1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/suspend.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 #include <linux/sched/isolation.h> 33 34 #include <trace/events/block.h> 35 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-pm.h" 41 #include "blk-stat.h" 42 #include "blk-mq-sched.h" 43 #include "blk-rq-qos.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 47 static DEFINE_MUTEX(blk_mq_cpuhp_lock); 48 49 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 50 static void blk_mq_request_bypass_insert(struct request *rq, 51 blk_insert_t flags); 52 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 53 struct list_head *list); 54 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 55 struct io_comp_batch *iob, unsigned int flags); 56 57 /* 58 * Check if any of the ctx, dispatch list or elevator 59 * have pending work in this hardware queue. 60 */ 61 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 62 { 63 return !list_empty_careful(&hctx->dispatch) || 64 sbitmap_any_bit_set(&hctx->ctx_map) || 65 blk_mq_sched_has_work(hctx); 66 } 67 68 /* 69 * Mark this ctx as having pending work in this hardware queue 70 */ 71 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 72 struct blk_mq_ctx *ctx) 73 { 74 const int bit = ctx->index_hw[hctx->type]; 75 76 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 77 sbitmap_set_bit(&hctx->ctx_map, bit); 78 } 79 80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 const int bit = ctx->index_hw[hctx->type]; 84 85 sbitmap_clear_bit(&hctx->ctx_map, bit); 86 } 87 88 struct mq_inflight { 89 struct block_device *part; 90 unsigned int inflight[2]; 91 }; 92 93 static bool blk_mq_check_in_driver(struct request *rq, void *priv) 94 { 95 struct mq_inflight *mi = priv; 96 97 if (rq->rq_flags & RQF_IO_STAT && 98 (!bdev_is_partition(mi->part) || rq->part == mi->part) && 99 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 100 mi->inflight[rq_data_dir(rq)]++; 101 102 return true; 103 } 104 105 void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2]) 106 { 107 struct mq_inflight mi = { .part = part }; 108 109 blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver, 110 &mi); 111 inflight[READ] = mi.inflight[READ]; 112 inflight[WRITE] = mi.inflight[WRITE]; 113 } 114 115 #ifdef CONFIG_LOCKDEP 116 static bool blk_freeze_set_owner(struct request_queue *q, 117 struct task_struct *owner) 118 { 119 if (!owner) 120 return false; 121 122 if (!q->mq_freeze_depth) { 123 q->mq_freeze_owner = owner; 124 q->mq_freeze_owner_depth = 1; 125 q->mq_freeze_disk_dead = !q->disk || 126 test_bit(GD_DEAD, &q->disk->state) || 127 !blk_queue_registered(q); 128 q->mq_freeze_queue_dying = blk_queue_dying(q); 129 return true; 130 } 131 132 if (owner == q->mq_freeze_owner) 133 q->mq_freeze_owner_depth += 1; 134 return false; 135 } 136 137 /* verify the last unfreeze in owner context */ 138 static bool blk_unfreeze_check_owner(struct request_queue *q) 139 { 140 if (q->mq_freeze_owner != current) 141 return false; 142 if (--q->mq_freeze_owner_depth == 0) { 143 q->mq_freeze_owner = NULL; 144 return true; 145 } 146 return false; 147 } 148 149 #else 150 151 static bool blk_freeze_set_owner(struct request_queue *q, 152 struct task_struct *owner) 153 { 154 return false; 155 } 156 157 static bool blk_unfreeze_check_owner(struct request_queue *q) 158 { 159 return false; 160 } 161 #endif 162 163 bool __blk_freeze_queue_start(struct request_queue *q, 164 struct task_struct *owner) 165 { 166 bool freeze; 167 168 mutex_lock(&q->mq_freeze_lock); 169 freeze = blk_freeze_set_owner(q, owner); 170 if (++q->mq_freeze_depth == 1) { 171 percpu_ref_kill(&q->q_usage_counter); 172 mutex_unlock(&q->mq_freeze_lock); 173 if (queue_is_mq(q)) 174 blk_mq_run_hw_queues(q, false); 175 } else { 176 mutex_unlock(&q->mq_freeze_lock); 177 } 178 179 return freeze; 180 } 181 182 void blk_freeze_queue_start(struct request_queue *q) 183 { 184 if (__blk_freeze_queue_start(q, current)) 185 blk_freeze_acquire_lock(q); 186 } 187 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 188 189 void blk_mq_freeze_queue_wait(struct request_queue *q) 190 { 191 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 192 } 193 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 194 195 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 196 unsigned long timeout) 197 { 198 return wait_event_timeout(q->mq_freeze_wq, 199 percpu_ref_is_zero(&q->q_usage_counter), 200 timeout); 201 } 202 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 203 204 void blk_mq_freeze_queue_nomemsave(struct request_queue *q) 205 { 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave); 210 211 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 212 { 213 bool unfreeze; 214 215 mutex_lock(&q->mq_freeze_lock); 216 if (force_atomic) 217 q->q_usage_counter.data->force_atomic = true; 218 q->mq_freeze_depth--; 219 WARN_ON_ONCE(q->mq_freeze_depth < 0); 220 if (!q->mq_freeze_depth) { 221 percpu_ref_resurrect(&q->q_usage_counter); 222 wake_up_all(&q->mq_freeze_wq); 223 } 224 unfreeze = blk_unfreeze_check_owner(q); 225 mutex_unlock(&q->mq_freeze_lock); 226 227 return unfreeze; 228 } 229 230 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q) 231 { 232 if (__blk_mq_unfreeze_queue(q, false)) 233 blk_unfreeze_release_lock(q); 234 } 235 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore); 236 237 /* 238 * non_owner variant of blk_freeze_queue_start 239 * 240 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen 241 * by the same task. This is fragile and should not be used if at all 242 * possible. 243 */ 244 void blk_freeze_queue_start_non_owner(struct request_queue *q) 245 { 246 __blk_freeze_queue_start(q, NULL); 247 } 248 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner); 249 250 /* non_owner variant of blk_mq_unfreeze_queue */ 251 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q) 252 { 253 __blk_mq_unfreeze_queue(q, false); 254 } 255 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner); 256 257 /* 258 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 259 * mpt3sas driver such that this function can be removed. 260 */ 261 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 262 { 263 unsigned long flags; 264 265 spin_lock_irqsave(&q->queue_lock, flags); 266 if (!q->quiesce_depth++) 267 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 268 spin_unlock_irqrestore(&q->queue_lock, flags); 269 } 270 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 271 272 /** 273 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 274 * @set: tag_set to wait on 275 * 276 * Note: it is driver's responsibility for making sure that quiesce has 277 * been started on or more of the request_queues of the tag_set. This 278 * function only waits for the quiesce on those request_queues that had 279 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 280 */ 281 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 282 { 283 if (set->flags & BLK_MQ_F_BLOCKING) 284 synchronize_srcu(set->srcu); 285 else 286 synchronize_rcu(); 287 } 288 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 289 290 /** 291 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 292 * @q: request queue. 293 * 294 * Note: this function does not prevent that the struct request end_io() 295 * callback function is invoked. Once this function is returned, we make 296 * sure no dispatch can happen until the queue is unquiesced via 297 * blk_mq_unquiesce_queue(). 298 */ 299 void blk_mq_quiesce_queue(struct request_queue *q) 300 { 301 blk_mq_quiesce_queue_nowait(q); 302 /* nothing to wait for non-mq queues */ 303 if (queue_is_mq(q)) 304 blk_mq_wait_quiesce_done(q->tag_set); 305 } 306 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 307 308 /* 309 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 310 * @q: request queue. 311 * 312 * This function recovers queue into the state before quiescing 313 * which is done by blk_mq_quiesce_queue. 314 */ 315 void blk_mq_unquiesce_queue(struct request_queue *q) 316 { 317 unsigned long flags; 318 bool run_queue = false; 319 320 spin_lock_irqsave(&q->queue_lock, flags); 321 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 322 ; 323 } else if (!--q->quiesce_depth) { 324 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 325 run_queue = true; 326 } 327 spin_unlock_irqrestore(&q->queue_lock, flags); 328 329 /* dispatch requests which are inserted during quiescing */ 330 if (run_queue) 331 blk_mq_run_hw_queues(q, true); 332 } 333 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 334 335 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 336 { 337 struct request_queue *q; 338 339 rcu_read_lock(); 340 list_for_each_entry_rcu(q, &set->tag_list, tag_set_list) { 341 if (!blk_queue_skip_tagset_quiesce(q)) 342 blk_mq_quiesce_queue_nowait(q); 343 } 344 rcu_read_unlock(); 345 346 blk_mq_wait_quiesce_done(set); 347 } 348 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 349 350 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 351 { 352 struct request_queue *q; 353 354 rcu_read_lock(); 355 list_for_each_entry_rcu(q, &set->tag_list, tag_set_list) { 356 if (!blk_queue_skip_tagset_quiesce(q)) 357 blk_mq_unquiesce_queue(q); 358 } 359 rcu_read_unlock(); 360 } 361 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 362 363 void blk_mq_wake_waiters(struct request_queue *q) 364 { 365 struct blk_mq_hw_ctx *hctx; 366 unsigned long i; 367 368 queue_for_each_hw_ctx(q, hctx, i) 369 if (blk_mq_hw_queue_mapped(hctx)) 370 blk_mq_tag_wakeup_all(hctx->tags, true); 371 } 372 373 void blk_rq_init(struct request_queue *q, struct request *rq) 374 { 375 memset(rq, 0, sizeof(*rq)); 376 377 INIT_LIST_HEAD(&rq->queuelist); 378 rq->q = q; 379 rq->__sector = (sector_t) -1; 380 rq->phys_gap_bit = 0; 381 INIT_HLIST_NODE(&rq->hash); 382 RB_CLEAR_NODE(&rq->rb_node); 383 rq->tag = BLK_MQ_NO_TAG; 384 rq->internal_tag = BLK_MQ_NO_TAG; 385 rq->start_time_ns = blk_time_get_ns(); 386 blk_crypto_rq_set_defaults(rq); 387 } 388 EXPORT_SYMBOL(blk_rq_init); 389 390 /* Set start and alloc time when the allocated request is actually used */ 391 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 392 { 393 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 394 if (blk_queue_rq_alloc_time(rq->q)) 395 rq->alloc_time_ns = alloc_time_ns; 396 else 397 rq->alloc_time_ns = 0; 398 #endif 399 } 400 401 static inline void blk_mq_bio_issue_init(struct request_queue *q, 402 struct bio *bio) 403 { 404 #ifdef CONFIG_BLK_CGROUP 405 if (test_bit(QUEUE_FLAG_BIO_ISSUE_TIME, &q->queue_flags)) 406 bio->issue_time_ns = blk_time_get_ns(); 407 #endif 408 } 409 410 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 411 struct blk_mq_tags *tags, unsigned int tag) 412 { 413 struct blk_mq_ctx *ctx = data->ctx; 414 struct blk_mq_hw_ctx *hctx = data->hctx; 415 struct request_queue *q = data->q; 416 struct request *rq = tags->static_rqs[tag]; 417 418 rq->q = q; 419 rq->mq_ctx = ctx; 420 rq->mq_hctx = hctx; 421 rq->cmd_flags = data->cmd_flags; 422 423 if (data->flags & BLK_MQ_REQ_PM) 424 data->rq_flags |= RQF_PM; 425 rq->rq_flags = data->rq_flags; 426 427 if (data->rq_flags & RQF_SCHED_TAGS) { 428 rq->tag = BLK_MQ_NO_TAG; 429 rq->internal_tag = tag; 430 } else { 431 rq->tag = tag; 432 rq->internal_tag = BLK_MQ_NO_TAG; 433 } 434 rq->timeout = 0; 435 436 rq->part = NULL; 437 rq->io_start_time_ns = 0; 438 rq->stats_sectors = 0; 439 rq->nr_phys_segments = 0; 440 rq->nr_integrity_segments = 0; 441 rq->end_io = NULL; 442 rq->end_io_data = NULL; 443 444 blk_crypto_rq_set_defaults(rq); 445 INIT_LIST_HEAD(&rq->queuelist); 446 /* tag was already set */ 447 WRITE_ONCE(rq->deadline, 0); 448 req_ref_set(rq, 1); 449 450 if (rq->rq_flags & RQF_USE_SCHED) { 451 struct elevator_queue *e = data->q->elevator; 452 453 INIT_HLIST_NODE(&rq->hash); 454 RB_CLEAR_NODE(&rq->rb_node); 455 456 if (e->type->ops.prepare_request) 457 e->type->ops.prepare_request(rq); 458 } 459 460 return rq; 461 } 462 463 static inline struct request * 464 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 465 { 466 unsigned int tag, tag_offset; 467 struct blk_mq_tags *tags; 468 struct request *rq; 469 unsigned long tag_mask; 470 int i, nr = 0; 471 472 do { 473 tag_mask = blk_mq_get_tags(data, data->nr_tags - nr, &tag_offset); 474 if (unlikely(!tag_mask)) { 475 if (nr == 0) 476 return NULL; 477 break; 478 } 479 tags = blk_mq_tags_from_data(data); 480 for (i = 0; tag_mask; i++) { 481 if (!(tag_mask & (1UL << i))) 482 continue; 483 tag = tag_offset + i; 484 prefetch(tags->static_rqs[tag]); 485 tag_mask &= ~(1UL << i); 486 rq = blk_mq_rq_ctx_init(data, tags, tag); 487 rq_list_add_head(data->cached_rqs, rq); 488 nr++; 489 } 490 } while (data->nr_tags > nr); 491 492 if (!(data->rq_flags & RQF_SCHED_TAGS)) 493 blk_mq_add_active_requests(data->hctx, nr); 494 /* caller already holds a reference, add for remainder */ 495 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 496 data->nr_tags -= nr; 497 498 return rq_list_pop(data->cached_rqs); 499 } 500 501 static void blk_mq_limit_depth(struct blk_mq_alloc_data *data) 502 { 503 struct elevator_mq_ops *ops; 504 505 /* If no I/O scheduler has been configured, don't limit requests */ 506 if (!data->q->elevator) { 507 blk_mq_tag_busy(data->hctx); 508 return; 509 } 510 511 /* 512 * All requests use scheduler tags when an I/O scheduler is 513 * enabled for the queue. 514 */ 515 data->rq_flags |= RQF_SCHED_TAGS; 516 517 /* 518 * Flush/passthrough requests are special and go directly to the 519 * dispatch list, they are not subject to the async_depth limit. 520 */ 521 if ((data->cmd_flags & REQ_OP_MASK) == REQ_OP_FLUSH || 522 blk_op_is_passthrough(data->cmd_flags)) 523 return; 524 525 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 526 data->rq_flags |= RQF_USE_SCHED; 527 528 /* 529 * By default, sync requests have no limit, and async requests are 530 * limited to async_depth. 531 */ 532 ops = &data->q->elevator->type->ops; 533 if (ops->limit_depth) 534 ops->limit_depth(data->cmd_flags, data); 535 } 536 537 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 538 { 539 struct request_queue *q = data->q; 540 u64 alloc_time_ns = 0; 541 struct request *rq; 542 unsigned int tag; 543 544 /* alloc_time includes depth and tag waits */ 545 if (blk_queue_rq_alloc_time(q)) 546 alloc_time_ns = blk_time_get_ns(); 547 548 if (data->cmd_flags & REQ_NOWAIT) 549 data->flags |= BLK_MQ_REQ_NOWAIT; 550 551 retry: 552 data->ctx = blk_mq_get_ctx(q); 553 data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx); 554 555 blk_mq_limit_depth(data); 556 if (data->flags & BLK_MQ_REQ_RESERVED) 557 data->rq_flags |= RQF_RESV; 558 559 /* 560 * Try batched alloc if we want more than 1 tag. 561 */ 562 if (data->nr_tags > 1) { 563 rq = __blk_mq_alloc_requests_batch(data); 564 if (rq) { 565 blk_mq_rq_time_init(rq, alloc_time_ns); 566 return rq; 567 } 568 data->nr_tags = 1; 569 } 570 571 /* 572 * Waiting allocations only fail because of an inactive hctx. In that 573 * case just retry the hctx assignment and tag allocation as CPU hotplug 574 * should have migrated us to an online CPU by now. 575 */ 576 tag = blk_mq_get_tag(data); 577 if (tag == BLK_MQ_NO_TAG) { 578 if (data->flags & BLK_MQ_REQ_NOWAIT) 579 return NULL; 580 /* 581 * Give up the CPU and sleep for a random short time to 582 * ensure that thread using a realtime scheduling class 583 * are migrated off the CPU, and thus off the hctx that 584 * is going away. 585 */ 586 msleep(3); 587 goto retry; 588 } 589 590 if (!(data->rq_flags & RQF_SCHED_TAGS)) 591 blk_mq_inc_active_requests(data->hctx); 592 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 593 blk_mq_rq_time_init(rq, alloc_time_ns); 594 return rq; 595 } 596 597 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 598 struct blk_plug *plug, 599 blk_opf_t opf, 600 blk_mq_req_flags_t flags) 601 { 602 struct blk_mq_alloc_data data = { 603 .q = q, 604 .flags = flags, 605 .shallow_depth = 0, 606 .cmd_flags = opf, 607 .rq_flags = 0, 608 .nr_tags = plug->nr_ios, 609 .cached_rqs = &plug->cached_rqs, 610 .ctx = NULL, 611 .hctx = NULL 612 }; 613 struct request *rq; 614 615 if (blk_queue_enter(q, flags)) 616 return NULL; 617 618 plug->nr_ios = 1; 619 620 rq = __blk_mq_alloc_requests(&data); 621 if (unlikely(!rq)) 622 blk_queue_exit(q); 623 return rq; 624 } 625 626 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 627 blk_opf_t opf, 628 blk_mq_req_flags_t flags) 629 { 630 struct blk_plug *plug = current->plug; 631 struct request *rq; 632 633 if (!plug) 634 return NULL; 635 636 if (rq_list_empty(&plug->cached_rqs)) { 637 if (plug->nr_ios == 1) 638 return NULL; 639 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 640 if (!rq) 641 return NULL; 642 } else { 643 rq = rq_list_peek(&plug->cached_rqs); 644 if (!rq || rq->q != q) 645 return NULL; 646 647 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 648 return NULL; 649 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 650 return NULL; 651 652 rq_list_pop(&plug->cached_rqs); 653 blk_mq_rq_time_init(rq, blk_time_get_ns()); 654 } 655 656 rq->cmd_flags = opf; 657 INIT_LIST_HEAD(&rq->queuelist); 658 return rq; 659 } 660 661 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 662 blk_mq_req_flags_t flags) 663 { 664 struct request *rq; 665 666 rq = blk_mq_alloc_cached_request(q, opf, flags); 667 if (!rq) { 668 struct blk_mq_alloc_data data = { 669 .q = q, 670 .flags = flags, 671 .shallow_depth = 0, 672 .cmd_flags = opf, 673 .rq_flags = 0, 674 .nr_tags = 1, 675 .cached_rqs = NULL, 676 .ctx = NULL, 677 .hctx = NULL 678 }; 679 int ret; 680 681 ret = blk_queue_enter(q, flags); 682 if (ret) 683 return ERR_PTR(ret); 684 685 rq = __blk_mq_alloc_requests(&data); 686 if (!rq) 687 goto out_queue_exit; 688 } 689 rq->__data_len = 0; 690 rq->phys_gap_bit = 0; 691 rq->__sector = (sector_t) -1; 692 rq->bio = rq->biotail = NULL; 693 return rq; 694 out_queue_exit: 695 blk_queue_exit(q); 696 return ERR_PTR(-EWOULDBLOCK); 697 } 698 EXPORT_SYMBOL(blk_mq_alloc_request); 699 700 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 701 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 702 { 703 struct blk_mq_alloc_data data = { 704 .q = q, 705 .flags = flags, 706 .shallow_depth = 0, 707 .cmd_flags = opf, 708 .rq_flags = 0, 709 .nr_tags = 1, 710 .cached_rqs = NULL, 711 .ctx = NULL, 712 .hctx = NULL 713 }; 714 u64 alloc_time_ns = 0; 715 struct request *rq; 716 unsigned int cpu; 717 unsigned int tag; 718 int ret; 719 720 /* alloc_time includes depth and tag waits */ 721 if (blk_queue_rq_alloc_time(q)) 722 alloc_time_ns = blk_time_get_ns(); 723 724 /* 725 * If the tag allocator sleeps we could get an allocation for a 726 * different hardware context. No need to complicate the low level 727 * allocator for this for the rare use case of a command tied to 728 * a specific queue. 