlsmprop(struct kern_ipc_perm * ipcp,struct lsm_prop * prop)3280 void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3281 {
3282 lsmprop_init(prop);
3283 call_void_hook(ipc_getlsmprop, ipcp, prop);
3284 }
3285
3286 /**
3287 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3288 * @msg: message structure
3289 *
3290 * Allocate and attach a security structure to the msg->security field. The
3291 * security field is initialized to NULL when the structure is first created.
3292 *
3293 * Return: Return 0 if operation was successful and permission is granted.
3294 */
security_msg_msg_alloc(struct msg_msg * msg)3295 int security_msg_msg_alloc(struct msg_msg *msg)
3296 {
3297 int rc = lsm_msg_msg_alloc(msg);
3298
3299 if (unlikely(rc))
3300 return rc;
3301 rc = call_int_hook(msg_msg_alloc_security, msg);
3302 if (unlikely(rc))
3303 security_msg_msg_free(msg);
3304 return rc;
3305 }
3306
3307 /**
3308 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3309 * @msg: message structure
3310 *
3311 * Deallocate the security structure for this message.
3312 */
security_msg_msg_free(struct msg_msg * msg)3313 void security_msg_msg_free(struct msg_msg *msg)
3314 {
3315 call_void_hook(msg_msg_free_security, msg);
3316 kfree(msg->security);
3317 msg->security = NULL;
3318 }
3319
3320 /**
3321 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3322 * @msq: sysv ipc permission structure
3323 *
3324 * Allocate and attach a security structure to @msg. The security field is
3325 * initialized to NULL when the structure is first created.
3326 *
3327 * Return: Returns 0 if operation was successful and permission is granted.
3328 */
security_msg_queue_alloc(struct kern_ipc_perm * msq)3329 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3330 {
3331 int rc = lsm_ipc_alloc(msq);
3332
3333 if (unlikely(rc))
3334 return rc;
3335 rc = call_int_hook(msg_queue_alloc_security, msq);
3336 if (unlikely(rc))
3337 security_msg_queue_free(msq);
3338 return rc;
3339 }
3340
3341 /**
3342 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3343 * @msq: sysv ipc permission structure
3344 *
3345 * Deallocate security field @perm->security for the message queue.
3346 */
security_msg_queue_free(struct kern_ipc_perm * msq)3347 void security_msg_queue_free(struct kern_ipc_perm *msq)
3348 {
3349 call_void_hook(msg_queue_free_security, msq);
3350 kfree(msq->security);
3351 msq->security = NULL;
3352 }
3353
3354 /**
3355 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3356 * @msq: sysv ipc permission structure
3357 * @msqflg: operation flags
3358 *
3359 * Check permission when a message queue is requested through the msgget system
3360 * call. This hook is only called when returning the message queue identifier
3361 * for an existing message queue, not when a new message queue is created.
3362 *
3363 * Return: Return 0 if permission is granted.
3364 */
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)3365 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3366 {
3367 return call_int_hook(msg_queue_associate, msq, msqflg);
3368 }
3369
3370 /**
3371 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3372 * @msq: sysv ipc permission structure
3373 * @cmd: operation
3374 *
3375 * Check permission when a message control operation specified by @cmd is to be
3376 * performed on the message queue with permissions.
3377 *
3378 * Return: Returns 0 if permission is granted.
3379 */
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)3380 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3381 {
3382 return call_int_hook(msg_queue_msgctl, msq, cmd);
3383 }
3384
3385 /**
3386 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3387 * @msq: sysv ipc permission structure
3388 * @msg: message
3389 * @msqflg: operation flags
3390 *
3391 * Check permission before a message, @msg, is enqueued on the message queue
3392 * with permissions specified in @msq.
3393 *
3394 * Return: Returns 0 if permission is granted.
3395 */
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)3396 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3397 struct msg_msg *msg, int msqflg)
3398 {
3399 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3400 }
3401
3402 /**
3403 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3404 * @msq: sysv ipc permission structure
3405 * @msg: message
3406 * @target: target task
3407 * @type: type of message requested
3408 * @mode: operation flags
3409 *
3410 * Check permission before a message, @msg, is removed from the message queue.
3411 * The @target task structure contains a pointer to the process that will be
3412 * receiving the message (not equal to the current process when inline receives
3413 * are being performed).
3414 *
3415 * Return: Returns 0 if permission is granted.
3416 */
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)3417 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3418 struct task_struct *target, long type, int mode)
3419 {
3420 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3421 }
3422
3423 /**
3424 * security_shm_alloc() - Allocate a sysv shm LSM blob
3425 * @shp: sysv ipc permission structure
3426 *
3427 * Allocate and attach a security structure to the @shp security field. The
3428 * security field is initialized to NULL when the structure is first created.
3429 *
3430 * Return: Returns 0 if operation was successful and permission is granted.
3431 */
security_shm_alloc(struct kern_ipc_perm * shp)3432 int security_shm_alloc(struct kern_ipc_perm *shp)
3433 {
3434 int rc = lsm_ipc_alloc(shp);
3435
3436 if (unlikely(rc))
3437 return rc;
3438 rc = call_int_hook(shm_alloc_security, shp);
3439 if (unlikely(rc))
3440 security_shm_free(shp);
3441 return rc;
3442 }
3443
3444 /**
3445 * security_shm_free() - Free a sysv shm LSM blob
3446 * @shp: sysv ipc permission structure
3447 *
3448 * Deallocate the security structure @perm->security for the memory segment.
3449 */
security_shm_free(struct kern_ipc_perm * shp)3450 void security_shm_free(struct kern_ipc_perm *shp)
3451 {
3452 call_void_hook(shm_free_security, shp);
3453 kfree(shp->security);
3454 shp->security = NULL;
3455 }
3456
3457 /**
3458 * security_shm_associate() - Check if a sysv shm operation is allowed
3459 * @shp: sysv ipc permission structure
3460 * @shmflg: operation flags
3461 *
3462 * Check permission when a shared memory region is requested through the shmget
3463 * system call. This hook is only called when returning the shared memory
3464 * region identifier for an existing region, not when a new shared memory
3465 * region is created.
3466 *
3467 * Return: Returns 0 if permission is granted.
3468 */
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)3469 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3470 {
3471 return call_int_hook(shm_associate, shp, shmflg);
3472 }
3473
3474 /**
3475 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3476 * @shp: sysv ipc permission structure
3477 * @cmd: operation
3478 *
3479 * Check permission when a shared memory control operation specified by @cmd is
3480 * to be performed on the shared memory region with permissions in @shp.
3481 *
3482 * Return: Return 0 if permission is granted.
3483 */
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)3484 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3485 {
3486 return call_int_hook(shm_shmctl, shp, cmd);
3487 }
3488
3489 /**
3490 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3491 * @shp: sysv ipc permission structure
3492 * @shmaddr: address of memory region to attach
3493 * @shmflg: operation flags
3494 *
3495 * Check permissions prior to allowing the shmat system call to attach the
3496 * shared memory segment with permissions @shp to the data segment of the
3497 * calling process. The attaching address is specified by @shmaddr.
3498 *
3499 * Return: Returns 0 if permission is granted.
3500 */
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)3501 int security_shm_shmat(struct kern_ipc_perm *shp,
3502 char __user *shmaddr, int shmflg)
3503 {
3504 return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3505 }
3506
3507 /**
3508 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3509 * @sma: sysv ipc permission structure
3510 *
3511 * Allocate and attach a security structure to the @sma security field. The
3512 * security field is initialized to NULL when the structure is first created.
3513 *
3514 * Return: Returns 0 if operation was successful and permission is granted.
3515 */
security_sem_alloc(struct kern_ipc_perm * sma)3516 int security_sem_alloc(struct kern_ipc_perm *sma)
3517 {
3518 int rc = lsm_ipc_alloc(sma);
3519
3520 if (unlikely(rc))
3521 return rc;
3522 rc = call_int_hook(sem_alloc_security, sma);
3523 if (unlikely(rc))
3524 security_sem_free(sma);
3525 return rc;
3526 }
3527
3528 /**
3529 * security_sem_free() - Free a sysv semaphore LSM blob
3530 * @sma: sysv ipc permission structure
3531 *
3532 * Deallocate security structure @sma->security for the semaphore.
3533 */
security_sem_free(struct kern_ipc_perm * sma)3534 void security_sem_free(struct kern_ipc_perm *sma)
3535 {
3536 call_void_hook(sem_free_security, sma);
3537 kfree(sma->security);
3538 sma->security = NULL;
3539 }
3540
3541 /**
3542 * security_sem_associate() - Check if a sysv semaphore operation is allowed
3543 * @sma: sysv ipc permission structure
3544 * @semflg: operation flags
3545 *
3546 * Check permission when a semaphore is requested through the semget system
3547 * call. This hook is only called when returning the semaphore identifier for
3548 * an existing semaphore, not when a new one must be created.
3549 *
3550 * Return: Returns 0 if permission is granted.
3551 */
security_sem_associate(struct kern_ipc_perm * sma,int semflg)3552 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3553 {
3554 return call_int_hook(sem_associate, sma, semflg);
3555 }
3556
3557 /**
3558 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3559 * @sma: sysv ipc permission structure
3560 * @cmd: operation
3561 *
3562 * Check permission when a semaphore operation specified by @cmd is to be
3563 * performed on the semaphore.
3564 *
3565 * Return: Returns 0 if permission is granted.
3566 */
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)3567 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3568 {
3569 return call_int_hook(sem_semctl, sma, cmd);
3570 }
3571
3572 /**
3573 * security_sem_semop() - Check if a sysv semaphore operation is allowed
3574 * @sma: sysv ipc permission structure
3575 * @sops: operations to perform
3576 * @nsops: number of operations
3577 * @alter: flag indicating changes will be made
3578 *
3579 * Check permissions before performing operations on members of the semaphore
3580 * set. If the @alter flag is nonzero, the semaphore set may be modified.
