1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39 /*
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals. Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
45 */
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
48
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
51
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59 bool blkcg_debug_stats = false;
60
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63 #define BLKG_DESTROY_BATCH_SIZE 64
64
65 /*
66 * Lockless lists for tracking IO stats update
67 *
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
80 *
81 * Return: 0 if successful or -ENOMEM if allocation fails.
82 */
init_blkcg_llists(struct blkcg * blkcg)83 static int init_blkcg_llists(struct blkcg *blkcg)
84 {
85 int cpu;
86
87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 if (!blkcg->lhead)
89 return -ENOMEM;
90
91 for_each_possible_cpu(cpu)
92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 return 0;
94 }
95
96 /**
97 * blkcg_css - find the current css
98 *
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
102 */
blkcg_css(void)103 static struct cgroup_subsys_state *blkcg_css(void)
104 {
105 struct cgroup_subsys_state *css;
106
107 css = kthread_blkcg();
108 if (css)
109 return css;
110 return task_css(current, io_cgrp_id);
111 }
112
blkg_free_workfn(struct work_struct * work)113 static void blkg_free_workfn(struct work_struct *work)
114 {
115 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
116 free_work);
117 struct request_queue *q = blkg->q;
118 int i;
119
120 /*
121 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
122 * in order to make sure pd_free_fn() is called in order, the deletion
123 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
124 * blkcg_mutex is used to synchronize blkg_free_workfn() and
125 * blkcg_deactivate_policy().
126 */
127 mutex_lock(&q->blkcg_mutex);
128 for (i = 0; i < BLKCG_MAX_POLS; i++)
129 if (blkg->pd[i])
130 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
131 if (blkg->parent)
132 blkg_put(blkg->parent);
133 spin_lock_irq(&q->queue_lock);
134 list_del_init(&blkg->q_node);
135 spin_unlock_irq(&q->queue_lock);
136 mutex_unlock(&q->blkcg_mutex);
137
138 blk_put_queue(q);
139 free_percpu(blkg->iostat_cpu);
140 percpu_ref_exit(&blkg->refcnt);
141 kfree(blkg);
142 }
143
144 /**
145 * blkg_free - free a blkg
146 * @blkg: blkg to free
147 *
148 * Free @blkg which may be partially allocated.
149 */
blkg_free(struct blkcg_gq * blkg)150 static void blkg_free(struct blkcg_gq *blkg)
151 {
152 if (!blkg)
153 return;
154
155 /*
156 * Both ->pd_free_fn() and request queue's release handler may
157 * sleep, so free us by scheduling one work func
158 */
159 INIT_WORK(&blkg->free_work, blkg_free_workfn);
160 schedule_work(&blkg->free_work);
161 }
162
__blkg_release(struct rcu_head * rcu)163 static void __blkg_release(struct rcu_head *rcu)
164 {
165 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
166 struct blkcg *blkcg = blkg->blkcg;
167 int cpu;
168
169 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
170 WARN_ON(!bio_list_empty(&blkg->async_bios));
171 #endif
172 /*
173 * Flush all the non-empty percpu lockless lists before releasing
174 * us, given these stat belongs to us.
175 *
176 * blkg_stat_lock is for serializing blkg stat update
177 */
178 for_each_possible_cpu(cpu)
179 __blkcg_rstat_flush(blkcg, cpu);
180
181 /* release the blkcg and parent blkg refs this blkg has been holding */
182 css_put(&blkg->blkcg->css);
183 blkg_free(blkg);
184 }
185
186 /*
187 * A group is RCU protected, but having an rcu lock does not mean that one
188 * can access all the fields of blkg and assume these are valid. For
189 * example, don't try to follow throtl_data and request queue links.
190 *
191 * Having a reference to blkg under an rcu allows accesses to only values
192 * local to groups like group stats and group rate limits.
193 */
blkg_release(struct percpu_ref * ref)194 static void blkg_release(struct percpu_ref *ref)
195 {
196 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
197
198 call_rcu(&blkg->rcu_head, __blkg_release);
199 }
200
201 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
202 static struct workqueue_struct *blkcg_punt_bio_wq;
203
blkg_async_bio_workfn(struct work_struct * work)204 static void blkg_async_bio_workfn(struct work_struct *work)
205 {
206 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
207 async_bio_work);
208 struct bio_list bios = BIO_EMPTY_LIST;
209 struct bio *bio;
210 struct blk_plug plug;
211 bool need_plug = false;
212
213 /* as long as there are pending bios, @blkg can't go away */
214 spin_lock(&blkg->async_bio_lock);
215 bio_list_merge_init(&bios, &blkg->async_bios);
216 spin_unlock(&blkg->async_bio_lock);
217
218 /* start plug only when bio_list contains at least 2 bios */
219 if (bios.head && bios.head->bi_next) {
220 need_plug = true;
221 blk_start_plug(&plug);
222 }
223 while ((bio = bio_list_pop(&bios)))
224 submit_bio(bio);
225 if (need_plug)
226 blk_finish_plug(&plug);
227 }
228
229 /*
230 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
231 * lead to priority inversions as the kthread can be trapped waiting for that
232 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
233 * a dedicated per-blkcg work item to avoid such priority inversions.
234 */
blkcg_punt_bio_submit(struct bio * bio)235 void blkcg_punt_bio_submit(struct bio *bio)
236 {
237 struct blkcg_gq *blkg = bio->bi_blkg;
238
239 if (blkg->parent) {
240 spin_lock(&blkg->async_bio_lock);
241 bio_list_add(&blkg->async_bios, bio);
242 spin_unlock(&blkg->async_bio_lock);
243 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
244 } else {
245 /* never bounce for the root cgroup */
246 submit_bio(bio);
247 }
248 }
249 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
250
blkcg_punt_bio_init(void)251 static int __init blkcg_punt_bio_init(void)
252 {
253 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
254 WQ_MEM_RECLAIM | WQ_FREEZABLE |
255 WQ_UNBOUND | WQ_SYSFS, 0);
256 if (!blkcg_punt_bio_wq)
257 return -ENOMEM;
258 return 0;
259 }
260 subsys_initcall(blkcg_punt_bio_init);
261 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
262
263 /**
264 * bio_blkcg_css - return the blkcg CSS associated with a bio
265 * @bio: target bio
266 *
267 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
268 * associated. Callers are expected to either handle %NULL or know association
269 * has been done prior to calling this.
270 */
bio_blkcg_css(struct bio * bio)271 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
272 {
273 if (!bio || !bio->bi_blkg)
274 return NULL;
275 return &bio->bi_blkg->blkcg->css;
276 }
277 EXPORT_SYMBOL_GPL(bio_blkcg_css);
278
279 /**
280 * blkcg_parent - get the parent of a blkcg
281 * @blkcg: blkcg of interest
282 *
283 * Return the parent blkcg of @blkcg. Can be called anytime.
284 */
blkcg_parent(struct blkcg * blkcg)285 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
286 {
287 return css_to_blkcg(blkcg->css.parent);
288 }
289
290 /**
291 * blkg_alloc - allocate a blkg
292 * @blkcg: block cgroup the new blkg is associated with
293 * @disk: gendisk the new blkg is associated with
294 * @gfp_mask: allocation mask to use
295 *
296 * Allocate a new blkg associating @blkcg and @disk.
