xref: /linux/block/blk-settings.c (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "blk.h"
19 #include "blk-rq-qos.h"
20 #include "blk-wbt.h"
21 
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 {
24 	WRITE_ONCE(q->rq_timeout, timeout);
25 }
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27 
28 /**
29  * blk_set_stacking_limits - set default limits for stacking devices
30  * @lim:  the queue_limits structure to reset
31  *
32  * Prepare queue limits for applying limits from underlying devices using
33  * blk_stack_limits().
34  */
blk_set_stacking_limits(struct queue_limits * lim)35 void blk_set_stacking_limits(struct queue_limits *lim)
36 {
37 	memset(lim, 0, sizeof(*lim));
38 	lim->logical_block_size = SECTOR_SIZE;
39 	lim->physical_block_size = SECTOR_SIZE;
40 	lim->io_min = SECTOR_SIZE;
41 	lim->discard_granularity = SECTOR_SIZE;
42 	lim->dma_alignment = SECTOR_SIZE - 1;
43 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 
45 	/* Inherit limits from component devices */
46 	lim->max_segments = USHRT_MAX;
47 	lim->max_discard_segments = USHRT_MAX;
48 	lim->max_hw_sectors = UINT_MAX;
49 	lim->max_segment_size = UINT_MAX;
50 	lim->max_sectors = UINT_MAX;
51 	lim->max_dev_sectors = UINT_MAX;
52 	lim->max_write_zeroes_sectors = UINT_MAX;
53 	lim->max_hw_zone_append_sectors = UINT_MAX;
54 	lim->max_user_discard_sectors = UINT_MAX;
55 }
56 EXPORT_SYMBOL(blk_set_stacking_limits);
57 
blk_apply_bdi_limits(struct backing_dev_info * bdi,struct queue_limits * lim)58 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 		struct queue_limits *lim)
60 {
61 	/*
62 	 * For read-ahead of large files to be effective, we need to read ahead
63 	 * at least twice the optimal I/O size.
64 	 */
65 	bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67 }
68 
blk_validate_zoned_limits(struct queue_limits * lim)69 static int blk_validate_zoned_limits(struct queue_limits *lim)
70 {
71 	if (!(lim->features & BLK_FEAT_ZONED)) {
72 		if (WARN_ON_ONCE(lim->max_open_zones) ||
73 		    WARN_ON_ONCE(lim->max_active_zones) ||
74 		    WARN_ON_ONCE(lim->zone_write_granularity) ||
75 		    WARN_ON_ONCE(lim->max_zone_append_sectors))
76 			return -EINVAL;
77 		return 0;
78 	}
79 
80 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 		return -EINVAL;
82 
83 	/*
84 	 * Given that active zones include open zones, the maximum number of
85 	 * open zones cannot be larger than the maximum number of active zones.
86 	 */
87 	if (lim->max_active_zones &&
88 	    lim->max_open_zones > lim->max_active_zones)
89 		return -EINVAL;
90 
91 	if (lim->zone_write_granularity < lim->logical_block_size)
92 		lim->zone_write_granularity = lim->logical_block_size;
93 
94 	/*
95 	 * The Zone Append size is limited by the maximum I/O size and the zone
96 	 * size given that it can't span zones.
97 	 *
98 	 * If no max_hw_zone_append_sectors limit is provided, the block layer
99 	 * will emulated it, else we're also bound by the hardware limit.
100 	 */
101 	lim->max_zone_append_sectors =
102 		min_not_zero(lim->max_hw_zone_append_sectors,
103 			min(lim->chunk_sectors, lim->max_hw_sectors));
104 	return 0;
105 }
106 
blk_validate_integrity_limits(struct queue_limits * lim)107 static int blk_validate_integrity_limits(struct queue_limits *lim)
108 {
109 	struct blk_integrity *bi = &lim->integrity;
110 
111 	if (!bi->tuple_size) {
112 		if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
113 		    bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
114 			pr_warn("invalid PI settings.\n");
115 			return -EINVAL;
116 		}
117 		bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY;
118 		return 0;
119 	}
120 
121 	if (lim->features & BLK_FEAT_BOUNCE_HIGH) {
122 		pr_warn("no bounce buffer support for integrity metadata\n");
123 		return -EINVAL;
124 	}
125 
126 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
127 		pr_warn("integrity support disabled.\n");
128 		return -EINVAL;
129 	}
130 
131 	if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
132 	    (bi->flags & BLK_INTEGRITY_REF_TAG)) {
133 		pr_warn("ref tag not support without checksum.\n");
134 		return -EINVAL;
135 	}
136 
137 	if (!bi->interval_exp)
138 		bi->interval_exp = ilog2(lim->logical_block_size);
139 
140 	return 0;
141 }
142 
143 /*
144  * Returns max guaranteed bytes which we can fit in a bio.