3581 *
3582 * Return: Returns 0 if permission is granted.
3583 */
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)3584 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3585 unsigned nsops, int alter)
3586 {
3587 return call_int_hook(sem_semop, sma, sops, nsops, alter);
3588 }
3589
3590 /**
3591 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3592 * @dentry: dentry
3593 * @inode: inode
3594 *
3595 * Fill in @inode security information for a @dentry if allowed.
3596 */
security_d_instantiate(struct dentry * dentry,struct inode * inode)3597 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3598 {
3599 if (unlikely(inode && IS_PRIVATE(inode)))
3600 return;
3601 call_void_hook(d_instantiate, dentry, inode);
3602 }
3603 EXPORT_SYMBOL(security_d_instantiate);
3604
3605 /*
3606 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3607 */
3608
3609 /**
3610 * security_getselfattr - Read an LSM attribute of the current process.
3611 * @attr: which attribute to return
3612 * @uctx: the user-space destination for the information, or NULL
3613 * @size: pointer to the size of space available to receive the data
3614 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3615 * attributes associated with the LSM identified in the passed @ctx be
3616 * reported.
3617 *
3618 * A NULL value for @uctx can be used to get both the number of attributes
3619 * and the size of the data.
3620 *
3621 * Returns the number of attributes found on success, negative value
3622 * on error. @size is reset to the total size of the data.
3623 * If @size is insufficient to contain the data -E2BIG is returned.
3624 */
security_getselfattr(unsigned int attr,struct lsm_ctx __user * uctx,u32 __user * size,u32 flags)3625 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3626 u32 __user *size, u32 flags)
3627 {
3628 struct lsm_static_call *scall;
3629 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3630 u8 __user *base = (u8 __user *)uctx;
3631 u32 entrysize;
3632 u32 total = 0;
3633 u32 left;
3634 bool toobig = false;
3635 bool single = false;
3636 int count = 0;
3637 int rc;
3638
3639 if (attr == LSM_ATTR_UNDEF)
3640 return -EINVAL;
3641 if (size == NULL)
3642 return -EINVAL;
3643 if (get_user(left, size))
3644 return -EFAULT;
3645
3646 if (flags) {
3647 /*
3648 * Only flag supported is LSM_FLAG_SINGLE
3649 */
3650 if (flags != LSM_FLAG_SINGLE || !uctx)
3651 return -EINVAL;
3652 if (copy_from_user(&lctx, uctx, sizeof(lctx)))
3653 return -EFAULT;
3654 /*
3655 * If the LSM ID isn't specified it is an error.
3656 */
3657 if (lctx.id == LSM_ID_UNDEF)
3658 return -EINVAL;
3659 single = true;
3660 }
3661
3662 /*
3663 * In the usual case gather all the data from the LSMs.
3664 * In the single case only get the data from the LSM specified.
3665 */
3666 lsm_for_each_hook(scall, getselfattr) {
3667 if (single && lctx.id != scall->hl->lsmid->id)
3668 continue;
3669 entrysize = left;
3670 if (base)
3671 uctx = (struct lsm_ctx __user *)(base + total);
3672 rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
3673 if (rc == -EOPNOTSUPP)
3674 continue;
3675 if (rc == -E2BIG) {
3676 rc = 0;
3677 left = 0;
3678 toobig = true;
3679 } else if (rc < 0)
3680 return rc;
3681 else
3682 left -= entrysize;
3683
3684 total += entrysize;
3685 count += rc;
3686 if (single)
3687 break;
3688 }
3689 if (put_user(total, size))
3690 return -EFAULT;
3691 if (toobig)
3692 return -E2BIG;
3693 if (count == 0)
3694 return LSM_RET_DEFAULT(getselfattr);
3695 return count;
3696 }
3697
3698 /*
3699 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3700 */
3701
3702 /**
3703 * security_setselfattr - Set an LSM attribute on the current process.
3704 * @attr: which attribute to set
3705 * @uctx: the user-space source for the information
3706 * @size: the size of the data
3707 * @flags: reserved for future use, must be 0
3708 *
3709 * Set an LSM attribute for the current process. The LSM, attribute
3710 * and new value are included in @uctx.
3711 *
3712 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
3713 * if the user buffer is inaccessible, E2BIG if size is too big, or an
3714 * LSM specific failure.
3715 */
security_setselfattr(unsigned int attr,struct lsm_ctx __user * uctx,u32 size,u32 flags)3716 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3717 u32 size, u32 flags)
3718 {
3719 struct lsm_static_call *scall;
3720 struct lsm_ctx *lctx;
3721 int rc = LSM_RET_DEFAULT(setselfattr);
3722 u64 required_len;
3723
3724 if (flags)
3725 return -EINVAL;
3726 if (size < sizeof(*lctx))
3727 return -EINVAL;
3728 if (size > PAGE_SIZE)
3729 return -E2BIG;
3730
3731 lctx = memdup_user(uctx, size);
3732 if (IS_ERR(lctx))
3733 return PTR_ERR(lctx);
3734
3735 if (size < lctx->len ||
3736 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
3737 lctx->len < required_len) {
3738 rc = -EINVAL;
3739 goto free_out;
3740 }
3741
3742 lsm_for_each_hook(scall, setselfattr)
3743 if ((scall->hl->lsmid->id) == lctx->id) {
3744 rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
3745 break;
3746 }
3747
3748 free_out:
3749 kfree(lctx);
3750 return rc;
3751 }
3752
3753 /**
3754 * security_getprocattr() - Read an attribute for a task
3755 * @p: the task
3756 * @lsmid: LSM identification
3757 * @name: attribute name
3758 * @value: attribute value
3759 *
3760 * Read attribute @name for task @p and store it into @value if allowed.
3761 *
3762 * Return: Returns the length of @value on success, a negative value otherwise.
3763 */
security_getprocattr(struct task_struct * p,int lsmid,const char * name,char ** value)3764 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
3765 char **value)
3766 {
3767 struct lsm_static_call *scall;
3768
3769 lsm_for_each_hook(scall, getprocattr) {
3770 if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
3771 continue;
3772 return scall->hl->hook.getprocattr(p, name, value);
3773 }
3774 return LSM_RET_DEFAULT(getprocattr);
3775 }
3776
3777 /**
3778 * security_setprocattr() - Set an attribute for a task
3779 * @lsmid: LSM identification
3780 * @name: attribute name
3781 * @value: attribute value
3782 * @size: attribute value size
3783 *
3784 * Write (set) the current task's attribute @name to @value, size @size if
3785 * allowed.
3786 *
3787 * Return: Returns bytes written on success, a negative value otherwise.
3788 */
security_setprocattr(int lsmid,const char * name,void * value,size_t size)3789 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
3790 {
3791 struct lsm_static_call *scall;
3792
3793 lsm_for_each_hook(scall, setprocattr) {
3794 if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
3795 continue;
3796 return scall->hl->hook.setprocattr(name, value, size);
3797 }
3798 return LSM_RET_DEFAULT(setprocattr);
3799 }
3800
3801 /**
3802 * security_ismaclabel() - Check if the named attribute is a MAC label
3803 * @name: full extended attribute name
3804 *
3805 * Check if the extended attribute specified by @name represents a MAC label.
3806 *
3807 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
3808 */
security_ismaclabel(const char * name)3809 int security_ismaclabel(const char *name)
3810 {
3811 return call_int_hook(ismaclabel, name);
3812 }
3813 EXPORT_SYMBOL(security_ismaclabel);
3814
3815 /**
3816 * security_secid_to_secctx() - Convert a secid to a secctx
3817 * @secid: secid
3818 * @cp: the LSM context
3819 *
3820 * Convert secid to security context. If @cp is NULL the length of the
3821 * result will be returned, but no data will be returned. This
3822 * does mean that the length could change between calls to check the length and
3823 * the next call which actually allocates and returns the data.
3824 *
3825 * Return: Return length of data on success, error on failure.
3826 */
security_secid_to_secctx(u32 secid,struct lsm_context * cp)3827 int security_secid_to_secctx(u32 secid, struct lsm_context *cp)
3828 {
3829 return call_int_hook(secid_to_secctx, secid, cp);
3830 }
3831 EXPORT_SYMBOL(security_secid_to_secctx);
3832
3833 /**
3834 * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
3835 * @prop: lsm specific information
3836 * @cp: the LSM context
3837 * @lsmid: which security module to report
3838 *
3839 * Convert a @prop entry to security context. If @cp is NULL the
3840 * length of the result will be returned. This does mean that the
3841 * length could change between calls to check the length and the
3842 * next call which actually allocates and returns the @cp.
3843 *
3844 * @lsmid identifies which LSM should supply the context.
3845 * A value of LSM_ID_UNDEF indicates that the first LSM suppling
3846 * the hook should be used. This is used in cases where the
3847 * ID of the supplying LSM is unambiguous.
3848 *
3849 * Return: Return length of data on success, error on failure.
3850 */
security_lsmprop_to_secctx(struct lsm_prop * prop,struct lsm_context * cp,int lsmid)3851 int security_lsmprop_to_secctx(struct lsm_prop *prop, struct lsm_context *cp,
3852 int lsmid)
3853 {
3854 struct lsm_static_call *scall;
3855
3856 lsm_for_each_hook(scall, lsmprop_to_secctx) {
3857 if (lsmid != LSM_ID_UNDEF && lsmid != scall->hl->lsmid->id)
3858 continue;
3859 return scall->hl->hook.lsmprop_to_secctx(prop, cp);
3860 }
3861 return LSM_RET_DEFAULT(lsmprop_to_secctx);
3862 }
3863 EXPORT_SYMBOL(security_lsmprop_to_secctx);
3864
3865 /**
3866 * security_secctx_to_secid() - Convert a secctx to a secid
3867 * @secdata: secctx
3868 * @seclen: length of secctx
3869 * @secid: secid
3870 *
3871 * Convert security context to secid.