297 */
blkg_alloc(struct blkcg * blkcg,struct gendisk * disk,gfp_t gfp_mask)298 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
299 gfp_t gfp_mask)
300 {
301 struct blkcg_gq *blkg;
302 int i, cpu;
303
304 /* alloc and init base part */
305 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
306 if (!blkg)
307 return NULL;
308 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
309 goto out_free_blkg;
310 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
311 if (!blkg->iostat_cpu)
312 goto out_exit_refcnt;
313 if (!blk_get_queue(disk->queue))
314 goto out_free_iostat;
315
316 blkg->q = disk->queue;
317 INIT_LIST_HEAD(&blkg->q_node);
318 blkg->blkcg = blkcg;
319 blkg->iostat.blkg = blkg;
320 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
321 spin_lock_init(&blkg->async_bio_lock);
322 bio_list_init(&blkg->async_bios);
323 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
324 #endif
325
326 u64_stats_init(&blkg->iostat.sync);
327 for_each_possible_cpu(cpu) {
328 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
329 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
330 }
331
332 for (i = 0; i < BLKCG_MAX_POLS; i++) {
333 struct blkcg_policy *pol = blkcg_policy[i];
334 struct blkg_policy_data *pd;
335
336 if (!blkcg_policy_enabled(disk->queue, pol))
337 continue;
338
339 /* alloc per-policy data and attach it to blkg */
340 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
341 if (!pd)
342 goto out_free_pds;
343 blkg->pd[i] = pd;
344 pd->blkg = blkg;
345 pd->plid = i;
346 pd->online = false;
347 }
348
349 return blkg;
350
351 out_free_pds:
352 while (--i >= 0)
353 if (blkg->pd[i])
354 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
355 blk_put_queue(disk->queue);
356 out_free_iostat:
357 free_percpu(blkg->iostat_cpu);
358 out_exit_refcnt:
359 percpu_ref_exit(&blkg->refcnt);
360 out_free_blkg:
361 kfree(blkg);
362 return NULL;
363 }
364
365 /*
366 * If @new_blkg is %NULL, this function tries to allocate a new one as
367 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
368 */
blkg_create(struct blkcg * blkcg,struct gendisk * disk,struct blkcg_gq * new_blkg)369 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
370 struct blkcg_gq *new_blkg)
371 {
372 struct blkcg_gq *blkg;
373 int i, ret;
374
375 lockdep_assert_held(&disk->queue->queue_lock);
376
377 /* request_queue is dying, do not create/recreate a blkg */
378 if (blk_queue_dying(disk->queue)) {
379 ret = -ENODEV;
380 goto err_free_blkg;
381 }
382
383 /* blkg holds a reference to blkcg */
384 if (!css_tryget_online(&blkcg->css)) {
385 ret = -ENODEV;
386 goto err_free_blkg;
387 }
388
389 /* allocate */
390 if (!new_blkg) {
391 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT);
392 if (unlikely(!new_blkg)) {
393 ret = -ENOMEM;
394 goto err_put_css;
395 }
396 }
397 blkg = new_blkg;
398
399 /* link parent */
400 if (blkcg_parent(blkcg)) {
401 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
402 if (WARN_ON_ONCE(!blkg->parent)) {
403 ret = -ENODEV;
404 goto err_put_css;
405 }
406 blkg_get(blkg->parent);
407 }
408
409 /* invoke per-policy init */
410 for (i = 0; i < BLKCG_MAX_POLS; i++) {
411 struct blkcg_policy *pol = blkcg_policy[i];
412
413 if (blkg->pd[i] && pol->pd_init_fn)
414 pol->pd_init_fn(blkg->pd[i]);
415 }
416
417 /* insert */
418 spin_lock(&blkcg->lock);
419 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
420 if (likely(!ret)) {
421 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
422 list_add(&blkg->q_node, &disk->queue->blkg_list);
423
424 for (i = 0; i < BLKCG_MAX_POLS; i++) {
425 struct blkcg_policy *pol = blkcg_policy[i];
426
427 if (blkg->pd[i]) {
428 if (pol->pd_online_fn)
429 pol->pd_online_fn(blkg->pd[i]);
430 blkg->pd[i]->online = true;
431 }
432 }
433 }
434 blkg->online = true;
435 spin_unlock(&blkcg->lock);
436
437 if (!ret)
438 return blkg;
439
440 /* @blkg failed fully initialized, use the usual release path */
441 blkg_put(blkg);
442 return ERR_PTR(ret);
443
444 err_put_css:
445 css_put(&blkcg->css);
446 err_free_blkg:
447 if (new_blkg)
448 blkg_free(new_blkg);
449 return ERR_PTR(ret);
450 }
451
452 /**
453 * blkg_lookup_create - lookup blkg, try to create one if not there
454 * @blkcg: blkcg of interest
455 * @disk: gendisk of interest
456 *
457 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
458 * create one. blkg creation is performed recursively from blkcg_root such
459 * that all non-root blkg's have access to the parent blkg. This function
460 * should be called under RCU read lock and takes @disk->queue->queue_lock.
461 *
462 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
463 * down from root.
464 */
blkg_lookup_create(struct blkcg * blkcg,struct gendisk * disk)465 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
466 struct gendisk *disk)
467 {
468 struct request_queue *q = disk->queue;
469 struct blkcg_gq *blkg;
470 unsigned long flags;
471
472 WARN_ON_ONCE(!rcu_read_lock_held());
473
474 blkg = blkg_lookup(blkcg, q);
475 if (blkg)
476 return blkg;
477
478 spin_lock_irqsave(&q->queue_lock, flags);
479 blkg = blkg_lookup(blkcg, q);
480 if (blkg) {
481 if (blkcg != &blkcg_root &&
482 blkg != rcu_dereference(blkcg->blkg_hint))
483 rcu_assign_pointer(blkcg->blkg_hint, blkg);
484 goto found;
485 }
486
487 /*
488 * Create blkgs walking down from blkcg_root to @blkcg, so that all
489 * non-root blkgs have access to their parents. Returns the closest
490 * blkg to the intended blkg should blkg_create() fail.
491 */
492 while (true) {
493 struct blkcg *pos = blkcg;
494 struct blkcg *parent = blkcg_parent(blkcg);
495 struct blkcg_gq *ret_blkg = q->root_blkg;
496
497 while (parent) {
498 blkg = blkg_lookup(parent, q);
499 if (blkg) {
500 /* remember closest blkg */
501 ret_blkg = blkg;
502 break;
503 }
504 pos = parent;
505 parent = blkcg_parent(parent);
506 }
507
508 blkg = blkg_create(pos, disk, NULL);
509 if (IS_ERR(blkg)) {
510 blkg = ret_blkg;
511 break;
512 }
513 if (pos == blkcg)
514 break;
515 }
516
517 found:
518 spin_unlock_irqrestore(&q->queue_lock, flags);
519 return blkg;
520 }
521
blkg_destroy(struct blkcg_gq * blkg)522 static void blkg_destroy(struct blkcg_gq *blkg)
523 {
524 struct blkcg *blkcg = blkg->blkcg;
525 int i;
526
527 lockdep_assert_held(&blkg->q->queue_lock);
528 lockdep_assert_held(&blkcg->lock);
529
530 /*
531 * blkg stays on the queue list until blkg_free_workfn(), see details in
532 * blkg_free_workfn(), hence this function can be called from
533 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
534 * blkg_free_workfn().
535 */
536 if (hlist_unhashed(&blkg->blkcg_node))
537 return;
538
539 for (i = 0; i < BLKCG_MAX_POLS; i++) {
540 struct blkcg_policy *pol = blkcg_policy[i];
541
542 if (blkg->pd[i] && blkg->pd[i]->online) {
543 blkg->pd[i]->online = false;
544 if (pol->pd_offline_fn)
545 pol->pd_offline_fn(blkg->pd[i]);
546 }
547 }
548
549 blkg->online = false;
550
551 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
552 hlist_del_init_rcu(&blkg->blkcg_node);
553
554 /*
555 * Both setting lookup hint to and clearing it from @blkg are done
556 * under queue_lock. If it's not pointing to @blkg now, it never
557 * will. Hint assignment itself can race safely.
558 */
559 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
560 rcu_assign_pointer(blkcg->blkg_hint, NULL);
561
562 /*
563 * Put the reference taken at the time of creation so that when all
564 * queues are gone, group can be destroyed.
565 */
566 percpu_ref_kill(&blkg->refcnt);
567 }
568
blkg_destroy_all(struct gendisk * disk)569 static void blkg_destroy_all(struct gendisk *disk)
570 {
571 struct request_queue *q = disk->queue;
572 struct blkcg_gq *blkg;
573 int count = BLKG_DESTROY_BATCH_SIZE;
574 int i;
575
576 restart:
577 spin_lock_irq(&q->queue_lock);
578 list_for_each_entry(blkg, &q->blkg_list, q_node) {
579 struct blkcg *blkcg = blkg->blkcg;
580
581 if (hlist_unhashed(&blkg->blkcg_node))
582 continue;
583
584 spin_lock(&blkcg->lock);
585 blkg_destroy(blkg);
586 spin_unlock(&blkcg->lock);
587
588 /*
589 * in order to avoid holding the spin lock for too long, release
590 * it when a batch of blkgs are destroyed.
591 */
592 if (!(--count)) {
593 count = BLKG_DESTROY_BATCH_SIZE;
594 spin_unlock_irq(&q->queue_lock);
595 cond_resched();
596 goto restart;
597 }
598 }
599
600 /*
601 * Mark policy deactivated since policy offline has been done, and
602 * the free is scheduled, so future blkcg_deactivate_policy() can
603 * be bypassed
604 */
605 for (i = 0; i < BLKCG_MAX_POLS; i++) {
606 struct blkcg_policy *pol = blkcg_policy[i];
607
608 if (pol)
609 __clear_bit(pol->plid, q->blkcg_pols);
610 }
611
612 q->root_blkg = NULL;
613 spin_unlock_irq(&q->queue_lock);
614 }
615
blkg_iostat_set(struct blkg_iostat * dst,struct blkg_iostat * src)616 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
617 {
618 int i;
619
620 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
621 dst->bytes[i] = src->bytes[i];
622 dst->ios[i] = src->ios[i];
623 }
624 }
625
__blkg_clear_stat(struct blkg_iostat_set * bis)626 static void __blkg_clear_stat(struct blkg_iostat_set *bis)
627 {
628 struct blkg_iostat cur = {0};
629 unsigned long flags;
630
631 flags = u64_stats_update_begin_irqsave(&bis->sync);
632 blkg_iostat_set(&bis->cur, &cur);
633 blkg_iostat_set(&bis->last, &cur);
634 u64_stats_update_end_irqrestore(&bis->sync, flags);
635 }
636
blkg_clear_stat(struct blkcg_gq * blkg)637 static void blkg_clear_stat(struct blkcg_gq *blkg)
638 {
639 int cpu;
640
641 for_each_possible_cpu(cpu) {
642 struct blkg_iostat_set *s = per_cpu_ptr(blkg->iostat_cpu, cpu);
643
644 __blkg_clear_stat(s);
645 }
646 __blkg_clear_stat(&blkg->iostat);
647 }
648
blkcg_reset_stats(struct cgroup_subsys_state * css,struct cftype * cftype,u64 val)649 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
650 struct cftype *cftype, u64 val)
651 {
652 struct blkcg *blkcg = css_to_blkcg(css);
653 struct blkcg_gq *blkg;
654 int i;
655
656 pr_info_once("blkio.%s is deprecated\n", cftype->name);
657 mutex_lock(&blkcg_pol_mutex);
658 spin_lock_irq(&blkcg->lock);
659
660 /*
661 * Note that stat reset is racy - it doesn't synchronize against
662 * stat updates. This is a debug feature which shouldn't exist
663 * anyway. If you get hit by a race, retry.