145  *
146  * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
147  * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
148  * the first and last segments.
149  */
blk_queue_max_guaranteed_bio(struct queue_limits * lim)150 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
151 {
152 	unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
153 	unsigned int length;
154 
155 	length = min(max_segments, 2) * lim->logical_block_size;
156 	if (max_segments > 2)
157 		length += (max_segments - 2) * PAGE_SIZE;
158 
159 	return length;
160 }
161 
blk_atomic_writes_update_limits(struct queue_limits * lim)162 static void blk_atomic_writes_update_limits(struct queue_limits *lim)
163 {
164 	unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
165 					blk_queue_max_guaranteed_bio(lim));
166 
167 	unit_limit = rounddown_pow_of_two(unit_limit);
168 
169 	lim->atomic_write_max_sectors =
170 		min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
171 			lim->max_hw_sectors);
172 	lim->atomic_write_unit_min =
173 		min(lim->atomic_write_hw_unit_min, unit_limit);
174 	lim->atomic_write_unit_max =
175 		min(lim->atomic_write_hw_unit_max, unit_limit);
176 	lim->atomic_write_boundary_sectors =
177 		lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
178 }
179 
blk_validate_atomic_write_limits(struct queue_limits * lim)180 static void blk_validate_atomic_write_limits(struct queue_limits *lim)
181 {
182 	unsigned int boundary_sectors;
183 
184 	if (!(lim->features & BLK_FEAT_ATOMIC_WRITES))
185 		goto unsupported;
186 
187 	if (!lim->atomic_write_hw_max)
188 		goto unsupported;
189 
190 	if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
191 		goto unsupported;
192 
193 	if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
194 		goto unsupported;
195 
196 	if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
197 			 lim->atomic_write_hw_unit_max))
198 		goto unsupported;
199 
200 	if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
201 			 lim->atomic_write_hw_max))
202 		goto unsupported;
203 
204 	boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
205 
206 	if (boundary_sectors) {
207 		if (WARN_ON_ONCE(lim->atomic_write_hw_max >
208 				 lim->atomic_write_hw_boundary))
209 			goto unsupported;
210 		/*
211 		 * A feature of boundary support is that it disallows bios to
212 		 * be merged which would result in a merged request which
213 		 * crosses either a chunk sector or atomic write HW boundary,
214 		 * even though chunk sectors may be just set for performance.
215 		 * For simplicity, disallow atomic writes for a chunk sector
216 		 * which is non-zero and smaller than atomic write HW boundary.
217 		 * Furthermore, chunk sectors must be a multiple of atomic
218 		 * write HW boundary. Otherwise boundary support becomes
219 		 * complicated.
220 		 * Devices which do not conform to these rules can be dealt
221 		 * with if and when they show up.
222 		 */
223 		if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors))
224 			goto unsupported;
225 
226 		/*
227 		 * The boundary size just needs to be a multiple of unit_max
228 		 * (and not necessarily a power-of-2), so this following check
229 		 * could be relaxed in future.
230 		 * Furthermore, if needed, unit_max could even be reduced so
231 		 * that it is compliant with a !power-of-2 boundary.
232 		 */
233 		if (!is_power_of_2(boundary_sectors))
234 			goto unsupported;
235 	}
236 
237 	blk_atomic_writes_update_limits(lim);
238 	return;
239 
240 unsupported:
241 	lim->atomic_write_max_sectors = 0;
242 	lim->atomic_write_boundary_sectors = 0;
243 	lim->atomic_write_unit_min = 0;
244 	lim->atomic_write_unit_max = 0;
245 }
246 
247 /*
248  * Check that the limits in lim are valid, initialize defaults for unset
249  * values, and cap values based on others where needed.
