1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to setting various queue properties from drivers
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/t10-pi.h>
18 #include <linux/crc64.h>
19
20 #include "blk.h"
21 #include "blk-rq-qos.h"
22 #include "blk-wbt.h"
23
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)24 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
25 {
26 WRITE_ONCE(q->rq_timeout, timeout);
27 }
28 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
29
30 /**
31 * blk_set_stacking_limits - set default limits for stacking devices
32 * @lim: the queue_limits structure to reset
33 *
34 * Prepare queue limits for applying limits from underlying devices using
35 * blk_stack_limits().
36 */
blk_set_stacking_limits(struct queue_limits * lim)37 void blk_set_stacking_limits(struct queue_limits *lim)
38 {
39 memset(lim, 0, sizeof(*lim));
40 lim->logical_block_size = SECTOR_SIZE;
41 lim->physical_block_size = SECTOR_SIZE;
42 lim->io_min = SECTOR_SIZE;
43 lim->discard_granularity = SECTOR_SIZE;
44 lim->dma_alignment = SECTOR_SIZE - 1;
45 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
46
47 /* Inherit limits from component devices */
48 lim->max_segments = USHRT_MAX;
49 lim->max_discard_segments = USHRT_MAX;
50 lim->max_hw_sectors = UINT_MAX;
51 lim->max_segment_size = UINT_MAX;
52 lim->max_sectors = UINT_MAX;
53 lim->max_dev_sectors = UINT_MAX;
54 lim->max_write_zeroes_sectors = UINT_MAX;
55 lim->max_hw_wzeroes_unmap_sectors = UINT_MAX;
56 lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
57 lim->max_hw_zone_append_sectors = UINT_MAX;
58 lim->max_user_discard_sectors = UINT_MAX;
59 lim->atomic_write_hw_max = UINT_MAX;
60 }
61 EXPORT_SYMBOL(blk_set_stacking_limits);
62
blk_apply_bdi_limits(struct backing_dev_info * bdi,struct queue_limits * lim)63 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
64 struct queue_limits *lim)
65 {
66 u64 io_opt = lim->io_opt;
67
68 /*
69 * For read-ahead of large files to be effective, we need to read ahead
70 * at least twice the optimal I/O size. For rotational devices that do
71 * not report an optimal I/O size (e.g. ATA HDDs), use the maximum I/O
72 * size to avoid falling back to the (rather inefficient) small default
73 * read-ahead size.
74 *
75 * There is no hardware limitation for the read-ahead size and the user
76 * might have increased the read-ahead size through sysfs, so don't ever
77 * decrease it.
78 */
79 if (!io_opt && (lim->features & BLK_FEAT_ROTATIONAL))
80 io_opt = (u64)lim->max_sectors << SECTOR_SHIFT;
81
82 bdi->ra_pages = max3(bdi->ra_pages,
83 io_opt * 2 >> PAGE_SHIFT,
84 VM_READAHEAD_PAGES);
85 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
86 }
87
blk_validate_zoned_limits(struct queue_limits * lim)88 static int blk_validate_zoned_limits(struct queue_limits *lim)
89 {
90 if (!(lim->features & BLK_FEAT_ZONED)) {
91 if (WARN_ON_ONCE(lim->max_open_zones) ||
92 WARN_ON_ONCE(lim->max_active_zones) ||
93 WARN_ON_ONCE(lim->zone_write_granularity) ||
94 WARN_ON_ONCE(lim->max_zone_append_sectors))
95 return -EINVAL;
96 return 0;
97 }
98
99 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
100 return -EINVAL;
101
102 /*
103 * Given that active zones include open zones, the maximum number of
104 * open zones cannot be larger than the maximum number of active zones.
105 */
106 if (lim->max_active_zones &&
107 lim->max_open_zones > lim->max_active_zones)
108 return -EINVAL;
109
110 if (lim->zone_write_granularity < lim->logical_block_size)
111 lim->zone_write_granularity = lim->logical_block_size;
112
113 /*
114 * The Zone Append size is limited by the maximum I/O size and the zone
115 * size given that it can't span zones.
116 *
117 * If no max_hw_zone_append_sectors limit is provided, the block layer
118 * will emulated it, else we're also bound by the hardware limit.
119 */
120 lim->max_zone_append_sectors =
121 min_not_zero(lim->max_hw_zone_append_sectors,
122 min(lim->chunk_sectors, lim->max_hw_sectors));
123 return 0;
124 }
125
126 /*
127 * Maximum size of I/O that needs a block layer integrity buffer. Limited
128 * by the number of intervals for which we can fit the integrity buffer into
129 * the buffer size. Because the buffer is a single segment it is also limited
130 * by the maximum segment size.