729 */ 730 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 731 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 732 return ERR_PTR(-EINVAL); 733 734 if (hctx_idx >= q->nr_hw_queues) 735 return ERR_PTR(-EIO); 736 737 ret = blk_queue_enter(q, flags); 738 if (ret) 739 return ERR_PTR(ret); 740 741 /* 742 * Check if the hardware context is actually mapped to anything. 743 * If not tell the caller that it should skip this queue. 744 */ 745 ret = -EXDEV; 746 data.hctx = q->queue_hw_ctx[hctx_idx]; 747 if (!blk_mq_hw_queue_mapped(data.hctx)) 748 goto out_queue_exit; 749 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 750 if (cpu >= nr_cpu_ids) 751 goto out_queue_exit; 752 data.ctx = __blk_mq_get_ctx(q, cpu); 753 754 if (q->elevator) 755 data.rq_flags |= RQF_SCHED_TAGS; 756 else 757 blk_mq_tag_busy(data.hctx); 758 759 if (flags & BLK_MQ_REQ_RESERVED) 760 data.rq_flags |= RQF_RESV; 761 762 ret = -EWOULDBLOCK; 763 tag = blk_mq_get_tag(&data); 764 if (tag == BLK_MQ_NO_TAG) 765 goto out_queue_exit; 766 if (!(data.rq_flags & RQF_SCHED_TAGS)) 767 blk_mq_inc_active_requests(data.hctx); 768 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 769 blk_mq_rq_time_init(rq, alloc_time_ns); 770 rq->__data_len = 0; 771 rq->phys_gap_bit = 0; 772 rq->__sector = (sector_t) -1; 773 rq->bio = rq->biotail = NULL; 774 return rq; 775 776 out_queue_exit: 777 blk_queue_exit(q); 778 return ERR_PTR(ret); 779 } 780 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 781 782 static void blk_mq_finish_request(struct request *rq) 783 { 784 struct request_queue *q = rq->q; 785 786 blk_zone_finish_request(rq); 787 788 if (rq->rq_flags & RQF_USE_SCHED) { 789 q->elevator->type->ops.finish_request(rq); 790 /* 791 * For postflush request that may need to be 792 * completed twice, we should clear this flag 793 * to avoid double finish_request() on the rq. 794 */ 795 rq->rq_flags &= ~RQF_USE_SCHED; 796 } 797 } 798 799 static void __blk_mq_free_request(struct request *rq) 800 { 801 struct request_queue *q = rq->q; 802 struct blk_mq_ctx *ctx = rq->mq_ctx; 803 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 804 const int sched_tag = rq->internal_tag; 805 806 blk_crypto_free_request(rq); 807 blk_pm_mark_last_busy(rq); 808 rq->mq_hctx = NULL; 809 810 if (rq->tag != BLK_MQ_NO_TAG) { 811 blk_mq_dec_active_requests(hctx); 812 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 813 } 814 if (sched_tag != BLK_MQ_NO_TAG) 815 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 816 blk_mq_sched_restart(hctx); 817 blk_queue_exit(q); 818 } 819 820 void blk_mq_free_request(struct request *rq) 821 { 822 struct request_queue *q = rq->q; 823 824 blk_mq_finish_request(rq); 825 826 rq_qos_done(q, rq); 827 828 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 829 if (req_ref_put_and_test(rq)) 830 __blk_mq_free_request(rq); 831 } 832 EXPORT_SYMBOL_GPL(blk_mq_free_request); 833 834 void blk_mq_free_plug_rqs(struct blk_plug *plug) 835 { 836 struct request *rq; 837 838 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL) 839 blk_mq_free_request(rq); 840 } 841 842 void blk_dump_rq_flags(struct request *rq, char *msg) 843 { 844 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 845 rq->q->disk ? rq->q->disk->disk_name : "?", 846 (__force unsigned long long) rq->cmd_flags); 847 848 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 849 (unsigned long long)blk_rq_pos(rq), 850 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 851 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 852 rq->bio, rq->biotail, blk_rq_bytes(rq)); 853 } 854 EXPORT_SYMBOL(blk_dump_rq_flags); 855 856 static void blk_account_io_completion(struct request *req, unsigned int bytes) 857 { 858 if (req->rq_flags & RQF_IO_STAT) { 859 const int sgrp = op_stat_group(req_op(req)); 860 861 part_stat_lock(); 862 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 863 part_stat_unlock(); 864 } 865 } 866 867 static void blk_print_req_error(struct request *req, blk_status_t status) 868 { 869 printk_ratelimited(KERN_ERR 870 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 871 "phys_seg %u prio class %u\n", 872 blk_status_to_str(status), 873 req->q->disk ? req->q->disk->disk_name : "?", 874 blk_rq_pos(req), (__force u32)req_op(req), 875 blk_op_str(req_op(req)), 876 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 877 req->nr_phys_segments, 878 IOPRIO_PRIO_CLASS(req_get_ioprio(req))); 879 } 880 881 /* 882 * Fully end IO on a request. Does not support partial completions, or 883 * errors. 884 */ 885 static void blk_complete_request(struct request *req) 886 { 887 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 888 int total_bytes = blk_rq_bytes(req); 889 struct bio *bio = req->bio; 890 891 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 892 893 if (!bio) 894 return; 895 896 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 897 blk_integrity_complete(req, total_bytes); 898 899 /* 900 * Upper layers may call blk_crypto_evict_key() anytime after the last 901 * bio_endio(). Therefore, the keyslot must be released before that. 902 */ 903 blk_crypto_rq_put_keyslot(req); 904 905 blk_account_io_completion(req, total_bytes); 906 907 do { 908 struct bio *next = bio->bi_next; 909 910 /* Completion has already been traced */ 911 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 912 913 if (blk_req_bio_is_zone_append(req, bio)) 914 blk_zone_append_update_request_bio(req, bio); 915 916 if (!is_flush) 917 bio_endio(bio); 918 bio = next; 919 } while (bio); 920 921 /* 922 * Reset counters so that the request stacking driver 923 * can find how many bytes remain in the request 924 * later. 925 */ 926 if (!req->end_io) { 927 req->bio = NULL; 928 req->__data_len = 0; 929 } 930 } 931 932 /** 933 * blk_update_request - Complete multiple bytes without completing the request 934 * @req: the request being processed 935 * @error: block status code 936 * @nr_bytes: number of bytes to complete for @req 937 * 938 * Description: 939 * Ends I/O on a number of bytes attached to @req, but doesn't complete 940 * the request structure even if @req doesn't have leftover. 941 * If @req has leftover, sets it up for the next range of segments. 942 * 943 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 944 * %false return from this function. 945 * 946 * Note: 947 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 948 * except in the consistency check at the end of this function. 949 * 950 * Return: 951 * %false - this request doesn't have any more data 952 * %true - this request has more data 953 **/ 954 bool blk_update_request(struct request *req, blk_status_t error, 955 unsigned int nr_bytes) 956 { 957 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ; 958 bool quiet = req->rq_flags & RQF_QUIET; 959 int total_bytes; 960 961 trace_block_rq_complete(req, error, nr_bytes); 962 963 if (!req->bio) 964 return false; 965 966 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 967 error == BLK_STS_OK) 968 blk_integrity_complete(req, nr_bytes); 969 970 /* 971 * Upper layers may call blk_crypto_evict_key() anytime after the last 972 * bio_endio(). Therefore, the keyslot must be released before that. 973 */ 974 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 975 __blk_crypto_rq_put_keyslot(req); 976 977 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) && 978 !test_bit(GD_DEAD, &req->q->disk->state)) { 979 blk_print_req_error(req, error); 980 trace_block_rq_error(req, error, nr_bytes); 981 } 982 983 blk_account_io_completion(req, nr_bytes); 984 985 total_bytes = 0; 986 while (req->bio) { 987 struct bio *bio = req->bio; 988 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 989 990 if (unlikely(error)) 991 bio->bi_status = error; 992 993 if (bio_bytes == bio->bi_iter.bi_size) { 994 req->bio = bio->bi_next; 995 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) { 996 /* 997 * Partial zone append completions cannot be supported 998 * as the BIO fragments may end up not being written 999 * sequentially. 1000 */ 1001 bio->bi_status = BLK_STS_IOERR; 1002 } 1003 1004 /* Completion has already been traced */ 1005 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1006 if (unlikely(quiet)) 1007 bio_set_flag(bio, BIO_QUIET); 1008 1009 bio_advance(bio, bio_bytes); 1010 1011 /* Don't actually finish bio if it's part of flush sequence */ 1012 if (!bio->bi_iter.bi_size) { 1013 if (blk_req_bio_is_zone_append(req, bio)) 1014 blk_zone_append_update_request_bio(req, bio); 1015 if (!is_flush) 1016 bio_endio(bio); 1017 } 1018 1019 total_bytes += bio_bytes; 1020 nr_bytes -= bio_bytes; 1021 1022 if (!nr_bytes) 1023 break; 1024 } 1025 1026 /* 1027 * completely done 1028 */ 1029 if (!req->bio) { 1030 /* 1031 * Reset counters so that the request stacking driver 1032 * can find how many bytes remain in the request 1033 * later. 1034 */ 1035 req->__data_len = 0; 1036 return false; 1037 } 1038 1039 req->__data_len -= total_bytes; 1040 1041 /* update sector only for requests with clear definition of sector */ 1042 if (!blk_rq_is_passthrough(req)) 1043 req->__sector += total_bytes >> 9; 1044 1045 /* mixed attributes always follow the first bio */ 1046 if (req->rq_flags & RQF_MIXED_MERGE) { 1047 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1048 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1049 } 1050 1051 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1052 /* 1053 * If total number of sectors is less than the first segment 1054 * size, something has gone terribly wrong. 1055 */ 1056 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1057 blk_dump_rq_flags(req, "request botched"); 1058 req->__data_len = blk_rq_cur_bytes(req); 1059 } 1060 1061 /* recalculate the number of segments */ 1062 req->nr_phys_segments = blk_recalc_rq_segments(req); 1063 } 1064 1065 return true; 1066 } 1067 EXPORT_SYMBOL_GPL(blk_update_request); 1068 1069 static inline void blk_account_io_done(struct request *req, u64 now) 1070 { 1071 trace_block_io_done(req); 1072 1073 /* 1074 * Account IO completion. flush_rq isn't accounted as a 1075 * normal IO on queueing nor completion. Accounting the 1076 * containing request is enough. 1077 */ 1078 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) { 1079 const int sgrp = op_stat_group(req_op(req)); 1080 1081 part_stat_lock(); 1082 update_io_ticks(req->part, jiffies, true); 1083 part_stat_inc(req->part, ios[sgrp]); 1084 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1085 part_stat_local_dec(req->part, 1086 in_flight[op_is_write(req_op(req))]); 1087 part_stat_unlock(); 1088 } 1089 } 1090 1091 static inline bool blk_rq_passthrough_stats(struct request *req) 1092 { 1093 struct bio *bio = req->bio; 1094 1095 if (!blk_queue_passthrough_stat(req->q)) 1096 return false; 1097 1098 /* Requests without a bio do not transfer data. */ 1099 if (!bio) 1100 return false; 1101 1102 /* 1103 * Stats are accumulated in the bdev, so must have one attached to a 1104 * bio to track stats. Most drivers do not set the bdev for passthrough 1105 * requests, but nvme is one that will set it. 1106 */ 1107 if (!bio->bi_bdev) 1108 return false; 1109 1110 /* 1111 * We don't know what a passthrough command does, but we know the 1112 * payload size and data direction. Ensuring the size is aligned to the 1113 * block size filters out most commands with payloads that don't 1114 * represent sector access. 1115 */ 1116 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1)) 1117 return false; 1118 return true; 1119 } 1120 1121 static inline void blk_account_io_start(struct request *req) 1122 { 1123 trace_block_io_start(req); 1124 1125 if (!blk_queue_io_stat(req->q)) 1126 return; 1127 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req)) 1128 return; 1129 1130 req->rq_flags |= RQF_IO_STAT; 1131 req->start_time_ns = blk_time_get_ns(); 1132 1133 /* 1134 * All non-passthrough requests are created from a bio with one 1135 * exception: when a flush command that is part of a flush sequence 1136 * generated by the state machine in blk-flush.c is cloned onto the 1137 * lower device by dm-multipath we can get here without a bio. 1138 */ 1139 if (req->bio) 1140 req->part = req->bio->bi_bdev; 1141 else 1142 req->part = req->q->disk->part0; 1143 1144 part_stat_lock(); 1145 update_io_ticks(req->part, jiffies, false); 1146 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]); 1147 part_stat_unlock(); 1148 } 1149 1150 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1151 { 1152 if (rq->rq_flags & RQF_STATS) 1153 blk_stat_add(rq, now); 1154 1155 blk_mq_sched_completed_request(rq, now); 1156 blk_account_io_done(rq, now); 1157 } 1158 1159 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1160 { 1161 if (blk_mq_need_time_stamp(rq)) 1162 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1163 1164 blk_mq_finish_request(rq); 1165 1166 if (rq->end_io) { 1167 rq_qos_done(rq->q, rq); 1168 if (rq->end_io(rq, error, NULL) == RQ_END_IO_FREE) 1169 blk_mq_free_request(rq); 1170 } else { 1171 blk_mq_free_request(rq); 1172 } 1173 } 1174 EXPORT_SYMBOL(__blk_mq_end_request); 1175 1176 void blk_mq_end_request(struct request *rq, blk_status_t error) 1177 { 1178 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1179 BUG(); 1180 __blk_mq_end_request(rq, error); 1181 } 1182 EXPORT_SYMBOL(blk_mq_end_request); 1183 1184 #define TAG_COMP_BATCH 32 1185 1186 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1187 int *tag_array, int nr_tags) 1188 { 1189 struct request_queue *q = hctx->queue; 1190 1191 blk_mq_sub_active_requests(hctx, nr_tags); 1192 1193 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1194 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1195 } 1196 1197 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1198 { 1199 int tags[TAG_COMP_BATCH], nr_tags = 0; 1200 struct blk_mq_hw_ctx *cur_hctx = NULL; 1201 struct request *rq; 1202 u64 now = 0; 1203 1204 if (iob->need_ts) 1205 now = blk_time_get_ns(); 1206 1207 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1208 prefetch(rq->bio); 1209 prefetch(rq->rq_next); 1210 1211 blk_complete_request(rq); 1212 if (iob->need_ts) 1213 __blk_mq_end_request_acct(rq, now); 1214 1215 blk_mq_finish_request(rq); 1216 1217 rq_qos_done(rq->q, rq); 1218 1219 /* 1220 * If end_io handler returns NONE, then it still has 1221 * ownership of the request. 1222 */ 1223 if (rq->end_io && rq->end_io(rq, 0, iob) == RQ_END_IO_NONE) 1224 continue; 1225 1226 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1227 if (!req_ref_put_and_test(rq)) 1228 continue; 1229 1230 blk_crypto_free_request(rq); 1231 blk_pm_mark_last_busy(rq); 1232 1233 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1234 if (cur_hctx) 1235 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1236 nr_tags = 0; 1237 cur_hctx = rq->mq_hctx; 1238 } 1239 tags[nr_tags++] = rq->tag; 1240 } 1241 1242 if (nr_tags) 1243 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1244 } 1245 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1246 1247 static void blk_complete_reqs(struct llist_head *list) 1248 { 1249 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1250 struct request *rq, *next; 1251 1252 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1253 rq->q->mq_ops->complete(rq); 1254 } 1255 1256 static __latent_entropy void blk_done_softirq(void) 1257 { 1258 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1259 } 1260 1261 static int blk_softirq_cpu_dead(unsigned int cpu) 1262 { 1263 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1264 return 0; 1265 } 1266 1267 static void __blk_mq_complete_request_remote(void *data) 1268 { 1269 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1270 } 1271 1272 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1273 { 1274 int cpu = raw_smp_processor_id(); 1275 1276 if (!IS_ENABLED(CONFIG_SMP) || 1277 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1278 return false; 1279 /* 1280 * With force threaded interrupts enabled, raising softirq from an SMP 1281 * function call will always result in waking the ksoftirqd thread. 1282 * This is probably worse than completing the request on a different 1283 * cache domain. 1284 */ 1285 if (force_irqthreads()) 1286 return false; 1287 1288 /* same CPU or cache domain and capacity? Complete locally */ 1289 if (cpu == rq->mq_ctx->cpu || 1290 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1291 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1292 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1293 return false; 1294 1295 /* don't try to IPI to an offline CPU */ 1296 return cpu_online(rq->mq_ctx->cpu); 1297 } 1298 1299 static void blk_mq_complete_send_ipi(struct request *rq) 1300 { 1301 unsigned int cpu; 1302 1303 cpu = rq->mq_ctx->cpu; 1304 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1305 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1306 } 1307 1308 static void blk_mq_raise_softirq(struct request *rq) 1309 { 1310 struct llist_head *list; 1311 1312 preempt_disable(); 1313 list = this_cpu_ptr(&blk_cpu_done); 1314 if (llist_add(&rq->ipi_list, list)) 1315 raise_softirq(BLOCK_SOFTIRQ); 1316 preempt_enable(); 1317 } 1318 1319 bool blk_mq_complete_request_remote(struct request *rq) 1320 { 1321 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1322 1323 /* 1324 * For request which hctx has only one ctx mapping, 1325 * or a polled request, always complete locally, 1326 * it's pointless to redirect the completion. 1327 */ 1328 if ((rq->mq_hctx->nr_ctx == 1 && 1329 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1330 rq->cmd_flags & REQ_POLLED) 1331 return false; 1332 1333 if (blk_mq_complete_need_ipi(rq)) { 1334 blk_mq_complete_send_ipi(rq); 1335 return true; 1336 } 1337 1338 if (rq->q->nr_hw_queues == 1) { 1339 blk_mq_raise_softirq(rq); 1340 return true; 1341 } 1342 return false; 1343 } 1344 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1345 1346 /** 1347 * blk_mq_complete_request - end I/O on a request 1348 * @rq: the request being processed 1349 * 1350 * Description: 1351 * Complete a request by scheduling the ->complete_rq operation. 1352 **/ 1353 void blk_mq_complete_request(struct request *rq) 1354 { 1355 if (!blk_mq_complete_request_remote(rq)) 1356 rq->q->mq_ops->complete(rq); 1357 } 1358 EXPORT_SYMBOL(blk_mq_complete_request); 1359 1360 /** 1361 * blk_mq_start_request - Start processing a request 1362 * @rq: Pointer to request to be started 1363 * 1364 * Function used by device drivers to notify the block layer that a request 1365 * is going to be processed now, so blk layer can do proper initializations 1366 * such as starting the timeout timer. 