1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to setting various queue properties from drivers
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17
18 #include "blk.h"
19 #include "blk-rq-qos.h"
20 #include "blk-wbt.h"
21
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 {
24 q->rq_timeout = timeout;
25 }
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27
28 /**
29 * blk_set_stacking_limits - set default limits for stacking devices
30 * @lim: the queue_limits structure to reset
31 *
32 * Prepare queue limits for applying limits from underlying devices using
33 * blk_stack_limits().
34 */
blk_set_stacking_limits(struct queue_limits * lim)35 void blk_set_stacking_limits(struct queue_limits *lim)
36 {
37 memset(lim, 0, sizeof(*lim));
38 lim->logical_block_size = SECTOR_SIZE;
39 lim->physical_block_size = SECTOR_SIZE;
40 lim->io_min = SECTOR_SIZE;
41 lim->discard_granularity = SECTOR_SIZE;
42 lim->dma_alignment = SECTOR_SIZE - 1;
43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44
45 /* Inherit limits from component devices */
46 lim->max_segments = USHRT_MAX;
47 lim->max_discard_segments = USHRT_MAX;
48 lim->max_hw_sectors = UINT_MAX;
49 lim->max_segment_size = UINT_MAX;
50 lim->max_sectors = UINT_MAX;
51 lim->max_dev_sectors = UINT_MAX;
52 lim->max_write_zeroes_sectors = UINT_MAX;
53 lim->max_hw_zone_append_sectors = UINT_MAX;
54 lim->max_user_discard_sectors = UINT_MAX;
55 }
56 EXPORT_SYMBOL(blk_set_stacking_limits);
57
blk_apply_bdi_limits(struct backing_dev_info * bdi,struct queue_limits * lim)58 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 struct queue_limits *lim)
60 {
61 /*
62 * For read-ahead of large files to be effective, we need to read ahead
63 * at least twice the optimal I/O size.
64 */
65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67 }
68
blk_validate_zoned_limits(struct queue_limits * lim)69 static int blk_validate_zoned_limits(struct queue_limits *lim)
70 {
71 if (!(lim->features & BLK_FEAT_ZONED)) {
72 if (WARN_ON_ONCE(lim->max_open_zones) ||
73 WARN_ON_ONCE(lim->max_active_zones) ||
74 WARN_ON_ONCE(lim->zone_write_granularity) ||
75 WARN_ON_ONCE(lim->max_zone_append_sectors))
76 return -EINVAL;
77 return 0;
78 }
79
80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 return -EINVAL;
82
83 /*
84 * Given that active zones include open zones, the maximum number of
85 * open zones cannot be larger than the maximum number of active zones.
86 */
87 if (lim->max_active_zones &&
88 lim->max_open_zones > lim->max_active_zones)
89 return -EINVAL;
90
91 if (lim->zone_write_granularity < lim->logical_block_size)
92 lim->zone_write_granularity = lim->logical_block_size;
93
94 /*
95 * The Zone Append size is limited by the maximum I/O size and the zone
96 * size given that it can't span zones.
97 *
98 * If no max_hw_zone_append_sectors limit is provided, the block layer
99 * will emulated it, else we're also bound by the hardware limit.
100 */
101 lim->max_zone_append_sectors =
102 min_not_zero(lim->max_hw_zone_append_sectors,
103 min(lim->chunk_sectors, lim->max_hw_sectors));
104 return 0;
105 }
106
blk_validate_integrity_limits(struct queue_limits * lim)107 static int blk_validate_integrity_limits(struct queue_limits *lim)
108 {
109 struct blk_integrity *bi = &lim->integrity;
110
111 if (!bi->tuple_size) {
112 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
113 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
114 pr_warn("invalid PI settings.\n");
115 return -EINVAL;
116 }
117 return 0;
118 }
119
120 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
121 pr_warn("integrity support disabled.\n");
122 return -EINVAL;
123 }
124
125 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
126 (bi->flags & BLK_INTEGRITY_REF_TAG)) {
127 pr_warn("ref tag not support without checksum.\n");
128 return -EINVAL;
129 }
130
131 if (!bi->interval_exp)
132 bi->interval_exp = ilog2(lim->logical_block_size);
133
134 return 0;
135 }
136
137 /*
138 * Returns max guaranteed bytes which we can fit in a bio.