250  */
blk_validate_limits(struct queue_limits * lim)251 int blk_validate_limits(struct queue_limits *lim)
252 {
253 	unsigned int max_hw_sectors;
254 	unsigned int logical_block_sectors;
255 	unsigned long seg_size;
256 	int err;
257 
258 	/*
259 	 * Unless otherwise specified, default to 512 byte logical blocks and a
260 	 * physical block size equal to the logical block size.
261 	 */
262 	if (!lim->logical_block_size)
263 		lim->logical_block_size = SECTOR_SIZE;
264 	else if (blk_validate_block_size(lim->logical_block_size)) {
265 		pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
266 		return -EINVAL;
267 	}
268 	if (lim->physical_block_size < lim->logical_block_size)
269 		lim->physical_block_size = lim->logical_block_size;
270 
271 	/*
272 	 * The minimum I/O size defaults to the physical block size unless
273 	 * explicitly overridden.
274 	 */
275 	if (lim->io_min < lim->physical_block_size)
276 		lim->io_min = lim->physical_block_size;
277 
278 	/*
279 	 * The optimal I/O size may not be aligned to physical block size
280 	 * (because it may be limited by dma engines which have no clue about
281 	 * block size of the disks attached to them), so we round it down here.
282 	 */
283 	lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
284 
285 	/*
286 	 * max_hw_sectors has a somewhat weird default for historical reason,
287 	 * but driver really should set their own instead of relying on this
288 	 * value.
289 	 *
290 	 * The block layer relies on the fact that every driver can
291 	 * handle at lest a page worth of data per I/O, and needs the value
292 	 * aligned to the logical block size.
293 	 */
294 	if (!lim->max_hw_sectors)
295 		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
296 	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
297 		return -EINVAL;
298 	logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
299 	if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
300 		return -EINVAL;
301 	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
302 			logical_block_sectors);
303 
304 	/*
305 	 * The actual max_sectors value is a complex beast and also takes the
306 	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
307 	 * value into account.  The ->max_sectors value is always calculated
308 	 * from these, so directly setting it won't have any effect.
309 	 */
310 	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
311 				lim->max_dev_sectors);
312 	if (lim->max_user_sectors) {
313 		if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE)
314 			return -EINVAL;
315 		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
316 	} else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
317 		lim->max_sectors =
318 			min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
319 	} else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
320 		lim->max_sectors =
321 			min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
322 	} else {
323 		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
324 	}
325 	lim->max_sectors = round_down(lim->max_sectors,
326 			logical_block_sectors);
327 
328 	/*
329 	 * Random default for the maximum number of segments.  Driver should not
330 	 * rely on this and set their own.
331 	 */
332 	if (!lim->max_segments)
333 		lim->max_segments = BLK_MAX_SEGMENTS;
334 
335 	lim->max_discard_sectors =
336 		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
337 
338 	if (!lim->max_discard_segments)
339 		lim->max_discard_segments = 1;
340 
341 	if (lim->discard_granularity < lim->physical_block_size)
342 		lim->discard_granularity = lim->physical_block_size;
343 
344 	/*
345 	 * By default there is no limit on the segment boundary alignment,
346 	 * but if there is one it can't be smaller than the page size as
347 	 * that would break all the normal I/O patterns.
348 	 */
349 	if (!lim->seg_boundary_mask)
350 		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
351 	if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1))
352 		return -EINVAL;
353 
354 	/*
355 	 * Stacking device may have both virtual boundary and max segment
356 	 * size limit, so allow this setting now, and long-term the two
357 	 * might need to move out of stacking limits since we have immutable
358 	 * bvec and lower layer bio splitting is supposed to handle the two
359 	 * correctly.
360 	 */
361 	if (lim->virt_boundary_mask) {
362 		if (!lim->max_segment_size)
363 			lim->max_segment_size = UINT_MAX;
364 	} else {
365 		/*
366 		 * The maximum segment size has an odd historic 64k default that
367 		 * drivers probably should override.  Just like the I/O size we
368 		 * require drivers to at least handle a full page per segment.