131 */
max_integrity_io_size(struct queue_limits * lim)132 static inline unsigned int max_integrity_io_size(struct queue_limits *lim)
133 {
134 return min_t(unsigned int, lim->max_segment_size,
135 (BLK_INTEGRITY_MAX_SIZE / lim->integrity.metadata_size) <<
136 lim->integrity.interval_exp);
137 }
138
blk_validate_integrity_limits(struct queue_limits * lim)139 static int blk_validate_integrity_limits(struct queue_limits *lim)
140 {
141 struct blk_integrity *bi = &lim->integrity;
142
143 if (!bi->metadata_size) {
144 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
145 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
146 pr_warn("invalid PI settings.\n");
147 return -EINVAL;
148 }
149 bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY;
150 return 0;
151 }
152
153 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
154 pr_warn("integrity support disabled.\n");
155 return -EINVAL;
156 }
157
158 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
159 (bi->flags & BLK_INTEGRITY_REF_TAG)) {
160 pr_warn("ref tag not support without checksum.\n");
161 return -EINVAL;
162 }
163
164 if (bi->pi_tuple_size > bi->metadata_size) {
165 pr_warn("pi_tuple_size (%u) exceeds metadata_size (%u)\n",
166 bi->pi_tuple_size,
167 bi->metadata_size);
168 return -EINVAL;
169 }
170
171 switch (bi->csum_type) {
172 case BLK_INTEGRITY_CSUM_NONE:
173 if (bi->pi_tuple_size) {
174 pr_warn("pi_tuple_size must be 0 when checksum type is none\n");
175 return -EINVAL;
176 }
177 break;
178 case BLK_INTEGRITY_CSUM_CRC:
179 case BLK_INTEGRITY_CSUM_IP:
180 if (bi->pi_tuple_size != sizeof(struct t10_pi_tuple)) {
181 pr_warn("pi_tuple_size mismatch for T10 PI: expected %zu, got %u\n",
182 sizeof(struct t10_pi_tuple),
183 bi->pi_tuple_size);
184 return -EINVAL;
185 }
186 break;
187 case BLK_INTEGRITY_CSUM_CRC64:
188 if (bi->pi_tuple_size != sizeof(struct crc64_pi_tuple)) {
189 pr_warn("pi_tuple_size mismatch for CRC64 PI: expected %zu, got %u\n",
190 sizeof(struct crc64_pi_tuple),
191 bi->pi_tuple_size);
192 return -EINVAL;
193 }
194 break;
195 }
196
197 if (!bi->interval_exp)
198 bi->interval_exp = ilog2(lim->logical_block_size);
199
200 /*
201 * The PI generation / validation helpers do not expect intervals to
202 * straddle multiple bio_vecs. Enforce alignment so that those are
203 * never generated, and that each buffer is aligned as expected.
204 */
205 if (bi->csum_type) {
206 lim->dma_alignment = max(lim->dma_alignment,
207 (1U << bi->interval_exp) - 1);
208 }
209
210 /*
211 * The block layer automatically adds integrity data for bios that don't
212 * already have it. Limit the I/O size so that a single maximum size
213 * metadata segment can cover the integrity data for the entire I/O.
214 */
215 lim->max_sectors = min(lim->max_sectors,
216 max_integrity_io_size(lim) >> SECTOR_SHIFT);
217
218 return 0;
219 }
220
221 /*
222 * Returns max guaranteed bytes which we can fit in a bio.
223 *
224 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
225 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
226 * the first and last segments.
227 */
blk_queue_max_guaranteed_bio(struct queue_limits * lim)228 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
229 {
230 unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
231 unsigned int length;
232
233 length = min(max_segments, 2) * lim->logical_block_size;
234 if (max_segments > 2)
235 length += (max_segments - 2) * PAGE_SIZE;
236
237 return length;
238 }
239
blk_atomic_writes_update_limits(struct queue_limits * lim)240 static void blk_atomic_writes_update_limits(struct queue_limits *lim)
241 {
242 unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
243 blk_queue_max_guaranteed_bio(lim));
244
245 unit_limit = rounddown_pow_of_two(unit_limit);
246
247 lim->atomic_write_max_sectors =
248 min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
249 lim->max_hw_sectors);
250 lim->atomic_write_unit_min =
251 min(lim->atomic_write_hw_unit_min, unit_limit);
252 lim->atomic_write_unit_max =
253 min(lim->atomic_write_hw_unit_max, unit_limit);
254 lim->atomic_write_boundary_sectors =
255 lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
256 }
257
258 /*
259 * Test whether any boundary is aligned with any chunk size. Stacked
260 * devices store any stripe size in t->chunk_sectors.