139 *
140 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
141 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
142 * the first and last segments.
143 */
blk_queue_max_guaranteed_bio(struct queue_limits * lim)144 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
145 {
146 unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
147 unsigned int length;
148
149 length = min(max_segments, 2) * lim->logical_block_size;
150 if (max_segments > 2)
151 length += (max_segments - 2) * PAGE_SIZE;
152
153 return length;
154 }
155
blk_atomic_writes_update_limits(struct queue_limits * lim)156 static void blk_atomic_writes_update_limits(struct queue_limits *lim)
157 {
158 unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
159 blk_queue_max_guaranteed_bio(lim));
160
161 unit_limit = rounddown_pow_of_two(unit_limit);
162
163 lim->atomic_write_max_sectors =
164 min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
165 lim->max_hw_sectors);
166 lim->atomic_write_unit_min =
167 min(lim->atomic_write_hw_unit_min, unit_limit);
168 lim->atomic_write_unit_max =
169 min(lim->atomic_write_hw_unit_max, unit_limit);
170 lim->atomic_write_boundary_sectors =
171 lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
172 }
173
blk_validate_atomic_write_limits(struct queue_limits * lim)174 static void blk_validate_atomic_write_limits(struct queue_limits *lim)
175 {
176 unsigned int boundary_sectors;
177
178 if (!lim->atomic_write_hw_max)
179 goto unsupported;
180
181 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
182 goto unsupported;
183
184 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
185 goto unsupported;
186
187 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
188 lim->atomic_write_hw_unit_max))
189 goto unsupported;
190
191 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
192 lim->atomic_write_hw_max))
193 goto unsupported;
194
195 boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
196
197 if (boundary_sectors) {
198 if (WARN_ON_ONCE(lim->atomic_write_hw_max >
199 lim->atomic_write_hw_boundary))
200 goto unsupported;
201 /*
202 * A feature of boundary support is that it disallows bios to
203 * be merged which would result in a merged request which
204 * crosses either a chunk sector or atomic write HW boundary,
205 * even though chunk sectors may be just set for performance.
206 * For simplicity, disallow atomic writes for a chunk sector
207 * which is non-zero and smaller than atomic write HW boundary.
208 * Furthermore, chunk sectors must be a multiple of atomic
209 * write HW boundary. Otherwise boundary support becomes
210 * complicated.
211 * Devices which do not conform to these rules can be dealt
212 * with if and when they show up.
213 */
214 if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors))
215 goto unsupported;
216
217 /*
218 * The boundary size just needs to be a multiple of unit_max
219 * (and not necessarily a power-of-2), so this following check
220 * could be relaxed in future.
221 * Furthermore, if needed, unit_max could even be reduced so
222 * that it is compliant with a !power-of-2 boundary.
223 */
224 if (!is_power_of_2(boundary_sectors))
225 goto unsupported;
226 }
227
228 blk_atomic_writes_update_limits(lim);
229 return;
230
231 unsupported:
232 lim->atomic_write_max_sectors = 0;
233 lim->atomic_write_boundary_sectors = 0;
234 lim->atomic_write_unit_min = 0;
235 lim->atomic_write_unit_max = 0;
236 }
237
238 /*
239 * Check that the limits in lim are valid, initialize defaults for unset
240 * values, and cap values based on others where needed.
241 */
blk_validate_limits(struct queue_limits * lim)242 int blk_validate_limits(struct queue_limits *lim)
243 {
244 unsigned int max_hw_sectors;
245 unsigned int logical_block_sectors;
246 int err;
247
248 /*
249 * Unless otherwise specified, default to 512 byte logical blocks and a
250 * physical block size equal to the logical block size.
251 */
252 if (!lim->logical_block_size)
253 lim->logical_block_size = SECTOR_SIZE;
254 else if (blk_validate_block_size(lim->logical_block_size)) {
255 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
256 return -EINVAL;
257 }
258 if (lim->physical_block_size < lim->logical_block_size)
259 lim->physical_block_size = lim->logical_block_size;
260
261 /*
262 * The minimum I/O size defaults to the physical block size unless
263 * explicitly overridden.
264 */
265 if (lim->io_min < lim->physical_block_size)
266 lim->io_min = lim->physical_block_size;
267
268 /*
269 * The optimal I/O size may not be aligned to physical block size
270 * (because it may be limited by dma engines which have no clue about
271 * block size of the disks attached to them), so we round it down here.