3872 *
3873 * Return: Returns 0 on success, error on failure.
3874 */
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)3875 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
3876 {
3877 *secid = 0;
3878 return call_int_hook(secctx_to_secid, secdata, seclen, secid);
3879 }
3880 EXPORT_SYMBOL(security_secctx_to_secid);
3881
3882 /**
3883 * security_release_secctx() - Free a secctx buffer
3884 * @cp: the security context
3885 *
3886 * Release the security context.
3887 */
security_release_secctx(struct lsm_context * cp)3888 void security_release_secctx(struct lsm_context *cp)
3889 {
3890 call_void_hook(release_secctx, cp);
3891 memset(cp, 0, sizeof(*cp));
3892 }
3893 EXPORT_SYMBOL(security_release_secctx);
3894
3895 /**
3896 * security_inode_invalidate_secctx() - Invalidate an inode's security label
3897 * @inode: inode
3898 *
3899 * Notify the security module that it must revalidate the security context of
3900 * an inode.
3901 */
security_inode_invalidate_secctx(struct inode * inode)3902 void security_inode_invalidate_secctx(struct inode *inode)
3903 {
3904 call_void_hook(inode_invalidate_secctx, inode);
3905 }
3906 EXPORT_SYMBOL(security_inode_invalidate_secctx);
3907
3908 /**
3909 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
3910 * @inode: inode
3911 * @ctx: secctx
3912 * @ctxlen: length of secctx
3913 *
3914 * Notify the security module of what the security context of an inode should
3915 * be. Initializes the incore security context managed by the security module
3916 * for this inode. Example usage: NFS client invokes this hook to initialize
3917 * the security context in its incore inode to the value provided by the server
3918 * for the file when the server returned the file's attributes to the client.
3919 * Must be called with inode->i_mutex locked.
3920 *
3921 * Return: Returns 0 on success, error on failure.
3922 */
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)3923 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
3924 {
3925 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
3926 }
3927 EXPORT_SYMBOL(security_inode_notifysecctx);
3928
3929 /**
3930 * security_inode_setsecctx() - Change the security label of an inode
3931 * @dentry: inode
3932 * @ctx: secctx
3933 * @ctxlen: length of secctx
3934 *
3935 * Change the security context of an inode. Updates the incore security
3936 * context managed by the security module and invokes the fs code as needed
3937 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
3938 * context. Example usage: NFS server invokes this hook to change the security
3939 * context in its incore inode and on the backing filesystem to a value
3940 * provided by the client on a SETATTR operation. Must be called with
3941 * inode->i_mutex locked.
3942 *
3943 * Return: Returns 0 on success, error on failure.
3944 */
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)3945 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
3946 {
3947 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
3948 }
3949 EXPORT_SYMBOL(security_inode_setsecctx);
3950
3951 /**
3952 * security_inode_getsecctx() - Get the security label of an inode
3953 * @inode: inode
3954 * @cp: security context
3955 *
3956 * On success, returns 0 and fills out @cp with the security context
3957 * for the given @inode.
3958 *
3959 * Return: Returns 0 on success, error on failure.
3960 */
security_inode_getsecctx(struct inode * inode,struct lsm_context * cp)3961 int security_inode_getsecctx(struct inode *inode, struct lsm_context *cp)
3962 {
3963 memset(cp, 0, sizeof(*cp));
3964 return call_int_hook(inode_getsecctx, inode, cp);
3965 }
3966 EXPORT_SYMBOL(security_inode_getsecctx);
3967
3968 #ifdef CONFIG_WATCH_QUEUE
3969 /**
3970 * security_post_notification() - Check if a watch notification can be posted
3971 * @w_cred: credentials of the task that set the watch
3972 * @cred: credentials of the task which triggered the watch
3973 * @n: the notification
3974 *
3975 * Check to see if a watch notification can be posted to a particular queue.
3976 *
3977 * Return: Returns 0 if permission is granted.
3978 */
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)3979 int security_post_notification(const struct cred *w_cred,
3980 const struct cred *cred,
3981 struct watch_notification *n)
3982 {
3983 return call_int_hook(post_notification, w_cred, cred, n);
3984 }
3985 #endif /* CONFIG_WATCH_QUEUE */
3986
3987 #ifdef CONFIG_KEY_NOTIFICATIONS
3988 /**
3989 * security_watch_key() - Check if a task is allowed to watch for key events
3990 * @key: the key to watch
3991 *
3992 * Check to see if a process is allowed to watch for event notifications from
3993 * a key or keyring.
3994 *
3995 * Return: Returns 0 if permission is granted.
3996 */
security_watch_key(struct key * key)3997 int security_watch_key(struct key *key)
3998 {
3999 return call_int_hook(watch_key, key);
4000 }
4001 #endif /* CONFIG_KEY_NOTIFICATIONS */
4002
4003 #ifdef CONFIG_SECURITY_NETWORK
4004 /**
4005 * security_netlink_send() - Save info and check if netlink sending is allowed
4006 * @sk: sending socket
4007 * @skb: netlink message
4008 *
4009 * Save security information for a netlink message so that permission checking
4010 * can be performed when the message is processed. The security information
4011 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4012 * Also may be used to provide fine grained control over message transmission.
4013 *
4014 * Return: Returns 0 if the information was successfully saved and message is
4015 * allowed to be transmitted.
4016 */
security_netlink_send(struct sock * sk,struct sk_buff * skb)4017 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4018 {
4019 return call_int_hook(netlink_send, sk, skb);
4020 }
4021
4022 /**
4023 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4024 * @sock: originating sock
4025 * @other: peer sock
4026 * @newsk: new sock
4027 *
4028 * Check permissions before establishing a Unix domain stream connection
4029 * between @sock and @other.
4030 *
4031 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4032 * Linux provides an alternative to the conventional file name space for Unix
4033 * domain sockets. Whereas binding and connecting to sockets in the file name
4034 * space is mediated by the typical file permissions (and caught by the mknod
4035 * and permission hooks in inode_security_ops), binding and connecting to
4036 * sockets in the abstract name space is completely unmediated. Sufficient
4037 * control of Unix domain sockets in the abstract name space isn't possible
4038 * using only the socket layer hooks, since we need to know the actual target
4039 * socket, which is not looked up until we are inside the af_unix code.
4040 *
4041 * Return: Returns 0 if permission is granted.
4042 */
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)4043 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4044 struct sock *newsk)
4045 {
4046 return call_int_hook(unix_stream_connect, sock, other, newsk);
4047 }
4048 EXPORT_SYMBOL(security_unix_stream_connect);
4049
4050 /**
4051 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4052 * @sock: originating sock
4053 * @other: peer sock
4054 *
4055 * Check permissions before connecting or sending datagrams from @sock to
4056 * @other.
4057 *
4058 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4059 * Linux provides an alternative to the conventional file name space for Unix
4060 * domain sockets. Whereas binding and connecting to sockets in the file name
4061 * space is mediated by the typical file permissions (and caught by the mknod
4062 * and permission hooks in inode_security_ops), binding and connecting to
4063 * sockets in the abstract name space is completely unmediated. Sufficient
4064 * control of Unix domain sockets in the abstract name space isn't possible
4065 * using only the socket layer hooks, since we need to know the actual target
4066 * socket, which is not looked up until we are inside the af_unix code.
4067 *
4068 * Return: Returns 0 if permission is granted.
4069 */
security_unix_may_send(struct socket * sock,struct socket * other)4070 int security_unix_may_send(struct socket *sock, struct socket *other)
4071 {
4072 return call_int_hook(unix_may_send, sock, other);
4073 }
4074 EXPORT_SYMBOL(security_unix_may_send);
4075
4076 /**
4077 * security_socket_create() - Check if creating a new socket is allowed
4078 * @family: protocol family
4079 * @type: communications type
4080 * @protocol: requested protocol
4081 * @kern: set to 1 if a kernel socket is requested
4082 *
4083 * Check permissions prior to creating a new socket.
4084 *
4085 * Return: Returns 0 if permission is granted.
4086 */
security_socket_create(int family,int type,int protocol,int kern)4087 int security_socket_create(int family, int type, int protocol, int kern)
4088 {
4089 return call_int_hook(socket_create, family, type, protocol, kern);
4090 }
4091
4092 /**
4093 * security_socket_post_create() - Initialize a newly created socket
4094 * @sock: socket
4095 * @family: protocol family
4096 * @type: communications type
4097 * @protocol: requested protocol
4098 * @kern: set to 1 if a kernel socket is requested
4099 *
4100 * This hook allows a module to update or allocate a per-socket security
4101 * structure. Note that the security field was not added directly to the socket
4102 * structure, but rather, the socket security information is stored in the
4103 * associated inode. Typically, the inode alloc_security hook will allocate
4104 * and attach security information to SOCK_INODE(sock)->i_security. This hook
4105 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4106 * information that wasn't available when the inode was allocated.
4107 *
4108 * Return: Returns 0 if permission is granted.
4109 */
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)4110 int security_socket_post_create(struct socket *sock, int family,
4111 int type, int protocol, int kern)
4112 {
4113 return call_int_hook(socket_post_create, sock, family, type,
4114 protocol, kern);
4115 }
4116
4117 /**
4118 * security_socket_socketpair() - Check if creating a socketpair is allowed
4119 * @socka: first socket
4120 * @sockb: second socket
4121 *
4122 * Check permissions before creating a fresh pair of sockets.
4123 *
4124 * Return: Returns 0 if permission is granted and the connection was
4125 * established.