369 		 */
370 		if (!lim->max_segment_size)
371 			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
372 		if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE))
373 			return -EINVAL;
374 	}
375 
376 	/* setup min segment size for building new segment in fast path */
377 	if (lim->seg_boundary_mask > lim->max_segment_size - 1)
378 		seg_size = lim->max_segment_size;
379 	else
380 		seg_size = lim->seg_boundary_mask + 1;
381 	lim->min_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE);
382 
383 	/*
384 	 * We require drivers to at least do logical block aligned I/O, but
385 	 * historically could not check for that due to the separate calls
386 	 * to set the limits.  Once the transition is finished the check
387 	 * below should be narrowed down to check the logical block size.
388 	 */
389 	if (!lim->dma_alignment)
390 		lim->dma_alignment = SECTOR_SIZE - 1;
391 	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
392 		return -EINVAL;
393 
394 	if (lim->alignment_offset) {
395 		lim->alignment_offset &= (lim->physical_block_size - 1);
396 		lim->flags &= ~BLK_FLAG_MISALIGNED;
397 	}
398 
399 	if (!(lim->features & BLK_FEAT_WRITE_CACHE))
400 		lim->features &= ~BLK_FEAT_FUA;
401 
402 	blk_validate_atomic_write_limits(lim);
403 
404 	err = blk_validate_integrity_limits(lim);
405 	if (err)
406 		return err;
407 	return blk_validate_zoned_limits(lim);
408 }
409 EXPORT_SYMBOL_GPL(blk_validate_limits);
410 
411 /*
412  * Set the default limits for a newly allocated queue.  @lim contains the
413  * initial limits set by the driver, which could be no limit in which case
414  * all fields are cleared to zero.
415  */
blk_set_default_limits(struct queue_limits * lim)416 int blk_set_default_limits(struct queue_limits *lim)
417 {
418 	/*
419 	 * Most defaults are set by capping the bounds in blk_validate_limits,
420 	 * but max_user_discard_sectors is special and needs an explicit
421 	 * initialization to the max value here.
422 	 */
423 	lim->max_user_discard_sectors = UINT_MAX;
424 	return blk_validate_limits(lim);
425 }
426 
427 /**
428  * queue_limits_commit_update - commit an atomic update of queue limits
429  * @q:		queue to update
430  * @lim:	limits to apply
431  *
432  * Apply the limits in @lim that were obtained from queue_limits_start_update()
433  * and updated by the caller to @q.  The caller must have frozen the queue or
434  * ensure that there are no outstanding I/Os by other means.
435  *
436  * Returns 0 if successful, else a negative error code.
437  */
queue_limits_commit_update(struct request_queue * q,struct queue_limits * lim)438 int queue_limits_commit_update(struct request_queue *q,
439 		struct queue_limits *lim)
440 {
441 	int error;
442 
443 	error = blk_validate_limits(lim);
444 	if (error)
445 		goto out_unlock;
446 
447 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
448 	if (q->crypto_profile && lim->integrity.tag_size) {
449 		pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
450 		error = -EINVAL;
451 		goto out_unlock;
452 	}
453 #endif
454 
455 	q->limits = *lim;
456 	if (q->disk)
457 		blk_apply_bdi_limits(q->disk->bdi, lim);
458 out_unlock:
459 	mutex_unlock(&q->limits_lock);
460 	return error;
461 }
462 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
463 
464 /**
465  * queue_limits_commit_update_frozen - commit an atomic update of queue limits
466  * @q:		queue to update
467  * @lim:	limits to apply
468  *
469  * Apply the limits in @lim that were obtained from queue_limits_start_update()
470  * and updated with the new values by the caller to @q.  Freezes the queue
471  * before the update and unfreezes it after.
472  *
473  * Returns 0 if successful, else a negative error code.