272 */
273 lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
274
275 /*
276 * max_hw_sectors has a somewhat weird default for historical reason,
277 * but driver really should set their own instead of relying on this
278 * value.
279 *
280 * The block layer relies on the fact that every driver can
281 * handle at lest a page worth of data per I/O, and needs the value
282 * aligned to the logical block size.
283 */
284 if (!lim->max_hw_sectors)
285 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
286 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
287 return -EINVAL;
288 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
289 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
290 return -EINVAL;
291 lim->max_hw_sectors = round_down(lim->max_hw_sectors,
292 logical_block_sectors);
293
294 /*
295 * The actual max_sectors value is a complex beast and also takes the
296 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
297 * value into account. The ->max_sectors value is always calculated
298 * from these, so directly setting it won't have any effect.
299 */
300 max_hw_sectors = min_not_zero(lim->max_hw_sectors,
301 lim->max_dev_sectors);
302 if (lim->max_user_sectors) {
303 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
304 return -EINVAL;
305 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
306 } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
307 lim->max_sectors =
308 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
309 } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
310 lim->max_sectors =
311 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
312 } else {
313 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
314 }
315 lim->max_sectors = round_down(lim->max_sectors,
316 logical_block_sectors);
317
318 /*
319 * Random default for the maximum number of segments. Driver should not
320 * rely on this and set their own.
321 */
322 if (!lim->max_segments)
323 lim->max_segments = BLK_MAX_SEGMENTS;
324
325 lim->max_discard_sectors =
326 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
327
328 if (!lim->max_discard_segments)
329 lim->max_discard_segments = 1;
330
331 if (lim->discard_granularity < lim->physical_block_size)
332 lim->discard_granularity = lim->physical_block_size;
333
334 /*
335 * By default there is no limit on the segment boundary alignment,
336 * but if there is one it can't be smaller than the page size as
337 * that would break all the normal I/O patterns.
338 */
339 if (!lim->seg_boundary_mask)
340 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
341 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
342 return -EINVAL;
343
344 /*
345 * Stacking device may have both virtual boundary and max segment
346 * size limit, so allow this setting now, and long-term the two
347 * might need to move out of stacking limits since we have immutable
348 * bvec and lower layer bio splitting is supposed to handle the two
349 * correctly.
350 */
351 if (lim->virt_boundary_mask) {
352 if (!lim->max_segment_size)
353 lim->max_segment_size = UINT_MAX;
354 } else {
355 /*
356 * The maximum segment size has an odd historic 64k default that
357 * drivers probably should override. Just like the I/O size we
358 * require drivers to at least handle a full page per segment.
359 */
360 if (!lim->max_segment_size)
361 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
362 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
363 return -EINVAL;
364 }
365
366 /*
367 * We require drivers to at least do logical block aligned I/O, but
368 * historically could not check for that due to the separate calls
369 * to set the limits. Once the transition is finished the check
370 * below should be narrowed down to check the logical block size.
371 */
372 if (!lim->dma_alignment)
373 lim->dma_alignment = SECTOR_SIZE - 1;
374 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
375 return -EINVAL;
376
377 if (lim->alignment_offset) {
378 lim->alignment_offset &= (lim->physical_block_size - 1);
379 lim->flags &= ~BLK_FLAG_MISALIGNED;
380 }
381
382 if (!(lim->features & BLK_FEAT_WRITE_CACHE))
383 lim->features &= ~BLK_FEAT_FUA;
384
385 blk_validate_atomic_write_limits(lim);
386
387 err = blk_validate_integrity_limits(lim);
388 if (err)
389 return err;
390 return blk_validate_zoned_limits(lim);
391 }
392 EXPORT_SYMBOL_GPL(blk_validate_limits);
393
394 /*
395 * Set the default limits for a newly allocated queue. @lim contains the
396 * initial limits set by the driver, which could be no limit in which case
397 * all fields are cleared to zero.
398 */
blk_set_default_limits(struct queue_limits * lim)399 int blk_set_default_limits(struct queue_limits *lim)
400 {
401 /*
402 * Most defaults are set by capping the bounds in blk_validate_limits,
403 * but max_user_discard_sectors is special and needs an explicit
404 * initialization to the max value here.