664 */
665 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
666 blkg_clear_stat(blkg);
667 for (i = 0; i < BLKCG_MAX_POLS; i++) {
668 struct blkcg_policy *pol = blkcg_policy[i];
669
670 if (blkg->pd[i] && pol->pd_reset_stats_fn)
671 pol->pd_reset_stats_fn(blkg->pd[i]);
672 }
673 }
674
675 spin_unlock_irq(&blkcg->lock);
676 mutex_unlock(&blkcg_pol_mutex);
677 return 0;
678 }
679
blkg_dev_name(struct blkcg_gq * blkg)680 const char *blkg_dev_name(struct blkcg_gq *blkg)
681 {
682 if (!blkg->q->disk)
683 return NULL;
684 return bdi_dev_name(blkg->q->disk->bdi);
685 }
686
687 /**
688 * blkcg_print_blkgs - helper for printing per-blkg data
689 * @sf: seq_file to print to
690 * @blkcg: blkcg of interest
691 * @prfill: fill function to print out a blkg
692 * @pol: policy in question
693 * @data: data to be passed to @prfill
694 * @show_total: to print out sum of prfill return values or not
695 *
696 * This function invokes @prfill on each blkg of @blkcg if pd for the
697 * policy specified by @pol exists. @prfill is invoked with @sf, the
698 * policy data and @data and the matching queue lock held. If @show_total
699 * is %true, the sum of the return values from @prfill is printed with
700 * "Total" label at the end.
701 *
702 * This is to be used to construct print functions for
703 * cftype->read_seq_string method.
704 */
blkcg_print_blkgs(struct seq_file * sf,struct blkcg * blkcg,u64 (* prfill)(struct seq_file *,struct blkg_policy_data *,int),const struct blkcg_policy * pol,int data,bool show_total)705 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
706 u64 (*prfill)(struct seq_file *,
707 struct blkg_policy_data *, int),
708 const struct blkcg_policy *pol, int data,
709 bool show_total)
710 {
711 struct blkcg_gq *blkg;
712 u64 total = 0;
713
714 rcu_read_lock();
715 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
716 spin_lock_irq(&blkg->q->queue_lock);
717 if (blkcg_policy_enabled(blkg->q, pol))
718 total += prfill(sf, blkg->pd[pol->plid], data);
719 spin_unlock_irq(&blkg->q->queue_lock);
720 }
721 rcu_read_unlock();
722
723 if (show_total)
724 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
725 }
726 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
727
728 /**
729 * __blkg_prfill_u64 - prfill helper for a single u64 value
730 * @sf: seq_file to print to
731 * @pd: policy private data of interest
732 * @v: value to print
733 *
734 * Print @v to @sf for the device associated with @pd.
735 */
__blkg_prfill_u64(struct seq_file * sf,struct blkg_policy_data * pd,u64 v)736 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
737 {
738 const char *dname = blkg_dev_name(pd->blkg);
739
740 if (!dname)
741 return 0;
742
743 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
744 return v;
745 }
746 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
747
748 /**
749 * blkg_conf_init - initialize a blkg_conf_ctx
750 * @ctx: blkg_conf_ctx to initialize
751 * @input: input string
752 *
753 * Initialize @ctx which can be used to parse blkg config input string @input.
754 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
755 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
756 */
blkg_conf_init(struct blkg_conf_ctx * ctx,char * input)757 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
758 {
759 *ctx = (struct blkg_conf_ctx){ .input = input };
760 }
761 EXPORT_SYMBOL_GPL(blkg_conf_init);
762
763 /**
764 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
765 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
766 *
767 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
768 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
769 * set to point past the device node prefix.
770 *
771 * This function may be called multiple times on @ctx and the extra calls become
772 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
773 * explicitly if bdev access is needed without resolving the blkcg / policy part
774 * of @ctx->input. Returns -errno on error.
775 */
blkg_conf_open_bdev(struct blkg_conf_ctx * ctx)776 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
777 {
778 char *input = ctx->input;
779 unsigned int major, minor;
780 struct block_device *bdev;
781 int key_len;
782
783 if (ctx->bdev)
784 return 0;
785
786 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
787 return -EINVAL;
788
789 input += key_len;
790 if (!isspace(*input))
791 return -EINVAL;
792 input = skip_spaces(input);
793
794 bdev = blkdev_get_no_open(MKDEV(major, minor), false);
795 if (!bdev)
796 return -ENODEV;
797 if (bdev_is_partition(bdev)) {
798 blkdev_put_no_open(bdev);
799 return -ENODEV;
800 }
801
802 mutex_lock(&bdev->bd_queue->rq_qos_mutex);
803 if (!disk_live(bdev->bd_disk)) {
804 blkdev_put_no_open(bdev);
805 mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
806 return -ENODEV;
807 }
808
809 ctx->body = input;
810 ctx->bdev = bdev;
811 return 0;
812 }
813 /*
814 * Similar to blkg_conf_open_bdev, but additionally freezes the queue,
815 * ensures the correct locking order between freeze queue and q->rq_qos_mutex.
816 *
817 * This function returns negative error on failure. On success it returns
818 * memflags which must be saved and later passed to blkg_conf_exit_frozen
819 * for restoring the memalloc scope.
820 */
blkg_conf_open_bdev_frozen(struct blkg_conf_ctx * ctx)821 unsigned long __must_check blkg_conf_open_bdev_frozen(struct blkg_conf_ctx *ctx)
822 {
823 int ret;
824 unsigned long memflags;
825
826 if (ctx->bdev)
827 return -EINVAL;
828
829 ret = blkg_conf_open_bdev(ctx);
830 if (ret < 0)
831 return ret;
832 /*
833 * At this point, we haven’t started protecting anything related to QoS,
834 * so we release q->rq_qos_mutex here, which was first acquired in blkg_
835 * conf_open_bdev. Later, we re-acquire q->rq_qos_mutex after freezing
836 * the queue to maintain the correct locking order.
837 */
838 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
839
840 memflags = blk_mq_freeze_queue(ctx->bdev->bd_queue);
841 mutex_lock(&ctx->bdev->bd_queue->rq_qos_mutex);
842
843 return memflags;
844 }
845
846 /**
847 * blkg_conf_prep - parse and prepare for per-blkg config update
848 * @blkcg: target block cgroup
849 * @pol: target policy
850 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
851 *
852 * Parse per-blkg config update from @ctx->input and initialize @ctx
853 * accordingly. On success, @ctx->body points to the part of @ctx->input
854 * following MAJ:MIN, @ctx->bdev points to the target block device and
855 * @ctx->blkg to the blkg being configured.
856 *
857 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
858 * function returns with queue lock held and must be followed by
859 * blkg_conf_exit().
860 */
blkg_conf_prep(struct blkcg * blkcg,const struct blkcg_policy * pol,struct blkg_conf_ctx * ctx)861 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
862 struct blkg_conf_ctx *ctx)
863 __acquires(&bdev->bd_queue->queue_lock)
864 {
865 struct gendisk *disk;
866 struct request_queue *q;
867 struct blkcg_gq *blkg;
868 int ret;
869
870 ret = blkg_conf_open_bdev(ctx);
871 if (ret)
872 return ret;
873
874 disk = ctx->bdev->bd_disk;
875 q = disk->queue;
876
877 /* Prevent concurrent with blkcg_deactivate_policy() */
878 mutex_lock(&q->blkcg_mutex);
879 spin_lock_irq(&q->queue_lock);
880
881 if (!blkcg_policy_enabled(q, pol)) {
882 ret = -EOPNOTSUPP;
883 goto fail_unlock;
884 }
885
886 blkg = blkg_lookup(blkcg, q);
887 if (blkg)
888 goto success;
889
890 /*
891 * Create blkgs walking down from blkcg_root to @blkcg, so that all
892 * non-root blkgs have access to their parents.