261 */
blk_valid_atomic_writes_boundary(unsigned int chunk_sectors,unsigned int boundary_sectors)262 static bool blk_valid_atomic_writes_boundary(unsigned int chunk_sectors,
263 unsigned int boundary_sectors)
264 {
265 if (!chunk_sectors || !boundary_sectors)
266 return true;
267
268 if (boundary_sectors > chunk_sectors &&
269 boundary_sectors % chunk_sectors)
270 return false;
271
272 if (chunk_sectors > boundary_sectors &&
273 chunk_sectors % boundary_sectors)
274 return false;
275
276 return true;
277 }
278
blk_validate_atomic_write_limits(struct queue_limits * lim)279 static void blk_validate_atomic_write_limits(struct queue_limits *lim)
280 {
281 unsigned int boundary_sectors;
282 unsigned int atomic_write_hw_max_sectors =
283 lim->atomic_write_hw_max >> SECTOR_SHIFT;
284
285 if (!(lim->features & BLK_FEAT_ATOMIC_WRITES))
286 goto unsupported;
287
288 /* UINT_MAX indicates stacked limits in initial state */
289 if (lim->atomic_write_hw_max == UINT_MAX)
290 goto unsupported;
291
292 if (!lim->atomic_write_hw_max)
293 goto unsupported;
294
295 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
296 goto unsupported;
297
298 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
299 goto unsupported;
300
301 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
302 lim->atomic_write_hw_unit_max))
303 goto unsupported;
304
305 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
306 lim->atomic_write_hw_max))
307 goto unsupported;
308
309 if (WARN_ON_ONCE(lim->chunk_sectors &&
310 atomic_write_hw_max_sectors > lim->chunk_sectors))
311 goto unsupported;
312
313 boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
314
315 if (boundary_sectors) {
316 if (WARN_ON_ONCE(lim->atomic_write_hw_max >
317 lim->atomic_write_hw_boundary))
318 goto unsupported;
319
320 if (WARN_ON_ONCE(!blk_valid_atomic_writes_boundary(
321 lim->chunk_sectors, boundary_sectors)))
322 goto unsupported;
323
324 /*
325 * The boundary size just needs to be a multiple of unit_max
326 * (and not necessarily a power-of-2), so this following check
327 * could be relaxed in future.
328 * Furthermore, if needed, unit_max could even be reduced so
329 * that it is compliant with a !power-of-2 boundary.
330 */
331 if (!is_power_of_2(boundary_sectors))
332 goto unsupported;
333 }
334
335 blk_atomic_writes_update_limits(lim);
336 return;
337
338 unsupported:
339 lim->atomic_write_max_sectors = 0;
340 lim->atomic_write_boundary_sectors = 0;
341 lim->atomic_write_unit_min = 0;
342 lim->atomic_write_unit_max = 0;
343 }
344
345 /*
346 * Check that the limits in lim are valid, initialize defaults for unset
347 * values, and cap values based on others where needed.
348 */
blk_validate_limits(struct queue_limits * lim)349 int blk_validate_limits(struct queue_limits *lim)
350 {
351 unsigned int max_hw_sectors;
352 unsigned int logical_block_sectors;
353 unsigned long seg_size;
354 int err;
355
356 /*
357 * Unless otherwise specified, default to 512 byte logical blocks and a
358 * physical block size equal to the logical block size.
359 */
360 if (!lim->logical_block_size)
361 lim->logical_block_size = SECTOR_SIZE;
362 else if (blk_validate_block_size(lim->logical_block_size)) {
363 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
364 return -EINVAL;
365 }
366 if (lim->physical_block_size < lim->logical_block_size) {
367 lim->physical_block_size = lim->logical_block_size;
368 } else if (!is_power_of_2(lim->physical_block_size)) {
369 pr_warn("Invalid physical block size (%d)\n", lim->physical_block_size);
370 return -EINVAL;
371 }
372
373 /*
374 * The minimum I/O size defaults to the physical block size unless
375 * explicitly overridden.
376 */
377 if (lim->io_min < lim->physical_block_size)
378 lim->io_min = lim->physical_block_size;
379
380 /*
381 * The optimal I/O size may not be aligned to physical block size
382 * (because it may be limited by dma engines which have no clue about
383 * block size of the disks attached to them), so we round it down here.
384 */
385 lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
386
387 /*
388 * max_hw_sectors has a somewhat weird default for historical reason,
389 * but driver really should set their own instead of relying on this
390 * value.
391 *
392 * The block layer relies on the fact that every driver can
393 * handle at lest a page worth of data per I/O, and needs the value
394 * aligned to the logical block size.