405 */
406 lim->max_user_discard_sectors = UINT_MAX;
407 return blk_validate_limits(lim);
408 }
409
410 /**
411 * queue_limits_commit_update - commit an atomic update of queue limits
412 * @q: queue to update
413 * @lim: limits to apply
414 *
415 * Apply the limits in @lim that were obtained from queue_limits_start_update()
416 * and updated by the caller to @q.
417 *
418 * Returns 0 if successful, else a negative error code.
419 */
queue_limits_commit_update(struct request_queue * q,struct queue_limits * lim)420 int queue_limits_commit_update(struct request_queue *q,
421 struct queue_limits *lim)
422 {
423 int error;
424
425 error = blk_validate_limits(lim);
426 if (error)
427 goto out_unlock;
428
429 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
430 if (q->crypto_profile && lim->integrity.tag_size) {
431 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
432 error = -EINVAL;
433 goto out_unlock;
434 }
435 #endif
436
437 q->limits = *lim;
438 if (q->disk)
439 blk_apply_bdi_limits(q->disk->bdi, lim);
440 out_unlock:
441 mutex_unlock(&q->limits_lock);
442 return error;
443 }
444 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
445
446 /**
447 * queue_limits_set - apply queue limits to queue
448 * @q: queue to update
449 * @lim: limits to apply
450 *
451 * Apply the limits in @lim that were freshly initialized to @q.
452 * To update existing limits use queue_limits_start_update() and
453 * queue_limits_commit_update() instead.
454 *
455 * Returns 0 if successful, else a negative error code.
456 */
queue_limits_set(struct request_queue * q,struct queue_limits * lim)457 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
458 {
459 mutex_lock(&q->limits_lock);
460 return queue_limits_commit_update(q, lim);
461 }
462 EXPORT_SYMBOL_GPL(queue_limits_set);
463
queue_limit_alignment_offset(const struct queue_limits * lim,sector_t sector)464 static int queue_limit_alignment_offset(const struct queue_limits *lim,
465 sector_t sector)
466 {
467 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
468 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
469 << SECTOR_SHIFT;
470
471 return (granularity + lim->alignment_offset - alignment) % granularity;
472 }
473
queue_limit_discard_alignment(const struct queue_limits * lim,sector_t sector)474 static unsigned int queue_limit_discard_alignment(
475 const struct queue_limits *lim, sector_t sector)
476 {
477 unsigned int alignment, granularity, offset;
478
479 if (!lim->max_discard_sectors)
480 return 0;
481
482 /* Why are these in bytes, not sectors? */
483 alignment = lim->discard_alignment >> SECTOR_SHIFT;
484 granularity = lim->discard_granularity >> SECTOR_SHIFT;
485
486 /* Offset of the partition start in 'granularity' sectors */
487 offset = sector_div(sector, granularity);
488
489 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
490 offset = (granularity + alignment - offset) % granularity;
491
492 /* Turn it back into bytes, gaah */
493 return offset << SECTOR_SHIFT;
494 }
495
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)496 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
497 {
498 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
499 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
500 sectors = PAGE_SIZE >> SECTOR_SHIFT;
501 return sectors;
502 }
503
504 /* Check if second and later bottom devices are compliant */
blk_stack_atomic_writes_tail(struct queue_limits * t,struct queue_limits * b)505 static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
506 struct queue_limits *b)
507 {
508 /* We're not going to support different boundary sizes.. yet */
509 if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
510 return false;
511
512 /* Can't support this */
513 if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
514 return false;
515
516 /* Or this */
517 if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
518 return false;
519
520 t->atomic_write_hw_max = min(t->atomic_write_hw_max,
521 b->atomic_write_hw_max);
522 t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
523 b->atomic_write_hw_unit_min);
524 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
525 b->atomic_write_hw_unit_max);
526 return true;
527 }
528
529 /* Check for valid boundary of first bottom device */
blk_stack_atomic_writes_boundary_head(struct queue_limits * t,struct queue_limits * b)530 static bool blk_stack_atomic_writes_boundary_head(struct queue_limits *t,
531 struct queue_limits *b)
532 {
533 /*
534 * Ensure atomic write boundary is aligned with chunk sectors. Stacked
535 * devices store chunk sectors in t->io_min.