893 */
894 while (true) {
895 struct blkcg *pos = blkcg;
896 struct blkcg *parent;
897 struct blkcg_gq *new_blkg;
898
899 parent = blkcg_parent(blkcg);
900 while (parent && !blkg_lookup(parent, q)) {
901 pos = parent;
902 parent = blkcg_parent(parent);
903 }
904
905 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
906 spin_unlock_irq(&q->queue_lock);
907
908 new_blkg = blkg_alloc(pos, disk, GFP_NOIO);
909 if (unlikely(!new_blkg)) {
910 ret = -ENOMEM;
911 goto fail_exit;
912 }
913
914 if (radix_tree_preload(GFP_KERNEL)) {
915 blkg_free(new_blkg);
916 ret = -ENOMEM;
917 goto fail_exit;
918 }
919
920 spin_lock_irq(&q->queue_lock);
921
922 if (!blkcg_policy_enabled(q, pol)) {
923 blkg_free(new_blkg);
924 ret = -EOPNOTSUPP;
925 goto fail_preloaded;
926 }
927
928 blkg = blkg_lookup(pos, q);
929 if (blkg) {
930 blkg_free(new_blkg);
931 } else {
932 blkg = blkg_create(pos, disk, new_blkg);
933 if (IS_ERR(blkg)) {
934 ret = PTR_ERR(blkg);
935 goto fail_preloaded;
936 }
937 }
938
939 radix_tree_preload_end();
940
941 if (pos == blkcg)
942 goto success;
943 }
944 success:
945 mutex_unlock(&q->blkcg_mutex);
946 ctx->blkg = blkg;
947 return 0;
948
949 fail_preloaded:
950 radix_tree_preload_end();
951 fail_unlock:
952 spin_unlock_irq(&q->queue_lock);
953 fail_exit:
954 mutex_unlock(&q->blkcg_mutex);
955 /*
956 * If queue was bypassing, we should retry. Do so after a
957 * short msleep(). It isn't strictly necessary but queue
958 * can be bypassing for some time and it's always nice to
959 * avoid busy looping.
960 */
961 if (ret == -EBUSY) {
962 msleep(10);
963 ret = restart_syscall();
964 }
965 return ret;
966 }
967 EXPORT_SYMBOL_GPL(blkg_conf_prep);
968
969 /**
970 * blkg_conf_exit - clean up per-blkg config update
971 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
972 *
973 * Clean up after per-blkg config update. This function must be called on all
974 * blkg_conf_ctx's initialized with blkg_conf_init().
975 */
blkg_conf_exit(struct blkg_conf_ctx * ctx)976 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
977 __releases(&ctx->bdev->bd_queue->queue_lock)
978 __releases(&ctx->bdev->bd_queue->rq_qos_mutex)
979 {
980 if (ctx->blkg) {
981 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
982 ctx->blkg = NULL;
983 }
984
985 if (ctx->bdev) {
986 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
987 blkdev_put_no_open(ctx->bdev);
988 ctx->body = NULL;
989 ctx->bdev = NULL;
990 }
991 }
992 EXPORT_SYMBOL_GPL(blkg_conf_exit);
993
994 /*
995 * Similar to blkg_conf_exit, but also unfreezes the queue. Should be used
996 * when blkg_conf_open_bdev_frozen is used to open the bdev.
997 */
blkg_conf_exit_frozen(struct blkg_conf_ctx * ctx,unsigned long memflags)998 void blkg_conf_exit_frozen(struct blkg_conf_ctx *ctx, unsigned long memflags)
999 {
1000 if (ctx->bdev) {
1001 struct request_queue *q = ctx->bdev->bd_queue;
1002
1003 blkg_conf_exit(ctx);
1004 blk_mq_unfreeze_queue(q, memflags);
1005 }
1006 }
1007
blkg_iostat_add(struct blkg_iostat * dst,struct blkg_iostat * src)1008 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
1009 {
1010 int i;
1011
1012 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1013 dst->bytes[i] += src->bytes[i];
1014 dst->ios[i] += src->ios[i];
1015 }
1016 }
1017
blkg_iostat_sub(struct blkg_iostat * dst,struct blkg_iostat * src)1018 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
1019 {
1020 int i;
1021
1022 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1023 dst->bytes[i] -= src->bytes[i];
1024 dst->ios[i] -= src->ios[i];
1025 }
1026 }
1027
blkcg_iostat_update(struct blkcg_gq * blkg,struct blkg_iostat * cur,struct blkg_iostat * last)1028 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
1029 struct blkg_iostat *last)
1030 {
1031 struct blkg_iostat delta;
1032 unsigned long flags;
1033
1034 /* propagate percpu delta to global */
1035 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1036 blkg_iostat_set(&delta, cur);
1037 blkg_iostat_sub(&delta, last);
1038 blkg_iostat_add(&blkg->iostat.cur, &delta);
1039 blkg_iostat_add(last, &delta);
1040 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1041 }
1042
__blkcg_rstat_flush(struct blkcg * blkcg,int cpu)1043 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
1044 {
1045 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1046 struct llist_node *lnode;
1047 struct blkg_iostat_set *bisc, *next_bisc;
1048 unsigned long flags;
1049
1050 rcu_read_lock();
1051
1052 lnode = llist_del_all(lhead);
1053 if (!lnode)
1054 goto out;
1055
1056 /*
1057 * For covering concurrent parent blkg update from blkg_release().
1058 *
1059 * When flushing from cgroup, the subsystem rstat lock is always held,
1060 * so this lock won't cause contention most of time.
1061 */
1062 raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1063
1064 /*
1065 * Iterate only the iostat_cpu's queued in the lockless list.
1066 */
1067 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1068 struct blkcg_gq *blkg = bisc->blkg;
1069 struct blkcg_gq *parent = blkg->parent;
1070 struct blkg_iostat cur;
1071 unsigned int seq;
1072
1073 /*
1074 * Order assignment of `next_bisc` from `bisc->lnode.next` in
1075 * llist_for_each_entry_safe and clearing `bisc->lqueued` for
1076 * avoiding to assign `next_bisc` with new next pointer added
1077 * in blk_cgroup_bio_start() in case of re-ordering.
1078 *
1079 * The pair barrier is implied in llist_add() in blk_cgroup_bio_start().
1080 */
1081 smp_mb();
1082
1083 WRITE_ONCE(bisc->lqueued, false);
1084 if (bisc == &blkg->iostat)
1085 goto propagate_up; /* propagate up to parent only */
1086
1087 /* fetch the current per-cpu values */
1088 do {
1089 seq = u64_stats_fetch_begin(&bisc->sync);
1090 blkg_iostat_set(&cur, &bisc->cur);
1091 } while (u64_stats_fetch_retry(&bisc->sync, seq));
1092
1093 blkcg_iostat_update(blkg, &cur, &bisc->last);
1094
1095 propagate_up:
1096 /* propagate global delta to parent (unless that's root) */
1097 if (parent && parent->parent) {
1098 blkcg_iostat_update(parent, &blkg->iostat.cur,
1099 &blkg->iostat.last);
1100 /*
1101 * Queue parent->iostat to its blkcg's lockless
1102 * list to propagate up to the grandparent if the
1103 * iostat hasn't been queued yet.
1104 */
1105 if (!parent->iostat.lqueued) {
1106 struct llist_head *plhead;
1107
1108 plhead = per_cpu_ptr(parent->blkcg->lhead, cpu);
1109 llist_add(&parent->iostat.lnode, plhead);
1110 parent->iostat.lqueued = true;
1111 }
1112 }
1113 }
1114 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1115 out:
1116 rcu_read_unlock();
1117 }
1118
blkcg_rstat_flush(struct cgroup_subsys_state * css,int cpu)1119 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1120 {
1121 /* Root-level stats are sourced from system-wide IO stats */
1122 if (cgroup_parent(css->cgroup))
1123 __blkcg_rstat_flush(css_to_blkcg(css), cpu);
1124 }
1125
1126 /*
1127 * We source root cgroup stats from the system-wide stats to avoid
1128 * tracking the same information twice and incurring overhead when no
1129 * cgroups are defined. For that reason, css_rstat_flush in
1130 * blkcg_print_stat does not actually fill out the iostat in the root
1131 * cgroup's blkcg_gq.
1132 *
1133 * However, we would like to re-use the printing code between the root and
1134 * non-root cgroups to the extent possible. For that reason, we simulate
1135 * flushing the root cgroup's stats by explicitly filling in the iostat
1136 * with disk level statistics.