1367 */ 1368 void blk_mq_start_request(struct request *rq) 1369 { 1370 struct request_queue *q = rq->q; 1371 1372 trace_block_rq_issue(rq); 1373 1374 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1375 !blk_rq_is_passthrough(rq)) { 1376 rq->io_start_time_ns = blk_time_get_ns(); 1377 rq->stats_sectors = blk_rq_sectors(rq); 1378 rq->rq_flags |= RQF_STATS; 1379 rq_qos_issue(q, rq); 1380 } 1381 1382 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1383 1384 blk_add_timer(rq); 1385 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1386 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1387 1388 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1389 blk_integrity_prepare(rq); 1390 1391 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1392 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1393 } 1394 EXPORT_SYMBOL(blk_mq_start_request); 1395 1396 /* 1397 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1398 * queues. This is important for md arrays to benefit from merging 1399 * requests. 1400 */ 1401 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1402 { 1403 if (plug->multiple_queues) 1404 return BLK_MAX_REQUEST_COUNT * 2; 1405 return BLK_MAX_REQUEST_COUNT; 1406 } 1407 1408 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1409 { 1410 struct request *last = rq_list_peek(&plug->mq_list); 1411 1412 if (!plug->rq_count) { 1413 trace_block_plug(rq->q); 1414 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1415 (!blk_queue_nomerges(rq->q) && 1416 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1417 blk_mq_flush_plug_list(plug, false); 1418 last = NULL; 1419 trace_block_plug(rq->q); 1420 } 1421 1422 if (!plug->multiple_queues && last && last->q != rq->q) 1423 plug->multiple_queues = true; 1424 /* 1425 * Any request allocated from sched tags can't be issued to 1426 * ->queue_rqs() directly 1427 */ 1428 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1429 plug->has_elevator = true; 1430 rq_list_add_tail(&plug->mq_list, rq); 1431 plug->rq_count++; 1432 } 1433 1434 /** 1435 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1436 * @rq: request to insert 1437 * @at_head: insert request at head or tail of queue 1438 * 1439 * Description: 1440 * Insert a fully prepared request at the back of the I/O scheduler queue 1441 * for execution. Don't wait for completion. 1442 * 1443 * Note: 1444 * This function will invoke @done directly if the queue is dead. 1445 */ 1446 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1447 { 1448 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1449 1450 WARN_ON(irqs_disabled()); 1451 WARN_ON(!blk_rq_is_passthrough(rq)); 1452 1453 blk_account_io_start(rq); 1454 1455 if (current->plug && !at_head) { 1456 blk_add_rq_to_plug(current->plug, rq); 1457 return; 1458 } 1459 1460 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1461 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1462 } 1463 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1464 1465 struct blk_rq_wait { 1466 struct completion done; 1467 blk_status_t ret; 1468 }; 1469 1470 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret, 1471 const struct io_comp_batch *iob) 1472 { 1473 struct blk_rq_wait *wait = rq->end_io_data; 1474 1475 wait->ret = ret; 1476 complete(&wait->done); 1477 return RQ_END_IO_NONE; 1478 } 1479 1480 bool blk_rq_is_poll(struct request *rq) 1481 { 1482 if (!rq->mq_hctx) 1483 return false; 1484 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1485 return false; 1486 return true; 1487 } 1488 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1489 1490 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1491 { 1492 do { 1493 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, BLK_POLL_ONESHOT); 1494 cond_resched(); 1495 } while (!completion_done(wait)); 1496 } 1497 1498 /** 1499 * blk_execute_rq - insert a request into queue for execution 1500 * @rq: request to insert 1501 * @at_head: insert request at head or tail of queue 1502 * 1503 * Description: 1504 * Insert a fully prepared request at the back of the I/O scheduler queue 1505 * for execution and wait for completion. 1506 * Return: The blk_status_t result provided to blk_mq_end_request(). 1507 */ 1508 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1509 { 1510 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1511 struct blk_rq_wait wait = { 1512 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1513 }; 1514 1515 WARN_ON(irqs_disabled()); 1516 WARN_ON(!blk_rq_is_passthrough(rq)); 1517 1518 rq->end_io_data = &wait; 1519 rq->end_io = blk_end_sync_rq; 1520 1521 blk_account_io_start(rq); 1522 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1523 blk_mq_run_hw_queue(hctx, false); 1524 1525 if (blk_rq_is_poll(rq)) 1526 blk_rq_poll_completion(rq, &wait.done); 1527 else 1528 blk_wait_io(&wait.done); 1529 1530 return wait.ret; 1531 } 1532 EXPORT_SYMBOL(blk_execute_rq); 1533 1534 static void __blk_mq_requeue_request(struct request *rq) 1535 { 1536 struct request_queue *q = rq->q; 1537 1538 blk_mq_put_driver_tag(rq); 1539 1540 trace_block_rq_requeue(rq); 1541 rq_qos_requeue(q, rq); 1542 1543 if (blk_mq_request_started(rq)) { 1544 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1545 rq->rq_flags &= ~RQF_TIMED_OUT; 1546 } 1547 } 1548 1549 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1550 { 1551 struct request_queue *q = rq->q; 1552 unsigned long flags; 1553 1554 __blk_mq_requeue_request(rq); 1555 1556 /* this request will be re-inserted to io scheduler queue */ 1557 blk_mq_sched_requeue_request(rq); 1558 1559 spin_lock_irqsave(&q->requeue_lock, flags); 1560 list_add_tail(&rq->queuelist, &q->requeue_list); 1561 spin_unlock_irqrestore(&q->requeue_lock, flags); 1562 1563 if (kick_requeue_list) 1564 blk_mq_kick_requeue_list(q); 1565 } 1566 EXPORT_SYMBOL(blk_mq_requeue_request); 1567 1568 static void blk_mq_requeue_work(struct work_struct *work) 1569 { 1570 struct request_queue *q = 1571 container_of(work, struct request_queue, requeue_work.work); 1572 LIST_HEAD(rq_list); 1573 LIST_HEAD(flush_list); 1574 struct request *rq; 1575 1576 spin_lock_irq(&q->requeue_lock); 1577 list_splice_init(&q->requeue_list, &rq_list); 1578 list_splice_init(&q->flush_list, &flush_list); 1579 spin_unlock_irq(&q->requeue_lock); 1580 1581 while (!list_empty(&rq_list)) { 1582 rq = list_entry(rq_list.next, struct request, queuelist); 1583 list_del_init(&rq->queuelist); 1584 /* 1585 * If RQF_DONTPREP is set, the request has been started by the 1586 * driver already and might have driver-specific data allocated 1587 * already. Insert it into the hctx dispatch list to avoid 1588 * block layer merges for the request. 1589 */ 1590 if (rq->rq_flags & RQF_DONTPREP) 1591 blk_mq_request_bypass_insert(rq, 0); 1592 else 1593 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1594 } 1595 1596 while (!list_empty(&flush_list)) { 1597 rq = list_entry(flush_list.next, struct request, queuelist); 1598 list_del_init(&rq->queuelist); 1599 blk_mq_insert_request(rq, 0); 1600 } 1601 1602 blk_mq_run_hw_queues(q, false); 1603 } 1604 1605 void blk_mq_kick_requeue_list(struct request_queue *q) 1606 { 1607 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1608 } 1609 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1610 1611 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1612 unsigned long msecs) 1613 { 1614 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1615 msecs_to_jiffies(msecs)); 1616 } 1617 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1618 1619 static bool blk_is_flush_data_rq(struct request *rq) 1620 { 1621 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1622 } 1623 1624 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1625 { 1626 /* 1627 * If we find a request that isn't idle we know the queue is busy 1628 * as it's checked in the iter. 1629 * Return false to stop the iteration. 1630 * 1631 * In case of queue quiesce, if one flush data request is completed, 1632 * don't count it as inflight given the flush sequence is suspended, 1633 * and the original flush data request is invisible to driver, just 1634 * like other pending requests because of quiesce 1635 */ 1636 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1637 blk_is_flush_data_rq(rq) && 1638 blk_mq_request_completed(rq))) { 1639 bool *busy = priv; 1640 1641 *busy = true; 1642 return false; 1643 } 1644 1645 return true; 1646 } 1647 1648 bool blk_mq_queue_inflight(struct request_queue *q) 1649 { 1650 bool busy = false; 1651 1652 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1653 return busy; 1654 } 1655 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1656 1657 static void blk_mq_rq_timed_out(struct request *req) 1658 { 1659 req->rq_flags |= RQF_TIMED_OUT; 1660 if (req->q->mq_ops->timeout) { 1661 enum blk_eh_timer_return ret; 1662 1663 ret = req->q->mq_ops->timeout(req); 1664 if (ret == BLK_EH_DONE) 1665 return; 1666 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1667 } 1668 1669 blk_add_timer(req); 1670 } 1671 1672 struct blk_expired_data { 1673 bool has_timedout_rq; 1674 unsigned long next; 1675 unsigned long timeout_start; 1676 }; 1677 1678 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1679 { 1680 unsigned long deadline; 1681 1682 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1683 return false; 1684 if (rq->rq_flags & RQF_TIMED_OUT) 1685 return false; 1686 1687 deadline = READ_ONCE(rq->deadline); 1688 if (time_after_eq(expired->timeout_start, deadline)) 1689 return true; 1690 1691 if (expired->next == 0) 1692 expired->next = deadline; 1693 else if (time_after(expired->next, deadline)) 1694 expired->next = deadline; 1695 return false; 1696 } 1697 1698 void blk_mq_put_rq_ref(struct request *rq) 1699 { 1700 if (is_flush_rq(rq)) { 1701 if (rq->end_io(rq, 0, NULL) == RQ_END_IO_FREE) 1702 blk_mq_free_request(rq); 1703 } else if (req_ref_put_and_test(rq)) { 1704 __blk_mq_free_request(rq); 1705 } 1706 } 1707 1708 static bool blk_mq_check_expired(struct request *rq, void *priv) 1709 { 1710 struct blk_expired_data *expired = priv; 1711 1712 /* 1713 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1714 * be reallocated underneath the timeout handler's processing, then 1715 * the expire check is reliable. If the request is not expired, then 1716 * it was completed and reallocated as a new request after returning 1717 * from blk_mq_check_expired(). 1718 */ 1719 if (blk_mq_req_expired(rq, expired)) { 1720 expired->has_timedout_rq = true; 1721 return false; 1722 } 1723 return true; 1724 } 1725 1726 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1727 { 1728 struct blk_expired_data *expired = priv; 1729 1730 if (blk_mq_req_expired(rq, expired)) 1731 blk_mq_rq_timed_out(rq); 1732 return true; 1733 } 1734 1735 static void blk_mq_timeout_work(struct work_struct *work) 1736 { 1737 struct request_queue *q = 1738 container_of(work, struct request_queue, timeout_work); 1739 struct blk_expired_data expired = { 1740 .timeout_start = jiffies, 1741 }; 1742 struct blk_mq_hw_ctx *hctx; 1743 unsigned long i; 1744 1745 /* A deadlock might occur if a request is stuck requiring a 1746 * timeout at the same time a queue freeze is waiting 1747 * completion, since the timeout code would not be able to 1748 * acquire the queue reference here. 1749 * 1750 * That's why we don't use blk_queue_enter here; instead, we use 1751 * percpu_ref_tryget directly, because we need to be able to 1752 * obtain a reference even in the short window between the queue 1753 * starting to freeze, by dropping the first reference in 1754 * blk_freeze_queue_start, and the moment the last request is 1755 * consumed, marked by the instant q_usage_counter reaches 1756 * zero. 1757 */ 1758 if (!percpu_ref_tryget(&q->q_usage_counter)) 1759 return; 1760 1761 /* check if there is any timed-out request */ 1762 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1763 if (expired.has_timedout_rq) { 1764 /* 1765 * Before walking tags, we must ensure any submit started 1766 * before the current time has finished. Since the submit 1767 * uses srcu or rcu, wait for a synchronization point to 1768 * ensure all running submits have finished 1769 */ 1770 blk_mq_wait_quiesce_done(q->tag_set); 1771 1772 expired.next = 0; 1773 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1774 } 1775 1776 if (expired.next != 0) { 1777 mod_timer(&q->timeout, expired.next); 1778 } else { 1779 /* 1780 * Request timeouts are handled as a forward rolling timer. If 1781 * we end up here it means that no requests are pending and 1782 * also that no request has been pending for a while. Mark 1783 * each hctx as idle. 1784 */ 1785 queue_for_each_hw_ctx(q, hctx, i) { 1786 /* the hctx may be unmapped, so check it here */ 1787 if (blk_mq_hw_queue_mapped(hctx)) 1788 blk_mq_tag_idle(hctx); 1789 } 1790 } 1791 blk_queue_exit(q); 1792 } 1793 1794 struct flush_busy_ctx_data { 1795 struct blk_mq_hw_ctx *hctx; 1796 struct list_head *list; 1797 }; 1798 1799 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1800 { 1801 struct flush_busy_ctx_data *flush_data = data; 1802 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1803 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1804 enum hctx_type type = hctx->type; 1805 1806 spin_lock(&ctx->lock); 1807 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1808 sbitmap_clear_bit(sb, bitnr); 1809 spin_unlock(&ctx->lock); 1810 return true; 1811 } 1812 1813 /* 1814 * Process software queues that have been marked busy, splicing them 1815 * to the for-dispatch 1816 */ 1817 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1818 { 1819 struct flush_busy_ctx_data data = { 1820 .hctx = hctx, 1821 .list = list, 1822 }; 1823 1824 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1825 } 1826 1827 struct dispatch_rq_data { 1828 struct blk_mq_hw_ctx *hctx; 1829 struct request *rq; 1830 }; 1831 1832 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1833 void *data) 1834 { 1835 struct dispatch_rq_data *dispatch_data = data; 1836 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1837 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1838 enum hctx_type type = hctx->type; 1839 1840 spin_lock(&ctx->lock); 1841 if (!list_empty(&ctx->rq_lists[type])) { 1842 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1843 list_del_init(&dispatch_data->rq->queuelist); 1844 if (list_empty(&ctx->rq_lists[type])) 1845 sbitmap_clear_bit(sb, bitnr); 1846 } 1847 spin_unlock(&ctx->lock); 1848 1849 return !dispatch_data->rq; 1850 } 1851 1852 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1853 struct blk_mq_ctx *start) 1854 { 1855 unsigned off = start ? start->index_hw[hctx->type] : 0; 1856 struct dispatch_rq_data data = { 1857 .hctx = hctx, 1858 .rq = NULL, 1859 }; 1860 1861 __sbitmap_for_each_set(&hctx->ctx_map, off, 1862 dispatch_rq_from_ctx, &data); 1863 1864 return data.rq; 1865 } 1866 1867 bool __blk_mq_alloc_driver_tag(struct request *rq) 1868 { 1869 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1870 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1871 int tag; 1872 1873 blk_mq_tag_busy(rq->mq_hctx); 1874 1875 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1876 bt = &rq->mq_hctx->tags->breserved_tags; 1877 tag_offset = 0; 1878 } else { 1879 if (!hctx_may_queue(rq->mq_hctx, bt)) 1880 return false; 1881 } 1882 1883 tag = __sbitmap_queue_get(bt); 1884 if (tag == BLK_MQ_NO_TAG) 1885 return false; 1886 1887 rq->tag = tag + tag_offset; 1888 blk_mq_inc_active_requests(rq->mq_hctx); 1889 return true; 1890 } 1891 1892 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1893 int flags, void *key) 1894 { 1895 struct blk_mq_hw_ctx *hctx; 1896 1897 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1898 1899 spin_lock(&hctx->dispatch_wait_lock); 1900 if (!list_empty(&wait->entry)) { 1901 struct sbitmap_queue *sbq; 1902 1903 list_del_init(&wait->entry); 1904 sbq = &hctx->tags->bitmap_tags; 1905 atomic_dec(&sbq->ws_active); 1906 } 1907 spin_unlock(&hctx->dispatch_wait_lock); 1908 1909 blk_mq_run_hw_queue(hctx, true); 1910 return 1; 1911 } 1912 1913 /* 1914 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1915 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1916 * restart. For both cases, take care to check the condition again after 1917 * marking us as waiting. 1918 */ 1919 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1920 struct request *rq) 1921 { 1922 struct sbitmap_queue *sbq; 1923 struct wait_queue_head *wq; 1924 wait_queue_entry_t *wait; 1925 bool ret; 1926 1927 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1928 !(blk_mq_is_shared_tags(hctx->flags))) { 1929 blk_mq_sched_mark_restart_hctx(hctx); 1930 1931 /* 1932 * It's possible that a tag was freed in the window between the 1933 * allocation failure and adding the hardware queue to the wait 1934 * queue. 1935 * 1936 * Don't clear RESTART here, someone else could have set it. 1937 * At most this will cost an extra queue run. 1938 */ 1939 return blk_mq_get_driver_tag(rq); 1940 } 1941 1942 wait = &hctx->dispatch_wait; 1943 if (!list_empty_careful(&wait->entry)) 1944 return false; 1945 1946 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1947 sbq = &hctx->tags->breserved_tags; 1948 else 1949 sbq = &hctx->tags->bitmap_tags; 1950 wq = &bt_wait_ptr(sbq, hctx)->wait; 1951 1952 spin_lock_irq(&wq->lock); 1953 spin_lock(&hctx->dispatch_wait_lock); 1954 if (!list_empty(&wait->entry)) { 1955 spin_unlock(&hctx->dispatch_wait_lock); 1956 spin_unlock_irq(&wq->lock); 1957 return false; 1958 } 1959 1960 atomic_inc(&sbq->ws_active); 1961 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1962 __add_wait_queue(wq, wait); 1963 1964 /* 1965 * Add one explicit barrier since blk_mq_get_driver_tag() may 1966 * not imply barrier in case of failure. 1967 * 1968 * Order adding us to wait queue and allocating driver tag. 1969 * 1970 * The pair is the one implied in sbitmap_queue_wake_up() which 1971 * orders clearing sbitmap tag bits and waitqueue_active() in 1972 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1973 * 1974 * Otherwise, re-order of adding wait queue and getting driver tag 1975 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1976 * the waitqueue_active() may not observe us in wait queue. 1977 */ 1978 smp_mb(); 1979 1980 /* 1981 * It's possible that a tag was freed in the window between the 1982 * allocation failure and adding the hardware queue to the wait 1983 * queue. 1984 */ 1985 ret = blk_mq_get_driver_tag(rq); 1986 if (!ret) { 1987 spin_unlock(&hctx->dispatch_wait_lock); 1988 spin_unlock_irq(&wq->lock); 1989 return false; 1990 } 1991 1992 /* 1993 * We got a tag, remove ourselves from the wait queue to ensure 1994 * someone else gets the wakeup. 