4126 */
security_socket_socketpair(struct socket * socka,struct socket * sockb)4127 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4128 {
4129 return call_int_hook(socket_socketpair, socka, sockb);
4130 }
4131 EXPORT_SYMBOL(security_socket_socketpair);
4132
4133 /**
4134 * security_socket_bind() - Check if a socket bind operation is allowed
4135 * @sock: socket
4136 * @address: requested bind address
4137 * @addrlen: length of address
4138 *
4139 * Check permission before socket protocol layer bind operation is performed
4140 * and the socket @sock is bound to the address specified in the @address
4141 * parameter.
4142 *
4143 * Return: Returns 0 if permission is granted.
4144 */
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)4145 int security_socket_bind(struct socket *sock,
4146 struct sockaddr *address, int addrlen)
4147 {
4148 return call_int_hook(socket_bind, sock, address, addrlen);
4149 }
4150
4151 /**
4152 * security_socket_connect() - Check if a socket connect operation is allowed
4153 * @sock: socket
4154 * @address: address of remote connection point
4155 * @addrlen: length of address
4156 *
4157 * Check permission before socket protocol layer connect operation attempts to
4158 * connect socket @sock to a remote address, @address.
4159 *
4160 * Return: Returns 0 if permission is granted.
4161 */
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)4162 int security_socket_connect(struct socket *sock,
4163 struct sockaddr *address, int addrlen)
4164 {
4165 return call_int_hook(socket_connect, sock, address, addrlen);
4166 }
4167
4168 /**
4169 * security_socket_listen() - Check if a socket is allowed to listen
4170 * @sock: socket
4171 * @backlog: connection queue size
4172 *
4173 * Check permission before socket protocol layer listen operation.
4174 *
4175 * Return: Returns 0 if permission is granted.
4176 */
security_socket_listen(struct socket * sock,int backlog)4177 int security_socket_listen(struct socket *sock, int backlog)
4178 {
4179 return call_int_hook(socket_listen, sock, backlog);
4180 }
4181
4182 /**
4183 * security_socket_accept() - Check if a socket is allowed to accept connections
4184 * @sock: listening socket
4185 * @newsock: newly creation connection socket
4186 *
4187 * Check permission before accepting a new connection. Note that the new
4188 * socket, @newsock, has been created and some information copied to it, but
4189 * the accept operation has not actually been performed.
4190 *
4191 * Return: Returns 0 if permission is granted.
4192 */
security_socket_accept(struct socket * sock,struct socket * newsock)4193 int security_socket_accept(struct socket *sock, struct socket *newsock)
4194 {
4195 return call_int_hook(socket_accept, sock, newsock);
4196 }
4197
4198 /**
4199 * security_socket_sendmsg() - Check if sending a message is allowed
4200 * @sock: sending socket
4201 * @msg: message to send
4202 * @size: size of message
4203 *
4204 * Check permission before transmitting a message to another socket.
4205 *
4206 * Return: Returns 0 if permission is granted.
4207 */
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)4208 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4209 {
4210 return call_int_hook(socket_sendmsg, sock, msg, size);
4211 }
4212
4213 /**
4214 * security_socket_recvmsg() - Check if receiving a message is allowed
4215 * @sock: receiving socket
4216 * @msg: message to receive
4217 * @size: size of message
4218 * @flags: operational flags
4219 *
4220 * Check permission before receiving a message from a socket.
4221 *
4222 * Return: Returns 0 if permission is granted.
4223 */
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)4224 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4225 int size, int flags)
4226 {
4227 return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4228 }
4229
4230 /**
4231 * security_socket_getsockname() - Check if reading the socket addr is allowed
4232 * @sock: socket
4233 *
4234 * Check permission before reading the local address (name) of the socket
4235 * object.
4236 *
4237 * Return: Returns 0 if permission is granted.
4238 */
security_socket_getsockname(struct socket * sock)4239 int security_socket_getsockname(struct socket *sock)
4240 {
4241 return call_int_hook(socket_getsockname, sock);
4242 }
4243
4244 /**
4245 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4246 * @sock: socket
4247 *
4248 * Check permission before the remote address (name) of a socket object.
4249 *
4250 * Return: Returns 0 if permission is granted.
4251 */
security_socket_getpeername(struct socket * sock)4252 int security_socket_getpeername(struct socket *sock)
4253 {
4254 return call_int_hook(socket_getpeername, sock);
4255 }
4256
4257 /**
4258 * security_socket_getsockopt() - Check if reading a socket option is allowed
4259 * @sock: socket
4260 * @level: option's protocol level
4261 * @optname: option name
4262 *
4263 * Check permissions before retrieving the options associated with socket
4264 * @sock.
4265 *
4266 * Return: Returns 0 if permission is granted.
4267 */
security_socket_getsockopt(struct socket * sock,int level,int optname)4268 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4269 {
4270 return call_int_hook(socket_getsockopt, sock, level, optname);
4271 }
4272
4273 /**
4274 * security_socket_setsockopt() - Check if setting a socket option is allowed
4275 * @sock: socket
4276 * @level: option's protocol level
4277 * @optname: option name
4278 *
4279 * Check permissions before setting the options associated with socket @sock.
4280 *
4281 * Return: Returns 0 if permission is granted.
4282 */
security_socket_setsockopt(struct socket * sock,int level,int optname)4283 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4284 {
4285 return call_int_hook(socket_setsockopt, sock, level, optname);
4286 }
4287
4288 /**
4289 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4290 * @sock: socket
4291 * @how: flag indicating how sends and receives are handled
4292 *
4293 * Checks permission before all or part of a connection on the socket @sock is
4294 * shut down.
4295 *
4296 * Return: Returns 0 if permission is granted.
4297 */
security_socket_shutdown(struct socket * sock,int how)4298 int security_socket_shutdown(struct socket *sock, int how)
4299 {
4300 return call_int_hook(socket_shutdown, sock, how);
4301 }
4302
4303 /**
4304 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4305 * @sk: destination sock
4306 * @skb: incoming packet
4307 *
4308 * Check permissions on incoming network packets. This hook is distinct from
4309 * Netfilter's IP input hooks since it is the first time that the incoming
4310 * sk_buff @skb has been associated with a particular socket, @sk. Must not
4311 * sleep inside this hook because some callers hold spinlocks.
4312 *
4313 * Return: Returns 0 if permission is granted.
4314 */
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)4315 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4316 {
4317 return call_int_hook(socket_sock_rcv_skb, sk, skb);
4318 }
4319 EXPORT_SYMBOL(security_sock_rcv_skb);
4320
4321 /**
4322 * security_socket_getpeersec_stream() - Get the remote peer label
4323 * @sock: socket
4324 * @optval: destination buffer
4325 * @optlen: size of peer label copied into the buffer
4326 * @len: maximum size of the destination buffer
4327 *
4328 * This hook allows the security module to provide peer socket security state
4329 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4330 * For tcp sockets this can be meaningful if the socket is associated with an
4331 * ipsec SA.
4332 *
4333 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4334 * values.
4335 */
security_socket_getpeersec_stream(struct socket * sock,sockptr_t optval,sockptr_t optlen,unsigned int len)4336 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4337 sockptr_t optlen, unsigned int len)
4338 {
4339 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4340 len);
4341 }
4342
4343 /**
4344 * security_socket_getpeersec_dgram() - Get the remote peer label
4345 * @sock: socket
4346 * @skb: datagram packet
4347 * @secid: remote peer label secid
4348 *
4349 * This hook allows the security module to provide peer socket security state
4350 * for udp sockets on a per-packet basis to userspace via getsockopt
4351 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4352 * option via getsockopt. It can then retrieve the security state returned by
4353 * this hook for a packet via the SCM_SECURITY ancillary message type.
4354 *
4355 * Return: Returns 0 on success, error on failure.
4356 */
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)4357 int security_socket_getpeersec_dgram(struct socket *sock,
4358 struct sk_buff *skb, u32 *secid)
4359 {
4360 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4361 }
4362 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4363
4364 /**
4365 * lsm_sock_alloc - allocate a composite sock blob
4366 * @sock: the sock that needs a blob
4367 * @gfp: allocation mode
4368 *
4369 * Allocate the sock blob for all the modules
4370 *
4371 * Returns 0, or -ENOMEM if memory can't be allocated.
4372 */
lsm_sock_alloc(struct sock * sock,gfp_t gfp)4373 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4374 {
4375 return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4376 }
4377
4378 /**
4379 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4380 * @sk: sock
4381 * @family: protocol family
4382 * @priority: gfp flags
4383 *
4384 * Allocate and attach a security structure to the sk->sk_security field, which
4385 * is used to copy security attributes between local stream sockets.
4386 *
4387 * Return: Returns 0 on success, error on failure.
4388 */
security_sk_alloc(struct sock * sk,int family,gfp_t priority)4389 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4390 {
4391 int rc = lsm_sock_alloc(sk, priority);
4392
4393 if (unlikely(rc))
4394 return rc;
4395 rc = call_int_hook(sk_alloc_security, sk, family, priority);
4396 if (unlikely(rc))
4397 security_sk_free(sk);
4398 return rc;
4399 }
4400
4401 /**
4402 * security_sk_free() - Free the sock's LSM blob
4403 * @sk: sock
4404 *
4405 * Deallocate security structure.
4406 */
security_sk_free(struct sock * sk)4407 void security_sk_free(struct sock *sk)
4408 {
4409 call_void_hook(sk_free_security, sk);
4410 kfree(sk->sk_security);
4411 sk->sk_security = NULL;
4412 }
4413
4414 /**
4415 * security_sk_clone() - Clone a sock's LSM state
4416 * @sk: original sock
4417 * @newsk: target sock
4418 *
4419 * Clone/copy security structure.