1137 */
blkcg_fill_root_iostats(void)1138 static void blkcg_fill_root_iostats(void)
1139 {
1140 struct class_dev_iter iter;
1141 struct device *dev;
1142
1143 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1144 while ((dev = class_dev_iter_next(&iter))) {
1145 struct block_device *bdev = dev_to_bdev(dev);
1146 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1147 struct blkg_iostat tmp;
1148 int cpu;
1149 unsigned long flags;
1150
1151 memset(&tmp, 0, sizeof(tmp));
1152 for_each_possible_cpu(cpu) {
1153 struct disk_stats *cpu_dkstats;
1154
1155 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1156 tmp.ios[BLKG_IOSTAT_READ] +=
1157 cpu_dkstats->ios[STAT_READ];
1158 tmp.ios[BLKG_IOSTAT_WRITE] +=
1159 cpu_dkstats->ios[STAT_WRITE];
1160 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1161 cpu_dkstats->ios[STAT_DISCARD];
1162 // convert sectors to bytes
1163 tmp.bytes[BLKG_IOSTAT_READ] +=
1164 cpu_dkstats->sectors[STAT_READ] << 9;
1165 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1166 cpu_dkstats->sectors[STAT_WRITE] << 9;
1167 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1168 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1169 }
1170
1171 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1172 blkg_iostat_set(&blkg->iostat.cur, &tmp);
1173 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1174 }
1175 class_dev_iter_exit(&iter);
1176 }
1177
blkcg_print_one_stat(struct blkcg_gq * blkg,struct seq_file * s)1178 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1179 {
1180 struct blkg_iostat_set *bis = &blkg->iostat;
1181 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1182 const char *dname;
1183 unsigned seq;
1184 int i;
1185
1186 if (!blkg->online)
1187 return;
1188
1189 dname = blkg_dev_name(blkg);
1190 if (!dname)
1191 return;
1192
1193 seq_printf(s, "%s ", dname);
1194
1195 do {
1196 seq = u64_stats_fetch_begin(&bis->sync);
1197
1198 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1199 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1200 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1201 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1202 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1203 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1204 } while (u64_stats_fetch_retry(&bis->sync, seq));
1205
1206 if (rbytes || wbytes || rios || wios) {
1207 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1208 rbytes, wbytes, rios, wios,
1209 dbytes, dios);
1210 }
1211
1212 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1213 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1214 atomic_read(&blkg->use_delay),
1215 atomic64_read(&blkg->delay_nsec));
1216 }
1217
1218 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1219 struct blkcg_policy *pol = blkcg_policy[i];
1220
1221 if (!blkg->pd[i] || !pol->pd_stat_fn)
1222 continue;
1223
1224 pol->pd_stat_fn(blkg->pd[i], s);
1225 }
1226
1227 seq_puts(s, "\n");
1228 }
1229
blkcg_print_stat(struct seq_file * sf,void * v)1230 static int blkcg_print_stat(struct seq_file *sf, void *v)
1231 {
1232 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1233 struct blkcg_gq *blkg;
1234
1235 if (!seq_css(sf)->parent)
1236 blkcg_fill_root_iostats();
1237 else
1238 css_rstat_flush(&blkcg->css);
1239
1240 rcu_read_lock();
1241 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1242 spin_lock_irq(&blkg->q->queue_lock);
1243 blkcg_print_one_stat(blkg, sf);
1244 spin_unlock_irq(&blkg->q->queue_lock);
1245 }
1246 rcu_read_unlock();
1247 return 0;
1248 }
1249
1250 static struct cftype blkcg_files[] = {
1251 {
1252 .name = "stat",
1253 .seq_show = blkcg_print_stat,
1254 },
1255 { } /* terminate */
1256 };
1257
1258 static struct cftype blkcg_legacy_files[] = {
1259 {
1260 .name = "reset_stats",
1261 .write_u64 = blkcg_reset_stats,
1262 },
1263 { } /* terminate */
1264 };
1265
1266 #ifdef CONFIG_CGROUP_WRITEBACK
blkcg_get_cgwb_list(struct cgroup_subsys_state * css)1267 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1268 {
1269 return &css_to_blkcg(css)->cgwb_list;
1270 }
1271 #endif
1272
1273 /*
1274 * blkcg destruction is a three-stage process.
1275 *
1276 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1277 * which offlines writeback. Here we tie the next stage of blkg destruction
1278 * to the completion of writeback associated with the blkcg. This lets us
1279 * avoid punting potentially large amounts of outstanding writeback to root
1280 * while maintaining any ongoing policies. The next stage is triggered when
1281 * the nr_cgwbs count goes to zero.
1282 *
1283 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1284 * and handles the destruction of blkgs. Here the css reference held by
1285 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1286 * This work may occur in cgwb_release_workfn() on the cgwb_release
1287 * workqueue. Any submitted ios that fail to get the blkg ref will be
1288 * punted to the root_blkg.
1289 *
1290 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1291 * This finally frees the blkcg.
1292 */
1293
1294 /**
1295 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1296 * @blkcg: blkcg of interest
1297 *
1298 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1299 * is nested inside q lock, this function performs reverse double lock dancing.
1300 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1301 * blkcg_css_free to eventually be called.
1302 *
1303 * This is the blkcg counterpart of ioc_release_fn().
1304 */
blkcg_destroy_blkgs(struct blkcg * blkcg)1305 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1306 {
1307 might_sleep();
1308
1309 spin_lock_irq(&blkcg->lock);
1310
1311 while (!hlist_empty(&blkcg->blkg_list)) {
1312 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1313 struct blkcg_gq, blkcg_node);
1314 struct request_queue *q = blkg->q;
1315
1316 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1317 /*
1318 * Given that the system can accumulate a huge number
1319 * of blkgs in pathological cases, check to see if we
1320 * need to rescheduling to avoid softlockup.
1321 */
1322 spin_unlock_irq(&blkcg->lock);
1323 cond_resched();
1324 spin_lock_irq(&blkcg->lock);
1325 continue;
1326 }
1327
1328 blkg_destroy(blkg);
1329 spin_unlock(&q->queue_lock);
1330 }
1331
1332 spin_unlock_irq(&blkcg->lock);
1333 }
1334
1335 /**
1336 * blkcg_pin_online - pin online state
1337 * @blkcg_css: blkcg of interest
1338 *
1339 * While pinned, a blkcg is kept online. This is primarily used to
1340 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1341 * while an associated cgwb is still active.
1342 */
blkcg_pin_online(struct cgroup_subsys_state * blkcg_css)1343 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1344 {
1345 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1346 }
1347
1348 /**
1349 * blkcg_unpin_online - unpin online state
1350 * @blkcg_css: blkcg of interest
1351 *
1352 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1353 * that blkg doesn't go offline while an associated cgwb is still active.
1354 * When this count goes to zero, all active cgwbs have finished so the
1355 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1356 */
blkcg_unpin_online(struct cgroup_subsys_state * blkcg_css)1357 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1358 {
1359 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1360
1361 do {
1362 struct blkcg *parent;
1363
1364 if (!refcount_dec_and_test(&blkcg->online_pin))
1365 break;
1366
1367 parent = blkcg_parent(blkcg);
1368 blkcg_destroy_blkgs(blkcg);
1369 blkcg = parent;
1370 } while (blkcg);
1371 }
1372
1373 /**
1374 * blkcg_css_offline - cgroup css_offline callback
1375 * @css: css of interest
1376 *
1377 * This function is called when @css is about to go away. Here the cgwbs are
1378 * offlined first and only once writeback associated with the blkcg has
1379 * finished do we start step 2 (see above).
1380 */
blkcg_css_offline(struct cgroup_subsys_state * css)1381 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1382 {
1383 /* this prevents anyone from attaching or migrating to this blkcg */
1384 wb_blkcg_offline(css);
1385
1386 /* put the base online pin allowing step 2 to be triggered */
1387 blkcg_unpin_online(css);
1388 }
1389
blkcg_css_free(struct cgroup_subsys_state * css)1390 static void blkcg_css_free(struct cgroup_subsys_state *css)
1391 {
1392 struct blkcg *blkcg = css_to_blkcg(css);
1393 int i;
1394
1395 mutex_lock(&blkcg_pol_mutex);
1396
1397 list_del(&blkcg->all_blkcgs_node);
1398
1399 for (i = 0; i < BLKCG_MAX_POLS; i++)
1400 if (blkcg->cpd[i])
1401 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1402
1403 mutex_unlock(&blkcg_pol_mutex);
1404
1405 free_percpu(blkcg->lhead);
1406 kfree(blkcg);
1407 }
1408
1409 static struct cgroup_subsys_state *
blkcg_css_alloc(struct cgroup_subsys_state * parent_css)1410 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1411 {
1412 struct blkcg *blkcg;
1413 int i;
1414
1415 mutex_lock(&blkcg_pol_mutex);
1416
1417 if (!parent_css) {
1418 blkcg = &blkcg_root;
1419 } else {
1420 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1421 if (!blkcg)
1422 goto unlock;
1423 }
1424
1425 if (init_blkcg_llists(blkcg))
1426 goto free_blkcg;
1427
1428 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1429 struct blkcg_policy *pol = blkcg_policy[i];
1430 struct blkcg_policy_data *cpd;
1431
1432 /*
1433 * If the policy hasn't been attached yet, wait for it
1434 * to be attached before doing anything else. Otherwise,
1435 * check if the policy requires any specific per-cgroup
1436 * data: if it does, allocate and initialize it.