395 */
396 if (!lim->max_hw_sectors)
397 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
398 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
399 return -EINVAL;
400 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
401 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
402 return -EINVAL;
403 lim->max_hw_sectors = round_down(lim->max_hw_sectors,
404 logical_block_sectors);
405
406 /*
407 * The actual max_sectors value is a complex beast and also takes the
408 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
409 * value into account. The ->max_sectors value is always calculated
410 * from these, so directly setting it won't have any effect.
411 */
412 max_hw_sectors = min_not_zero(lim->max_hw_sectors,
413 lim->max_dev_sectors);
414 if (lim->max_user_sectors) {
415 if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE)
416 return -EINVAL;
417 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
418 } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
419 lim->max_sectors =
420 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
421 } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
422 lim->max_sectors =
423 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
424 } else {
425 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
426 }
427 lim->max_sectors = round_down(lim->max_sectors,
428 logical_block_sectors);
429
430 /*
431 * Random default for the maximum number of segments. Driver should not
432 * rely on this and set their own.
433 */
434 if (!lim->max_segments)
435 lim->max_segments = BLK_MAX_SEGMENTS;
436
437 if (lim->max_hw_wzeroes_unmap_sectors &&
438 lim->max_hw_wzeroes_unmap_sectors != lim->max_write_zeroes_sectors)
439 return -EINVAL;
440 lim->max_wzeroes_unmap_sectors = min(lim->max_hw_wzeroes_unmap_sectors,
441 lim->max_user_wzeroes_unmap_sectors);
442
443 lim->max_discard_sectors =
444 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
445
446 /*
447 * When discard is not supported, discard_granularity should be reported
448 * as 0 to userspace.
449 */
450 if (lim->max_discard_sectors)
451 lim->discard_granularity =
452 max(lim->discard_granularity, lim->physical_block_size);
453 else
454 lim->discard_granularity = 0;
455
456 if (!lim->max_discard_segments)
457 lim->max_discard_segments = 1;
458
459 /*
460 * By default there is no limit on the segment boundary alignment,
461 * but if there is one it can't be smaller than the page size as
462 * that would break all the normal I/O patterns.
463 */
464 if (!lim->seg_boundary_mask)
465 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
466 if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1))
467 return -EINVAL;
468
469 /*
470 * Stacking device may have both virtual boundary and max segment
471 * size limit, so allow this setting now, and long-term the two
472 * might need to move out of stacking limits since we have immutable
473 * bvec and lower layer bio splitting is supposed to handle the two
474 * correctly.
475 */
476 if (lim->virt_boundary_mask) {
477 if (!lim->max_segment_size)
478 lim->max_segment_size = UINT_MAX;
479 } else {
480 /*
481 * The maximum segment size has an odd historic 64k default that
482 * drivers probably should override. Just like the I/O size we
483 * require drivers to at least handle a full page per segment.
484 */
485 if (!lim->max_segment_size)
486 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
487 if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE))
488 return -EINVAL;
489 }
490
491 /* setup max segment size for building new segment in fast path */
492 if (lim->seg_boundary_mask > lim->max_segment_size - 1)
493 seg_size = lim->max_segment_size;
494 else
495 seg_size = lim->seg_boundary_mask + 1;
496 lim->max_fast_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE);
497
498 /*
499 * We require drivers to at least do logical block aligned I/O, but
500 * historically could not check for that due to the separate calls
501 * to set the limits. Once the transition is finished the check
502 * below should be narrowed down to check the logical block size.
503 */
504 if (!lim->dma_alignment)
505 lim->dma_alignment = SECTOR_SIZE - 1;
506 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
507 return -EINVAL;
508
509 if (lim->alignment_offset) {
510 lim->alignment_offset &= (lim->physical_block_size - 1);
511 lim->flags &= ~BLK_FLAG_MISALIGNED;
512 }
513
514 if (!(lim->features & BLK_FEAT_WRITE_CACHE))
515 lim->features &= ~BLK_FEAT_FUA;
516
517 blk_validate_atomic_write_limits(lim);
518
519 err = blk_validate_integrity_limits(lim);
520 if (err)
521 return err;
522 return blk_validate_zoned_limits(lim);
523 }
524 EXPORT_SYMBOL_GPL(blk_validate_limits);
525
526 /*
527 * Set the default limits for a newly allocated queue. @lim contains the
528 * initial limits set by the driver, which could be no limit in which case
529 * all fields are cleared to zero.
530 */
blk_set_default_limits(struct queue_limits * lim)531 int blk_set_default_limits(struct queue_limits *lim)
532 {
533 /*
534 * Most defaults are set by capping the bounds in blk_validate_limits,
535 * but these limits are special and need an explicit initialization to
536 * the max value here.