1995 */ 1996 list_del_init(&wait->entry); 1997 atomic_dec(&sbq->ws_active); 1998 spin_unlock(&hctx->dispatch_wait_lock); 1999 spin_unlock_irq(&wq->lock); 2000 2001 return true; 2002 } 2003 2004 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 2005 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 2006 /* 2007 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 2008 * - EWMA is one simple way to compute running average value 2009 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 2010 * - take 4 as factor for avoiding to get too small(0) result, and this 2011 * factor doesn't matter because EWMA decreases exponentially 2012 */ 2013 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 2014 { 2015 unsigned int ewma; 2016 2017 ewma = hctx->dispatch_busy; 2018 2019 if (!ewma && !busy) 2020 return; 2021 2022 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 2023 if (busy) 2024 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 2025 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 2026 2027 hctx->dispatch_busy = ewma; 2028 } 2029 2030 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 2031 2032 static void blk_mq_handle_dev_resource(struct request *rq, 2033 struct list_head *list) 2034 { 2035 list_add(&rq->queuelist, list); 2036 __blk_mq_requeue_request(rq); 2037 } 2038 2039 enum prep_dispatch { 2040 PREP_DISPATCH_OK, 2041 PREP_DISPATCH_NO_TAG, 2042 PREP_DISPATCH_NO_BUDGET, 2043 }; 2044 2045 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 2046 bool need_budget) 2047 { 2048 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2049 int budget_token = -1; 2050 2051 if (need_budget) { 2052 budget_token = blk_mq_get_dispatch_budget(rq->q); 2053 if (budget_token < 0) { 2054 blk_mq_put_driver_tag(rq); 2055 return PREP_DISPATCH_NO_BUDGET; 2056 } 2057 blk_mq_set_rq_budget_token(rq, budget_token); 2058 } 2059 2060 if (!blk_mq_get_driver_tag(rq)) { 2061 /* 2062 * The initial allocation attempt failed, so we need to 2063 * rerun the hardware queue when a tag is freed. The 2064 * waitqueue takes care of that. If the queue is run 2065 * before we add this entry back on the dispatch list, 2066 * we'll re-run it below. 2067 */ 2068 if (!blk_mq_mark_tag_wait(hctx, rq)) { 2069 /* 2070 * All budgets not got from this function will be put 2071 * together during handling partial dispatch 2072 */ 2073 if (need_budget) 2074 blk_mq_put_dispatch_budget(rq->q, budget_token); 2075 return PREP_DISPATCH_NO_TAG; 2076 } 2077 } 2078 2079 return PREP_DISPATCH_OK; 2080 } 2081 2082 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2083 static void blk_mq_release_budgets(struct request_queue *q, 2084 struct list_head *list) 2085 { 2086 struct request *rq; 2087 2088 list_for_each_entry(rq, list, queuelist) { 2089 int budget_token = blk_mq_get_rq_budget_token(rq); 2090 2091 if (budget_token >= 0) 2092 blk_mq_put_dispatch_budget(q, budget_token); 2093 } 2094 } 2095 2096 /* 2097 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2098 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2099 * details) 2100 * Attention, we should explicitly call this in unusual cases: 2101 * 1) did not queue everything initially scheduled to queue 2102 * 2) the last attempt to queue a request failed 2103 */ 2104 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2105 bool from_schedule) 2106 { 2107 if (hctx->queue->mq_ops->commit_rqs && queued) { 2108 trace_block_unplug(hctx->queue, queued, !from_schedule); 2109 hctx->queue->mq_ops->commit_rqs(hctx); 2110 } 2111 } 2112 2113 /* 2114 * Returns true if we did some work AND can potentially do more. 2115 */ 2116 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2117 bool get_budget) 2118 { 2119 enum prep_dispatch prep; 2120 struct request_queue *q = hctx->queue; 2121 struct request *rq; 2122 int queued; 2123 blk_status_t ret = BLK_STS_OK; 2124 bool needs_resource = false; 2125 2126 if (list_empty(list)) 2127 return false; 2128 2129 /* 2130 * Now process all the entries, sending them to the driver. 2131 */ 2132 queued = 0; 2133 do { 2134 struct blk_mq_queue_data bd; 2135 2136 rq = list_first_entry(list, struct request, queuelist); 2137 2138 WARN_ON_ONCE(hctx != rq->mq_hctx); 2139 prep = blk_mq_prep_dispatch_rq(rq, get_budget); 2140 if (prep != PREP_DISPATCH_OK) 2141 break; 2142 2143 list_del_init(&rq->queuelist); 2144 2145 bd.rq = rq; 2146 bd.last = list_empty(list); 2147 2148 ret = q->mq_ops->queue_rq(hctx, &bd); 2149 switch (ret) { 2150 case BLK_STS_OK: 2151 queued++; 2152 break; 2153 case BLK_STS_RESOURCE: 2154 needs_resource = true; 2155 fallthrough; 2156 case BLK_STS_DEV_RESOURCE: 2157 blk_mq_handle_dev_resource(rq, list); 2158 goto out; 2159 default: 2160 blk_mq_end_request(rq, ret); 2161 } 2162 } while (!list_empty(list)); 2163 out: 2164 /* If we didn't flush the entire list, we could have told the driver 2165 * there was more coming, but that turned out to be a lie. 2166 */ 2167 if (!list_empty(list) || ret != BLK_STS_OK) 2168 blk_mq_commit_rqs(hctx, queued, false); 2169 2170 /* 2171 * Any items that need requeuing? Stuff them into hctx->dispatch, 2172 * that is where we will continue on next queue run. 2173 */ 2174 if (!list_empty(list)) { 2175 bool needs_restart; 2176 /* For non-shared tags, the RESTART check will suffice */ 2177 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2178 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2179 blk_mq_is_shared_tags(hctx->flags)); 2180 2181 /* 2182 * If the caller allocated budgets, free the budgets of the 2183 * requests that have not yet been passed to the block driver. 2184 */ 2185 if (!get_budget) 2186 blk_mq_release_budgets(q, list); 2187 2188 spin_lock(&hctx->lock); 2189 list_splice_tail_init(list, &hctx->dispatch); 2190 spin_unlock(&hctx->lock); 2191 2192 /* 2193 * Order adding requests to hctx->dispatch and checking 2194 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2195 * in blk_mq_sched_restart(). Avoid restart code path to 2196 * miss the new added requests to hctx->dispatch, meantime 2197 * SCHED_RESTART is observed here. 2198 */ 2199 smp_mb(); 2200 2201 /* 2202 * If SCHED_RESTART was set by the caller of this function and 2203 * it is no longer set that means that it was cleared by another 2204 * thread and hence that a queue rerun is needed. 2205 * 2206 * If 'no_tag' is set, that means that we failed getting 2207 * a driver tag with an I/O scheduler attached. If our dispatch 2208 * waitqueue is no longer active, ensure that we run the queue 2209 * AFTER adding our entries back to the list. 2210 * 2211 * If no I/O scheduler has been configured it is possible that 2212 * the hardware queue got stopped and restarted before requests 2213 * were pushed back onto the dispatch list. Rerun the queue to 2214 * avoid starvation. Notes: 2215 * - blk_mq_run_hw_queue() checks whether or not a queue has 2216 * been stopped before rerunning a queue. 2217 * - Some but not all block drivers stop a queue before 2218 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2219 * and dm-rq. 2220 * 2221 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2222 * bit is set, run queue after a delay to avoid IO stalls 2223 * that could otherwise occur if the queue is idle. We'll do 2224 * similar if we couldn't get budget or couldn't lock a zone 2225 * and SCHED_RESTART is set. 2226 */ 2227 needs_restart = blk_mq_sched_needs_restart(hctx); 2228 if (prep == PREP_DISPATCH_NO_BUDGET) 2229 needs_resource = true; 2230 if (!needs_restart || 2231 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2232 blk_mq_run_hw_queue(hctx, true); 2233 else if (needs_resource) 2234 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2235 2236 blk_mq_update_dispatch_busy(hctx, true); 2237 return false; 2238 } 2239 2240 blk_mq_update_dispatch_busy(hctx, false); 2241 return true; 2242 } 2243 2244 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2245 { 2246 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2247 2248 if (cpu >= nr_cpu_ids) 2249 cpu = cpumask_first(hctx->cpumask); 2250 return cpu; 2251 } 2252 2253 /* 2254 * ->next_cpu is always calculated from hctx->cpumask, so simply use 2255 * it for speeding up the check 2256 */ 2257 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx) 2258 { 2259 return hctx->next_cpu >= nr_cpu_ids; 2260 } 2261 2262 /* 2263 * It'd be great if the workqueue API had a way to pass 2264 * in a mask and had some smarts for more clever placement. 2265 * For now we just round-robin here, switching for every 2266 * BLK_MQ_CPU_WORK_BATCH queued items. 2267 */ 2268 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2269 { 2270 bool tried = false; 2271 int next_cpu = hctx->next_cpu; 2272 2273 /* Switch to unbound if no allowable CPUs in this hctx */ 2274 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx)) 2275 return WORK_CPU_UNBOUND; 2276 2277 if (--hctx->next_cpu_batch <= 0) { 2278 select_cpu: 2279 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2280 cpu_online_mask); 2281 if (next_cpu >= nr_cpu_ids) 2282 next_cpu = blk_mq_first_mapped_cpu(hctx); 2283 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2284 } 2285 2286 /* 2287 * Do unbound schedule if we can't find a online CPU for this hctx, 2288 * and it should only happen in the path of handling CPU DEAD. 2289 */ 2290 if (!cpu_online(next_cpu)) { 2291 if (!tried) { 2292 tried = true; 2293 goto select_cpu; 2294 } 2295 2296 /* 2297 * Make sure to re-select CPU next time once after CPUs 2298 * in hctx->cpumask become online again. 2299 */ 2300 hctx->next_cpu = next_cpu; 2301 hctx->next_cpu_batch = 1; 2302 return WORK_CPU_UNBOUND; 2303 } 2304 2305 hctx->next_cpu = next_cpu; 2306 return next_cpu; 2307 } 2308 2309 /** 2310 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2311 * @hctx: Pointer to the hardware queue to run. 2312 * @msecs: Milliseconds of delay to wait before running the queue. 2313 * 2314 * Run a hardware queue asynchronously with a delay of @msecs. 2315 */ 2316 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2317 { 2318 if (unlikely(blk_mq_hctx_stopped(hctx))) 2319 return; 2320 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2321 msecs_to_jiffies(msecs)); 2322 } 2323 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2324 2325 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx) 2326 { 2327 bool need_run; 2328 2329 /* 2330 * When queue is quiesced, we may be switching io scheduler, or 2331 * updating nr_hw_queues, or other things, and we can't run queue 2332 * any more, even blk_mq_hctx_has_pending() can't be called safely. 2333 * 2334 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2335 * quiesced. 2336 */ 2337 __blk_mq_run_dispatch_ops(hctx->queue, false, 2338 need_run = !blk_queue_quiesced(hctx->queue) && 2339 blk_mq_hctx_has_pending(hctx)); 2340 return need_run; 2341 } 2342 2343 /** 2344 * blk_mq_run_hw_queue - Start to run a hardware queue. 2345 * @hctx: Pointer to the hardware queue to run. 2346 * @async: If we want to run the queue asynchronously. 2347 * 2348 * Check if the request queue is not in a quiesced state and if there are 2349 * pending requests to be sent. If this is true, run the queue to send requests 2350 * to hardware. 2351 */ 2352 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2353 { 2354 bool need_run; 2355 2356 /* 2357 * We can't run the queue inline with interrupts disabled. 2358 */ 2359 WARN_ON_ONCE(!async && in_interrupt()); 2360 2361 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2362 2363 need_run = blk_mq_hw_queue_need_run(hctx); 2364 if (!need_run) { 2365 unsigned long flags; 2366 2367 /* 2368 * Synchronize with blk_mq_unquiesce_queue(), because we check 2369 * if hw queue is quiesced locklessly above, we need the use 2370 * ->queue_lock to make sure we see the up-to-date status to 2371 * not miss rerunning the hw queue. 2372 */ 2373 spin_lock_irqsave(&hctx->queue->queue_lock, flags); 2374 need_run = blk_mq_hw_queue_need_run(hctx); 2375 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags); 2376 2377 if (!need_run) 2378 return; 2379 } 2380 2381 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2382 blk_mq_delay_run_hw_queue(hctx, 0); 2383 return; 2384 } 2385 2386 blk_mq_run_dispatch_ops(hctx->queue, 2387 blk_mq_sched_dispatch_requests(hctx)); 2388 } 2389 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2390 2391 /* 2392 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2393 * scheduler. 2394 */ 2395 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2396 { 2397 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2398 /* 2399 * If the IO scheduler does not respect hardware queues when 2400 * dispatching, we just don't bother with multiple HW queues and 2401 * dispatch from hctx for the current CPU since running multiple queues 2402 * just causes lock contention inside the scheduler and pointless cache 2403 * bouncing. 2404 */ 2405 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2406 2407 if (!blk_mq_hctx_stopped(hctx)) 2408 return hctx; 2409 return NULL; 2410 } 2411 2412 /** 2413 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2414 * @q: Pointer to the request queue to run. 2415 * @async: If we want to run the queue asynchronously. 2416 */ 2417 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2418 { 2419 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2420 unsigned long i; 2421 2422 sq_hctx = NULL; 2423 if (blk_queue_sq_sched(q)) 2424 sq_hctx = blk_mq_get_sq_hctx(q); 2425 queue_for_each_hw_ctx(q, hctx, i) { 2426 if (blk_mq_hctx_stopped(hctx)) 2427 continue; 2428 /* 2429 * Dispatch from this hctx either if there's no hctx preferred 2430 * by IO scheduler or if it has requests that bypass the 2431 * scheduler. 2432 */ 2433 if (!sq_hctx || sq_hctx == hctx || 2434 !list_empty_careful(&hctx->dispatch)) 2435 blk_mq_run_hw_queue(hctx, async); 2436 } 2437 } 2438 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2439 2440 /** 2441 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2442 * @q: Pointer to the request queue to run. 2443 * @msecs: Milliseconds of delay to wait before running the queues. 2444 */ 2445 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2446 { 2447 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2448 unsigned long i; 2449 2450 sq_hctx = NULL; 2451 if (blk_queue_sq_sched(q)) 2452 sq_hctx = blk_mq_get_sq_hctx(q); 2453 queue_for_each_hw_ctx(q, hctx, i) { 2454 if (blk_mq_hctx_stopped(hctx)) 2455 continue; 2456 /* 2457 * If there is already a run_work pending, leave the 2458 * pending delay untouched. Otherwise, a hctx can stall 2459 * if another hctx is re-delaying the other's work 2460 * before the work executes. 2461 */ 2462 if (delayed_work_pending(&hctx->run_work)) 2463 continue; 2464 /* 2465 * Dispatch from this hctx either if there's no hctx preferred 2466 * by IO scheduler or if it has requests that bypass the 2467 * scheduler. 2468 */ 2469 if (!sq_hctx || sq_hctx == hctx || 2470 !list_empty_careful(&hctx->dispatch)) 2471 blk_mq_delay_run_hw_queue(hctx, msecs); 2472 } 2473 } 2474 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2475 2476 /* 2477 * This function is often used for pausing .queue_rq() by driver when 2478 * there isn't enough resource or some conditions aren't satisfied, and 2479 * BLK_STS_RESOURCE is usually returned. 2480 * 2481 * We do not guarantee that dispatch can be drained or blocked 2482 * after blk_mq_stop_hw_queue() returns. Please use 2483 * blk_mq_quiesce_queue() for that requirement. 2484 */ 2485 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2486 { 2487 cancel_delayed_work(&hctx->run_work); 2488 2489 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2490 } 2491 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2492 2493 /* 2494 * This function is often used for pausing .queue_rq() by driver when 2495 * there isn't enough resource or some conditions aren't satisfied, and 2496 * BLK_STS_RESOURCE is usually returned. 2497 * 2498 * We do not guarantee that dispatch can be drained or blocked 2499 * after blk_mq_stop_hw_queues() returns. Please use 2500 * blk_mq_quiesce_queue() for that requirement. 2501 */ 2502 void blk_mq_stop_hw_queues(struct request_queue *q) 2503 { 2504 struct blk_mq_hw_ctx *hctx; 2505 unsigned long i; 2506 2507 queue_for_each_hw_ctx(q, hctx, i) 2508 blk_mq_stop_hw_queue(hctx); 2509 } 2510 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2511 2512 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2513 { 2514 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2515 2516 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2517 } 2518 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2519 2520 void blk_mq_start_hw_queues(struct request_queue *q) 2521 { 2522 struct blk_mq_hw_ctx *hctx; 2523 unsigned long i; 2524 2525 queue_for_each_hw_ctx(q, hctx, i) 2526 blk_mq_start_hw_queue(hctx); 2527 } 2528 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2529 2530 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2531 { 2532 if (!blk_mq_hctx_stopped(hctx)) 2533 return; 2534 2535 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2536 /* 2537 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the 2538 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch 2539 * list in the subsequent routine. 2540 */ 2541 smp_mb__after_atomic(); 2542 blk_mq_run_hw_queue(hctx, async); 2543 } 2544 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2545 2546 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2547 { 2548 struct blk_mq_hw_ctx *hctx; 2549 unsigned long i; 2550 2551 queue_for_each_hw_ctx(q, hctx, i) 2552 blk_mq_start_stopped_hw_queue(hctx, async || 2553 (hctx->flags & BLK_MQ_F_BLOCKING)); 2554 } 2555 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2556 2557 static void blk_mq_run_work_fn(struct work_struct *work) 2558 { 2559 struct blk_mq_hw_ctx *hctx = 2560 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2561 2562 blk_mq_run_dispatch_ops(hctx->queue, 2563 blk_mq_sched_dispatch_requests(hctx)); 2564 } 2565 2566 /** 2567 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2568 * @rq: Pointer to request to be inserted. 2569 * @flags: BLK_MQ_INSERT_* 2570 * 2571 * Should only be used carefully, when the caller knows we want to 2572 * bypass a potential IO scheduler on the target device. 2573 */ 2574 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2575 { 2576 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2577 2578 spin_lock(&hctx->lock); 2579 if (flags & BLK_MQ_INSERT_AT_HEAD) 2580 list_add(&rq->queuelist, &hctx->dispatch); 2581 else 2582 list_add_tail(&rq->queuelist, &hctx->dispatch); 2583 spin_unlock(&hctx->lock); 2584 } 2585 2586 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2587 struct blk_mq_ctx *ctx, struct list_head *list, 2588 bool run_queue_async) 2589 { 2590 struct request *rq; 2591 enum hctx_type type = hctx->type; 2592 2593 /* 2594 * Try to issue requests directly if the hw queue isn't busy to save an 2595 * extra enqueue & dequeue to the sw queue. 