1437 */
1438 if (!pol || !pol->cpd_alloc_fn)
1439 continue;
1440
1441 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1442 if (!cpd)
1443 goto free_pd_blkcg;
1444
1445 blkcg->cpd[i] = cpd;
1446 cpd->blkcg = blkcg;
1447 cpd->plid = i;
1448 }
1449
1450 spin_lock_init(&blkcg->lock);
1451 refcount_set(&blkcg->online_pin, 1);
1452 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT);
1453 INIT_HLIST_HEAD(&blkcg->blkg_list);
1454 #ifdef CONFIG_CGROUP_WRITEBACK
1455 INIT_LIST_HEAD(&blkcg->cgwb_list);
1456 #endif
1457 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1458
1459 mutex_unlock(&blkcg_pol_mutex);
1460 return &blkcg->css;
1461
1462 free_pd_blkcg:
1463 for (i--; i >= 0; i--)
1464 if (blkcg->cpd[i])
1465 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1466 free_percpu(blkcg->lhead);
1467 free_blkcg:
1468 if (blkcg != &blkcg_root)
1469 kfree(blkcg);
1470 unlock:
1471 mutex_unlock(&blkcg_pol_mutex);
1472 return ERR_PTR(-ENOMEM);
1473 }
1474
blkcg_css_online(struct cgroup_subsys_state * css)1475 static int blkcg_css_online(struct cgroup_subsys_state *css)
1476 {
1477 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1478
1479 /*
1480 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1481 * don't go offline while cgwbs are still active on them. Pin the
1482 * parent so that offline always happens towards the root.
1483 */
1484 if (parent)
1485 blkcg_pin_online(&parent->css);
1486 return 0;
1487 }
1488
blkg_init_queue(struct request_queue * q)1489 void blkg_init_queue(struct request_queue *q)
1490 {
1491 INIT_LIST_HEAD(&q->blkg_list);
1492 mutex_init(&q->blkcg_mutex);
1493 }
1494
blkcg_init_disk(struct gendisk * disk)1495 int blkcg_init_disk(struct gendisk *disk)
1496 {
1497 struct request_queue *q = disk->queue;
1498 struct blkcg_gq *new_blkg, *blkg;
1499 bool preloaded;
1500
1501 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1502 if (!new_blkg)
1503 return -ENOMEM;
1504
1505 preloaded = !radix_tree_preload(GFP_KERNEL);
1506
1507 /* Make sure the root blkg exists. */
1508 /* spin_lock_irq can serve as RCU read-side critical section. */
1509 spin_lock_irq(&q->queue_lock);
1510 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1511 if (IS_ERR(blkg))
1512 goto err_unlock;
1513 q->root_blkg = blkg;
1514 spin_unlock_irq(&q->queue_lock);
1515
1516 if (preloaded)
1517 radix_tree_preload_end();
1518
1519 return 0;
1520
1521 err_unlock:
1522 spin_unlock_irq(&q->queue_lock);
1523 if (preloaded)
1524 radix_tree_preload_end();
1525 return PTR_ERR(blkg);
1526 }
1527
blkcg_exit_disk(struct gendisk * disk)1528 void blkcg_exit_disk(struct gendisk *disk)
1529 {
1530 blkg_destroy_all(disk);
1531 blk_throtl_exit(disk);
1532 }
1533
blkcg_exit(struct task_struct * tsk)1534 static void blkcg_exit(struct task_struct *tsk)
1535 {
1536 if (tsk->throttle_disk)
1537 put_disk(tsk->throttle_disk);
1538 tsk->throttle_disk = NULL;
1539 }
1540
1541 struct cgroup_subsys io_cgrp_subsys = {
1542 .css_alloc = blkcg_css_alloc,
1543 .css_online = blkcg_css_online,
1544 .css_offline = blkcg_css_offline,
1545 .css_free = blkcg_css_free,
1546 .css_rstat_flush = blkcg_rstat_flush,
1547 .dfl_cftypes = blkcg_files,
1548 .legacy_cftypes = blkcg_legacy_files,
1549 .legacy_name = "blkio",
1550 .exit = blkcg_exit,
1551 #ifdef CONFIG_MEMCG
1552 /*
1553 * This ensures that, if available, memcg is automatically enabled
1554 * together on the default hierarchy so that the owner cgroup can
1555 * be retrieved from writeback pages.
1556 */
1557 .depends_on = 1 << memory_cgrp_id,
1558 #endif
1559 };
1560 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1561
1562 /**
1563 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1564 * @disk: gendisk of interest
1565 * @pol: blkcg policy to activate
1566 *
1567 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1568 * bypass mode to populate its blkgs with policy_data for @pol.
1569 *
1570 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1571 * from IO path. Update of each blkg is protected by both queue and blkcg
1572 * locks so that holding either lock and testing blkcg_policy_enabled() is
1573 * always enough for dereferencing policy data.
1574 *
1575 * The caller is responsible for synchronizing [de]activations and policy
1576 * [un]registerations. Returns 0 on success, -errno on failure.
1577 */
blkcg_activate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1578 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1579 {
1580 struct request_queue *q = disk->queue;
1581 struct blkg_policy_data *pd_prealloc = NULL;
1582 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1583 unsigned int memflags;
1584 int ret;
1585
1586 if (blkcg_policy_enabled(q, pol))
1587 return 0;
1588
1589 /*
1590 * Policy is allowed to be registered without pd_alloc_fn/pd_free_fn,
1591 * for example, ioprio. Such policy will work on blkcg level, not disk
1592 * level, and don't need to be activated.
1593 */
1594 if (WARN_ON_ONCE(!pol->pd_alloc_fn || !pol->pd_free_fn))
1595 return -EINVAL;
1596
1597 if (queue_is_mq(q))
1598 memflags = blk_mq_freeze_queue(q);
1599 retry:
1600 spin_lock_irq(&q->queue_lock);
1601
1602 /* blkg_list is pushed at the head, reverse walk to initialize parents first */
1603 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1604 struct blkg_policy_data *pd;
1605
1606 if (blkg->pd[pol->plid])
1607 continue;
1608
1609 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1610 if (blkg == pinned_blkg) {
1611 pd = pd_prealloc;
1612 pd_prealloc = NULL;
1613 } else {
1614 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1615 GFP_NOWAIT);
1616 }
1617
1618 if (!pd) {
1619 /*
1620 * GFP_NOWAIT failed. Free the existing one and
1621 * prealloc for @blkg w/ GFP_KERNEL.
1622 */
1623 if (pinned_blkg)
1624 blkg_put(pinned_blkg);
1625 blkg_get(blkg);
1626 pinned_blkg = blkg;
1627
1628 spin_unlock_irq(&q->queue_lock);
1629
1630 if (pd_prealloc)
1631 pol->pd_free_fn(pd_prealloc);
1632 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1633 GFP_KERNEL);
1634 if (pd_prealloc)
1635 goto retry;
1636 else
1637 goto enomem;
1638 }
1639
1640 spin_lock(&blkg->blkcg->lock);
1641
1642 pd->blkg = blkg;
1643 pd->plid = pol->plid;
1644 blkg->pd[pol->plid] = pd;
1645
1646 if (pol->pd_init_fn)
1647 pol->pd_init_fn(pd);
1648
1649 if (pol->pd_online_fn)
1650 pol->pd_online_fn(pd);
1651 pd->online = true;
1652
1653 spin_unlock(&blkg->blkcg->lock);
1654 }
1655
1656 __set_bit(pol->plid, q->blkcg_pols);
1657 ret = 0;
1658
1659 spin_unlock_irq(&q->queue_lock);
1660 out:
1661 if (queue_is_mq(q))
1662 blk_mq_unfreeze_queue(q, memflags);
1663 if (pinned_blkg)
1664 blkg_put(pinned_blkg);
1665 if (pd_prealloc)
1666 pol->pd_free_fn(pd_prealloc);
1667 return ret;
1668
1669 enomem:
1670 /* alloc failed, take down everything */
1671 spin_lock_irq(&q->queue_lock);
1672 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1673 struct blkcg *blkcg = blkg->blkcg;
1674 struct blkg_policy_data *pd;
1675
1676 spin_lock(&blkcg->lock);
1677 pd = blkg->pd[pol->plid];
1678 if (pd) {
1679 if (pd->online && pol->pd_offline_fn)
1680 pol->pd_offline_fn(pd);
1681 pd->online = false;
1682 pol->pd_free_fn(pd);
1683 blkg->pd[pol->plid] = NULL;
1684 }
1685 spin_unlock(&blkcg->lock);
1686 }
1687 spin_unlock_irq(&q->queue_lock);
1688 ret = -ENOMEM;
1689 goto out;
1690 }
1691 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1692
1693 /**
1694 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1695 * @disk: gendisk of interest
1696 * @pol: blkcg policy to deactivate
1697 *
1698 * Deactivate @pol on @disk. Follows the same synchronization rules as
1699 * blkcg_activate_policy().