537 */
538 lim->max_user_discard_sectors = UINT_MAX;
539 lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
540 return blk_validate_limits(lim);
541 }
542
543 /**
544 * queue_limits_commit_update - commit an atomic update of queue limits
545 * @q: queue to update
546 * @lim: limits to apply
547 *
548 * Apply the limits in @lim that were obtained from queue_limits_start_update()
549 * and updated by the caller to @q. The caller must have frozen the queue or
550 * ensure that there are no outstanding I/Os by other means.
551 *
552 * Returns 0 if successful, else a negative error code.
553 */
queue_limits_commit_update(struct request_queue * q,struct queue_limits * lim)554 int queue_limits_commit_update(struct request_queue *q,
555 struct queue_limits *lim)
556 {
557 int error;
558
559 lockdep_assert_held(&q->limits_lock);
560
561 error = blk_validate_limits(lim);
562 if (error)
563 goto out_unlock;
564
565 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
566 if (q->crypto_profile && lim->integrity.tag_size) {
567 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
568 error = -EINVAL;
569 goto out_unlock;
570 }
571 #endif
572
573 q->limits = *lim;
574 if (q->disk)
575 blk_apply_bdi_limits(q->disk->bdi, lim);
576 out_unlock:
577 mutex_unlock(&q->limits_lock);
578 return error;
579 }
580 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
581
582 /**
583 * queue_limits_commit_update_frozen - commit an atomic update of queue limits
584 * @q: queue to update
585 * @lim: limits to apply
586 *
587 * Apply the limits in @lim that were obtained from queue_limits_start_update()
588 * and updated with the new values by the caller to @q. Freezes the queue
589 * before the update and unfreezes it after.
590 *
591 * Returns 0 if successful, else a negative error code.
592 */
queue_limits_commit_update_frozen(struct request_queue * q,struct queue_limits * lim)593 int queue_limits_commit_update_frozen(struct request_queue *q,
594 struct queue_limits *lim)
595 {
596 unsigned int memflags;
597 int ret;
598
599 memflags = blk_mq_freeze_queue(q);
600 ret = queue_limits_commit_update(q, lim);
601 blk_mq_unfreeze_queue(q, memflags);
602
603 return ret;
604 }
605 EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen);
606
607 /**
608 * queue_limits_set - apply queue limits to queue
609 * @q: queue to update
610 * @lim: limits to apply
611 *
612 * Apply the limits in @lim that were freshly initialized to @q.
613 * To update existing limits use queue_limits_start_update() and
614 * queue_limits_commit_update() instead.
615 *
616 * Returns 0 if successful, else a negative error code.
617 */
queue_limits_set(struct request_queue * q,struct queue_limits * lim)618 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
619 {
620 mutex_lock(&q->limits_lock);
621 return queue_limits_commit_update(q, lim);
622 }
623 EXPORT_SYMBOL_GPL(queue_limits_set);
624
queue_limit_alignment_offset(const struct queue_limits * lim,sector_t sector)625 static int queue_limit_alignment_offset(const struct queue_limits *lim,
626 sector_t sector)
627 {
628 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
629 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
630 << SECTOR_SHIFT;
631
632 return (granularity + lim->alignment_offset - alignment) % granularity;
633 }
634
queue_limit_discard_alignment(const struct queue_limits * lim,sector_t sector)635 static unsigned int queue_limit_discard_alignment(
636 const struct queue_limits *lim, sector_t sector)
637 {
638 unsigned int alignment, granularity, offset;
639
640 if (!lim->max_discard_sectors)
641 return 0;
642
643 /* Why are these in bytes, not sectors? */
644 alignment = lim->discard_alignment >> SECTOR_SHIFT;
645 granularity = lim->discard_granularity >> SECTOR_SHIFT;
646
647 /* Offset of the partition start in 'granularity' sectors */
648 offset = sector_div(sector, granularity);
649
650 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
651 offset = (granularity + alignment - offset) % granularity;
652
653 /* Turn it back into bytes, gaah */
654 return offset << SECTOR_SHIFT;
655 }
656
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)657 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
658 {
659 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
660 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
661 sectors = PAGE_SIZE >> SECTOR_SHIFT;
662 return sectors;
663 }
664
665 /* Check if second and later bottom devices are compliant */
blk_stack_atomic_writes_tail(struct queue_limits * t,struct queue_limits * b)666 static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
667 struct queue_limits *b)
668 {
669 /* We're not going to support different boundary sizes.. yet */
670 if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
671 return false;
672
673 /* Can't support this */
674 if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
675 return false;
676
677 /* Or this */
678 if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
679 return false;
680
681 t->atomic_write_hw_max = min(t->atomic_write_hw_max,
682 b->atomic_write_hw_max);
683 t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
684 b->atomic_write_hw_unit_min);
685 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
686 b->atomic_write_hw_unit_max);
687 return true;
688 }
689
blk_stack_atomic_writes_chunk_sectors(struct queue_limits * t)690 static void blk_stack_atomic_writes_chunk_sectors(struct queue_limits *t)
691 {
692 unsigned int chunk_bytes;
693
694 if (!t->chunk_sectors)
695 return;
696
697 /*
698 * If chunk sectors is so large that its value in bytes overflows
699 * UINT_MAX, then just shift it down so it definitely will fit.