474  */
queue_limits_commit_update_frozen(struct request_queue * q,struct queue_limits * lim)475 int queue_limits_commit_update_frozen(struct request_queue *q,
476 		struct queue_limits *lim)
477 {
478 	unsigned int memflags;
479 	int ret;
480 
481 	memflags = blk_mq_freeze_queue(q);
482 	ret = queue_limits_commit_update(q, lim);
483 	blk_mq_unfreeze_queue(q, memflags);
484 
485 	return ret;
486 }
487 EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen);
488 
489 /**
490  * queue_limits_set - apply queue limits to queue
491  * @q:		queue to update
492  * @lim:	limits to apply
493  *
494  * Apply the limits in @lim that were freshly initialized to @q.
495  * To update existing limits use queue_limits_start_update() and
496  * queue_limits_commit_update() instead.
497  *
498  * Returns 0 if successful, else a negative error code.
499  */
queue_limits_set(struct request_queue * q,struct queue_limits * lim)500 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
501 {
502 	mutex_lock(&q->limits_lock);
503 	return queue_limits_commit_update(q, lim);
504 }
505 EXPORT_SYMBOL_GPL(queue_limits_set);
506 
queue_limit_alignment_offset(const struct queue_limits * lim,sector_t sector)507 static int queue_limit_alignment_offset(const struct queue_limits *lim,
508 		sector_t sector)
509 {
510 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
511 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
512 		<< SECTOR_SHIFT;
513 
514 	return (granularity + lim->alignment_offset - alignment) % granularity;
515 }
516 
queue_limit_discard_alignment(const struct queue_limits * lim,sector_t sector)517 static unsigned int queue_limit_discard_alignment(
518 		const struct queue_limits *lim, sector_t sector)
519 {
520 	unsigned int alignment, granularity, offset;
521 
522 	if (!lim->max_discard_sectors)
523 		return 0;
524 
525 	/* Why are these in bytes, not sectors? */
526 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
527 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
528 
529 	/* Offset of the partition start in 'granularity' sectors */
530 	offset = sector_div(sector, granularity);
531 
532 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
533 	offset = (granularity + alignment - offset) % granularity;
534 
535 	/* Turn it back into bytes, gaah */
536 	return offset << SECTOR_SHIFT;
537 }
538 
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)539 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
540 {
541 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
542 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
543 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
544 	return sectors;
545 }
546 
547 /* Check if second and later bottom devices are compliant */
blk_stack_atomic_writes_tail(struct queue_limits * t,struct queue_limits * b)548 static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
549 				struct queue_limits *b)
550 {
551 	/* We're not going to support different boundary sizes.. yet */
552 	if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
553 		return false;
554 
555 	/* Can't support this */
556 	if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
557 		return false;
558 
559 	/* Or this */
560 	if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
561 		return false;
562 
563 	t->atomic_write_hw_max = min(t->atomic_write_hw_max,
564 				b->atomic_write_hw_max);
565 	t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
566 				b->atomic_write_hw_unit_min);
567 	t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
568 				b->atomic_write_hw_unit_max);
569 	return true;
570 }
571 
572 /* Check for valid boundary of first bottom device */
blk_stack_atomic_writes_boundary_head(struct queue_limits * t,struct queue_limits * b)573 static bool blk_stack_atomic_writes_boundary_head(struct queue_limits *t,
574 				struct queue_limits *b)
575 {
576 	/*
577 	 * Ensure atomic write boundary is aligned with chunk sectors. Stacked
578 	 * devices store chunk sectors in t->io_min.
579 	 */
580 	if (b->atomic_write_hw_boundary > t->io_min &&
581 	    b->atomic_write_hw_boundary % t->io_min)
582 		return false;
583 	if (t->io_min > b->atomic_write_hw_boundary &&
584 	    t->io_min % b->atomic_write_hw_boundary)
585 		return false;
586 
587 	t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
588 	return true;
589 }
590 
591 
592 /* Check stacking of first bottom device */
blk_stack_atomic_writes_head(struct queue_limits * t,struct queue_limits * b)593 static bool blk_stack_atomic_writes_head(struct queue_limits *t,
594 				struct queue_limits *b)
595 {
596 	if (b->atomic_write_hw_boundary &&
597 	    !blk_stack_atomic_writes_boundary_head(t, b))
598 		return false;
599 
600 	if (t->io_min <= SECTOR_SIZE) {
601 		/* No chunk sectors, so use bottom device values directly */
602 		t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
603 		t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
604 		t->atomic_write_hw_max = b->atomic_write_hw_max;
605 		return true;
606 	}
607 
608 	/*
609 	 * Find values for limits which work for chunk size.