1700 */
blkcg_deactivate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1701 void blkcg_deactivate_policy(struct gendisk *disk,
1702 const struct blkcg_policy *pol)
1703 {
1704 struct request_queue *q = disk->queue;
1705 struct blkcg_gq *blkg;
1706 unsigned int memflags;
1707
1708 if (!blkcg_policy_enabled(q, pol))
1709 return;
1710
1711 if (queue_is_mq(q))
1712 memflags = blk_mq_freeze_queue(q);
1713
1714 mutex_lock(&q->blkcg_mutex);
1715 spin_lock_irq(&q->queue_lock);
1716
1717 __clear_bit(pol->plid, q->blkcg_pols);
1718
1719 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1720 struct blkcg *blkcg = blkg->blkcg;
1721
1722 spin_lock(&blkcg->lock);
1723 if (blkg->pd[pol->plid]) {
1724 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1725 pol->pd_offline_fn(blkg->pd[pol->plid]);
1726 pol->pd_free_fn(blkg->pd[pol->plid]);
1727 blkg->pd[pol->plid] = NULL;
1728 }
1729 spin_unlock(&blkcg->lock);
1730 }
1731
1732 spin_unlock_irq(&q->queue_lock);
1733 mutex_unlock(&q->blkcg_mutex);
1734
1735 if (queue_is_mq(q))
1736 blk_mq_unfreeze_queue(q, memflags);
1737 }
1738 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1739
blkcg_free_all_cpd(struct blkcg_policy * pol)1740 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1741 {
1742 struct blkcg *blkcg;
1743
1744 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1745 if (blkcg->cpd[pol->plid]) {
1746 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1747 blkcg->cpd[pol->plid] = NULL;
1748 }
1749 }
1750 }
1751
1752 /**
1753 * blkcg_policy_register - register a blkcg policy
1754 * @pol: blkcg policy to register
1755 *
1756 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1757 * successful registration. Returns 0 on success and -errno on failure.
1758 */
blkcg_policy_register(struct blkcg_policy * pol)1759 int blkcg_policy_register(struct blkcg_policy *pol)
1760 {
1761 struct blkcg *blkcg;
1762 int i, ret;
1763
1764 /*
1765 * Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs, and policy
1766 * without pd_alloc_fn/pd_free_fn can't be activated.
1767 */
1768 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1769 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1770 return -EINVAL;
1771
1772 mutex_lock(&blkcg_pol_register_mutex);
1773 mutex_lock(&blkcg_pol_mutex);
1774
1775 /* find an empty slot */
1776 for (i = 0; i < BLKCG_MAX_POLS; i++)
1777 if (!blkcg_policy[i])
1778 break;
1779 if (i >= BLKCG_MAX_POLS) {
1780 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1781 ret = -ENOSPC;
1782 goto err_unlock;
1783 }
1784
1785 /* register @pol */
1786 pol->plid = i;
1787 blkcg_policy[pol->plid] = pol;
1788
1789 /* allocate and install cpd's */
1790 if (pol->cpd_alloc_fn) {
1791 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1792 struct blkcg_policy_data *cpd;
1793
1794 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1795 if (!cpd) {
1796 ret = -ENOMEM;
1797 goto err_free_cpds;
1798 }
1799
1800 blkcg->cpd[pol->plid] = cpd;
1801 cpd->blkcg = blkcg;
1802 cpd->plid = pol->plid;
1803 }
1804 }
1805
1806 mutex_unlock(&blkcg_pol_mutex);
1807
1808 /* everything is in place, add intf files for the new policy */
1809 if (pol->dfl_cftypes == pol->legacy_cftypes) {
1810 WARN_ON(cgroup_add_cftypes(&io_cgrp_subsys,
1811 pol->dfl_cftypes));
1812 } else {
1813 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1814 pol->dfl_cftypes));
1815 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1816 pol->legacy_cftypes));
1817 }
1818 mutex_unlock(&blkcg_pol_register_mutex);
1819 return 0;
1820
1821 err_free_cpds:
1822 if (pol->cpd_free_fn)
1823 blkcg_free_all_cpd(pol);
1824
1825 blkcg_policy[pol->plid] = NULL;
1826 err_unlock:
1827 mutex_unlock(&blkcg_pol_mutex);
1828 mutex_unlock(&blkcg_pol_register_mutex);
1829 return ret;
1830 }
1831 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1832
1833 /**
1834 * blkcg_policy_unregister - unregister a blkcg policy
1835 * @pol: blkcg policy to unregister
1836 *
1837 * Undo blkcg_policy_register(@pol). Might sleep.
1838 */
blkcg_policy_unregister(struct blkcg_policy * pol)1839 void blkcg_policy_unregister(struct blkcg_policy *pol)
1840 {
1841 mutex_lock(&blkcg_pol_register_mutex);
1842
1843 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1844 goto out_unlock;
1845
1846 /* kill the intf files first */
1847 if (pol->dfl_cftypes)
1848 cgroup_rm_cftypes(pol->dfl_cftypes);
1849 if (pol->legacy_cftypes)
1850 cgroup_rm_cftypes(pol->legacy_cftypes);
1851
1852 /* remove cpds and unregister */
1853 mutex_lock(&blkcg_pol_mutex);
1854
1855 if (pol->cpd_free_fn)
1856 blkcg_free_all_cpd(pol);
1857
1858 blkcg_policy[pol->plid] = NULL;
1859
1860 mutex_unlock(&blkcg_pol_mutex);
1861 out_unlock:
1862 mutex_unlock(&blkcg_pol_register_mutex);
1863 }
1864 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1865
1866 /*
1867 * Scale the accumulated delay based on how long it has been since we updated
1868 * the delay. We only call this when we are adding delay, in case it's been a
1869 * while since we added delay, and when we are checking to see if we need to
1870 * delay a task, to account for any delays that may have occurred.
1871 */
blkcg_scale_delay(struct blkcg_gq * blkg,u64 now)1872 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1873 {
1874 u64 old = atomic64_read(&blkg->delay_start);
1875
1876 /* negative use_delay means no scaling, see blkcg_set_delay() */
1877 if (atomic_read(&blkg->use_delay) < 0)
1878 return;
1879
1880 /*
1881 * We only want to scale down every second. The idea here is that we
1882 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1883 * time window. We only want to throttle tasks for recent delay that
1884 * has occurred, in 1 second time windows since that's the maximum
1885 * things can be throttled. We save the current delay window in
1886 * blkg->last_delay so we know what amount is still left to be charged
1887 * to the blkg from this point onward. blkg->last_use keeps track of
1888 * the use_delay counter. The idea is if we're unthrottling the blkg we
1889 * are ok with whatever is happening now, and we can take away more of
1890 * the accumulated delay as we've already throttled enough that
1891 * everybody is happy with their IO latencies.
1892 */
1893 if (time_before64(old + NSEC_PER_SEC, now) &&
1894 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1895 u64 cur = atomic64_read(&blkg->delay_nsec);
1896 u64 sub = min_t(u64, blkg->last_delay, now - old);
1897 int cur_use = atomic_read(&blkg->use_delay);
1898
1899 /*
1900 * We've been unthrottled, subtract a larger chunk of our
1901 * accumulated delay.
1902 */
1903 if (cur_use < blkg->last_use)
1904 sub = max_t(u64, sub, blkg->last_delay >> 1);
1905
1906 /*
1907 * This shouldn't happen, but handle it anyway. Our delay_nsec
1908 * should only ever be growing except here where we subtract out
1909 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1910 * rather not end up with negative numbers.
1911 */
1912 if (unlikely(cur < sub)) {
1913 atomic64_set(&blkg->delay_nsec, 0);
1914 blkg->last_delay = 0;
1915 } else {
1916 atomic64_sub(sub, &blkg->delay_nsec);
1917 blkg->last_delay = cur - sub;
1918 }
1919 blkg->last_use = cur_use;
1920 }
1921 }
1922
1923 /*
1924 * This is called when we want to actually walk up the hierarchy and check to
1925 * see if we need to throttle, and then actually throttle if there is some
1926 * accumulated delay. This should only be called upon return to user space so
1927 * we're not holding some lock that would induce a priority inversion.
1928 */
blkcg_maybe_throttle_blkg(struct blkcg_gq * blkg,bool use_memdelay)1929 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1930 {
1931 unsigned long pflags;
1932 bool clamp;
1933 u64 now = blk_time_get_ns();
1934 u64 exp;
1935 u64 delay_nsec = 0;
1936 int tok;
1937
1938 while (blkg->parent) {
1939 int use_delay = atomic_read(&blkg->use_delay);
1940
1941 if (use_delay) {
1942 u64 this_delay;
1943
1944 blkcg_scale_delay(blkg, now);
1945 this_delay = atomic64_read(&blkg->delay_nsec);
1946 if (this_delay > delay_nsec) {
1947 delay_nsec = this_delay;
1948 clamp = use_delay > 0;
1949 }
1950 }
1951 blkg = blkg->parent;
1952 }
1953
1954 if (!delay_nsec)
1955 return;
1956
1957 /*
1958 * Let's not sleep for all eternity if we've amassed a huge delay.
1959 * Swapping or metadata IO can accumulate 10's of seconds worth of
1960 * delay, and we want userspace to be able to do _something_ so cap the
1961 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1962 * tasks will be delayed for 0.25 second for every syscall. If
1963 * blkcg_set_delay() was used as indicated by negative use_delay, the
1964 * caller is responsible for regulating the range.