4420 */
security_sk_clone(const struct sock * sk,struct sock * newsk)4421 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4422 {
4423 call_void_hook(sk_clone_security, sk, newsk);
4424 }
4425 EXPORT_SYMBOL(security_sk_clone);
4426
4427 /**
4428 * security_sk_classify_flow() - Set a flow's secid based on socket
4429 * @sk: original socket
4430 * @flic: target flow
4431 *
4432 * Set the target flow's secid to socket's secid.
4433 */
security_sk_classify_flow(const struct sock * sk,struct flowi_common * flic)4434 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4435 {
4436 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4437 }
4438 EXPORT_SYMBOL(security_sk_classify_flow);
4439
4440 /**
4441 * security_req_classify_flow() - Set a flow's secid based on request_sock
4442 * @req: request_sock
4443 * @flic: target flow
4444 *
4445 * Sets @flic's secid to @req's secid.
4446 */
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)4447 void security_req_classify_flow(const struct request_sock *req,
4448 struct flowi_common *flic)
4449 {
4450 call_void_hook(req_classify_flow, req, flic);
4451 }
4452 EXPORT_SYMBOL(security_req_classify_flow);
4453
4454 /**
4455 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4456 * @sk: sock being grafted
4457 * @parent: target parent socket
4458 *
4459 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4460 * LSM state from @parent.
4461 */
security_sock_graft(struct sock * sk,struct socket * parent)4462 void security_sock_graft(struct sock *sk, struct socket *parent)
4463 {
4464 call_void_hook(sock_graft, sk, parent);
4465 }
4466 EXPORT_SYMBOL(security_sock_graft);
4467
4468 /**
4469 * security_inet_conn_request() - Set request_sock state using incoming connect
4470 * @sk: parent listening sock
4471 * @skb: incoming connection
4472 * @req: new request_sock
4473 *
4474 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4475 *
4476 * Return: Returns 0 if permission is granted.
4477 */
security_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)4478 int security_inet_conn_request(const struct sock *sk,
4479 struct sk_buff *skb, struct request_sock *req)
4480 {
4481 return call_int_hook(inet_conn_request, sk, skb, req);
4482 }
4483 EXPORT_SYMBOL(security_inet_conn_request);
4484
4485 /**
4486 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4487 * @newsk: new sock
4488 * @req: connection request_sock
4489 *
4490 * Set that LSM state of @sock using the LSM state from @req.
4491 */
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)4492 void security_inet_csk_clone(struct sock *newsk,
4493 const struct request_sock *req)
4494 {
4495 call_void_hook(inet_csk_clone, newsk, req);
4496 }
4497
4498 /**
4499 * security_inet_conn_established() - Update sock's LSM state with connection
4500 * @sk: sock
4501 * @skb: connection packet
4502 *
4503 * Update @sock's LSM state to represent a new connection from @skb.
4504 */
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)4505 void security_inet_conn_established(struct sock *sk,
4506 struct sk_buff *skb)
4507 {
4508 call_void_hook(inet_conn_established, sk, skb);
4509 }
4510 EXPORT_SYMBOL(security_inet_conn_established);
4511
4512 /**
4513 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4514 * @secid: new secmark value
4515 *
4516 * Check if the process should be allowed to relabel packets to @secid.
4517 *
4518 * Return: Returns 0 if permission is granted.
4519 */
security_secmark_relabel_packet(u32 secid)4520 int security_secmark_relabel_packet(u32 secid)
4521 {
4522 return call_int_hook(secmark_relabel_packet, secid);
4523 }
4524 EXPORT_SYMBOL(security_secmark_relabel_packet);
4525
4526 /**
4527 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4528 *
4529 * Tells the LSM to increment the number of secmark labeling rules loaded.
4530 */
security_secmark_refcount_inc(void)4531 void security_secmark_refcount_inc(void)
4532 {
4533 call_void_hook(secmark_refcount_inc);
4534 }
4535 EXPORT_SYMBOL(security_secmark_refcount_inc);
4536
4537 /**
4538 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4539 *
4540 * Tells the LSM to decrement the number of secmark labeling rules loaded.
4541 */
security_secmark_refcount_dec(void)4542 void security_secmark_refcount_dec(void)
4543 {
4544 call_void_hook(secmark_refcount_dec);
4545 }
4546 EXPORT_SYMBOL(security_secmark_refcount_dec);
4547
4548 /**
4549 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4550 * @security: pointer to the LSM blob
4551 *
4552 * This hook allows a module to allocate a security structure for a TUN device,
4553 * returning the pointer in @security.
4554 *
4555 * Return: Returns a zero on success, negative values on failure.
4556 */
security_tun_dev_alloc_security(void ** security)4557 int security_tun_dev_alloc_security(void **security)
4558 {
4559 int rc;
4560
4561 rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
4562 if (rc)
4563 return rc;
4564
4565 rc = call_int_hook(tun_dev_alloc_security, *security);
4566 if (rc) {
4567 kfree(*security);
4568 *security = NULL;
4569 }
4570 return rc;
4571 }
4572 EXPORT_SYMBOL(security_tun_dev_alloc_security);
4573
4574 /**
4575 * security_tun_dev_free_security() - Free a TUN device LSM blob
4576 * @security: LSM blob
4577 *
4578 * This hook allows a module to free the security structure for a TUN device.
4579 */
security_tun_dev_free_security(void * security)4580 void security_tun_dev_free_security(void *security)
4581 {
4582 kfree(security);
4583 }
4584 EXPORT_SYMBOL(security_tun_dev_free_security);
4585
4586 /**
4587 * security_tun_dev_create() - Check if creating a TUN device is allowed
4588 *
4589 * Check permissions prior to creating a new TUN device.
4590 *
4591 * Return: Returns 0 if permission is granted.
4592 */
security_tun_dev_create(void)4593 int security_tun_dev_create(void)
4594 {
4595 return call_int_hook(tun_dev_create);
4596 }
4597 EXPORT_SYMBOL(security_tun_dev_create);
4598
4599 /**
4600 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4601 * @security: TUN device LSM blob
4602 *
4603 * Check permissions prior to attaching to a TUN device queue.
4604 *
4605 * Return: Returns 0 if permission is granted.
4606 */
security_tun_dev_attach_queue(void * security)4607 int security_tun_dev_attach_queue(void *security)
4608 {
4609 return call_int_hook(tun_dev_attach_queue, security);
4610 }
4611 EXPORT_SYMBOL(security_tun_dev_attach_queue);
4612
4613 /**
4614 * security_tun_dev_attach() - Update TUN device LSM state on attach
4615 * @sk: associated sock
4616 * @security: TUN device LSM blob
4617 *
4618 * This hook can be used by the module to update any security state associated
4619 * with the TUN device's sock structure.
4620 *
4621 * Return: Returns 0 if permission is granted.
4622 */
security_tun_dev_attach(struct sock * sk,void * security)4623 int security_tun_dev_attach(struct sock *sk, void *security)
4624 {
4625 return call_int_hook(tun_dev_attach, sk, security);
4626 }
4627 EXPORT_SYMBOL(security_tun_dev_attach);
4628
4629 /**
4630 * security_tun_dev_open() - Update TUN device LSM state on open
4631 * @security: TUN device LSM blob
4632 *
4633 * This hook can be used by the module to update any security state associated
4634 * with the TUN device's security structure.
4635 *
4636 * Return: Returns 0 if permission is granted.
4637 */
security_tun_dev_open(void * security)4638 int security_tun_dev_open(void *security)
4639 {
4640 return call_int_hook(tun_dev_open, security);
4641 }
4642 EXPORT_SYMBOL(security_tun_dev_open);
4643
4644 /**
4645 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4646 * @asoc: SCTP association
4647 * @skb: packet requesting the association
4648 *
4649 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4650 *
4651 * Return: Returns 0 on success, error on failure.
4652 */
security_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)4653 int security_sctp_assoc_request(struct sctp_association *asoc,
4654 struct sk_buff *skb)
4655 {
4656 return call_int_hook(sctp_assoc_request, asoc, skb);
4657 }
4658 EXPORT_SYMBOL(security_sctp_assoc_request);
4659
4660 /**
4661 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4662 * @sk: socket
4663 * @optname: SCTP option to validate
4664 * @address: list of IP addresses to validate
4665 * @addrlen: length of the address list
4666 *
4667 * Validiate permissions required for each address associated with sock @sk.
4668 * Depending on @optname, the addresses will be treated as either a connect or
4669 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4670 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4671 *
4672 * Return: Returns 0 on success, error on failure.
4673 */
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)4674 int security_sctp_bind_connect(struct sock *sk, int optname,
4675 struct sockaddr *address, int addrlen)
4676 {
4677 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
4678 }
4679 EXPORT_SYMBOL(security_sctp_bind_connect);
4680
4681 /**
4682 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4683 * @asoc: SCTP association
4684 * @sk: original sock
4685 * @newsk: target sock
4686 *
4687 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4688 * socket) or when a socket is 'peeled off' e.g userspace calls
4689 * sctp_peeloff(3).
4690 */
security_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)4691 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4692 struct sock *newsk)
4693 {
4694 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4695 }
4696 EXPORT_SYMBOL(security_sctp_sk_clone);
4697
4698 /**
4699 * security_sctp_assoc_established() - Update LSM state when assoc established
4700 * @asoc: SCTP association
4701 * @skb: packet establishing the association
4702 *
4703 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4704 * security module.
4705 *
4706 * Return: Returns 0 if permission is granted.
4707 */
security_sctp_assoc_established(struct sctp_association * asoc,struct sk_buff * skb)4708 int security_sctp_assoc_established(struct sctp_association *asoc,
4709 struct sk_buff *skb)
4710 {
4711 return call_int_hook(sctp_assoc_established, asoc, skb);
4712 }
4713 EXPORT_SYMBOL(security_sctp_assoc_established);
4714
4715 /**
4716 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4717 * @sk: the owning MPTCP socket
4718 * @ssk: the new subflow
4719 *
4720 * Update the labeling for the given MPTCP subflow, to match the one of the
4721 * owning MPTCP socket. This hook has to be called after the socket creation and
4722 * initialization via the security_socket_create() and
4723 * security_socket_post_create() LSM hooks.