2596 */ 2597 if (!hctx->dispatch_busy && !run_queue_async) { 2598 blk_mq_run_dispatch_ops(hctx->queue, 2599 blk_mq_try_issue_list_directly(hctx, list)); 2600 if (list_empty(list)) 2601 goto out; 2602 } 2603 2604 /* 2605 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2606 * offline now 2607 */ 2608 list_for_each_entry(rq, list, queuelist) { 2609 BUG_ON(rq->mq_ctx != ctx); 2610 trace_block_rq_insert(rq); 2611 if (rq->cmd_flags & REQ_NOWAIT) 2612 run_queue_async = true; 2613 } 2614 2615 spin_lock(&ctx->lock); 2616 list_splice_tail_init(list, &ctx->rq_lists[type]); 2617 blk_mq_hctx_mark_pending(hctx, ctx); 2618 spin_unlock(&ctx->lock); 2619 out: 2620 blk_mq_run_hw_queue(hctx, run_queue_async); 2621 } 2622 2623 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2624 { 2625 struct request_queue *q = rq->q; 2626 struct blk_mq_ctx *ctx = rq->mq_ctx; 2627 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2628 2629 if (blk_rq_is_passthrough(rq)) { 2630 /* 2631 * Passthrough request have to be added to hctx->dispatch 2632 * directly. The device may be in a situation where it can't 2633 * handle FS request, and always returns BLK_STS_RESOURCE for 2634 * them, which gets them added to hctx->dispatch. 2635 * 2636 * If a passthrough request is required to unblock the queues, 2637 * and it is added to the scheduler queue, there is no chance to 2638 * dispatch it given we prioritize requests in hctx->dispatch. 2639 */ 2640 blk_mq_request_bypass_insert(rq, flags); 2641 } else if (req_op(rq) == REQ_OP_FLUSH) { 2642 /* 2643 * Firstly normal IO request is inserted to scheduler queue or 2644 * sw queue, meantime we add flush request to dispatch queue( 2645 * hctx->dispatch) directly and there is at most one in-flight 2646 * flush request for each hw queue, so it doesn't matter to add 2647 * flush request to tail or front of the dispatch queue. 2648 * 2649 * Secondly in case of NCQ, flush request belongs to non-NCQ 2650 * command, and queueing it will fail when there is any 2651 * in-flight normal IO request(NCQ command). When adding flush 2652 * rq to the front of hctx->dispatch, it is easier to introduce 2653 * extra time to flush rq's latency because of S_SCHED_RESTART 2654 * compared with adding to the tail of dispatch queue, then 2655 * chance of flush merge is increased, and less flush requests 2656 * will be issued to controller. It is observed that ~10% time 2657 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2658 * drive when adding flush rq to the front of hctx->dispatch. 2659 * 2660 * Simply queue flush rq to the front of hctx->dispatch so that 2661 * intensive flush workloads can benefit in case of NCQ HW. 2662 */ 2663 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2664 } else if (q->elevator) { 2665 LIST_HEAD(list); 2666 2667 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2668 2669 list_add(&rq->queuelist, &list); 2670 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2671 } else { 2672 trace_block_rq_insert(rq); 2673 2674 spin_lock(&ctx->lock); 2675 if (flags & BLK_MQ_INSERT_AT_HEAD) 2676 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2677 else 2678 list_add_tail(&rq->queuelist, 2679 &ctx->rq_lists[hctx->type]); 2680 blk_mq_hctx_mark_pending(hctx, ctx); 2681 spin_unlock(&ctx->lock); 2682 } 2683 } 2684 2685 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2686 unsigned int nr_segs) 2687 { 2688 int err; 2689 2690 if (bio->bi_opf & REQ_RAHEAD) 2691 rq->cmd_flags |= REQ_FAILFAST_MASK; 2692 2693 rq->bio = rq->biotail = bio; 2694 rq->__sector = bio->bi_iter.bi_sector; 2695 rq->__data_len = bio->bi_iter.bi_size; 2696 rq->phys_gap_bit = bio->bi_bvec_gap_bit; 2697 2698 rq->nr_phys_segments = nr_segs; 2699 if (bio_integrity(bio)) 2700 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q, 2701 bio); 2702 2703 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2704 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2705 WARN_ON_ONCE(err); 2706 2707 blk_account_io_start(rq); 2708 } 2709 2710 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2711 struct request *rq, bool last) 2712 { 2713 struct request_queue *q = rq->q; 2714 struct blk_mq_queue_data bd = { 2715 .rq = rq, 2716 .last = last, 2717 }; 2718 blk_status_t ret; 2719 2720 /* 2721 * For OK queue, we are done. For error, caller may kill it. 2722 * Any other error (busy), just add it to our list as we 2723 * previously would have done. 2724 */ 2725 ret = q->mq_ops->queue_rq(hctx, &bd); 2726 switch (ret) { 2727 case BLK_STS_OK: 2728 blk_mq_update_dispatch_busy(hctx, false); 2729 break; 2730 case BLK_STS_RESOURCE: 2731 case BLK_STS_DEV_RESOURCE: 2732 blk_mq_update_dispatch_busy(hctx, true); 2733 __blk_mq_requeue_request(rq); 2734 break; 2735 default: 2736 blk_mq_update_dispatch_busy(hctx, false); 2737 break; 2738 } 2739 2740 return ret; 2741 } 2742 2743 static bool blk_mq_get_budget_and_tag(struct request *rq) 2744 { 2745 int budget_token; 2746 2747 budget_token = blk_mq_get_dispatch_budget(rq->q); 2748 if (budget_token < 0) 2749 return false; 2750 blk_mq_set_rq_budget_token(rq, budget_token); 2751 if (!blk_mq_get_driver_tag(rq)) { 2752 blk_mq_put_dispatch_budget(rq->q, budget_token); 2753 return false; 2754 } 2755 return true; 2756 } 2757 2758 /** 2759 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2760 * @hctx: Pointer of the associated hardware queue. 2761 * @rq: Pointer to request to be sent. 2762 * 2763 * If the device has enough resources to accept a new request now, send the 2764 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2765 * we can try send it another time in the future. Requests inserted at this 2766 * queue have higher priority. 2767 */ 2768 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2769 struct request *rq) 2770 { 2771 blk_status_t ret; 2772 2773 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2774 blk_mq_insert_request(rq, 0); 2775 blk_mq_run_hw_queue(hctx, false); 2776 return; 2777 } 2778 2779 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2780 blk_mq_insert_request(rq, 0); 2781 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2782 return; 2783 } 2784 2785 ret = __blk_mq_issue_directly(hctx, rq, true); 2786 switch (ret) { 2787 case BLK_STS_OK: 2788 break; 2789 case BLK_STS_RESOURCE: 2790 case BLK_STS_DEV_RESOURCE: 2791 blk_mq_request_bypass_insert(rq, 0); 2792 blk_mq_run_hw_queue(hctx, false); 2793 break; 2794 default: 2795 blk_mq_end_request(rq, ret); 2796 break; 2797 } 2798 } 2799 2800 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2801 { 2802 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2803 2804 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2805 blk_mq_insert_request(rq, 0); 2806 blk_mq_run_hw_queue(hctx, false); 2807 return BLK_STS_OK; 2808 } 2809 2810 if (!blk_mq_get_budget_and_tag(rq)) 2811 return BLK_STS_RESOURCE; 2812 return __blk_mq_issue_directly(hctx, rq, last); 2813 } 2814 2815 static void blk_mq_issue_direct(struct rq_list *rqs) 2816 { 2817 struct blk_mq_hw_ctx *hctx = NULL; 2818 struct request *rq; 2819 int queued = 0; 2820 blk_status_t ret = BLK_STS_OK; 2821 2822 while ((rq = rq_list_pop(rqs))) { 2823 bool last = rq_list_empty(rqs); 2824 2825 if (hctx != rq->mq_hctx) { 2826 if (hctx) { 2827 blk_mq_commit_rqs(hctx, queued, false); 2828 queued = 0; 2829 } 2830 hctx = rq->mq_hctx; 2831 } 2832 2833 ret = blk_mq_request_issue_directly(rq, last); 2834 switch (ret) { 2835 case BLK_STS_OK: 2836 queued++; 2837 break; 2838 case BLK_STS_RESOURCE: 2839 case BLK_STS_DEV_RESOURCE: 2840 blk_mq_request_bypass_insert(rq, 0); 2841 blk_mq_run_hw_queue(hctx, false); 2842 goto out; 2843 default: 2844 blk_mq_end_request(rq, ret); 2845 break; 2846 } 2847 } 2848 2849 out: 2850 if (ret != BLK_STS_OK) 2851 blk_mq_commit_rqs(hctx, queued, false); 2852 } 2853 2854 static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs) 2855 { 2856 if (blk_queue_quiesced(q)) 2857 return; 2858 q->mq_ops->queue_rqs(rqs); 2859 } 2860 2861 static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs, 2862 struct rq_list *queue_rqs) 2863 { 2864 struct request *rq = rq_list_pop(rqs); 2865 struct request_queue *this_q = rq->q; 2866 struct request **prev = &rqs->head; 2867 struct rq_list matched_rqs = {}; 2868 struct request *last = NULL; 2869 unsigned depth = 1; 2870 2871 rq_list_add_tail(&matched_rqs, rq); 2872 while ((rq = *prev)) { 2873 if (rq->q == this_q) { 2874 /* move rq from rqs to matched_rqs */ 2875 *prev = rq->rq_next; 2876 rq_list_add_tail(&matched_rqs, rq); 2877 depth++; 2878 } else { 2879 /* leave rq in rqs */ 2880 prev = &rq->rq_next; 2881 last = rq; 2882 } 2883 } 2884 2885 rqs->tail = last; 2886 *queue_rqs = matched_rqs; 2887 return depth; 2888 } 2889 2890 static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth) 2891 { 2892 struct request_queue *q = rq_list_peek(rqs)->q; 2893 2894 trace_block_unplug(q, depth, true); 2895 2896 /* 2897 * Peek first request and see if we have a ->queue_rqs() hook. 2898 * If we do, we can dispatch the whole list in one go. 2899 * We already know at this point that all requests belong to the 2900 * same queue, caller must ensure that's the case. 2901 */ 2902 if (q->mq_ops->queue_rqs) { 2903 blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs)); 2904 if (rq_list_empty(rqs)) 2905 return; 2906 } 2907 2908 blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs)); 2909 } 2910 2911 static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched) 2912 { 2913 struct blk_mq_hw_ctx *this_hctx = NULL; 2914 struct blk_mq_ctx *this_ctx = NULL; 2915 struct rq_list requeue_list = {}; 2916 unsigned int depth = 0; 2917 bool is_passthrough = false; 2918 LIST_HEAD(list); 2919 2920 do { 2921 struct request *rq = rq_list_pop(rqs); 2922 2923 if (!this_hctx) { 2924 this_hctx = rq->mq_hctx; 2925 this_ctx = rq->mq_ctx; 2926 is_passthrough = blk_rq_is_passthrough(rq); 2927 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2928 is_passthrough != blk_rq_is_passthrough(rq)) { 2929 rq_list_add_tail(&requeue_list, rq); 2930 continue; 2931 } 2932 list_add_tail(&rq->queuelist, &list); 2933 depth++; 2934 } while (!rq_list_empty(rqs)); 2935 2936 *rqs = requeue_list; 2937 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2938 2939 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2940 /* passthrough requests should never be issued to the I/O scheduler */ 2941 if (is_passthrough) { 2942 spin_lock(&this_hctx->lock); 2943 list_splice_tail_init(&list, &this_hctx->dispatch); 2944 spin_unlock(&this_hctx->lock); 2945 blk_mq_run_hw_queue(this_hctx, from_sched); 2946 } else if (this_hctx->queue->elevator) { 2947 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2948 &list, 0); 2949 blk_mq_run_hw_queue(this_hctx, from_sched); 2950 } else { 2951 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2952 } 2953 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2954 } 2955 2956 static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs) 2957 { 2958 do { 2959 struct rq_list queue_rqs; 2960 unsigned depth; 2961 2962 depth = blk_mq_extract_queue_requests(rqs, &queue_rqs); 2963 blk_mq_dispatch_queue_requests(&queue_rqs, depth); 2964 while (!rq_list_empty(&queue_rqs)) 2965 blk_mq_dispatch_list(&queue_rqs, false); 2966 } while (!rq_list_empty(rqs)); 2967 } 2968 2969 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2970 { 2971 unsigned int depth; 2972 2973 /* 2974 * We may have been called recursively midway through handling 2975 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2976 * To avoid mq_list changing under our feet, clear rq_count early and 2977 * bail out specifically if rq_count is 0 rather than checking 2978 * whether the mq_list is empty. 2979 */ 2980 if (plug->rq_count == 0) 2981 return; 2982 depth = plug->rq_count; 2983 plug->rq_count = 0; 2984 2985 if (!plug->has_elevator && !from_schedule) { 2986 if (plug->multiple_queues) { 2987 blk_mq_dispatch_multiple_queue_requests(&plug->mq_list); 2988 return; 2989 } 2990 2991 blk_mq_dispatch_queue_requests(&plug->mq_list, depth); 2992 if (rq_list_empty(&plug->mq_list)) 2993 return; 2994 } 2995 2996 do { 2997 blk_mq_dispatch_list(&plug->mq_list, from_schedule); 2998 } while (!rq_list_empty(&plug->mq_list)); 2999 } 3000 3001 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 3002 struct list_head *list) 3003 { 3004 int queued = 0; 3005 blk_status_t ret = BLK_STS_OK; 3006 3007 while (!list_empty(list)) { 3008 struct request *rq = list_first_entry(list, struct request, 3009 queuelist); 3010 3011 list_del_init(&rq->queuelist); 3012 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 3013 switch (ret) { 3014 case BLK_STS_OK: 3015 queued++; 3016 break; 3017 case BLK_STS_RESOURCE: 3018 case BLK_STS_DEV_RESOURCE: 3019 blk_mq_request_bypass_insert(rq, 0); 3020 if (list_empty(list)) 3021 blk_mq_run_hw_queue(hctx, false); 3022 goto out; 3023 default: 3024 blk_mq_end_request(rq, ret); 3025 break; 3026 } 3027 } 3028 3029 out: 3030 if (ret != BLK_STS_OK) 3031 blk_mq_commit_rqs(hctx, queued, false); 3032 } 3033 3034 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 3035 struct bio *bio, unsigned int nr_segs) 3036 { 3037 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 3038 if (blk_attempt_plug_merge(q, bio, nr_segs)) 3039 return true; 3040 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 3041 return true; 3042 } 3043 return false; 3044 } 3045 3046 static struct request *blk_mq_get_new_requests(struct request_queue *q, 3047 struct blk_plug *plug, 3048 struct bio *bio) 3049 { 3050 struct blk_mq_alloc_data data = { 3051 .q = q, 3052 .flags = 0, 3053 .shallow_depth = 0, 3054 .cmd_flags = bio->bi_opf, 3055 .rq_flags = 0, 3056 .nr_tags = 1, 3057 .cached_rqs = NULL, 3058 .ctx = NULL, 3059 .hctx = NULL 3060 }; 3061 struct request *rq; 3062 3063 rq_qos_throttle(q, bio); 3064 3065 if (plug) { 3066 data.nr_tags = plug->nr_ios; 3067 plug->nr_ios = 1; 3068 data.cached_rqs = &plug->cached_rqs; 3069 } 3070 3071 rq = __blk_mq_alloc_requests(&data); 3072 if (unlikely(!rq)) 3073 rq_qos_cleanup(q, bio); 3074 return rq; 3075 } 3076 3077 /* 3078 * Check if there is a suitable cached request and return it. 3079 */ 3080 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 3081 struct request_queue *q, blk_opf_t opf) 3082 { 3083 enum hctx_type type = blk_mq_get_hctx_type(opf); 3084 struct request *rq; 3085 3086 if (!plug) 3087 return NULL; 3088 rq = rq_list_peek(&plug->cached_rqs); 3089 if (!rq || rq->q != q) 3090 return NULL; 3091 if (type != rq->mq_hctx->type && 3092 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 3093 return NULL; 3094 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 3095 return NULL; 3096 return rq; 3097 } 3098 3099 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 3100 struct bio *bio) 3101 { 3102 if (rq_list_pop(&plug->cached_rqs) != rq) 3103 WARN_ON_ONCE(1); 3104 3105 /* 3106 * If any qos ->throttle() end up blocking, we will have flushed the 3107 * plug and hence killed the cached_rq list as well. Pop this entry 3108 * before we throttle. 3109 */ 3110 rq_qos_throttle(rq->q, bio); 3111 3112 blk_mq_rq_time_init(rq, blk_time_get_ns()); 3113 rq->cmd_flags = bio->bi_opf; 3114 INIT_LIST_HEAD(&rq->queuelist); 3115 } 3116 3117 static bool bio_unaligned(const struct bio *bio, struct request_queue *q) 3118 { 3119 unsigned int bs_mask = queue_logical_block_size(q) - 1; 3120 3121 /* .bi_sector of any zero sized bio need to be initialized */ 3122 if ((bio->bi_iter.bi_size & bs_mask) || 3123 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask)) 3124 return true; 3125 return false; 3126 } 3127 3128 /** 3129 * blk_mq_submit_bio - Create and send a request to block device. 3130 * @bio: Bio pointer. 3131 * 3132 * Builds up a request structure from @q and @bio and send to the device. The 3133 * request may not be queued directly to hardware if: 3134 * * This request can be merged with another one 3135 * * We want to place request at plug queue for possible future merging 3136 * * There is an IO scheduler active at this queue 3137 * 3138 * It will not queue the request if there is an error with the bio, or at the 3139 * request creation. 3140 */ 3141 void blk_mq_submit_bio(struct bio *bio) 3142 { 3143 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 3144 struct blk_plug *plug = current->plug; 3145 const int is_sync = op_is_sync(bio->bi_opf); 3146 struct blk_mq_hw_ctx *hctx; 3147 unsigned int nr_segs; 3148 struct request *rq; 3149 blk_status_t ret; 3150 3151 /* 3152 * If the plug has a cached request for this queue, try to use it. 3153 */ 3154 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 3155 3156 /* 3157 * A BIO that was released from a zone write plug has already been 3158 * through the preparation in this function, already holds a reference 3159 * on the queue usage counter, and is the only write BIO in-flight for 3160 * the target zone. Go straight to preparing a request for it. 3161 */ 3162 if (bio_zone_write_plugging(bio)) { 3163 nr_segs = bio->__bi_nr_segments; 3164 if (rq) 3165 blk_queue_exit(q); 3166 goto new_request; 3167 } 3168 3169 /* 3170 * The cached request already holds a q_usage_counter reference and we 3171 * don't have to acquire a new one if we use it. 3172 */ 3173 if (!rq) { 3174 if (unlikely(bio_queue_enter(bio))) 3175 return; 3176 } 3177 3178 /* 3179 * Device reconfiguration may change logical block size or reduce the 3180 * number of poll queues, so the checks for alignment and poll support 3181 * have to be done with queue usage counter held. 3182 */ 3183 if (unlikely(bio_unaligned(bio, q))) { 3184 bio_io_error(bio); 3185 goto queue_exit; 3186 } 3187 3188 if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) { 3189 bio->bi_status = BLK_STS_NOTSUPP; 3190 bio_endio(bio); 3191 goto queue_exit; 3192 } 3193 3194 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3195 if (!bio) 3196 goto queue_exit; 3197 3198 if (!bio_integrity_prep(bio)) 3199 goto queue_exit; 3200 3201 blk_mq_bio_issue_init(q, bio); 3202 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3203 goto queue_exit; 3204 3205 if (bio_needs_zone_write_plugging(bio)) { 3206 if (blk_zone_plug_bio(bio, nr_segs)) 3207 goto queue_exit; 3208 } 3209 3210 new_request: 3211 if (rq) { 3212 blk_mq_use_cached_rq(rq, plug, bio); 3213 } else { 3214 rq = blk_mq_get_new_requests(q, plug, bio); 3215 if (unlikely(!rq)) { 3216 if (bio->bi_opf & REQ_NOWAIT) 3217 bio_wouldblock_error(bio); 3218 goto queue_exit; 3219 } 3220 } 3221 3222 trace_block_getrq(bio); 3223 3224 rq_qos_track(q, rq, bio); 3225 3226 blk_mq_bio_to_request(rq, bio, nr_segs); 3227 3228 ret = blk_crypto_rq_get_keyslot(rq); 3229 if (ret != BLK_STS_OK) { 3230 bio->bi_status = ret; 3231 bio_endio(bio); 3232 blk_mq_free_request(rq); 3233 return; 3234 } 3235 3236 if (bio_zone_write_plugging(bio)) 3237 blk_zone_write_plug_init_request(rq); 3238 3239 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3240 return; 3241 3242 if (plug) { 3243 blk_add_rq_to_plug(plug, rq); 3244 return; 3245 } 3246 3247 hctx = rq->mq_hctx; 3248 if ((rq->rq_flags & RQF_USE_SCHED) || 3249 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3250 blk_mq_insert_request(rq, 0); 3251 blk_mq_run_hw_queue(hctx, true); 3252 } else { 3253 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3254 } 3255 return; 3256 3257 queue_exit: 3258 /* 3259 * Don't drop the queue reference if we were trying to use a cached 3260 * request and thus didn't acquire one. 3261 */ 3262 if (!rq) 3263 blk_queue_exit(q); 3264 } 3265 3266 #ifdef CONFIG_BLK_MQ_STACKING 3267 /** 3268 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3269 * @rq: the request being queued 3270 */ 3271 blk_status_t blk_insert_cloned_request(struct request *rq) 3272 { 3273 struct request_queue *q = rq->q; 3274 unsigned int max_sectors = blk_queue_get_max_sectors(rq); 3275 unsigned int max_segments = blk_rq_get_max_segments(rq); 3276 blk_status_t ret; 3277 3278 if (blk_rq_sectors(rq) > max_sectors) { 3279 /* 3280 * SCSI device does not have a good way to return if 3281 * Write Same/Zero is actually supported. If a device rejects 3282 * a non-read/write command (discard, write same,etc.) the 3283 * low-level device driver will set the relevant queue limit to 3284 * 0 to prevent blk-lib from issuing more of the offending 3285 * operations. Commands queued prior to the queue limit being 3286 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3287 * errors being propagated to upper layers. 