1965 */
1966 if (clamp)
1967 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1968
1969 if (use_memdelay)
1970 psi_memstall_enter(&pflags);
1971
1972 exp = ktime_add_ns(now, delay_nsec);
1973 tok = io_schedule_prepare();
1974 do {
1975 __set_current_state(TASK_KILLABLE);
1976 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1977 break;
1978 } while (!fatal_signal_pending(current));
1979 io_schedule_finish(tok);
1980
1981 if (use_memdelay)
1982 psi_memstall_leave(&pflags);
1983 }
1984
1985 /**
1986 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1987 *
1988 * This is only called if we've been marked with set_notify_resume(). Obviously
1989 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1990 * check to see if current->throttle_disk is set and if not this doesn't do
1991 * anything. This should only ever be called by the resume code, it's not meant
1992 * to be called by people willy-nilly as it will actually do the work to
1993 * throttle the task if it is setup for throttling.
1994 */
blkcg_maybe_throttle_current(void)1995 void blkcg_maybe_throttle_current(void)
1996 {
1997 struct gendisk *disk = current->throttle_disk;
1998 struct blkcg *blkcg;
1999 struct blkcg_gq *blkg;
2000 bool use_memdelay = current->use_memdelay;
2001
2002 if (!disk)
2003 return;
2004
2005 current->throttle_disk = NULL;
2006 current->use_memdelay = false;
2007
2008 rcu_read_lock();
2009 blkcg = css_to_blkcg(blkcg_css());
2010 if (!blkcg)
2011 goto out;
2012 blkg = blkg_lookup(blkcg, disk->queue);
2013 if (!blkg)
2014 goto out;
2015 if (!blkg_tryget(blkg))
2016 goto out;
2017 rcu_read_unlock();
2018
2019 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
2020 blkg_put(blkg);
2021 put_disk(disk);
2022 return;
2023 out:
2024 rcu_read_unlock();
2025 }
2026
2027 /**
2028 * blkcg_schedule_throttle - this task needs to check for throttling
2029 * @disk: disk to throttle
2030 * @use_memdelay: do we charge this to memory delay for PSI
2031 *
2032 * This is called by the IO controller when we know there's delay accumulated
2033 * for the blkg for this task. We do not pass the blkg because there are places
2034 * we call this that may not have that information, the swapping code for
2035 * instance will only have a block_device at that point. This set's the
2036 * notify_resume for the task to check and see if it requires throttling before
2037 * returning to user space.
2038 *
2039 * We will only schedule once per syscall. You can call this over and over
2040 * again and it will only do the check once upon return to user space, and only
2041 * throttle once. If the task needs to be throttled again it'll need to be
2042 * re-set at the next time we see the task.
2043 */
blkcg_schedule_throttle(struct gendisk * disk,bool use_memdelay)2044 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
2045 {
2046 if (unlikely(current->flags & PF_KTHREAD))
2047 return;
2048
2049 if (current->throttle_disk != disk) {
2050 if (test_bit(GD_DEAD, &disk->state))
2051 return;
2052 get_device(disk_to_dev(disk));
2053
2054 if (current->throttle_disk)
2055 put_disk(current->throttle_disk);
2056 current->throttle_disk = disk;
2057 }
2058
2059 if (use_memdelay)
2060 current->use_memdelay = use_memdelay;
2061 set_notify_resume(current);
2062 }
2063
2064 /**
2065 * blkcg_add_delay - add delay to this blkg
2066 * @blkg: blkg of interest
2067 * @now: the current time in nanoseconds
2068 * @delta: how many nanoseconds of delay to add
2069 *
2070 * Charge @delta to the blkg's current delay accumulation. This is used to
2071 * throttle tasks if an IO controller thinks we need more throttling.
2072 */
blkcg_add_delay(struct blkcg_gq * blkg,u64 now,u64 delta)2073 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
2074 {
2075 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
2076 return;
2077 blkcg_scale_delay(blkg, now);
2078 atomic64_add(delta, &blkg->delay_nsec);
2079 }
2080
2081 /**
2082 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
2083 * @bio: target bio
2084 * @css: target css
2085 *
2086 * As the failure mode here is to walk up the blkg tree, this ensure that the
2087 * blkg->parent pointers are always valid. This returns the blkg that it ended
2088 * up taking a reference on or %NULL if no reference was taken.
2089 */
blkg_tryget_closest(struct bio * bio,struct cgroup_subsys_state * css)2090 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2091 struct cgroup_subsys_state *css)
2092 {
2093 struct blkcg_gq *blkg, *ret_blkg = NULL;
2094
2095 rcu_read_lock();
2096 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2097 while (blkg) {
2098 if (blkg_tryget(blkg)) {
2099 ret_blkg = blkg;
2100 break;
2101 }
2102 blkg = blkg->parent;
2103 }
2104 rcu_read_unlock();
2105
2106 return ret_blkg;
2107 }
2108
2109 /**
2110 * bio_associate_blkg_from_css - associate a bio with a specified css
2111 * @bio: target bio
2112 * @css: target css
2113 *
2114 * Associate @bio with the blkg found by combining the css's blkg and the
2115 * request_queue of the @bio. An association failure is handled by walking up
2116 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
2117 * and q->root_blkg. This situation only happens when a cgroup is dying and
2118 * then the remaining bios will spill to the closest alive blkg.
2119 *
2120 * A reference will be taken on the blkg and will be released when @bio is
2121 * freed.
2122 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)2123 void bio_associate_blkg_from_css(struct bio *bio,
2124 struct cgroup_subsys_state *css)
2125 {
2126 if (bio->bi_blkg)
2127 blkg_put(bio->bi_blkg);
2128
2129 if (css && css->parent) {
2130 bio->bi_blkg = blkg_tryget_closest(bio, css);
2131 } else {
2132 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2133 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2134 }
2135 }
2136 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2137
2138 /**
2139 * bio_associate_blkg - associate a bio with a blkg
2140 * @bio: target bio
2141 *
2142 * Associate @bio with the blkg found from the bio's css and request_queue.
2143 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2144 * already associated, the css is reused and association redone as the
2145 * request_queue may have changed.
2146 */
bio_associate_blkg(struct bio * bio)2147 void bio_associate_blkg(struct bio *bio)
2148 {
2149 struct cgroup_subsys_state *css;
2150
2151 if (blk_op_is_passthrough(bio->bi_opf))
2152 return;
2153
2154 rcu_read_lock();
2155
2156 if (bio->bi_blkg)
2157 css = bio_blkcg_css(bio);
2158 else
2159 css = blkcg_css();
2160
2161 bio_associate_blkg_from_css(bio, css);
2162
2163 rcu_read_unlock();
2164 }
2165 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2166
2167 /**
2168 * bio_clone_blkg_association - clone blkg association from src to dst bio
2169 * @dst: destination bio
2170 * @src: source bio
2171 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)2172 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2173 {
2174 if (src->bi_blkg)
2175 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2176 }
2177 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2178
blk_cgroup_io_type(struct bio * bio)2179 static int blk_cgroup_io_type(struct bio *bio)
2180 {
2181 if (op_is_discard(bio->bi_opf))
2182 return BLKG_IOSTAT_DISCARD;
2183 if (op_is_write(bio->bi_opf))
2184 return BLKG_IOSTAT_WRITE;
2185 return BLKG_IOSTAT_READ;
2186 }
2187
blk_cgroup_bio_start(struct bio * bio)2188 void blk_cgroup_bio_start(struct bio *bio)
2189 {
2190 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2191 int rwd = blk_cgroup_io_type(bio), cpu;
2192 struct blkg_iostat_set *bis;
2193 unsigned long flags;
2194
2195 if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2196 return;
2197
2198 /* Root-level stats are sourced from system-wide IO stats */
2199 if (!cgroup_parent(blkcg->css.cgroup))
2200 return;
2201
2202 cpu = get_cpu();
2203 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2204 flags = u64_stats_update_begin_irqsave(&bis->sync);
2205
2206 /*
2207 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2208 * bio and we would have already accounted for the size of the bio.
2209 */
2210 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2211 bio_set_flag(bio, BIO_CGROUP_ACCT);
2212 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2213 }
2214 bis->cur.ios[rwd]++;
2215
2216 /*
2217 * If the iostat_cpu isn't in a lockless list, put it into the
2218 * list to indicate that a stat update is pending.
2219 */
2220 if (!READ_ONCE(bis->lqueued)) {
2221 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2222
2223 llist_add(&bis->lnode, lhead);
2224 WRITE_ONCE(bis->lqueued, true);
2225 }
2226
2227 u64_stats_update_end_irqrestore(&bis->sync, flags);
2228 css_rstat_updated(&blkcg->css, cpu);
2229 put_cpu();
2230 }
2231
blk_cgroup_congested(void)2232 bool blk_cgroup_congested(void)
2233 {
2234 struct blkcg *blkcg;
2235 bool ret = false;
2236
2237 rcu_read_lock();
2238 for (blkcg = css_to_blkcg(blkcg_css()); blkcg;
2239 blkcg = blkcg_parent(blkcg)) {
2240 if (atomic_read(&blkcg->congestion_count)) {
2241 ret = true;
2242 break;
2243 }
2244 }
2245 rcu_read_unlock();
2246 return ret;
2247 }
2248
2249 module_param(blkcg_debug_stats, bool, 0644);
2250 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2251