610 	 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
611 	 * size (t->io_min), as chunk size is not restricted to a power-of-2.
612 	 * So we need to find highest power-of-2 which works for the chunk
613 	 * size.
614 	 * As an example scenario, we could have b->unit_max = 16K and
615 	 * t->io_min = 24K. For this case, reduce t->unit_max to a value
616 	 * aligned with both limits, i.e. 8K in this example.
617 	 */
618 	t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
619 	while (t->io_min % t->atomic_write_hw_unit_max)
620 		t->atomic_write_hw_unit_max /= 2;
621 
622 	t->atomic_write_hw_unit_min = min(b->atomic_write_hw_unit_min,
623 					  t->atomic_write_hw_unit_max);
624 	t->atomic_write_hw_max = min(b->atomic_write_hw_max, t->io_min);
625 
626 	return true;
627 }
628 
blk_stack_atomic_writes_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)629 static void blk_stack_atomic_writes_limits(struct queue_limits *t,
630 				struct queue_limits *b, sector_t start)
631 {
632 	if (!(b->features & BLK_FEAT_ATOMIC_WRITES))
633 		goto unsupported;
634 
635 	if (!b->atomic_write_hw_unit_min)
636 		goto unsupported;
637 
638 	if (!blk_atomic_write_start_sect_aligned(start, b))
639 		goto unsupported;
640 
641 	/*
642 	 * If atomic_write_hw_max is set, we have already stacked 1x bottom
643 	 * device, so check for compliance.
644 	 */
645 	if (t->atomic_write_hw_max) {
646 		if (!blk_stack_atomic_writes_tail(t, b))
647 			goto unsupported;
648 		return;
649 	}
650 
651 	if (!blk_stack_atomic_writes_head(t, b))
652 		goto unsupported;
653 	return;
654 
655 unsupported:
656 	t->atomic_write_hw_max = 0;
657 	t->atomic_write_hw_unit_max = 0;
658 	t->atomic_write_hw_unit_min = 0;
659 	t->atomic_write_hw_boundary = 0;
660 }
661 
662 /**
663  * blk_stack_limits - adjust queue_limits for stacked devices
664  * @t:	the stacking driver limits (top device)
665  * @b:  the underlying queue limits (bottom, component device)
666  * @start:  first data sector within component device
667  *
668  * Description:
669  *    This function is used by stacking drivers like MD and DM to ensure
670  *    that all component devices have compatible block sizes and
671  *    alignments.  The stacking driver must provide a queue_limits
672  *    struct (top) and then iteratively call the stacking function for
673  *    all component (bottom) devices.  The stacking function will
674  *    attempt to combine the values and ensure proper alignment.
675  *
676  *    Returns 0 if the top and bottom queue_limits are compatible.  The
677  *    top device's block sizes and alignment offsets may be adjusted to
678  *    ensure alignment with the bottom device. If no compatible sizes
679  *    and alignments exist, -1 is returned and the resulting top
680  *    queue_limits will have the misaligned flag set to indicate that
681  *    the alignment_offset is undefined.
682  */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)683 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
684 		     sector_t start)
685 {
686 	unsigned int top, bottom, alignment, ret = 0;
687 
688 	t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
689 
690 	/*
691 	 * Some feaures need to be supported both by the stacking driver and all
692 	 * underlying devices.  The stacking driver sets these flags before
693 	 * stacking the limits, and this will clear the flags if any of the
694 	 * underlying devices does not support it.
695 	 */
696 	if (!(b->features & BLK_FEAT_NOWAIT))
697 		t->features &= ~BLK_FEAT_NOWAIT;
698 	if (!(b->features & BLK_FEAT_POLL))
699 		t->features &= ~BLK_FEAT_POLL;
700 
701 	t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
702 
703 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
704 	t->max_user_sectors = min_not_zero(t->max_user_sectors,
705 			b->max_user_sectors);
706 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
707 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
708 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
709 					b->max_write_zeroes_sectors);
710 	t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
711 					b->max_hw_zone_append_sectors);
712 
713 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
714 					    b->seg_boundary_mask);
715 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
716 					    b->virt_boundary_mask);
717 
718 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
719 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
720 					       b->max_discard_segments);
721 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
722 						 b->max_integrity_segments);
723 
724 	t->max_segment_size = min_not_zero(t->max_segment_size,
725 					   b->max_segment_size);
726 
727 	alignment = queue_limit_alignment_offset(b, start);
728 
729 	/* Bottom device has different alignment.  Check that it is
730 	 * compatible with the current top alignment.