700 * We don't support atomic writes of such a large size anyway.
701 */
702 if (check_shl_overflow(t->chunk_sectors, SECTOR_SHIFT, &chunk_bytes))
703 chunk_bytes = t->chunk_sectors;
704
705 /*
706 * Find values for limits which work for chunk size.
707 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
708 * size, as the chunk size is not restricted to a power-of-2.
709 * So we need to find highest power-of-2 which works for the chunk
710 * size.
711 * As an example scenario, we could have t->unit_max = 16K and
712 * t->chunk_sectors = 24KB. For this case, reduce t->unit_max to a
713 * value aligned with both limits, i.e. 8K in this example.
714 */
715 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
716 max_pow_of_two_factor(chunk_bytes));
717
718 t->atomic_write_hw_unit_min = min(t->atomic_write_hw_unit_min,
719 t->atomic_write_hw_unit_max);
720 t->atomic_write_hw_max = min(t->atomic_write_hw_max, chunk_bytes);
721 }
722
723 /* Check stacking of first bottom device */
blk_stack_atomic_writes_head(struct queue_limits * t,struct queue_limits * b)724 static bool blk_stack_atomic_writes_head(struct queue_limits *t,
725 struct queue_limits *b)
726 {
727 if (!blk_valid_atomic_writes_boundary(t->chunk_sectors,
728 b->atomic_write_hw_boundary >> SECTOR_SHIFT))
729 return false;
730
731 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
732 t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
733 t->atomic_write_hw_max = b->atomic_write_hw_max;
734 t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
735 return true;
736 }
737
blk_stack_atomic_writes_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)738 static void blk_stack_atomic_writes_limits(struct queue_limits *t,
739 struct queue_limits *b, sector_t start)
740 {
741 if (!(b->features & BLK_FEAT_ATOMIC_WRITES))
742 goto unsupported;
743
744 if (!b->atomic_write_hw_unit_min)
745 goto unsupported;
746
747 if (!blk_atomic_write_start_sect_aligned(start, b))
748 goto unsupported;
749
750 /* UINT_MAX indicates no stacking of bottom devices yet */
751 if (t->atomic_write_hw_max == UINT_MAX) {
752 if (!blk_stack_atomic_writes_head(t, b))
753 goto unsupported;
754 } else {
755 if (!blk_stack_atomic_writes_tail(t, b))
756 goto unsupported;
757 }
758 blk_stack_atomic_writes_chunk_sectors(t);
759 return;
760
761 unsupported:
762 t->atomic_write_hw_max = 0;
763 t->atomic_write_hw_unit_max = 0;
764 t->atomic_write_hw_unit_min = 0;
765 t->atomic_write_hw_boundary = 0;
766 }
767
768 /**
769 * blk_stack_limits - adjust queue_limits for stacked devices
770 * @t: the stacking driver limits (top device)
771 * @b: the underlying queue limits (bottom, component device)
772 * @start: first data sector within component device
773 *
774 * Description:
775 * This function is used by stacking drivers like MD and DM to ensure
776 * that all component devices have compatible block sizes and
777 * alignments. The stacking driver must provide a queue_limits
778 * struct (top) and then iteratively call the stacking function for
779 * all component (bottom) devices. The stacking function will
780 * attempt to combine the values and ensure proper alignment.
781 *
782 * Returns 0 if the top and bottom queue_limits are compatible. The
783 * top device's block sizes and alignment offsets may be adjusted to
784 * ensure alignment with the bottom device. If no compatible sizes
785 * and alignments exist, -1 is returned and the resulting top
786 * queue_limits will have the misaligned flag set to indicate that
787 * the alignment_offset is undefined.
788 */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)789 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
790 sector_t start)
791 {
792 unsigned int top, bottom, alignment;
793 int ret = 0;
794
795 t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
796
797 /*
798 * Some feaures need to be supported both by the stacking driver and all
799 * underlying devices. The stacking driver sets these flags before
800 * stacking the limits, and this will clear the flags if any of the
801 * underlying devices does not support it.