3288 */ 3289 if (max_sectors == 0) 3290 return BLK_STS_NOTSUPP; 3291 3292 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3293 __func__, blk_rq_sectors(rq), max_sectors); 3294 return BLK_STS_IOERR; 3295 } 3296 3297 /* 3298 * The queue settings related to segment counting may differ from the 3299 * original queue. 3300 */ 3301 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3302 if (rq->nr_phys_segments > max_segments) { 3303 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3304 __func__, rq->nr_phys_segments, max_segments); 3305 return BLK_STS_IOERR; 3306 } 3307 3308 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3309 return BLK_STS_IOERR; 3310 3311 ret = blk_crypto_rq_get_keyslot(rq); 3312 if (ret != BLK_STS_OK) 3313 return ret; 3314 3315 blk_account_io_start(rq); 3316 3317 /* 3318 * Since we have a scheduler attached on the top device, 3319 * bypass a potential scheduler on the bottom device for 3320 * insert. 3321 */ 3322 blk_mq_run_dispatch_ops(q, 3323 ret = blk_mq_request_issue_directly(rq, true)); 3324 if (ret) 3325 blk_account_io_done(rq, blk_time_get_ns()); 3326 return ret; 3327 } 3328 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3329 3330 /** 3331 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3332 * @rq: the clone request to be cleaned up 3333 * 3334 * Description: 3335 * Free all bios in @rq for a cloned request. 3336 */ 3337 void blk_rq_unprep_clone(struct request *rq) 3338 { 3339 struct bio *bio; 3340 3341 while ((bio = rq->bio) != NULL) { 3342 rq->bio = bio->bi_next; 3343 3344 bio_put(bio); 3345 } 3346 } 3347 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3348 3349 /** 3350 * blk_rq_prep_clone - Helper function to setup clone request 3351 * @rq: the request to be setup 3352 * @rq_src: original request to be cloned 3353 * @bs: bio_set that bios for clone are allocated from 3354 * @gfp_mask: memory allocation mask for bio 3355 * @bio_ctr: setup function to be called for each clone bio. 3356 * Returns %0 for success, non %0 for failure. 3357 * @data: private data to be passed to @bio_ctr 3358 * 3359 * Description: 3360 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3361 * Also, pages which the original bios are pointing to are not copied 3362 * and the cloned bios just point same pages. 3363 * So cloned bios must be completed before original bios, which means 3364 * the caller must complete @rq before @rq_src. 3365 */ 3366 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3367 struct bio_set *bs, gfp_t gfp_mask, 3368 int (*bio_ctr)(struct bio *, struct bio *, void *), 3369 void *data) 3370 { 3371 struct bio *bio_src; 3372 3373 if (!bs) 3374 bs = &fs_bio_set; 3375 3376 __rq_for_each_bio(bio_src, rq_src) { 3377 struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src, 3378 gfp_mask, bs); 3379 if (!bio) 3380 goto free_and_out; 3381 3382 if (bio_ctr && bio_ctr(bio, bio_src, data)) { 3383 bio_put(bio); 3384 goto free_and_out; 3385 } 3386 3387 if (rq->bio) { 3388 rq->biotail->bi_next = bio; 3389 rq->biotail = bio; 3390 } else { 3391 rq->bio = rq->biotail = bio; 3392 } 3393 } 3394 3395 /* Copy attributes of the original request to the clone request. */ 3396 rq->__sector = blk_rq_pos(rq_src); 3397 rq->__data_len = blk_rq_bytes(rq_src); 3398 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3399 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3400 rq->special_vec = rq_src->special_vec; 3401 } 3402 rq->nr_phys_segments = rq_src->nr_phys_segments; 3403 rq->nr_integrity_segments = rq_src->nr_integrity_segments; 3404 rq->phys_gap_bit = rq_src->phys_gap_bit; 3405 3406 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3407 goto free_and_out; 3408 3409 return 0; 3410 3411 free_and_out: 3412 blk_rq_unprep_clone(rq); 3413 3414 return -ENOMEM; 3415 } 3416 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3417 #endif /* CONFIG_BLK_MQ_STACKING */ 3418 3419 /* 3420 * Steal bios from a request and add them to a bio list. 3421 * The request must not have been partially completed before. 3422 */ 3423 void blk_steal_bios(struct bio_list *list, struct request *rq) 3424 { 3425 if (rq->bio) { 3426 if (list->tail) 3427 list->tail->bi_next = rq->bio; 3428 else 3429 list->head = rq->bio; 3430 list->tail = rq->biotail; 3431 3432 rq->bio = NULL; 3433 rq->biotail = NULL; 3434 } 3435 3436 rq->__data_len = 0; 3437 } 3438 EXPORT_SYMBOL_GPL(blk_steal_bios); 3439 3440 static size_t order_to_size(unsigned int order) 3441 { 3442 return (size_t)PAGE_SIZE << order; 3443 } 3444 3445 /* called before freeing request pool in @tags */ 3446 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3447 struct blk_mq_tags *tags) 3448 { 3449 struct page *page; 3450 3451 /* 3452 * There is no need to clear mapping if driver tags is not initialized 3453 * or the mapping belongs to the driver tags. 3454 */ 3455 if (!drv_tags || drv_tags == tags) 3456 return; 3457 3458 list_for_each_entry(page, &tags->page_list, lru) { 3459 unsigned long start = (unsigned long)page_address(page); 3460 unsigned long end = start + order_to_size(page->private); 3461 int i; 3462 3463 for (i = 0; i < drv_tags->nr_tags; i++) { 3464 struct request *rq = drv_tags->rqs[i]; 3465 unsigned long rq_addr = (unsigned long)rq; 3466 3467 if (rq_addr >= start && rq_addr < end) { 3468 WARN_ON_ONCE(req_ref_read(rq) != 0); 3469 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3470 } 3471 } 3472 } 3473 } 3474 3475 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3476 unsigned int hctx_idx) 3477 { 3478 struct blk_mq_tags *drv_tags; 3479 3480 if (list_empty(&tags->page_list)) 3481 return; 3482 3483 if (blk_mq_is_shared_tags(set->flags)) 3484 drv_tags = set->shared_tags; 3485 else 3486 drv_tags = set->tags[hctx_idx]; 3487 3488 if (tags->static_rqs && set->ops->exit_request) { 3489 int i; 3490 3491 for (i = 0; i < tags->nr_tags; i++) { 3492 struct request *rq = tags->static_rqs[i]; 3493 3494 if (!rq) 3495 continue; 3496 set->ops->exit_request(set, rq, hctx_idx); 3497 tags->static_rqs[i] = NULL; 3498 } 3499 } 3500 3501 blk_mq_clear_rq_mapping(drv_tags, tags); 3502 /* 3503 * Free request pages in SRCU callback, which is called from 3504 * blk_mq_free_tags(). 3505 */ 3506 } 3507 3508 void blk_mq_free_rq_map(struct blk_mq_tag_set *set, struct blk_mq_tags *tags) 3509 { 3510 kfree(tags->rqs); 3511 tags->rqs = NULL; 3512 kfree(tags->static_rqs); 3513 tags->static_rqs = NULL; 3514 3515 blk_mq_free_tags(set, tags); 3516 } 3517 3518 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3519 unsigned int hctx_idx) 3520 { 3521 int i; 3522 3523 for (i = 0; i < set->nr_maps; i++) { 3524 unsigned int start = set->map[i].queue_offset; 3525 unsigned int end = start + set->map[i].nr_queues; 3526 3527 if (hctx_idx >= start && hctx_idx < end) 3528 break; 3529 } 3530 3531 if (i >= set->nr_maps) 3532 i = HCTX_TYPE_DEFAULT; 3533 3534 return i; 3535 } 3536 3537 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3538 unsigned int hctx_idx) 3539 { 3540 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3541 3542 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3543 } 3544 3545 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3546 unsigned int hctx_idx, 3547 unsigned int nr_tags, 3548 unsigned int reserved_tags) 3549 { 3550 int node = blk_mq_get_hctx_node(set, hctx_idx); 3551 struct blk_mq_tags *tags; 3552 3553 if (node == NUMA_NO_NODE) 3554 node = set->numa_node; 3555 3556 tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node); 3557 if (!tags) 3558 return NULL; 3559 3560 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3561 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3562 node); 3563 if (!tags->rqs) 3564 goto err_free_tags; 3565 3566 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3567 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3568 node); 3569 if (!tags->static_rqs) 3570 goto err_free_rqs; 3571 3572 return tags; 3573 3574 err_free_rqs: 3575 kfree(tags->rqs); 3576 err_free_tags: 3577 blk_mq_free_tags(set, tags); 3578 return NULL; 3579 } 3580 3581 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3582 unsigned int hctx_idx, int node) 3583 { 3584 int ret; 3585 3586 if (set->ops->init_request) { 3587 ret = set->ops->init_request(set, rq, hctx_idx, node); 3588 if (ret) 3589 return ret; 3590 } 3591 3592 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3593 return 0; 3594 } 3595 3596 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3597 struct blk_mq_tags *tags, 3598 unsigned int hctx_idx, unsigned int depth) 3599 { 3600 unsigned int i, j, entries_per_page, max_order = 4; 3601 int node = blk_mq_get_hctx_node(set, hctx_idx); 3602 size_t rq_size, left; 3603 3604 if (node == NUMA_NO_NODE) 3605 node = set->numa_node; 3606 3607 /* 3608 * rq_size is the size of the request plus driver payload, rounded 3609 * to the cacheline size 3610 */ 3611 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3612 cache_line_size()); 3613 left = rq_size * depth; 3614 3615 for (i = 0; i < depth; ) { 3616 int this_order = max_order; 3617 struct page *page; 3618 int to_do; 3619 void *p; 3620 3621 while (this_order && left < order_to_size(this_order - 1)) 3622 this_order--; 3623 3624 do { 3625 page = alloc_pages_node(node, 3626 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3627 this_order); 3628 if (page) 3629 break; 3630 if (!this_order--) 3631 break; 3632 if (order_to_size(this_order) < rq_size) 3633 break; 3634 } while (1); 3635 3636 if (!page) 3637 goto fail; 3638 3639 page->private = this_order; 3640 list_add_tail(&page->lru, &tags->page_list); 3641 3642 p = page_address(page); 3643 /* 3644 * Allow kmemleak to scan these pages as they contain pointers 3645 * to additional allocations like via ops->init_request(). 3646 */ 3647 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3648 entries_per_page = order_to_size(this_order) / rq_size; 3649 to_do = min(entries_per_page, depth - i); 3650 left -= to_do * rq_size; 3651 for (j = 0; j < to_do; j++) { 3652 struct request *rq = p; 3653 3654 tags->static_rqs[i] = rq; 3655 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3656 tags->static_rqs[i] = NULL; 3657 goto fail; 3658 } 3659 3660 p += rq_size; 3661 i++; 3662 } 3663 } 3664 return 0; 3665 3666 fail: 3667 blk_mq_free_rqs(set, tags, hctx_idx); 3668 return -ENOMEM; 3669 } 3670 3671 struct rq_iter_data { 3672 struct blk_mq_hw_ctx *hctx; 3673 bool has_rq; 3674 }; 3675 3676 static bool blk_mq_has_request(struct request *rq, void *data) 3677 { 3678 struct rq_iter_data *iter_data = data; 3679 3680 if (rq->mq_hctx != iter_data->hctx) 3681 return true; 3682 iter_data->has_rq = true; 3683 return false; 3684 } 3685 3686 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3687 { 3688 struct blk_mq_tags *tags = hctx->sched_tags ? 3689 hctx->sched_tags : hctx->tags; 3690 struct rq_iter_data data = { 3691 .hctx = hctx, 3692 }; 3693 int srcu_idx; 3694 3695 srcu_idx = srcu_read_lock(&hctx->queue->tag_set->tags_srcu); 3696 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3697 srcu_read_unlock(&hctx->queue->tag_set->tags_srcu, srcu_idx); 3698 3699 return data.has_rq; 3700 } 3701 3702 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx, 3703 unsigned int this_cpu) 3704 { 3705 enum hctx_type type = hctx->type; 3706 int cpu; 3707 3708 /* 3709 * hctx->cpumask has to rule out isolated CPUs, but userspace still 3710 * might submit IOs on these isolated CPUs, so use the queue map to 3711 * check if all CPUs mapped to this hctx are offline 3712 */ 3713 for_each_online_cpu(cpu) { 3714 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue, 3715 type, cpu); 3716 3717 if (h != hctx) 3718 continue; 3719 3720 /* this hctx has at least one online CPU */ 3721 if (this_cpu != cpu) 3722 return true; 3723 } 3724 3725 return false; 3726 } 3727 3728 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3729 { 3730 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3731 struct blk_mq_hw_ctx, cpuhp_online); 3732 int ret = 0; 3733 3734 if (!hctx->nr_ctx || blk_mq_hctx_has_online_cpu(hctx, cpu)) 3735 return 0; 3736 3737 /* 3738 * Prevent new request from being allocated on the current hctx. 3739 * 3740 * The smp_mb__after_atomic() Pairs with the implied barrier in 3741 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3742 * seen once we return from the tag allocator. 3743 */ 3744 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3745 smp_mb__after_atomic(); 3746 3747 /* 3748 * Try to grab a reference to the queue and wait for any outstanding 3749 * requests. If we could not grab a reference the queue has been 3750 * frozen and there are no requests. 3751 */ 3752 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3753 while (blk_mq_hctx_has_requests(hctx)) { 3754 /* 3755 * The wakeup capable IRQ handler of block device is 3756 * not called during suspend. Skip the loop by checking 3757 * pm_wakeup_pending to prevent the deadlock and improve 3758 * suspend latency. 3759 */ 3760 if (pm_wakeup_pending()) { 3761 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3762 ret = -EBUSY; 3763 break; 3764 } 3765 msleep(5); 3766 } 3767 percpu_ref_put(&hctx->queue->q_usage_counter); 3768 } 3769 3770 return ret; 3771 } 3772 3773 /* 3774 * Check if one CPU is mapped to the specified hctx 3775 * 3776 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed 3777 * to be used for scheduling kworker only. For other usage, please call this 3778 * helper for checking if one CPU belongs to the specified hctx 3779 */ 3780 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu, 3781 const struct blk_mq_hw_ctx *hctx) 3782 { 3783 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue, 3784 hctx->type, cpu); 3785 3786 return mapped_hctx == hctx; 3787 } 3788 3789 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3790 { 3791 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3792 struct blk_mq_hw_ctx, cpuhp_online); 3793 3794 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3795 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3796 return 0; 3797 } 3798 3799 /* 3800 * 'cpu' is going away. splice any existing rq_list entries from this 3801 * software queue to the hw queue dispatch list, and ensure that it 3802 * gets run. 3803 */ 3804 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3805 { 3806 struct blk_mq_hw_ctx *hctx; 3807 struct blk_mq_ctx *ctx; 3808 LIST_HEAD(tmp); 3809 enum hctx_type type; 3810 3811 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3812 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3813 return 0; 3814 3815 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3816 type = hctx->type; 3817 3818 spin_lock(&ctx->lock); 3819 if (!list_empty(&ctx->rq_lists[type])) { 3820 list_splice_init(&ctx->rq_lists[type], &tmp); 3821 blk_mq_hctx_clear_pending(hctx, ctx); 3822 } 3823 spin_unlock(&ctx->lock); 3824 3825 if (list_empty(&tmp)) 3826 return 0; 3827 3828 spin_lock(&hctx->lock); 3829 list_splice_tail_init(&tmp, &hctx->dispatch); 3830 spin_unlock(&hctx->lock); 3831 3832 blk_mq_run_hw_queue(hctx, true); 3833 return 0; 3834 } 3835 3836 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3837 { 3838 lockdep_assert_held(&blk_mq_cpuhp_lock); 3839 3840 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3841 !hlist_unhashed(&hctx->cpuhp_online)) { 3842 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3843 &hctx->cpuhp_online); 3844 INIT_HLIST_NODE(&hctx->cpuhp_online); 3845 } 3846 3847 if (!hlist_unhashed(&hctx->cpuhp_dead)) { 3848 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3849 &hctx->cpuhp_dead); 3850 INIT_HLIST_NODE(&hctx->cpuhp_dead); 3851 } 3852 } 3853 3854 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3855 { 3856 mutex_lock(&blk_mq_cpuhp_lock); 3857 __blk_mq_remove_cpuhp(hctx); 3858 mutex_unlock(&blk_mq_cpuhp_lock); 3859 } 3860 3861 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx) 3862 { 3863 lockdep_assert_held(&blk_mq_cpuhp_lock); 3864 3865 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3866 hlist_unhashed(&hctx->cpuhp_online)) 3867 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3868 &hctx->cpuhp_online); 3869 3870 if (hlist_unhashed(&hctx->cpuhp_dead)) 3871 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3872 &hctx->cpuhp_dead); 3873 } 3874 3875 static void __blk_mq_remove_cpuhp_list(struct list_head *head) 3876 { 3877 struct blk_mq_hw_ctx *hctx; 3878 3879 lockdep_assert_held(&blk_mq_cpuhp_lock); 3880 3881 list_for_each_entry(hctx, head, hctx_list) 3882 __blk_mq_remove_cpuhp(hctx); 3883 } 3884 3885 /* 3886 * Unregister cpuhp callbacks from exited hw queues 3887 * 3888 * Safe to call if this `request_queue` is live 3889 */ 3890 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q) 3891 { 3892 LIST_HEAD(hctx_list); 3893 3894 spin_lock(&q->unused_hctx_lock); 3895 list_splice_init(&q->unused_hctx_list, &hctx_list); 3896 spin_unlock(&q->unused_hctx_lock); 3897 3898 mutex_lock(&blk_mq_cpuhp_lock); 3899 __blk_mq_remove_cpuhp_list(&hctx_list); 3900 mutex_unlock(&blk_mq_cpuhp_lock); 3901 3902 spin_lock(&q->unused_hctx_lock); 3903 list_splice(&hctx_list, &q->unused_hctx_list); 3904 spin_unlock(&q->unused_hctx_lock); 3905 } 3906 3907 /* 3908 * Register cpuhp callbacks from all hw queues 3909 * 3910 * Safe to call if this `request_queue` is live 3911 */ 3912 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q) 3913 { 3914 struct blk_mq_hw_ctx *hctx; 3915 unsigned long i; 3916 3917 mutex_lock(&blk_mq_cpuhp_lock); 3918 queue_for_each_hw_ctx(q, hctx, i) 3919 __blk_mq_add_cpuhp(hctx); 3920 mutex_unlock(&blk_mq_cpuhp_lock); 3921 } 3922 3923 /* 3924 * Before freeing hw queue, clearing the flush request reference in 3925 * tags->rqs[] for avoiding potential UAF. 3926 */ 3927 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3928 unsigned int queue_depth, struct request *flush_rq) 3929 { 3930 int i; 3931 3932 /* The hw queue may not be mapped yet */ 3933 if (!tags) 3934 return; 3935 3936 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3937 3938 for (i = 0; i < queue_depth; i++) 