536 */
537 if (b->atomic_write_hw_boundary > t->io_min &&
538 b->atomic_write_hw_boundary % t->io_min)
539 return false;
540 if (t->io_min > b->atomic_write_hw_boundary &&
541 t->io_min % b->atomic_write_hw_boundary)
542 return false;
543
544 t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
545 return true;
546 }
547
548
549 /* Check stacking of first bottom device */
blk_stack_atomic_writes_head(struct queue_limits * t,struct queue_limits * b)550 static bool blk_stack_atomic_writes_head(struct queue_limits *t,
551 struct queue_limits *b)
552 {
553 if (b->atomic_write_hw_boundary &&
554 !blk_stack_atomic_writes_boundary_head(t, b))
555 return false;
556
557 if (t->io_min <= SECTOR_SIZE) {
558 /* No chunk sectors, so use bottom device values directly */
559 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
560 t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
561 t->atomic_write_hw_max = b->atomic_write_hw_max;
562 return true;
563 }
564
565 /*
566 * Find values for limits which work for chunk size.
567 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
568 * size (t->io_min), as chunk size is not restricted to a power-of-2.
569 * So we need to find highest power-of-2 which works for the chunk
570 * size.
571 * As an example scenario, we could have b->unit_max = 16K and
572 * t->io_min = 24K. For this case, reduce t->unit_max to a value
573 * aligned with both limits, i.e. 8K in this example.
574 */
575 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
576 while (t->io_min % t->atomic_write_hw_unit_max)
577 t->atomic_write_hw_unit_max /= 2;
578
579 t->atomic_write_hw_unit_min = min(b->atomic_write_hw_unit_min,
580 t->atomic_write_hw_unit_max);
581 t->atomic_write_hw_max = min(b->atomic_write_hw_max, t->io_min);
582
583 return true;
584 }
585
blk_stack_atomic_writes_limits(struct queue_limits * t,struct queue_limits * b)586 static void blk_stack_atomic_writes_limits(struct queue_limits *t,
587 struct queue_limits *b)
588 {
589 if (!(t->features & BLK_FEAT_ATOMIC_WRITES_STACKED))
590 goto unsupported;
591
592 if (!b->atomic_write_unit_min)
593 goto unsupported;
594
595 /*
596 * If atomic_write_hw_max is set, we have already stacked 1x bottom
597 * device, so check for compliance.
598 */
599 if (t->atomic_write_hw_max) {
600 if (!blk_stack_atomic_writes_tail(t, b))
601 goto unsupported;
602 return;
603 }
604
605 if (!blk_stack_atomic_writes_head(t, b))
606 goto unsupported;
607 return;
608
609 unsupported:
610 t->atomic_write_hw_max = 0;
611 t->atomic_write_hw_unit_max = 0;
612 t->atomic_write_hw_unit_min = 0;
613 t->atomic_write_hw_boundary = 0;
614 t->features &= ~BLK_FEAT_ATOMIC_WRITES_STACKED;
615 }
616
617 /**
618 * blk_stack_limits - adjust queue_limits for stacked devices
619 * @t: the stacking driver limits (top device)
620 * @b: the underlying queue limits (bottom, component device)
621 * @start: first data sector within component device
622 *
623 * Description:
624 * This function is used by stacking drivers like MD and DM to ensure
625 * that all component devices have compatible block sizes and
626 * alignments. The stacking driver must provide a queue_limits
627 * struct (top) and then iteratively call the stacking function for
628 * all component (bottom) devices. The stacking function will
629 * attempt to combine the values and ensure proper alignment.
630 *
631 * Returns 0 if the top and bottom queue_limits are compatible. The
632 * top device's block sizes and alignment offsets may be adjusted to
633 * ensure alignment with the bottom device. If no compatible sizes
634 * and alignments exist, -1 is returned and the resulting top
635 * queue_limits will have the misaligned flag set to indicate that
636 * the alignment_offset is undefined.
637 */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)638 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
639 sector_t start)
640 {
641 unsigned int top, bottom, alignment, ret = 0;
642
643 t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
644
645 /*
646 * Some feaures need to be supported both by the stacking driver and all
647 * underlying devices. The stacking driver sets these flags before
648 * stacking the limits, and this will clear the flags if any of the
649 * underlying devices does not support it.