731 	 */
732 	if (t->alignment_offset != alignment) {
733 
734 		top = max(t->physical_block_size, t->io_min)
735 			+ t->alignment_offset;
736 		bottom = max(b->physical_block_size, b->io_min) + alignment;
737 
738 		/* Verify that top and bottom intervals line up */
739 		if (max(top, bottom) % min(top, bottom)) {
740 			t->flags |= BLK_FLAG_MISALIGNED;
741 			ret = -1;
742 		}
743 	}
744 
745 	t->logical_block_size = max(t->logical_block_size,
746 				    b->logical_block_size);
747 
748 	t->physical_block_size = max(t->physical_block_size,
749 				     b->physical_block_size);
750 
751 	t->io_min = max(t->io_min, b->io_min);
752 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
753 	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
754 
755 	/* Set non-power-of-2 compatible chunk_sectors boundary */
756 	if (b->chunk_sectors)
757 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
758 
759 	/* Physical block size a multiple of the logical block size? */
760 	if (t->physical_block_size & (t->logical_block_size - 1)) {
761 		t->physical_block_size = t->logical_block_size;
762 		t->flags |= BLK_FLAG_MISALIGNED;
763 		ret = -1;
764 	}
765 
766 	/* Minimum I/O a multiple of the physical block size? */
767 	if (t->io_min & (t->physical_block_size - 1)) {
768 		t->io_min = t->physical_block_size;
769 		t->flags |= BLK_FLAG_MISALIGNED;
770 		ret = -1;
771 	}
772 
773 	/* Optimal I/O a multiple of the physical block size? */
774 	if (t->io_opt & (t->physical_block_size - 1)) {
775 		t->io_opt = 0;
776 		t->flags |= BLK_FLAG_MISALIGNED;
777 		ret = -1;
778 	}
779 
780 	/* chunk_sectors a multiple of the physical block size? */
781 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
782 		t->chunk_sectors = 0;
783 		t->flags |= BLK_FLAG_MISALIGNED;
784 		ret = -1;
785 	}
786 
787 	/* Find lowest common alignment_offset */
788 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
789 		% max(t->physical_block_size, t->io_min);
790 
791 	/* Verify that new alignment_offset is on a logical block boundary */
792 	if (t->alignment_offset & (t->logical_block_size - 1)) {
793 		t->flags |= BLK_FLAG_MISALIGNED;
794 		ret = -1;
795 	}
796 
797 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
798 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
799 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
800 
801 	/* Discard alignment and granularity */
802 	if (b->discard_granularity) {
803 		alignment = queue_limit_discard_alignment(b, start);
804 
805 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
806 						      b->max_discard_sectors);
807 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
808 							 b->max_hw_discard_sectors);
809 		t->discard_granularity = max(t->discard_granularity,
810 					     b->discard_granularity);
811 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
812 			t->discard_granularity;
813 	}
814 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
815 						   b->max_secure_erase_sectors);
816 	t->zone_write_granularity = max(t->zone_write_granularity,
817 					b->zone_write_granularity);
818 	if (!(t->features & BLK_FEAT_ZONED)) {
819 		t->zone_write_granularity = 0;
820 		t->max_zone_append_sectors = 0;
821 	}
822 	blk_stack_atomic_writes_limits(t, b, start);
823 
824 	return ret;
825 }
826 EXPORT_SYMBOL(blk_stack_limits);
827 
828 /**
829  * queue_limits_stack_bdev - adjust queue_limits for stacked devices
830  * @t:	the stacking driver limits (top device)
831  * @bdev:  the underlying block device (bottom)
832  * @offset:  offset to beginning of data within component device
833  * @pfx: prefix to use for warnings logged
834  *
835  * Description:
836  *    This function is used by stacking drivers like MD and DM to ensure
837  *    that all component devices have compatible block sizes and
838  *    alignments.  The stacking driver must provide a queue_limits
839  *    struct (top) and then iteratively call the stacking function for
840  *    all component (bottom) devices.  The stacking function will
841  *    attempt to combine the values and ensure proper alignment.