3939 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3940 } 3941 3942 static void blk_free_flush_queue_callback(struct rcu_head *head) 3943 { 3944 struct blk_flush_queue *fq = 3945 container_of(head, struct blk_flush_queue, rcu_head); 3946 3947 blk_free_flush_queue(fq); 3948 } 3949 3950 /* hctx->ctxs will be freed in queue's release handler */ 3951 static void blk_mq_exit_hctx(struct request_queue *q, 3952 struct blk_mq_tag_set *set, 3953 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3954 { 3955 struct request *flush_rq = hctx->fq->flush_rq; 3956 3957 if (blk_mq_hw_queue_mapped(hctx)) 3958 blk_mq_tag_idle(hctx); 3959 3960 if (blk_queue_init_done(q)) 3961 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3962 set->queue_depth, flush_rq); 3963 if (set->ops->exit_request) 3964 set->ops->exit_request(set, flush_rq, hctx_idx); 3965 3966 if (set->ops->exit_hctx) 3967 set->ops->exit_hctx(hctx, hctx_idx); 3968 3969 call_srcu(&set->tags_srcu, &hctx->fq->rcu_head, 3970 blk_free_flush_queue_callback); 3971 hctx->fq = NULL; 3972 3973 spin_lock(&q->unused_hctx_lock); 3974 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3975 spin_unlock(&q->unused_hctx_lock); 3976 } 3977 3978 static void blk_mq_exit_hw_queues(struct request_queue *q, 3979 struct blk_mq_tag_set *set, int nr_queue) 3980 { 3981 struct blk_mq_hw_ctx *hctx; 3982 unsigned long i; 3983 3984 queue_for_each_hw_ctx(q, hctx, i) { 3985 if (i == nr_queue) 3986 break; 3987 blk_mq_remove_cpuhp(hctx); 3988 blk_mq_exit_hctx(q, set, hctx, i); 3989 } 3990 } 3991 3992 static int blk_mq_init_hctx(struct request_queue *q, 3993 struct blk_mq_tag_set *set, 3994 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3995 { 3996 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3997 3998 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3999 if (!hctx->fq) 4000 goto fail; 4001 4002 hctx->queue_num = hctx_idx; 4003 4004 hctx->tags = set->tags[hctx_idx]; 4005 4006 if (set->ops->init_hctx && 4007 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 4008 goto fail_free_fq; 4009 4010 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 4011 hctx->numa_node)) 4012 goto exit_hctx; 4013 4014 return 0; 4015 4016 exit_hctx: 4017 if (set->ops->exit_hctx) 4018 set->ops->exit_hctx(hctx, hctx_idx); 4019 fail_free_fq: 4020 blk_free_flush_queue(hctx->fq); 4021 hctx->fq = NULL; 4022 fail: 4023 return -1; 4024 } 4025 4026 static struct blk_mq_hw_ctx * 4027 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 4028 int node) 4029 { 4030 struct blk_mq_hw_ctx *hctx; 4031 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 4032 4033 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 4034 if (!hctx) 4035 goto fail_alloc_hctx; 4036 4037 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 4038 goto free_hctx; 4039 4040 atomic_set(&hctx->nr_active, 0); 4041 if (node == NUMA_NO_NODE) 4042 node = set->numa_node; 4043 hctx->numa_node = node; 4044 4045 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 4046 spin_lock_init(&hctx->lock); 4047 INIT_LIST_HEAD(&hctx->dispatch); 4048 INIT_HLIST_NODE(&hctx->cpuhp_dead); 4049 INIT_HLIST_NODE(&hctx->cpuhp_online); 4050 hctx->queue = q; 4051 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 4052 4053 INIT_LIST_HEAD(&hctx->hctx_list); 4054 4055 /* 4056 * Allocate space for all possible cpus to avoid allocation at 4057 * runtime 4058 */ 4059 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 4060 gfp, node); 4061 if (!hctx->ctxs) 4062 goto free_cpumask; 4063 4064 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 4065 gfp, node, false, false)) 4066 goto free_ctxs; 4067 hctx->nr_ctx = 0; 4068 4069 spin_lock_init(&hctx->dispatch_wait_lock); 4070 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 4071 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 4072 4073 blk_mq_hctx_kobj_init(hctx); 4074 4075 return hctx; 4076 4077 free_ctxs: 4078 kfree(hctx->ctxs); 4079 free_cpumask: 4080 free_cpumask_var(hctx->cpumask); 4081 free_hctx: 4082 kfree(hctx); 4083 fail_alloc_hctx: 4084 return NULL; 4085 } 4086 4087 static void blk_mq_init_cpu_queues(struct request_queue *q, 4088 unsigned int nr_hw_queues) 4089 { 4090 struct blk_mq_tag_set *set = q->tag_set; 4091 unsigned int i, j; 4092 4093 for_each_possible_cpu(i) { 4094 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 4095 struct blk_mq_hw_ctx *hctx; 4096 int k; 4097 4098 __ctx->cpu = i; 4099 spin_lock_init(&__ctx->lock); 4100 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 4101 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 4102 4103 __ctx->queue = q; 4104 4105 /* 4106 * Set local node, IFF we have more than one hw queue. If 4107 * not, we remain on the home node of the device 4108 */ 4109 for (j = 0; j < set->nr_maps; j++) { 4110 hctx = blk_mq_map_queue_type(q, j, i); 4111 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 4112 hctx->numa_node = cpu_to_node(i); 4113 } 4114 } 4115 } 4116 4117 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 4118 unsigned int hctx_idx, 4119 unsigned int depth) 4120 { 4121 struct blk_mq_tags *tags; 4122 int ret; 4123 4124 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 4125 if (!tags) 4126 return NULL; 4127 4128 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 4129 if (ret) { 4130 blk_mq_free_rq_map(set, tags); 4131 return NULL; 4132 } 4133 4134 return tags; 4135 } 4136 4137 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 4138 int hctx_idx) 4139 { 4140 if (blk_mq_is_shared_tags(set->flags)) { 4141 set->tags[hctx_idx] = set->shared_tags; 4142 4143 return true; 4144 } 4145 4146 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 4147 set->queue_depth); 4148 4149 return set->tags[hctx_idx]; 4150 } 4151 4152 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4153 struct blk_mq_tags *tags, 4154 unsigned int hctx_idx) 4155 { 4156 if (tags) { 4157 blk_mq_free_rqs(set, tags, hctx_idx); 4158 blk_mq_free_rq_map(set, tags); 4159 } 4160 } 4161 4162 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4163 unsigned int hctx_idx) 4164 { 4165 if (!blk_mq_is_shared_tags(set->flags)) 4166 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 4167 4168 set->tags[hctx_idx] = NULL; 4169 } 4170 4171 static void blk_mq_map_swqueue(struct request_queue *q) 4172 { 4173 unsigned int j, hctx_idx; 4174 unsigned long i; 4175 struct blk_mq_hw_ctx *hctx; 4176 struct blk_mq_ctx *ctx; 4177 struct blk_mq_tag_set *set = q->tag_set; 4178 4179 queue_for_each_hw_ctx(q, hctx, i) { 4180 cpumask_clear(hctx->cpumask); 4181 hctx->nr_ctx = 0; 4182 hctx->dispatch_from = NULL; 4183 } 4184 4185 /* 4186 * Map software to hardware queues. 4187 * 4188 * If the cpu isn't present, the cpu is mapped to first hctx. 4189 */ 4190 for_each_possible_cpu(i) { 4191 4192 ctx = per_cpu_ptr(q->queue_ctx, i); 4193 for (j = 0; j < set->nr_maps; j++) { 4194 if (!set->map[j].nr_queues) { 4195 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4196 HCTX_TYPE_DEFAULT, i); 4197 continue; 4198 } 4199 hctx_idx = set->map[j].mq_map[i]; 4200 /* unmapped hw queue can be remapped after CPU topo changed */ 4201 if (!set->tags[hctx_idx] && 4202 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 4203 /* 4204 * If tags initialization fail for some hctx, 4205 * that hctx won't be brought online. In this 4206 * case, remap the current ctx to hctx[0] which 4207 * is guaranteed to always have tags allocated 4208 */ 4209 set->map[j].mq_map[i] = 0; 4210 } 4211 4212 hctx = blk_mq_map_queue_type(q, j, i); 4213 ctx->hctxs[j] = hctx; 4214 /* 4215 * If the CPU is already set in the mask, then we've 4216 * mapped this one already. This can happen if 4217 * devices share queues across queue maps. 4218 */ 4219 if (cpumask_test_cpu(i, hctx->cpumask)) 4220 continue; 4221 4222 cpumask_set_cpu(i, hctx->cpumask); 4223 hctx->type = j; 4224 ctx->index_hw[hctx->type] = hctx->nr_ctx; 4225 hctx->ctxs[hctx->nr_ctx++] = ctx; 4226 4227 /* 4228 * If the nr_ctx type overflows, we have exceeded the 4229 * amount of sw queues we can support. 4230 */ 4231 BUG_ON(!hctx->nr_ctx); 4232 } 4233 4234 for (; j < HCTX_MAX_TYPES; j++) 4235 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4236 HCTX_TYPE_DEFAULT, i); 4237 } 4238 4239 queue_for_each_hw_ctx(q, hctx, i) { 4240 int cpu; 4241 4242 /* 4243 * If no software queues are mapped to this hardware queue, 4244 * disable it and free the request entries. 4245 */ 4246 if (!hctx->nr_ctx) { 4247 /* Never unmap queue 0. We need it as a 4248 * fallback in case of a new remap fails 4249 * allocation 4250 */ 4251 if (i) 4252 __blk_mq_free_map_and_rqs(set, i); 4253 4254 hctx->tags = NULL; 4255 continue; 4256 } 4257 4258 hctx->tags = set->tags[i]; 4259 WARN_ON(!hctx->tags); 4260 4261 /* 4262 * Set the map size to the number of mapped software queues. 4263 * This is more accurate and more efficient than looping 4264 * over all possibly mapped software queues. 4265 */ 4266 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 4267 4268 /* 4269 * Rule out isolated CPUs from hctx->cpumask to avoid 4270 * running block kworker on isolated CPUs. 4271 * FIXME: cpuset should propagate further changes to isolated CPUs 4272 * here. 4273 */ 4274 rcu_read_lock(); 4275 for_each_cpu(cpu, hctx->cpumask) { 4276 if (cpu_is_isolated(cpu)) 4277 cpumask_clear_cpu(cpu, hctx->cpumask); 4278 } 4279 rcu_read_unlock(); 4280 4281 /* 4282 * Initialize batch roundrobin counts 4283 */ 4284 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 4285 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 4286 } 4287 } 4288 4289 /* 4290 * Caller needs to ensure that we're either frozen/quiesced, or that 4291 * the queue isn't live yet. 4292 */ 4293 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 4294 { 4295 struct blk_mq_hw_ctx *hctx; 4296 unsigned long i; 4297 4298 queue_for_each_hw_ctx(q, hctx, i) { 4299 if (shared) { 4300 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4301 } else { 4302 blk_mq_tag_idle(hctx); 4303 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4304 } 4305 } 4306 } 4307 4308 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4309 bool shared) 4310 { 4311 struct request_queue *q; 4312 unsigned int memflags; 4313 4314 lockdep_assert_held(&set->tag_list_lock); 4315 4316 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4317 memflags = blk_mq_freeze_queue(q); 4318 queue_set_hctx_shared(q, shared); 4319 blk_mq_unfreeze_queue(q, memflags); 4320 } 4321 } 4322 4323 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4324 { 4325 struct blk_mq_tag_set *set = q->tag_set; 4326 4327 mutex_lock(&set->tag_list_lock); 4328 list_del_rcu(&q->tag_set_list); 4329 if (list_is_singular(&set->tag_list)) { 4330 /* just transitioned to unshared */ 4331 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4332 /* update existing queue */ 4333 blk_mq_update_tag_set_shared(set, false); 4334 } 4335 mutex_unlock(&set->tag_list_lock); 4336 } 4337 4338 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4339 struct request_queue *q) 4340 { 4341 mutex_lock(&set->tag_list_lock); 4342 4343 /* 4344 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4345 */ 4346 if (!list_empty(&set->tag_list) && 4347 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4348 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4349 /* update existing queue */ 4350 blk_mq_update_tag_set_shared(set, true); 4351 } 4352 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4353 queue_set_hctx_shared(q, true); 4354 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 4355 4356 mutex_unlock(&set->tag_list_lock); 4357 } 4358 4359 /* All allocations will be freed in release handler of q->mq_kobj */ 4360 static int blk_mq_alloc_ctxs(struct request_queue *q) 4361 { 4362 struct blk_mq_ctxs *ctxs; 4363 int cpu; 4364 4365 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4366 if (!ctxs) 4367 return -ENOMEM; 4368 4369 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4370 if (!ctxs->queue_ctx) 4371 goto fail; 4372 4373 for_each_possible_cpu(cpu) { 4374 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4375 ctx->ctxs = ctxs; 4376 } 4377 4378 q->mq_kobj = &ctxs->kobj; 4379 q->queue_ctx = ctxs->queue_ctx; 4380 4381 return 0; 4382 fail: 4383 kfree(ctxs); 4384 return -ENOMEM; 4385 } 4386 4387 /* 4388 * It is the actual release handler for mq, but we do it from 4389 * request queue's release handler for avoiding use-after-free 4390 * and headache because q->mq_kobj shouldn't have been introduced, 4391 * but we can't group ctx/kctx kobj without it. 4392 */ 4393 void blk_mq_release(struct request_queue *q) 4394 { 4395 struct blk_mq_hw_ctx *hctx, *next; 4396 unsigned long i; 4397 4398 queue_for_each_hw_ctx(q, hctx, i) 4399 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4400 4401 /* all hctx are in .unused_hctx_list now */ 4402 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4403 list_del_init(&hctx->hctx_list); 4404 kobject_put(&hctx->kobj); 4405 } 4406 4407 kfree(q->queue_hw_ctx); 4408 4409 /* 4410 * release .mq_kobj and sw queue's kobject now because 4411 * both share lifetime with request queue. 4412 */ 4413 blk_mq_sysfs_deinit(q); 4414 } 4415 4416 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4417 struct queue_limits *lim, void *queuedata) 4418 { 4419 struct queue_limits default_lim = { }; 4420 struct request_queue *q; 4421 int ret; 4422 4423 if (!lim) 4424 lim = &default_lim; 4425 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT; 4426 if (set->nr_maps > HCTX_TYPE_POLL) 4427 lim->features |= BLK_FEAT_POLL; 4428 4429 q = blk_alloc_queue(lim, set->numa_node); 4430 if (IS_ERR(q)) 4431 return q; 4432 q->queuedata = queuedata; 4433 ret = blk_mq_init_allocated_queue(set, q); 4434 if (ret) { 4435 blk_put_queue(q); 4436 return ERR_PTR(ret); 4437 } 4438 return q; 4439 } 4440 EXPORT_SYMBOL(blk_mq_alloc_queue); 4441 4442 /** 4443 * blk_mq_destroy_queue - shutdown a request queue 4444 * @q: request queue to shutdown 4445 * 4446 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4447 * requests will be failed with -ENODEV. The caller is responsible for dropping 4448 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4449 * 4450 * Context: can sleep 4451 */ 4452 void blk_mq_destroy_queue(struct request_queue *q) 4453 { 4454 WARN_ON_ONCE(!queue_is_mq(q)); 4455 WARN_ON_ONCE(blk_queue_registered(q)); 4456 4457 might_sleep(); 4458 4459 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4460 blk_queue_start_drain(q); 4461 blk_mq_freeze_queue_wait(q); 4462 4463 blk_sync_queue(q); 4464 blk_mq_cancel_work_sync(q); 4465 blk_mq_exit_queue(q); 4466 } 4467 EXPORT_SYMBOL(blk_mq_destroy_queue); 4468 4469 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4470 struct queue_limits *lim, void *queuedata, 4471 struct lock_class_key *lkclass) 4472 { 4473 struct request_queue *q; 4474 struct gendisk *disk; 4475 4476 q = blk_mq_alloc_queue(set, lim, queuedata); 4477 if (IS_ERR(q)) 4478 return ERR_CAST(q); 4479 4480 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4481 if (!disk) { 4482 blk_mq_destroy_queue(q); 4483 blk_put_queue(q); 4484 return ERR_PTR(-ENOMEM); 4485 } 4486 set_bit(GD_OWNS_QUEUE, &disk->state); 4487 return disk; 4488 } 4489 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4490 4491 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4492 struct lock_class_key *lkclass) 4493 { 4494 struct gendisk *disk; 4495 4496 if (!blk_get_queue(q)) 4497 return NULL; 4498 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4499 if (!disk) 4500 blk_put_queue(q); 4501 return disk; 4502 } 4503 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4504 4505 /* 4506 * Only hctx removed from cpuhp list can be reused 4507 */ 4508 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx) 4509 { 4510 return hlist_unhashed(&hctx->cpuhp_online) && 4511 hlist_unhashed(&hctx->cpuhp_dead); 4512 } 4513 4514 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4515 struct blk_mq_tag_set *set, struct request_queue *q, 4516 int hctx_idx, int node) 4517 { 4518 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4519 4520 /* reuse dead hctx first */ 4521 spin_lock(&q->unused_hctx_lock); 4522 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4523 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) { 4524 hctx = tmp; 4525 break; 4526 } 4527 } 4528 if (hctx) 4529 list_del_init(&hctx->hctx_list); 4530 spin_unlock(&q->unused_hctx_lock); 4531 4532 if (!hctx) 4533 hctx = blk_mq_alloc_hctx(q, set, node); 4534 if (!hctx) 4535 goto fail; 4536 4537 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4538 goto free_hctx; 4539 4540 return hctx; 4541 4542 free_hctx: 4543 kobject_put(&hctx->kobj); 4544 fail: 4545 return NULL; 4546 } 4547 4548 static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4549 struct request_queue *q) 4550 { 4551 int i, j, end; 4552 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 4553 4554 if (q->nr_hw_queues < set->nr_hw_queues) { 4555 struct blk_mq_hw_ctx **new_hctxs; 4556 4557 new_hctxs = kcalloc_node(set->nr_hw_queues, 4558 sizeof(*new_hctxs), GFP_KERNEL, 4559 set->numa_node); 4560 if (!new_hctxs) 4561 return; 4562 if (hctxs) 4563 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 4564 sizeof(*hctxs)); 4565 rcu_assign_pointer(q->queue_hw_ctx, new_hctxs); 4566 /* 4567 * Make sure reading the old queue_hw_ctx from other 4568 * context concurrently won't trigger uaf. 4569 */ 4570 kfree_rcu_mightsleep(hctxs); 4571 hctxs = new_hctxs; 4572 } 4573 4574 for (i = 0; i < set->nr_hw_queues; i++) { 4575 int old_node; 4576 int node = blk_mq_get_hctx_node(set, i); 4577 struct blk_mq_hw_ctx *old_hctx = hctxs[i]; 4578 4579 if (old_hctx) { 4580 old_node = old_hctx->numa_node; 4581 blk_mq_exit_hctx(q, set, old_hctx, i); 4582 } 4583 4584 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i, node); 4585 if (!hctxs[i]) { 4586 if (!old_hctx) 4587 break; 4588 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4589 node, old_node); 4590 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i, 4591 old_node); 4592 WARN_ON_ONCE(!hctxs[i]); 4593 } 4594 } 4595 /* 4596 * Increasing nr_hw_queues fails. Free the newly allocated 4597 * hctxs and keep the previous q->nr_hw_queues. 