4724 *
4725 * Return: Returns 0 on success or a negative error code on failure.
4726 */
security_mptcp_add_subflow(struct sock * sk,struct sock * ssk)4727 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
4728 {
4729 return call_int_hook(mptcp_add_subflow, sk, ssk);
4730 }
4731
4732 #endif /* CONFIG_SECURITY_NETWORK */
4733
4734 #ifdef CONFIG_SECURITY_INFINIBAND
4735 /**
4736 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
4737 * @sec: LSM blob
4738 * @subnet_prefix: subnet prefix of the port
4739 * @pkey: IB pkey
4740 *
4741 * Check permission to access a pkey when modifying a QP.
4742 *
4743 * Return: Returns 0 if permission is granted.
4744 */
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)4745 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
4746 {
4747 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
4748 }
4749 EXPORT_SYMBOL(security_ib_pkey_access);
4750
4751 /**
4752 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
4753 * @sec: LSM blob
4754 * @dev_name: IB device name
4755 * @port_num: port number
4756 *
4757 * Check permissions to send and receive SMPs on a end port.
4758 *
4759 * Return: Returns 0 if permission is granted.
4760 */
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)4761 int security_ib_endport_manage_subnet(void *sec,
4762 const char *dev_name, u8 port_num)
4763 {
4764 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
4765 }
4766 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
4767
4768 /**
4769 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
4770 * @sec: LSM blob
4771 *
4772 * Allocate a security structure for Infiniband objects.
4773 *
4774 * Return: Returns 0 on success, non-zero on failure.
4775 */
security_ib_alloc_security(void ** sec)4776 int security_ib_alloc_security(void **sec)
4777 {
4778 int rc;
4779
4780 rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
4781 if (rc)
4782 return rc;
4783
4784 rc = call_int_hook(ib_alloc_security, *sec);
4785 if (rc) {
4786 kfree(*sec);
4787 *sec = NULL;
4788 }
4789 return rc;
4790 }
4791 EXPORT_SYMBOL(security_ib_alloc_security);
4792
4793 /**
4794 * security_ib_free_security() - Free an Infiniband LSM blob
4795 * @sec: LSM blob
4796 *
4797 * Deallocate an Infiniband security structure.
4798 */
security_ib_free_security(void * sec)4799 void security_ib_free_security(void *sec)
4800 {
4801 kfree(sec);
4802 }
4803 EXPORT_SYMBOL(security_ib_free_security);
4804 #endif /* CONFIG_SECURITY_INFINIBAND */
4805
4806 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4807 /**
4808 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
4809 * @ctxp: xfrm security context being added to the SPD
4810 * @sec_ctx: security label provided by userspace
4811 * @gfp: gfp flags
4812 *
4813 * Allocate a security structure to the xp->security field; the security field
4814 * is initialized to NULL when the xfrm_policy is allocated.
4815 *
4816 * Return: Return 0 if operation was successful.
4817 */
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)4818 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
4819 struct xfrm_user_sec_ctx *sec_ctx,
4820 gfp_t gfp)
4821 {
4822 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
4823 }
4824 EXPORT_SYMBOL(security_xfrm_policy_alloc);
4825
4826 /**
4827 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
4828 * @old_ctx: xfrm security context
4829 * @new_ctxp: target xfrm security context
4830 *
4831 * Allocate a security structure in new_ctxp that contains the information from
4832 * the old_ctx structure.
4833 *
4834 * Return: Return 0 if operation was successful.
4835 */
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)4836 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
4837 struct xfrm_sec_ctx **new_ctxp)
4838 {
4839 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
4840 }
4841
4842 /**
4843 * security_xfrm_policy_free() - Free a xfrm security context
4844 * @ctx: xfrm security context
4845 *
4846 * Free LSM resources associated with @ctx.
4847 */
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)4848 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
4849 {
4850 call_void_hook(xfrm_policy_free_security, ctx);
4851 }
4852 EXPORT_SYMBOL(security_xfrm_policy_free);
4853
4854 /**
4855 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
4856 * @ctx: xfrm security context
4857 *
4858 * Authorize deletion of a SPD entry.
4859 *
4860 * Return: Returns 0 if permission is granted.
4861 */
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)4862 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
4863 {
4864 return call_int_hook(xfrm_policy_delete_security, ctx);
4865 }
4866
4867 /**
4868 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
4869 * @x: xfrm state being added to the SAD
4870 * @sec_ctx: security label provided by userspace
4871 *
4872 * Allocate a security structure to the @x->security field; the security field
4873 * is initialized to NULL when the xfrm_state is allocated. Set the context to
4874 * correspond to @sec_ctx.
4875 *
4876 * Return: Return 0 if operation was successful.
4877 */
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)4878 int security_xfrm_state_alloc(struct xfrm_state *x,
4879 struct xfrm_user_sec_ctx *sec_ctx)
4880 {
4881 return call_int_hook(xfrm_state_alloc, x, sec_ctx);
4882 }
4883 EXPORT_SYMBOL(security_xfrm_state_alloc);
4884
4885 /**
4886 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
4887 * @x: xfrm state being added to the SAD
4888 * @polsec: associated policy's security context
4889 * @secid: secid from the flow
4890 *
4891 * Allocate a security structure to the x->security field; the security field
4892 * is initialized to NULL when the xfrm_state is allocated. Set the context to
4893 * correspond to secid.
4894 *
4895 * Return: Returns 0 if operation was successful.
4896 */
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)4897 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
4898 struct xfrm_sec_ctx *polsec, u32 secid)
4899 {
4900 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
4901 }
4902
4903 /**
4904 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
4905 * @x: xfrm state
4906 *
4907 * Authorize deletion of x->security.
4908 *
4909 * Return: Returns 0 if permission is granted.
4910 */
security_xfrm_state_delete(struct xfrm_state * x)4911 int security_xfrm_state_delete(struct xfrm_state *x)
4912 {
4913 return call_int_hook(xfrm_state_delete_security, x);
4914 }
4915 EXPORT_SYMBOL(security_xfrm_state_delete);
4916
4917 /**
4918 * security_xfrm_state_free() - Free a xfrm state
4919 * @x: xfrm state
4920 *
4921 * Deallocate x->security.
4922 */
security_xfrm_state_free(struct xfrm_state * x)4923 void security_xfrm_state_free(struct xfrm_state *x)
4924 {
4925 call_void_hook(xfrm_state_free_security, x);
4926 }
4927
4928 /**
4929 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
4930 * @ctx: target xfrm security context
4931 * @fl_secid: flow secid used to authorize access
4932 *
4933 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
4934 * packet. The hook is called when selecting either a per-socket policy or a
4935 * generic xfrm policy.
4936 *
4937 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
4938 * other errors.
4939 */
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid)4940 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
4941 {
4942 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
4943 }
4944
4945 /**
4946 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
4947 * @x: xfrm state to match
4948 * @xp: xfrm policy to check for a match
4949 * @flic: flow to check for a match.
4950 *
4951 * Check @xp and @flic for a match with @x.
4952 *
4953 * Return: Returns 1 if there is a match.
4954 */
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)4955 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
4956 struct xfrm_policy *xp,
4957 const struct flowi_common *flic)
4958 {
4959 struct lsm_static_call *scall;
4960 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
4961
4962 /*
4963 * Since this function is expected to return 0 or 1, the judgment
4964 * becomes difficult if multiple LSMs supply this call. Fortunately,
4965 * we can use the first LSM's judgment because currently only SELinux
4966 * supplies this call.
4967 *
4968 * For speed optimization, we explicitly break the loop rather than
4969 * using the macro
4970 */
4971 lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
4972 rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
4973 break;
4974 }
4975 return rc;
4976 }
4977
4978 /**
4979 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
4980 * @skb: xfrm packet
4981 * @secid: secid
4982 *
4983 * Decode the packet in @skb and return the security label in @secid.
4984 *
4985 * Return: Return 0 if all xfrms used have the same secid.
4986 */
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)4987 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
4988 {
4989 return call_int_hook(xfrm_decode_session, skb, secid, 1);
4990 }
4991
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)4992 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
4993 {
4994 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
4995 0);
4996
4997 BUG_ON(rc);
4998 }
4999 EXPORT_SYMBOL(security_skb_classify_flow);
5000 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
5001
5002 #ifdef CONFIG_KEYS
5003 /**
5004 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5005 * @key: key
5006 * @cred: credentials
5007 * @flags: allocation flags
5008 *
5009 * Permit allocation of a key and assign security data. Note that key does not
5010 * have a serial number assigned at this point.
5011 *
5012 * Return: Return 0 if permission is granted, -ve error otherwise.
5013 */
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)5014 int security_key_alloc(struct key *key, const struct cred *cred,
5015 unsigned long flags)
5016 {
5017 int rc = lsm_key_alloc(key);
5018
5019 if (unlikely(rc))
5020 return rc;
5021 rc = call_int_hook(key_alloc, key, cred, flags);
5022 if (unlikely(rc))
5023 security_key_free(key);
5024 return rc;
5025 }
5026
5027 /**
5028 * security_key_free() - Free a kernel key LSM blob
5029 * @key: key
5030 *
5031 * Notification of destruction; free security data.
5032 */
security_key_free(struct key * key)5033 void security_key_free(struct key *key)
5034 {
5035 kfree(key->security);
5036 key->security = NULL;
5037 }
5038
5039 /**
5040 * security_key_permission() - Check if a kernel key operation is allowed
5041 * @key_ref: key reference
5042 * @cred: credentials of actor requesting access
5043 * @need_perm: requested permissions
5044 *
5045 * See whether a specific operational right is granted to a process on a key.