802 */
803 if (!(b->features & BLK_FEAT_NOWAIT))
804 t->features &= ~BLK_FEAT_NOWAIT;
805 if (!(b->features & BLK_FEAT_POLL))
806 t->features &= ~BLK_FEAT_POLL;
807
808 t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
809
810 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
811 t->max_user_sectors = min_not_zero(t->max_user_sectors,
812 b->max_user_sectors);
813 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
814 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
815 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
816 b->max_write_zeroes_sectors);
817 t->max_user_wzeroes_unmap_sectors =
818 min(t->max_user_wzeroes_unmap_sectors,
819 b->max_user_wzeroes_unmap_sectors);
820 t->max_hw_wzeroes_unmap_sectors =
821 min(t->max_hw_wzeroes_unmap_sectors,
822 b->max_hw_wzeroes_unmap_sectors);
823
824 t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
825 b->max_hw_zone_append_sectors);
826
827 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
828 b->seg_boundary_mask);
829 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
830 b->virt_boundary_mask);
831
832 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
833 t->max_discard_segments = min_not_zero(t->max_discard_segments,
834 b->max_discard_segments);
835 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
836 b->max_integrity_segments);
837
838 t->max_segment_size = min_not_zero(t->max_segment_size,
839 b->max_segment_size);
840
841 alignment = queue_limit_alignment_offset(b, start);
842
843 /* Bottom device has different alignment. Check that it is
844 * compatible with the current top alignment.
845 */
846 if (t->alignment_offset != alignment) {
847
848 top = max(t->physical_block_size, t->io_min)
849 + t->alignment_offset;
850 bottom = max(b->physical_block_size, b->io_min) + alignment;
851
852 /* Verify that top and bottom intervals line up */
853 if (max(top, bottom) % min(top, bottom)) {
854 t->flags |= BLK_FLAG_MISALIGNED;
855 ret = -1;
856 }
857 }
858
859 t->logical_block_size = max(t->logical_block_size,
860 b->logical_block_size);
861
862 t->physical_block_size = max(t->physical_block_size,
863 b->physical_block_size);
864
865 t->io_min = max(t->io_min, b->io_min);
866 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
867 t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
868
869 /* Set non-power-of-2 compatible chunk_sectors boundary */
870 if (b->chunk_sectors)
871 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
872
873 /* Physical block size a multiple of the logical block size? */
874 if (t->physical_block_size & (t->logical_block_size - 1)) {
875 t->physical_block_size = t->logical_block_size;
876 t->flags |= BLK_FLAG_MISALIGNED;
877 ret = -1;
878 }
879
880 /* Minimum I/O a multiple of the physical block size? */
881 if (t->io_min & (t->physical_block_size - 1)) {
882 t->io_min = t->physical_block_size;
883 t->flags |= BLK_FLAG_MISALIGNED;
884 ret = -1;
885 }
886
887 /* Optimal I/O a multiple of the physical block size? */
888 if (t->io_opt & (t->physical_block_size - 1)) {
889 t->io_opt = 0;
890 t->flags |= BLK_FLAG_MISALIGNED;
891 ret = -1;
892 }
893
894 /* chunk_sectors a multiple of the physical block size? */
895 if (t->chunk_sectors % (t->physical_block_size >> SECTOR_SHIFT)) {
896 t->chunk_sectors = 0;
897 t->flags |= BLK_FLAG_MISALIGNED;
898 ret = -1;
899 }
900
901 /* Find lowest common alignment_offset */
902 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
903 % max(t->physical_block_size, t->io_min);
904
905 /* Verify that new alignment_offset is on a logical block boundary */
906 if (t->alignment_offset & (t->logical_block_size - 1)) {
907 t->flags |= BLK_FLAG_MISALIGNED;
908 ret = -1;
909 }
910
911 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
912 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
913 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
914
915 /* Discard alignment and granularity */
916 if (b->discard_granularity) {
917 alignment = queue_limit_discard_alignment(b, start);
918
919 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
920 b->max_discard_sectors);
921 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
922 b->max_hw_discard_sectors);
923 t->discard_granularity = max(t->discard_granularity,
924 b->discard_granularity);
925 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
926 t->discard_granularity;
927 }
928 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
929 b->max_secure_erase_sectors);
930 t->zone_write_granularity = max(t->zone_write_granularity,
931 b->zone_write_granularity);
932 if (!(t->features & BLK_FEAT_ZONED)) {
933 t->zone_write_granularity = 0;
934 t->max_zone_append_sectors = 0;
935 }
936 blk_stack_atomic_writes_limits(t, b, start);
937
938 return ret;
939 }
940 EXPORT_SYMBOL(blk_stack_limits);
941
942 /**
943 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
944 * @t: the stacking driver limits (top device)
945 * @bdev: the underlying block device (bottom)
946 * @offset: offset to beginning of data within component device
947 * @pfx: prefix to use for warnings logged
948 *
949 * Description:
950 * This function is used by stacking drivers like MD and DM to ensure
951 * that all component devices have compatible block sizes and
952 * alignments. The stacking driver must provide a queue_limits
953 * struct (top) and then iteratively call the stacking function for
954 * all component (bottom) devices. The stacking function will
955 * attempt to combine the values and ensure proper alignment.