4598 */ 4599 if (i != set->nr_hw_queues) { 4600 j = q->nr_hw_queues; 4601 end = i; 4602 } else { 4603 j = i; 4604 end = q->nr_hw_queues; 4605 q->nr_hw_queues = set->nr_hw_queues; 4606 } 4607 4608 for (; j < end; j++) { 4609 struct blk_mq_hw_ctx *hctx = hctxs[j]; 4610 4611 if (hctx) { 4612 blk_mq_exit_hctx(q, set, hctx, j); 4613 hctxs[j] = NULL; 4614 } 4615 } 4616 } 4617 4618 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4619 struct request_queue *q) 4620 { 4621 __blk_mq_realloc_hw_ctxs(set, q); 4622 4623 /* unregister cpuhp callbacks for exited hctxs */ 4624 blk_mq_remove_hw_queues_cpuhp(q); 4625 4626 /* register cpuhp for new initialized hctxs */ 4627 blk_mq_add_hw_queues_cpuhp(q); 4628 } 4629 4630 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4631 struct request_queue *q) 4632 { 4633 /* mark the queue as mq asap */ 4634 q->mq_ops = set->ops; 4635 4636 /* 4637 * ->tag_set has to be setup before initialize hctx, which cpuphp 4638 * handler needs it for checking queue mapping 4639 */ 4640 q->tag_set = set; 4641 4642 if (blk_mq_alloc_ctxs(q)) 4643 goto err_exit; 4644 4645 /* init q->mq_kobj and sw queues' kobjects */ 4646 blk_mq_sysfs_init(q); 4647 4648 INIT_LIST_HEAD(&q->unused_hctx_list); 4649 spin_lock_init(&q->unused_hctx_lock); 4650 4651 blk_mq_realloc_hw_ctxs(set, q); 4652 if (!q->nr_hw_queues) 4653 goto err_hctxs; 4654 4655 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4656 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4657 4658 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4659 4660 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4661 INIT_LIST_HEAD(&q->flush_list); 4662 INIT_LIST_HEAD(&q->requeue_list); 4663 spin_lock_init(&q->requeue_lock); 4664 4665 q->nr_requests = set->queue_depth; 4666 q->async_depth = set->queue_depth; 4667 4668 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4669 blk_mq_map_swqueue(q); 4670 blk_mq_add_queue_tag_set(set, q); 4671 return 0; 4672 4673 err_hctxs: 4674 blk_mq_release(q); 4675 err_exit: 4676 q->mq_ops = NULL; 4677 return -ENOMEM; 4678 } 4679 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4680 4681 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4682 void blk_mq_exit_queue(struct request_queue *q) 4683 { 4684 struct blk_mq_tag_set *set = q->tag_set; 4685 4686 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4687 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4688 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4689 blk_mq_del_queue_tag_set(q); 4690 } 4691 4692 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4693 { 4694 int i; 4695 4696 if (blk_mq_is_shared_tags(set->flags)) { 4697 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4698 BLK_MQ_NO_HCTX_IDX, 4699 set->queue_depth); 4700 if (!set->shared_tags) 4701 return -ENOMEM; 4702 } 4703 4704 for (i = 0; i < set->nr_hw_queues; i++) { 4705 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4706 goto out_unwind; 4707 cond_resched(); 4708 } 4709 4710 return 0; 4711 4712 out_unwind: 4713 while (--i >= 0) 4714 __blk_mq_free_map_and_rqs(set, i); 4715 4716 if (blk_mq_is_shared_tags(set->flags)) { 4717 blk_mq_free_map_and_rqs(set, set->shared_tags, 4718 BLK_MQ_NO_HCTX_IDX); 4719 } 4720 4721 return -ENOMEM; 4722 } 4723 4724 /* 4725 * Allocate the request maps associated with this tag_set. Note that this 4726 * may reduce the depth asked for, if memory is tight. set->queue_depth 4727 * will be updated to reflect the allocated depth. 4728 */ 4729 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4730 { 4731 unsigned int depth; 4732 int err; 4733 4734 depth = set->queue_depth; 4735 do { 4736 err = __blk_mq_alloc_rq_maps(set); 4737 if (!err) 4738 break; 4739 4740 set->queue_depth >>= 1; 4741 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4742 err = -ENOMEM; 4743 break; 4744 } 4745 } while (set->queue_depth); 4746 4747 if (!set->queue_depth || err) { 4748 pr_err("blk-mq: failed to allocate request map\n"); 4749 return -ENOMEM; 4750 } 4751 4752 if (depth != set->queue_depth) 4753 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4754 depth, set->queue_depth); 4755 4756 return 0; 4757 } 4758 4759 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4760 { 4761 /* 4762 * blk_mq_map_queues() and multiple .map_queues() implementations 4763 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4764 * number of hardware queues. 4765 */ 4766 if (set->nr_maps == 1) 4767 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4768 4769 if (set->ops->map_queues) { 4770 int i; 4771 4772 /* 4773 * transport .map_queues is usually done in the following 4774 * way: 4775 * 4776 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4777 * mask = get_cpu_mask(queue) 4778 * for_each_cpu(cpu, mask) 4779 * set->map[x].mq_map[cpu] = queue; 4780 * } 4781 * 4782 * When we need to remap, the table has to be cleared for 4783 * killing stale mapping since one CPU may not be mapped 4784 * to any hw queue. 4785 */ 4786 for (i = 0; i < set->nr_maps; i++) 4787 blk_mq_clear_mq_map(&set->map[i]); 4788 4789 set->ops->map_queues(set); 4790 } else { 4791 BUG_ON(set->nr_maps > 1); 4792 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4793 } 4794 } 4795 4796 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4797 int new_nr_hw_queues) 4798 { 4799 struct blk_mq_tags **new_tags; 4800 int i; 4801 4802 if (set->nr_hw_queues >= new_nr_hw_queues) 4803 goto done; 4804 4805 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4806 GFP_KERNEL, set->numa_node); 4807 if (!new_tags) 4808 return -ENOMEM; 4809 4810 if (set->tags) 4811 memcpy(new_tags, set->tags, set->nr_hw_queues * 4812 sizeof(*set->tags)); 4813 kfree(set->tags); 4814 set->tags = new_tags; 4815 4816 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4817 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4818 while (--i >= set->nr_hw_queues) 4819 __blk_mq_free_map_and_rqs(set, i); 4820 return -ENOMEM; 4821 } 4822 cond_resched(); 4823 } 4824 4825 done: 4826 set->nr_hw_queues = new_nr_hw_queues; 4827 return 0; 4828 } 4829 4830 /* 4831 * Alloc a tag set to be associated with one or more request queues. 4832 * May fail with EINVAL for various error conditions. May adjust the 4833 * requested depth down, if it's too large. In that case, the set 4834 * value will be stored in set->queue_depth. 4835 */ 4836 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4837 { 4838 int i, ret; 4839 4840 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4841 4842 if (!set->nr_hw_queues) 4843 return -EINVAL; 4844 if (!set->queue_depth) 4845 return -EINVAL; 4846 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4847 return -EINVAL; 4848 4849 if (!set->ops->queue_rq) 4850 return -EINVAL; 4851 4852 if (!set->ops->get_budget ^ !set->ops->put_budget) 4853 return -EINVAL; 4854 4855 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4856 pr_info("blk-mq: reduced tag depth to %u\n", 4857 BLK_MQ_MAX_DEPTH); 4858 set->queue_depth = BLK_MQ_MAX_DEPTH; 4859 } 4860 4861 if (!set->nr_maps) 4862 set->nr_maps = 1; 4863 else if (set->nr_maps > HCTX_MAX_TYPES) 4864 return -EINVAL; 4865 4866 /* 4867 * If a crashdump is active, then we are potentially in a very 4868 * memory constrained environment. Limit us to 64 tags to prevent 4869 * using too much memory. 4870 */ 4871 if (is_kdump_kernel()) 4872 set->queue_depth = min(64U, set->queue_depth); 4873 4874 /* 4875 * There is no use for more h/w queues than cpus if we just have 4876 * a single map 4877 */ 4878 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4879 set->nr_hw_queues = nr_cpu_ids; 4880 4881 if (set->flags & BLK_MQ_F_BLOCKING) { 4882 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4883 if (!set->srcu) 4884 return -ENOMEM; 4885 ret = init_srcu_struct(set->srcu); 4886 if (ret) 4887 goto out_free_srcu; 4888 } 4889 ret = init_srcu_struct(&set->tags_srcu); 4890 if (ret) 4891 goto out_cleanup_srcu; 4892 4893 init_rwsem(&set->update_nr_hwq_lock); 4894 4895 ret = -ENOMEM; 4896 set->tags = kcalloc_node(set->nr_hw_queues, 4897 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4898 set->numa_node); 4899 if (!set->tags) 4900 goto out_cleanup_tags_srcu; 4901 4902 for (i = 0; i < set->nr_maps; i++) { 4903 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4904 sizeof(set->map[i].mq_map[0]), 4905 GFP_KERNEL, set->numa_node); 4906 if (!set->map[i].mq_map) 4907 goto out_free_mq_map; 4908 set->map[i].nr_queues = set->nr_hw_queues; 4909 } 4910 4911 blk_mq_update_queue_map(set); 4912 4913 ret = blk_mq_alloc_set_map_and_rqs(set); 4914 if (ret) 4915 goto out_free_mq_map; 4916 4917 mutex_init(&set->tag_list_lock); 4918 INIT_LIST_HEAD(&set->tag_list); 4919 4920 return 0; 4921 4922 out_free_mq_map: 4923 for (i = 0; i < set->nr_maps; i++) { 4924 kfree(set->map[i].mq_map); 4925 set->map[i].mq_map = NULL; 4926 } 4927 kfree(set->tags); 4928 set->tags = NULL; 4929 out_cleanup_tags_srcu: 4930 cleanup_srcu_struct(&set->tags_srcu); 4931 out_cleanup_srcu: 4932 if (set->flags & BLK_MQ_F_BLOCKING) 4933 cleanup_srcu_struct(set->srcu); 4934 out_free_srcu: 4935 if (set->flags & BLK_MQ_F_BLOCKING) 4936 kfree(set->srcu); 4937 return ret; 4938 } 4939 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4940 4941 /* allocate and initialize a tagset for a simple single-queue device */ 4942 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4943 const struct blk_mq_ops *ops, unsigned int queue_depth, 4944 unsigned int set_flags) 4945 { 4946 memset(set, 0, sizeof(*set)); 4947 set->ops = ops; 4948 set->nr_hw_queues = 1; 4949 set->nr_maps = 1; 4950 set->queue_depth = queue_depth; 4951 set->numa_node = NUMA_NO_NODE; 4952 set->flags = set_flags; 4953 return blk_mq_alloc_tag_set(set); 4954 } 4955 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4956 4957 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4958 { 4959 int i, j; 4960 4961 for (i = 0; i < set->nr_hw_queues; i++) 4962 __blk_mq_free_map_and_rqs(set, i); 4963 4964 if (blk_mq_is_shared_tags(set->flags)) { 4965 blk_mq_free_map_and_rqs(set, set->shared_tags, 4966 BLK_MQ_NO_HCTX_IDX); 4967 } 4968 4969 for (j = 0; j < set->nr_maps; j++) { 4970 kfree(set->map[j].mq_map); 4971 set->map[j].mq_map = NULL; 4972 } 4973 4974 kfree(set->tags); 4975 set->tags = NULL; 4976 4977 srcu_barrier(&set->tags_srcu); 4978 cleanup_srcu_struct(&set->tags_srcu); 4979 if (set->flags & BLK_MQ_F_BLOCKING) { 4980 cleanup_srcu_struct(set->srcu); 4981 kfree(set->srcu); 4982 } 4983 } 4984 EXPORT_SYMBOL(blk_mq_free_tag_set); 4985 4986 struct elevator_tags *blk_mq_update_nr_requests(struct request_queue *q, 4987 struct elevator_tags *et, 4988 unsigned int nr) 4989 { 4990 struct blk_mq_tag_set *set = q->tag_set; 4991 struct elevator_tags *old_et = NULL; 4992 struct blk_mq_hw_ctx *hctx; 4993 unsigned long i; 4994 4995 blk_mq_quiesce_queue(q); 4996 4997 if (blk_mq_is_shared_tags(set->flags)) { 4998 /* 4999 * Shared tags, for sched tags, we allocate max initially hence 5000 * tags can't grow, see blk_mq_alloc_sched_tags(). 5001 */ 5002 if (q->elevator) 5003 blk_mq_tag_update_sched_shared_tags(q, nr); 5004 else 5005 blk_mq_tag_resize_shared_tags(set, nr); 5006 } else if (!q->elevator) { 5007 /* 5008 * Non-shared hardware tags, nr is already checked from 5009 * queue_requests_store() and tags can't grow. 5010 */ 5011 queue_for_each_hw_ctx(q, hctx, i) { 5012 if (!hctx->tags) 5013 continue; 5014 sbitmap_queue_resize(&hctx->tags->bitmap_tags, 5015 nr - hctx->tags->nr_reserved_tags); 5016 } 5017 } else if (nr <= q->elevator->et->nr_requests) { 5018 /* Non-shared sched tags, and tags don't grow. */ 5019 queue_for_each_hw_ctx(q, hctx, i) { 5020 if (!hctx->sched_tags) 5021 continue; 5022 sbitmap_queue_resize(&hctx->sched_tags->bitmap_tags, 5023 nr - hctx->sched_tags->nr_reserved_tags); 5024 } 5025 } else { 5026 /* Non-shared sched tags, and tags grow */ 5027 queue_for_each_hw_ctx(q, hctx, i) 5028 hctx->sched_tags = et->tags[i]; 5029 old_et = q->elevator->et; 5030 q->elevator->et = et; 5031 } 5032 5033 /* 5034 * Preserve relative value, both nr and async_depth are at most 16 bit 5035 * value, no need to worry about overflow. 5036 */ 5037 q->async_depth = max(q->async_depth * nr / q->nr_requests, 1); 5038 q->nr_requests = nr; 5039 if (q->elevator && q->elevator->type->ops.depth_updated) 5040 q->elevator->type->ops.depth_updated(q); 5041 5042 blk_mq_unquiesce_queue(q); 5043 return old_et; 5044 } 5045 5046 /* 5047 * Switch back to the elevator type stored in the xarray. 5048 */ 5049 static void blk_mq_elv_switch_back(struct request_queue *q, 5050 struct xarray *elv_tbl) 5051 { 5052 struct elv_change_ctx *ctx = xa_load(elv_tbl, q->id); 5053 5054 if (WARN_ON_ONCE(!ctx)) 5055 return; 5056 5057 /* The elv_update_nr_hw_queues unfreezes the queue. */ 5058 elv_update_nr_hw_queues(q, ctx); 5059 5060 /* Drop the reference acquired in blk_mq_elv_switch_none. */ 5061 if (ctx->type) 5062 elevator_put(ctx->type); 5063 } 5064 5065 /* 5066 * Stores elevator name and type in ctx and set current elevator to none. 5067 */ 5068 static int blk_mq_elv_switch_none(struct request_queue *q, 5069 struct xarray *elv_tbl) 5070 { 5071 struct elv_change_ctx *ctx; 5072 5073 lockdep_assert_held_write(&q->tag_set->update_nr_hwq_lock); 5074 5075 /* 5076 * Accessing q->elevator without holding q->elevator_lock is safe here 5077 * because we're called from nr_hw_queue update which is protected by 5078 * set->update_nr_hwq_lock in the writer context. So, scheduler update/ 5079 * switch code (which acquires the same lock in the reader context) 5080 * can't run concurrently. 5081 */ 5082 if (q->elevator) { 5083 ctx = xa_load(elv_tbl, q->id); 5084 if (WARN_ON_ONCE(!ctx)) 5085 return -ENOENT; 5086 5087 ctx->name = q->elevator->type->elevator_name; 5088 5089 /* 5090 * Before we switch elevator to 'none', take a reference to 5091 * the elevator module so that while nr_hw_queue update is 5092 * running, no one can remove elevator module. We'd put the 5093 * reference to elevator module later when we switch back 5094 * elevator. 5095 */ 5096 __elevator_get(q->elevator->type); 5097 5098 /* 5099 * Store elevator type so that we can release the reference 5100 * taken above later. 5101 */ 5102 ctx->type = q->elevator->type; 5103 elevator_set_none(q); 5104 } 5105 return 0; 5106 } 5107 5108 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 5109 int nr_hw_queues) 5110 { 5111 struct request_queue *q; 5112 int prev_nr_hw_queues = set->nr_hw_queues; 5113 unsigned int memflags; 5114 int i; 5115 struct xarray elv_tbl; 5116 bool queues_frozen = false; 5117 5118 lockdep_assert_held(&set->tag_list_lock); 5119 5120 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 5121 nr_hw_queues = nr_cpu_ids; 5122 if (nr_hw_queues < 1) 5123 return; 5124 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 5125 return; 5126 5127 memflags = memalloc_noio_save(); 5128 5129 xa_init(&elv_tbl); 5130 if (blk_mq_alloc_sched_ctx_batch(&elv_tbl, set) < 0) 5131 goto out_free_ctx; 5132 5133 if (blk_mq_alloc_sched_res_batch(&elv_tbl, set, nr_hw_queues) < 0) 5134 goto out_free_ctx; 5135 5136 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5137 blk_mq_debugfs_unregister_hctxs(q); 5138 blk_mq_sysfs_unregister_hctxs(q); 5139 } 5140 5141 /* 5142 * Switch IO scheduler to 'none', cleaning up the data associated 5143 * with the previous scheduler. We will switch back once we are done 5144 * updating the new sw to hw queue mappings. 5145 */ 5146 list_for_each_entry(q, &set->tag_list, tag_set_list) 5147 if (blk_mq_elv_switch_none(q, &elv_tbl)) 5148 goto switch_back; 5149 5150 list_for_each_entry(q, &set->tag_list, tag_set_list) 5151 blk_mq_freeze_queue_nomemsave(q); 5152 queues_frozen = true; 5153 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 5154 goto switch_back; 5155 5156 fallback: 5157 blk_mq_update_queue_map(set); 5158 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5159 __blk_mq_realloc_hw_ctxs(set, q); 5160 5161 if (q->nr_hw_queues != set->nr_hw_queues) { 5162 int i = prev_nr_hw_queues; 5163 5164 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 5165 nr_hw_queues, prev_nr_hw_queues); 5166 for (; i < set->nr_hw_queues; i++) 5167 __blk_mq_free_map_and_rqs(set, i); 5168 5169 set->nr_hw_queues = prev_nr_hw_queues; 5170 goto fallback; 5171 } 5172 blk_mq_map_swqueue(q); 5173 } 5174 switch_back: 5175 /* The blk_mq_elv_switch_back unfreezes queue for us. */ 5176 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5177 /* switch_back expects queue to be frozen */ 5178 if (!queues_frozen) 5179 blk_mq_freeze_queue_nomemsave(q); 5180 blk_mq_elv_switch_back(q, &elv_tbl); 5181 } 5182 5183 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5184 blk_mq_sysfs_register_hctxs(q); 5185 blk_mq_debugfs_register_hctxs(q); 5186 5187 blk_mq_remove_hw_queues_cpuhp(q); 5188 blk_mq_add_hw_queues_cpuhp(q); 5189 } 5190 5191 out_free_ctx: 5192 blk_mq_free_sched_ctx_batch(&elv_tbl); 5193 xa_destroy(&elv_tbl); 5194 memalloc_noio_restore(memflags); 5195 5196 /* Free the excess tags when nr_hw_queues shrink. */ 5197 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 5198 __blk_mq_free_map_and_rqs(set, i); 5199 } 5200 5201 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 5202 { 5203 down_write(&set->update_nr_hwq_lock); 5204 mutex_lock(&set->tag_list_lock); 5205 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 5206 mutex_unlock(&set->tag_list_lock); 5207 up_write(&set->update_nr_hwq_lock); 5208 } 5209 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 5210 5211 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 5212 struct io_comp_batch *iob, unsigned int flags) 5213 { 5214 int ret; 5215 5216 do { 5217 ret = q->mq_ops->poll(hctx, iob); 5218 if (ret > 0) 5219 return ret; 5220 if (task_sigpending(current)) 5221 return 1; 5222 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 5223 break; 5224 cpu_relax(); 5225 } while (!need_resched()); 5226 5227 return 0; 5228 } 5229 5230 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 5231 struct io_comp_batch *iob, unsigned int flags) 5232 { 5233 if (!blk_mq_can_poll(q)) 5234 return 0; 5235 return blk_hctx_poll(q, q->queue_hw_ctx[cookie], iob, flags); 5236 } 5237 5238 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 5239 unsigned int poll_flags) 5240 { 5241 struct request_queue *q = rq->q; 5242 int ret; 5243 5244 if (!blk_rq_is_poll(rq)) 5245 return 0; 5246 if (!percpu_ref_tryget(&q->q_usage_counter)) 5247 return 0; 5248 5249 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 5250 blk_queue_exit(q); 5251 5252 return ret; 5253 } 5254 EXPORT_SYMBOL_GPL(blk_rq_poll); 5255 5256 unsigned int blk_mq_rq_cpu(struct request *rq) 5257 { 5258 return rq->mq_ctx->cpu; 5259 } 5260 EXPORT_SYMBOL(blk_mq_rq_cpu); 5261 5262 void blk_mq_cancel_work_sync(struct request_queue *q) 5263 { 5264 struct blk_mq_hw_ctx *hctx; 5265 unsigned long i; 5266 5267 cancel_delayed_work_sync(&q->requeue_work); 5268 5269 queue_for_each_hw_ctx(q, hctx, i) 5270 cancel_delayed_work_sync(&hctx->run_work); 5271 } 5272 5273 static int __init blk_mq_init(void) 5274 { 5275 int i; 5276 5277 for_each_possible_cpu(i) 5278 init_llist_head(&per_cpu(blk_cpu_done, i)); 5279 for_each_possible_cpu(i) 5280 INIT_CSD(&per_cpu(blk_cpu_csd, i), 5281 __blk_mq_complete_request_remote, NULL); 5282 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 5283 5284 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 5285 "block/softirq:dead", NULL, 5286 blk_softirq_cpu_dead); 5287 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 5288 blk_mq_hctx_notify_dead); 5289 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 5290 blk_mq_hctx_notify_online, 5291 blk_mq_hctx_notify_offline); 5292 return 0; 5293 } 5294 subsys_initcall(blk_mq_init); 5295