5046 *
5047 * Return: Return 0 if permission is granted, -ve error otherwise.
5048 */
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)5049 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5050 enum key_need_perm need_perm)
5051 {
5052 return call_int_hook(key_permission, key_ref, cred, need_perm);
5053 }
5054
5055 /**
5056 * security_key_getsecurity() - Get the key's security label
5057 * @key: key
5058 * @buffer: security label buffer
5059 *
5060 * Get a textual representation of the security context attached to a key for
5061 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the
5062 * storage for the NUL-terminated string and the caller should free it.
5063 *
5064 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5065 * an error occurs. May also return 0 (and a NULL buffer pointer) if
5066 * there is no security label assigned to the key.
5067 */
security_key_getsecurity(struct key * key,char ** buffer)5068 int security_key_getsecurity(struct key *key, char **buffer)
5069 {
5070 *buffer = NULL;
5071 return call_int_hook(key_getsecurity, key, buffer);
5072 }
5073
5074 /**
5075 * security_key_post_create_or_update() - Notification of key create or update
5076 * @keyring: keyring to which the key is linked to
5077 * @key: created or updated key
5078 * @payload: data used to instantiate or update the key
5079 * @payload_len: length of payload
5080 * @flags: key flags
5081 * @create: flag indicating whether the key was created or updated
5082 *
5083 * Notify the caller of a key creation or update.
5084 */
security_key_post_create_or_update(struct key * keyring,struct key * key,const void * payload,size_t payload_len,unsigned long flags,bool create)5085 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5086 const void *payload, size_t payload_len,
5087 unsigned long flags, bool create)
5088 {
5089 call_void_hook(key_post_create_or_update, keyring, key, payload,
5090 payload_len, flags, create);
5091 }
5092 #endif /* CONFIG_KEYS */
5093
5094 #ifdef CONFIG_AUDIT
5095 /**
5096 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5097 * @field: audit action
5098 * @op: rule operator
5099 * @rulestr: rule context
5100 * @lsmrule: receive buffer for audit rule struct
5101 * @gfp: GFP flag used for kmalloc
5102 *
5103 * Allocate and initialize an LSM audit rule structure.
5104 *
5105 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5106 * an invalid rule.
5107 */
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule,gfp_t gfp)5108 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5109 gfp_t gfp)
5110 {
5111 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5112 }
5113
5114 /**
5115 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5116 * @krule: audit rule
5117 *
5118 * Specifies whether given @krule contains any fields related to the current
5119 * LSM.
5120 *
5121 * Return: Returns 1 in case of relation found, 0 otherwise.
5122 */
security_audit_rule_known(struct audit_krule * krule)5123 int security_audit_rule_known(struct audit_krule *krule)
5124 {
5125 return call_int_hook(audit_rule_known, krule);
5126 }
5127
5128 /**
5129 * security_audit_rule_free() - Free an LSM audit rule struct
5130 * @lsmrule: audit rule struct
5131 *
5132 * Deallocate the LSM audit rule structure previously allocated by
5133 * audit_rule_init().
5134 */
security_audit_rule_free(void * lsmrule)5135 void security_audit_rule_free(void *lsmrule)
5136 {
5137 call_void_hook(audit_rule_free, lsmrule);
5138 }
5139
5140 /**
5141 * security_audit_rule_match() - Check if a label matches an audit rule
5142 * @prop: security label
5143 * @field: LSM audit field
5144 * @op: matching operator
5145 * @lsmrule: audit rule
5146 *
5147 * Determine if given @secid matches a rule previously approved by
5148 * security_audit_rule_known().
5149 *
5150 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5151 * failure.
5152 */
security_audit_rule_match(struct lsm_prop * prop,u32 field,u32 op,void * lsmrule)5153 int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5154 void *lsmrule)
5155 {
5156 return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5157 }
5158 #endif /* CONFIG_AUDIT */
5159
5160 #ifdef CONFIG_BPF_SYSCALL
5161 /**
5162 * security_bpf() - Check if the bpf syscall operation is allowed
5163 * @cmd: command
5164 * @attr: bpf attribute
5165 * @size: size
5166 * @kernel: whether or not call originated from kernel
5167 *
5168 * Do a initial check for all bpf syscalls after the attribute is copied into
5169 * the kernel. The actual security module can implement their own rules to
5170 * check the specific cmd they need.
5171 *
5172 * Return: Returns 0 if permission is granted.
5173 */
security_bpf(int cmd,union bpf_attr * attr,unsigned int size,bool kernel)5174 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size, bool kernel)
5175 {
5176 return call_int_hook(bpf, cmd, attr, size, kernel);
5177 }
5178
5179 /**
5180 * security_bpf_map() - Check if access to a bpf map is allowed
5181 * @map: bpf map
5182 * @fmode: mode
5183 *
5184 * Do a check when the kernel generates and returns a file descriptor for eBPF
5185 * maps.
5186 *
5187 * Return: Returns 0 if permission is granted.
5188 */
security_bpf_map(struct bpf_map * map,fmode_t fmode)5189 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5190 {
5191 return call_int_hook(bpf_map, map, fmode);
5192 }
5193
5194 /**
5195 * security_bpf_prog() - Check if access to a bpf program is allowed
5196 * @prog: bpf program
5197 *
5198 * Do a check when the kernel generates and returns a file descriptor for eBPF
5199 * programs.
5200 *
5201 * Return: Returns 0 if permission is granted.
5202 */
security_bpf_prog(struct bpf_prog * prog)5203 int security_bpf_prog(struct bpf_prog *prog)
5204 {
5205 return call_int_hook(bpf_prog, prog);
5206 }
5207
5208 /**
5209 * security_bpf_map_create() - Check if BPF map creation is allowed
5210 * @map: BPF map object
5211 * @attr: BPF syscall attributes used to create BPF map
5212 * @token: BPF token used to grant user access
5213 * @kernel: whether or not call originated from kernel
5214 *
5215 * Do a check when the kernel creates a new BPF map. This is also the
5216 * point where LSM blob is allocated for LSMs that need them.
5217 *
5218 * Return: Returns 0 on success, error on failure.
5219 */
security_bpf_map_create(struct bpf_map * map,union bpf_attr * attr,struct bpf_token * token,bool kernel)5220 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5221 struct bpf_token *token, bool kernel)
5222 {
5223 int rc;
5224
5225 rc = lsm_bpf_map_alloc(map);
5226 if (unlikely(rc))
5227 return rc;
5228
5229 rc = call_int_hook(bpf_map_create, map, attr, token, kernel);
5230 if (unlikely(rc))
5231 security_bpf_map_free(map);
5232 return rc;
5233 }
5234
5235 /**
5236 * security_bpf_prog_load() - Check if loading of BPF program is allowed
5237 * @prog: BPF program object
5238 * @attr: BPF syscall attributes used to create BPF program
5239 * @token: BPF token used to grant user access to BPF subsystem
5240 * @kernel: whether or not call originated from kernel
5241 *
5242 * Perform an access control check when the kernel loads a BPF program and
5243 * allocates associated BPF program object. This hook is also responsible for
5244 * allocating any required LSM state for the BPF program.
5245 *
5246 * Return: Returns 0 on success, error on failure.
5247 */
security_bpf_prog_load(struct bpf_prog * prog,union bpf_attr * attr,struct bpf_token * token,bool kernel)5248 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5249 struct bpf_token *token, bool kernel)
5250 {
5251 int rc;
5252
5253 rc = lsm_bpf_prog_alloc(prog);
5254 if (unlikely(rc))
5255 return rc;
5256
5257 rc = call_int_hook(bpf_prog_load, prog, attr, token, kernel);
5258 if (unlikely(rc))
5259 security_bpf_prog_free(prog);
5260 return rc;
5261 }
5262
5263 /**
5264 * security_bpf_token_create() - Check if creating of BPF token is allowed
5265 * @token: BPF token object
5266 * @attr: BPF syscall attributes used to create BPF token
5267 * @path: path pointing to BPF FS mount point from which BPF token is created
5268 *
5269 * Do a check when the kernel instantiates a new BPF token object from BPF FS
5270 * instance. This is also the point where LSM blob can be allocated for LSMs.
5271 *
5272 * Return: Returns 0 on success, error on failure.
5273 */
security_bpf_token_create(struct bpf_token * token,union bpf_attr * attr,const struct path * path)5274 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5275 const struct path *path)
5276 {
5277 int rc;
5278
5279 rc = lsm_bpf_token_alloc(token);
5280 if (unlikely(rc))
5281 return rc;
5282
5283 rc = call_int_hook(bpf_token_create, token, attr, path);
5284 if (unlikely(rc))
5285 security_bpf_token_free(token);
5286 return rc;
5287 }
5288
5289 /**
5290 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5291 * requested BPF syscall command
5292 * @token: BPF token object
5293 * @cmd: BPF syscall command requested to be delegated by BPF token
5294 *
5295 * Do a check when the kernel decides whether provided BPF token should allow
5296 * delegation of requested BPF syscall command.
5297 *
5298 * Return: Returns 0 on success, error on failure.
5299 */
security_bpf_token_cmd(const struct bpf_token * token,enum bpf_cmd cmd)5300 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5301 {
5302 return call_int_hook(bpf_token_cmd, token, cmd);
5303 }
5304
5305 /**
5306 * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5307 * requested BPF-related capability
5308 * @token: BPF token object
5309 * @cap: capabilities requested to be delegated by BPF token
5310 *
5311 * Do a check when the kernel decides whether provided BPF token should allow
5312 * delegation of requested BPF-related capabilities.
5313 *
5314 * Return: Returns 0 on success, error on failure.