842  */
queue_limits_stack_bdev(struct queue_limits * t,struct block_device * bdev,sector_t offset,const char * pfx)843 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
844 		sector_t offset, const char *pfx)
845 {
846 	if (blk_stack_limits(t, bdev_limits(bdev),
847 			get_start_sect(bdev) + offset))
848 		pr_notice("%s: Warning: Device %pg is misaligned\n",
849 			pfx, bdev);
850 }
851 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
852 
853 /**
854  * queue_limits_stack_integrity - stack integrity profile
855  * @t: target queue limits
856  * @b: base queue limits
857  *
858  * Check if the integrity profile in the @b can be stacked into the
859  * target @t.  Stacking is possible if either:
860  *
861  *   a) does not have any integrity information stacked into it yet
862  *   b) the integrity profile in @b is identical to the one in @t
863  *
864  * If @b can be stacked into @t, return %true.  Else return %false and clear the
865  * integrity information in @t.
866  */
queue_limits_stack_integrity(struct queue_limits * t,struct queue_limits * b)867 bool queue_limits_stack_integrity(struct queue_limits *t,
868 		struct queue_limits *b)
869 {
870 	struct blk_integrity *ti = &t->integrity;
871 	struct blk_integrity *bi = &b->integrity;
872 
873 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
874 		return true;
875 
876 	if (ti->flags & BLK_INTEGRITY_STACKED) {
877 		if (ti->tuple_size != bi->tuple_size)
878 			goto incompatible;
879 		if (ti->interval_exp != bi->interval_exp)
880 			goto incompatible;
881 		if (ti->tag_size != bi->tag_size)
882 			goto incompatible;
883 		if (ti->csum_type != bi->csum_type)
884 			goto incompatible;
885 		if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
886 		    (bi->flags & BLK_INTEGRITY_REF_TAG))
887 			goto incompatible;
888 	} else {
889 		ti->flags = BLK_INTEGRITY_STACKED;
890 		ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) |
891 			     (bi->flags & BLK_INTEGRITY_REF_TAG);
892 		ti->csum_type = bi->csum_type;
893 		ti->tuple_size = bi->tuple_size;
894 		ti->pi_offset = bi->pi_offset;
895 		ti->interval_exp = bi->interval_exp;
896 		ti->tag_size = bi->tag_size;
897 	}
898 	return true;
899 
900 incompatible:
901 	memset(ti, 0, sizeof(*ti));
902 	return false;
903 }
904 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
905 
906 /**
907  * blk_set_queue_depth - tell the block layer about the device queue depth
908  * @q:		the request queue for the device
909  * @depth:		queue depth
910  *
911  */
blk_set_queue_depth(struct request_queue * q,unsigned int depth)912 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
913 {
914 	q->queue_depth = depth;
915 	rq_qos_queue_depth_changed(q);
916 }
917 EXPORT_SYMBOL(blk_set_queue_depth);
918 
bdev_alignment_offset(struct block_device * bdev)919 int bdev_alignment_offset(struct block_device *bdev)
920 {
921 	struct request_queue *q = bdev_get_queue(bdev);
922 
923 	if (q->limits.flags & BLK_FLAG_MISALIGNED)
924 		return -1;
925 	if (bdev_is_partition(bdev))
926 		return queue_limit_alignment_offset(&q->limits,
927 				bdev->bd_start_sect);
928 	return q->limits.alignment_offset;
929 }
930 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
931 
bdev_discard_alignment(struct block_device * bdev)932 unsigned int bdev_discard_alignment(struct block_device *bdev)
933 {
934 	struct request_queue *q = bdev_get_queue(bdev);
935 
936 	if (bdev_is_partition(bdev))
937 		return queue_limit_discard_alignment(&q->limits,
938 				bdev->bd_start_sect);
939 	return q->limits.discard_alignment;
940 }
941 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
942