650 */
651 if (!(b->features & BLK_FEAT_NOWAIT))
652 t->features &= ~BLK_FEAT_NOWAIT;
653 if (!(b->features & BLK_FEAT_POLL))
654 t->features &= ~BLK_FEAT_POLL;
655
656 t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
657
658 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
659 t->max_user_sectors = min_not_zero(t->max_user_sectors,
660 b->max_user_sectors);
661 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
662 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
663 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
664 b->max_write_zeroes_sectors);
665 t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
666 b->max_hw_zone_append_sectors);
667
668 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
669 b->seg_boundary_mask);
670 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
671 b->virt_boundary_mask);
672
673 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
674 t->max_discard_segments = min_not_zero(t->max_discard_segments,
675 b->max_discard_segments);
676 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
677 b->max_integrity_segments);
678
679 t->max_segment_size = min_not_zero(t->max_segment_size,
680 b->max_segment_size);
681
682 alignment = queue_limit_alignment_offset(b, start);
683
684 /* Bottom device has different alignment. Check that it is
685 * compatible with the current top alignment.
686 */
687 if (t->alignment_offset != alignment) {
688
689 top = max(t->physical_block_size, t->io_min)
690 + t->alignment_offset;
691 bottom = max(b->physical_block_size, b->io_min) + alignment;
692
693 /* Verify that top and bottom intervals line up */
694 if (max(top, bottom) % min(top, bottom)) {
695 t->flags |= BLK_FLAG_MISALIGNED;
696 ret = -1;
697 }
698 }
699
700 t->logical_block_size = max(t->logical_block_size,
701 b->logical_block_size);
702
703 t->physical_block_size = max(t->physical_block_size,
704 b->physical_block_size);
705
706 t->io_min = max(t->io_min, b->io_min);
707 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
708 t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
709
710 /* Set non-power-of-2 compatible chunk_sectors boundary */
711 if (b->chunk_sectors)
712 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
713
714 /* Physical block size a multiple of the logical block size? */
715 if (t->physical_block_size & (t->logical_block_size - 1)) {
716 t->physical_block_size = t->logical_block_size;
717 t->flags |= BLK_FLAG_MISALIGNED;
718 ret = -1;
719 }
720
721 /* Minimum I/O a multiple of the physical block size? */
722 if (t->io_min & (t->physical_block_size - 1)) {
723 t->io_min = t->physical_block_size;
724 t->flags |= BLK_FLAG_MISALIGNED;
725 ret = -1;
726 }
727
728 /* Optimal I/O a multiple of the physical block size? */
729 if (t->io_opt & (t->physical_block_size - 1)) {
730 t->io_opt = 0;
731 t->flags |= BLK_FLAG_MISALIGNED;
732 ret = -1;
733 }
734
735 /* chunk_sectors a multiple of the physical block size? */
736 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
737 t->chunk_sectors = 0;
738 t->flags |= BLK_FLAG_MISALIGNED;
739 ret = -1;
740 }
741
742 /* Find lowest common alignment_offset */
743 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
744 % max(t->physical_block_size, t->io_min);
745
746 /* Verify that new alignment_offset is on a logical block boundary */
747 if (t->alignment_offset & (t->logical_block_size - 1)) {
748 t->flags |= BLK_FLAG_MISALIGNED;
749 ret = -1;
750 }
751
752 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
753 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
754 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
755
756 /* Discard alignment and granularity */
757 if (b->discard_granularity) {
758 alignment = queue_limit_discard_alignment(b, start);
759
760 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
761 b->max_discard_sectors);
762 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
763 b->max_hw_discard_sectors);
764 t->discard_granularity = max(t->discard_granularity,
765 b->discard_granularity);
766 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
767 t->discard_granularity;
768 }
769 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
770 b->max_secure_erase_sectors);
771 t->zone_write_granularity = max(t->zone_write_granularity,
772 b->zone_write_granularity);
773 if (!(t->features & BLK_FEAT_ZONED)) {
774 t->zone_write_granularity = 0;
775 t->max_zone_append_sectors = 0;
776 }
777 blk_stack_atomic_writes_limits(t, b);
778
779 return ret;
780 }
781 EXPORT_SYMBOL(blk_stack_limits);
782
783 /**
784 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
785 * @t: the stacking driver limits (top device)
786 * @bdev: the underlying block device (bottom)
787 * @offset: offset to beginning of data within component device
788 * @pfx: prefix to use for warnings logged
789 *
790 * Description:
791 * This function is used by stacking drivers like MD and DM to ensure
792 * that all component devices have compatible block sizes and
793 * alignments. The stacking driver must provide a queue_limits
794 * struct (top) and then iteratively call the stacking function for
795 * all component (bottom) devices. The stacking function will
796 * attempt to combine the values and ensure proper alignment.