5315 */
security_bpf_token_capable(const struct bpf_token * token,int cap)5316 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5317 {
5318 return call_int_hook(bpf_token_capable, token, cap);
5319 }
5320
5321 /**
5322 * security_bpf_map_free() - Free a bpf map's LSM blob
5323 * @map: bpf map
5324 *
5325 * Clean up the security information stored inside bpf map.
5326 */
security_bpf_map_free(struct bpf_map * map)5327 void security_bpf_map_free(struct bpf_map *map)
5328 {
5329 call_void_hook(bpf_map_free, map);
5330 kfree(map->security);
5331 map->security = NULL;
5332 }
5333
5334 /**
5335 * security_bpf_prog_free() - Free a BPF program's LSM blob
5336 * @prog: BPF program struct
5337 *
5338 * Clean up the security information stored inside BPF program.
5339 */
security_bpf_prog_free(struct bpf_prog * prog)5340 void security_bpf_prog_free(struct bpf_prog *prog)
5341 {
5342 call_void_hook(bpf_prog_free, prog);
5343 kfree(prog->aux->security);
5344 prog->aux->security = NULL;
5345 }
5346
5347 /**
5348 * security_bpf_token_free() - Free a BPF token's LSM blob
5349 * @token: BPF token struct
5350 *
5351 * Clean up the security information stored inside BPF token.
5352 */
security_bpf_token_free(struct bpf_token * token)5353 void security_bpf_token_free(struct bpf_token *token)
5354 {
5355 call_void_hook(bpf_token_free, token);
5356 kfree(token->security);
5357 token->security = NULL;
5358 }
5359 #endif /* CONFIG_BPF_SYSCALL */
5360
5361 /**
5362 * security_locked_down() - Check if a kernel feature is allowed
5363 * @what: requested kernel feature
5364 *
5365 * Determine whether a kernel feature that potentially enables arbitrary code
5366 * execution in kernel space should be permitted.
5367 *
5368 * Return: Returns 0 if permission is granted.
5369 */
security_locked_down(enum lockdown_reason what)5370 int security_locked_down(enum lockdown_reason what)
5371 {
5372 return call_int_hook(locked_down, what);
5373 }
5374 EXPORT_SYMBOL(security_locked_down);
5375
5376 /**
5377 * security_bdev_alloc() - Allocate a block device LSM blob
5378 * @bdev: block device
5379 *
5380 * Allocate and attach a security structure to @bdev->bd_security. The
5381 * security field is initialized to NULL when the bdev structure is
5382 * allocated.
5383 *
5384 * Return: Return 0 if operation was successful.
5385 */
security_bdev_alloc(struct block_device * bdev)5386 int security_bdev_alloc(struct block_device *bdev)
5387 {
5388 int rc = 0;
5389
5390 rc = lsm_bdev_alloc(bdev);
5391 if (unlikely(rc))
5392 return rc;
5393
5394 rc = call_int_hook(bdev_alloc_security, bdev);
5395 if (unlikely(rc))
5396 security_bdev_free(bdev);
5397
5398 return rc;
5399 }
5400 EXPORT_SYMBOL(security_bdev_alloc);
5401
5402 /**
5403 * security_bdev_free() - Free a block device's LSM blob
5404 * @bdev: block device
5405 *
5406 * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5407 */
security_bdev_free(struct block_device * bdev)5408 void security_bdev_free(struct block_device *bdev)
5409 {
5410 if (!bdev->bd_security)
5411 return;
5412
5413 call_void_hook(bdev_free_security, bdev);
5414
5415 kfree(bdev->bd_security);
5416 bdev->bd_security = NULL;
5417 }
5418 EXPORT_SYMBOL(security_bdev_free);
5419
5420 /**
5421 * security_bdev_setintegrity() - Set the device's integrity data
5422 * @bdev: block device
5423 * @type: type of integrity, e.g. hash digest, signature, etc
5424 * @value: the integrity value
5425 * @size: size of the integrity value
5426 *
5427 * Register a verified integrity measurement of a bdev with LSMs.
5428 * LSMs should free the previously saved data if @value is NULL.
5429 * Please note that the new hook should be invoked every time the security
5430 * information is updated to keep these data current. For example, in dm-verity,
5431 * if the mapping table is reloaded and configured to use a different dm-verity
5432 * target with a new roothash and signing information, the previously stored
5433 * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5434 * hook to refresh these data and ensure they are up to date. This necessity
5435 * arises from the design of device-mapper, where a device-mapper device is
5436 * first created, and then targets are subsequently loaded into it. These
5437 * targets can be modified multiple times during the device's lifetime.
5438 * Therefore, while the LSM blob is allocated during the creation of the block
5439 * device, its actual contents are not initialized at this stage and can change
5440 * substantially over time. This includes alterations from data that the LSMs
5441 * 'trusts' to those they do not, making it essential to handle these changes
5442 * correctly. Failure to address this dynamic aspect could potentially allow
5443 * for bypassing LSM checks.
5444 *
5445 * Return: Returns 0 on success, negative values on failure.
5446 */
security_bdev_setintegrity(struct block_device * bdev,enum lsm_integrity_type type,const void * value,size_t size)5447 int security_bdev_setintegrity(struct block_device *bdev,
5448 enum lsm_integrity_type type, const void *value,
5449 size_t size)
5450 {
5451 return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5452 }
5453 EXPORT_SYMBOL(security_bdev_setintegrity);
5454
5455 #ifdef CONFIG_PERF_EVENTS
5456 /**
5457 * security_perf_event_open() - Check if a perf event open is allowed
5458 * @type: type of event
5459 *
5460 * Check whether the @type of perf_event_open syscall is allowed.
5461 *
5462 * Return: Returns 0 if permission is granted.
5463 */
security_perf_event_open(int type)5464 int security_perf_event_open(int type)
5465 {
5466 return call_int_hook(perf_event_open, type);
5467 }
5468
5469 /**
5470 * security_perf_event_alloc() - Allocate a perf event LSM blob
5471 * @event: perf event
5472 *
5473 * Allocate and save perf_event security info.
5474 *
5475 * Return: Returns 0 on success, error on failure.
5476 */
security_perf_event_alloc(struct perf_event * event)5477 int security_perf_event_alloc(struct perf_event *event)
5478 {
5479 int rc;
5480
5481 rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5482 GFP_KERNEL);
5483 if (rc)
5484 return rc;
5485
5486 rc = call_int_hook(perf_event_alloc, event);
5487 if (rc) {
5488 kfree(event->security);
5489 event->security = NULL;
5490 }
5491 return rc;
5492 }
5493
5494 /**
5495 * security_perf_event_free() - Free a perf event LSM blob
5496 * @event: perf event
5497 *
5498 * Release (free) perf_event security info.
5499 */
security_perf_event_free(struct perf_event * event)5500 void security_perf_event_free(struct perf_event *event)
5501 {
5502 kfree(event->security);
5503 event->security = NULL;
5504 }
5505
5506 /**
5507 * security_perf_event_read() - Check if reading a perf event label is allowed
5508 * @event: perf event
5509 *
5510 * Read perf_event security info if allowed.
5511 *
5512 * Return: Returns 0 if permission is granted.
5513 */
security_perf_event_read(struct perf_event * event)5514 int security_perf_event_read(struct perf_event *event)
5515 {
5516 return call_int_hook(perf_event_read, event);
5517 }
5518
5519 /**
5520 * security_perf_event_write() - Check if writing a perf event label is allowed
5521 * @event: perf event
5522 *
5523 * Write perf_event security info if allowed.
5524 *
5525 * Return: Returns 0 if permission is granted.
5526 */
security_perf_event_write(struct perf_event * event)5527 int security_perf_event_write(struct perf_event *event)
5528 {
5529 return call_int_hook(perf_event_write, event);
5530 }
5531 #endif /* CONFIG_PERF_EVENTS */
5532
5533 #ifdef CONFIG_IO_URING
5534 /**
5535 * security_uring_override_creds() - Check if overriding creds is allowed
5536 * @new: new credentials
5537 *
5538 * Check if the current task, executing an io_uring operation, is allowed to
5539 * override it's credentials with @new.
5540 *
5541 * Return: Returns 0 if permission is granted.
5542 */
security_uring_override_creds(const struct cred * new)5543 int security_uring_override_creds(const struct cred *new)
5544 {
5545 return call_int_hook(uring_override_creds, new);
5546 }
5547
5548 /**
5549 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5550 *
5551 * Check whether the current task is allowed to spawn a io_uring polling thread
5552 * (IORING_SETUP_SQPOLL).
5553 *
5554 * Return: Returns 0 if permission is granted.
5555 */
security_uring_sqpoll(void)5556 int security_uring_sqpoll(void)
5557 {
5558 return call_int_hook(uring_sqpoll);
5559 }
5560
5561 /**
5562 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5563 * @ioucmd: command
5564 *
5565 * Check whether the file_operations uring_cmd is allowed to run.
5566 *
5567 * Return: Returns 0 if permission is granted.
5568 */
security_uring_cmd(struct io_uring_cmd * ioucmd)5569 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5570 {
5571 return call_int_hook(uring_cmd, ioucmd);
5572 }
5573
5574 /**
5575 * security_uring_allowed() - Check if io_uring_setup() is allowed
5576 *
5577 * Check whether the current task is allowed to call io_uring_setup().
5578 *
5579 * Return: Returns 0 if permission is granted.
5580 */
security_uring_allowed(void)5581 int security_uring_allowed(void)
5582 {
5583 return call_int_hook(uring_allowed);
5584 }
5585 #endif /* CONFIG_IO_URING */
5586
5587 /**
5588 * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
5589 *
5590 * Tells the LSMs the initramfs has been unpacked into the rootfs.
5591 */
security_initramfs_populated(void)5592 void security_initramfs_populated(void)
5593 {
5594 call_void_hook(initramfs_populated);
5595 }
5596