956 */
queue_limits_stack_bdev(struct queue_limits * t,struct block_device * bdev,sector_t offset,const char * pfx)957 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
958 sector_t offset, const char *pfx)
959 {
960 if (blk_stack_limits(t, bdev_limits(bdev),
961 get_start_sect(bdev) + offset))
962 pr_notice("%s: Warning: Device %pg is misaligned\n",
963 pfx, bdev);
964 }
965 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
966
967 /**
968 * queue_limits_stack_integrity - stack integrity profile
969 * @t: target queue limits
970 * @b: base queue limits
971 *
972 * Check if the integrity profile in the @b can be stacked into the
973 * target @t. Stacking is possible if either:
974 *
975 * a) does not have any integrity information stacked into it yet
976 * b) the integrity profile in @b is identical to the one in @t
977 *
978 * If @b can be stacked into @t, return %true. Else return %false and clear the
979 * integrity information in @t.
980 */
queue_limits_stack_integrity(struct queue_limits * t,struct queue_limits * b)981 bool queue_limits_stack_integrity(struct queue_limits *t,
982 struct queue_limits *b)
983 {
984 struct blk_integrity *ti = &t->integrity;
985 struct blk_integrity *bi = &b->integrity;
986
987 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
988 return true;
989
990 if (ti->flags & BLK_INTEGRITY_STACKED) {
991 if (ti->metadata_size != bi->metadata_size)
992 goto incompatible;
993 if (ti->interval_exp != bi->interval_exp)
994 goto incompatible;
995 if (ti->tag_size != bi->tag_size)
996 goto incompatible;
997 if (ti->csum_type != bi->csum_type)
998 goto incompatible;
999 if (ti->pi_tuple_size != bi->pi_tuple_size)
1000 goto incompatible;
1001 if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
1002 (bi->flags & BLK_INTEGRITY_REF_TAG))
1003 goto incompatible;
1004 } else {
1005 ti->flags = BLK_INTEGRITY_STACKED;
1006 ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) |
1007 (bi->flags & BLK_INTEGRITY_REF_TAG);
1008 ti->csum_type = bi->csum_type;
1009 ti->pi_tuple_size = bi->pi_tuple_size;
1010 ti->metadata_size = bi->metadata_size;
1011 ti->pi_offset = bi->pi_offset;
1012 ti->interval_exp = bi->interval_exp;
1013 ti->tag_size = bi->tag_size;
1014 }
1015 return true;
1016
1017 incompatible:
1018 memset(ti, 0, sizeof(*ti));
1019 return false;
1020 }
1021 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
1022
1023 /**
1024 * blk_set_queue_depth - tell the block layer about the device queue depth
1025 * @q: the request queue for the device
1026 * @depth: queue depth
1027 *
1028 */
blk_set_queue_depth(struct request_queue * q,unsigned int depth)1029 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1030 {
1031 q->queue_depth = depth;
1032 rq_qos_queue_depth_changed(q);
1033 }
1034 EXPORT_SYMBOL(blk_set_queue_depth);
1035
bdev_alignment_offset(struct block_device * bdev)1036 int bdev_alignment_offset(struct block_device *bdev)
1037 {
1038 struct request_queue *q = bdev_get_queue(bdev);
1039
1040 if (q->limits.flags & BLK_FLAG_MISALIGNED)
1041 return -1;
1042 if (bdev_is_partition(bdev))
1043 return queue_limit_alignment_offset(&q->limits,
1044 bdev->bd_start_sect);
1045 return q->limits.alignment_offset;
1046 }
1047 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1048
bdev_discard_alignment(struct block_device * bdev)1049 unsigned int bdev_discard_alignment(struct block_device *bdev)
1050 {
1051 struct request_queue *q = bdev_get_queue(bdev);
1052
1053 if (bdev_is_partition(bdev))
1054 return queue_limit_discard_alignment(&q->limits,
1055 bdev->bd_start_sect);
1056 return q->limits.discard_alignment;
1057 }
1058 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
1059