797 */
queue_limits_stack_bdev(struct queue_limits * t,struct block_device * bdev,sector_t offset,const char * pfx)798 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
799 sector_t offset, const char *pfx)
800 {
801 if (blk_stack_limits(t, bdev_limits(bdev),
802 get_start_sect(bdev) + offset))
803 pr_notice("%s: Warning: Device %pg is misaligned\n",
804 pfx, bdev);
805 }
806 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
807
808 /**
809 * queue_limits_stack_integrity - stack integrity profile
810 * @t: target queue limits
811 * @b: base queue limits
812 *
813 * Check if the integrity profile in the @b can be stacked into the
814 * target @t. Stacking is possible if either:
815 *
816 * a) does not have any integrity information stacked into it yet
817 * b) the integrity profile in @b is identical to the one in @t
818 *
819 * If @b can be stacked into @t, return %true. Else return %false and clear the
820 * integrity information in @t.
821 */
queue_limits_stack_integrity(struct queue_limits * t,struct queue_limits * b)822 bool queue_limits_stack_integrity(struct queue_limits *t,
823 struct queue_limits *b)
824 {
825 struct blk_integrity *ti = &t->integrity;
826 struct blk_integrity *bi = &b->integrity;
827
828 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
829 return true;
830
831 if (!ti->tuple_size) {
832 /* inherit the settings from the first underlying device */
833 if (!(ti->flags & BLK_INTEGRITY_STACKED)) {
834 ti->flags = BLK_INTEGRITY_DEVICE_CAPABLE |
835 (bi->flags & BLK_INTEGRITY_REF_TAG);
836 ti->csum_type = bi->csum_type;
837 ti->tuple_size = bi->tuple_size;
838 ti->pi_offset = bi->pi_offset;
839 ti->interval_exp = bi->interval_exp;
840 ti->tag_size = bi->tag_size;
841 goto done;
842 }
843 if (!bi->tuple_size)
844 goto done;
845 }
846
847 if (ti->tuple_size != bi->tuple_size)
848 goto incompatible;
849 if (ti->interval_exp != bi->interval_exp)
850 goto incompatible;
851 if (ti->tag_size != bi->tag_size)
852 goto incompatible;
853 if (ti->csum_type != bi->csum_type)
854 goto incompatible;
855 if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
856 (bi->flags & BLK_INTEGRITY_REF_TAG))
857 goto incompatible;
858
859 done:
860 ti->flags |= BLK_INTEGRITY_STACKED;
861 return true;
862
863 incompatible:
864 memset(ti, 0, sizeof(*ti));
865 return false;
866 }
867 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
868
869 /**
870 * blk_set_queue_depth - tell the block layer about the device queue depth
871 * @q: the request queue for the device
872 * @depth: queue depth
873 *
874 */
blk_set_queue_depth(struct request_queue * q,unsigned int depth)875 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
876 {
877 q->queue_depth = depth;
878 rq_qos_queue_depth_changed(q);
879 }
880 EXPORT_SYMBOL(blk_set_queue_depth);
881
bdev_alignment_offset(struct block_device * bdev)882 int bdev_alignment_offset(struct block_device *bdev)
883 {
884 struct request_queue *q = bdev_get_queue(bdev);
885
886 if (q->limits.flags & BLK_FLAG_MISALIGNED)
887 return -1;
888 if (bdev_is_partition(bdev))
889 return queue_limit_alignment_offset(&q->limits,
890 bdev->bd_start_sect);
891 return q->limits.alignment_offset;
892 }
893 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
894
bdev_discard_alignment(struct block_device * bdev)895 unsigned int bdev_discard_alignment(struct block_device *bdev)
896 {
897 struct request_queue *q = bdev_get_queue(bdev);
898
899 if (bdev_is_partition(bdev))
900 return queue_limit_discard_alignment(&q->limits,
901 bdev->bd_start_sect);
902 return q->limits.discard_alignment;
903 }
904 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
905