1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * blk-mq scheduling framework
4 *
5 * Copyright (C) 2016 Jens Axboe
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/list_sort.h>
10
11 #include <trace/events/block.h>
12
13 #include "blk.h"
14 #include "blk-mq.h"
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-wbt.h"
18
19 /*
20 * Mark a hardware queue as needing a restart.
21 */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)22 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
23 {
24 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
25 return;
26
27 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
28 }
29 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
30
__blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)31 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
32 {
33 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
34
35 /*
36 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
37 * in blk_mq_run_hw_queue(). Its pair is the barrier in
38 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
39 * meantime new request added to hctx->dispatch is missed to check in
40 * blk_mq_run_hw_queue().
41 */
42 smp_mb();
43
44 blk_mq_run_hw_queue(hctx, true);
45 }
46
sched_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)47 static int sched_rq_cmp(void *priv, const struct list_head *a,
48 const struct list_head *b)
49 {
50 struct request *rqa = container_of(a, struct request, queuelist);
51 struct request *rqb = container_of(b, struct request, queuelist);
52
53 return rqa->mq_hctx > rqb->mq_hctx;
54 }
55
blk_mq_dispatch_hctx_list(struct list_head * rq_list)56 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
57 {
58 struct blk_mq_hw_ctx *hctx =
59 list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
60 struct request *rq;
61 LIST_HEAD(hctx_list);
62
63 list_for_each_entry(rq, rq_list, queuelist) {
64 if (rq->mq_hctx != hctx) {
65 list_cut_before(&hctx_list, rq_list, &rq->queuelist);
66 goto dispatch;
67 }
68 }
69 list_splice_tail_init(rq_list, &hctx_list);
70
71 dispatch:
72 return blk_mq_dispatch_rq_list(hctx, &hctx_list, false);
73 }
74
75 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
76
77 /*
78 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
79 * its queue by itself in its completion handler, so we don't need to
80 * restart queue if .get_budget() fails to get the budget.
81 *
82 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
83 * be run again. This is necessary to avoid starving flushes.
84 */
__blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)85 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
86 {
87 struct request_queue *q = hctx->queue;
88 struct elevator_queue *e = q->elevator;
89 bool multi_hctxs = false, run_queue = false;
90 bool dispatched = false, busy = false;
91 unsigned int max_dispatch;
92 LIST_HEAD(rq_list);
93 int count = 0;
94
95 if (hctx->dispatch_busy)
96 max_dispatch = 1;
97 else
98 max_dispatch = hctx->queue->nr_requests;
99
100 do {
101 struct request *rq;
102 int budget_token;
103
104 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
105 break;
106
107 if (!list_empty_careful(&hctx->dispatch)) {
108 busy = true;
109 break;
110 }
111
112 budget_token = blk_mq_get_dispatch_budget(q);
113 if (budget_token < 0)
114 break;
115
116 rq = e->type->ops.dispatch_request(hctx);
117 if (!rq) {
118 blk_mq_put_dispatch_budget(q, budget_token);
119 /*
120 * We're releasing without dispatching. Holding the
121 * budget could have blocked any "hctx"s with the
122 * same queue and if we didn't dispatch then there's
123 * no guarantee anyone will kick the queue. Kick it
124 * ourselves.
125 */
126 run_queue = true;
127 break;
128 }
129
130 blk_mq_set_rq_budget_token(rq, budget_token);
131
132 /*
133 * Now this rq owns the budget which has to be released
134 * if this rq won't be queued to driver via .queue_rq()
135 * in blk_mq_dispatch_rq_list().
136 */
137 list_add_tail(&rq->queuelist, &rq_list);
138 count++;
139 if (rq->mq_hctx != hctx)
140 multi_hctxs = true;
141
142 /*
143 * If we cannot get tag for the request, stop dequeueing
144 * requests from the IO scheduler. We are unlikely to be able
145 * to submit them anyway and it creates false impression for
146 * scheduling heuristics that the device can take more IO.
147 */
148 if (!blk_mq_get_driver_tag(rq))
149 break;
150 } while (count < max_dispatch);
151
152 if (!count) {
153 if (run_queue)
154 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
155 } else if (multi_hctxs) {
156 /*
157 * Requests from different hctx may be dequeued from some
158 * schedulers, such as bfq and deadline.
159 *
160 * Sort the requests in the list according to their hctx,
161 * dispatch batching requests from same hctx at a time.
162 */
163 list_sort(NULL, &rq_list, sched_rq_cmp);
164 do {
165 dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
166 } while (!list_empty(&rq_list));
167 } else {
168 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, false);
169 }
170
171 if (busy)
172 return -EAGAIN;
173 return !!dispatched;
174 }
175
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)176 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
177 {
178 unsigned long end = jiffies + HZ;
179 int ret;
180
181 do {
182 ret = __blk_mq_do_dispatch_sched(hctx);
183 if (ret != 1)
184 break;
185 if (need_resched() || time_is_before_jiffies(end)) {
186 blk_mq_delay_run_hw_queue(hctx, 0);
187 break;
188 }
189 } while (1);
190
191 return ret;
192 }
193
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)194 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
195 struct blk_mq_ctx *ctx)
196 {
197 unsigned short idx = ctx->index_hw[hctx->type];
198
199 if (++idx == hctx->nr_ctx)
200 idx = 0;
201
202 return hctx->ctxs[idx];
203 }
204
205 /*
206 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
207 * its queue by itself in its completion handler, so we don't need to
208 * restart queue if .get_budget() fails to get the budget.
209 *
210 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
211 * be run again. This is necessary to avoid starving flushes.
212 */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)213 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
214 {
215 struct request_queue *q = hctx->queue;
216 LIST_HEAD(rq_list);
217 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
218 int ret = 0;
219 struct request *rq;
220
221 do {
222 int budget_token;
223
224 if (!list_empty_careful(&hctx->dispatch)) {
225 ret = -EAGAIN;
226 break;
227 }
228
229 if (!sbitmap_any_bit_set(&hctx->ctx_map))
230 break;
231
232 budget_token = blk_mq_get_dispatch_budget(q);
233 if (budget_token < 0)
234 break;
235
236 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
237 if (!rq) {
238 blk_mq_put_dispatch_budget(q, budget_token);
239 /*
240 * We're releasing without dispatching. Holding the
241 * budget could have blocked any "hctx"s with the
242 * same queue and if we didn't dispatch then there's
243 * no guarantee anyone will kick the queue. Kick it
244 * ourselves.
245 */
246 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
247 break;
248 }
249
250 blk_mq_set_rq_budget_token(rq, budget_token);
251
252 /*
253 * Now this rq owns the budget which has to be released
254 * if this rq won't be queued to driver via .queue_rq()
255 * in blk_mq_dispatch_rq_list().
256 */
257 list_add(&rq->queuelist, &rq_list);
258
259 /* round robin for fair dispatch */
260 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
261
262 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, false));
263
264 WRITE_ONCE(hctx->dispatch_from, ctx);
265 return ret;
266 }
267
__blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)268 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
269 {
270 bool need_dispatch = false;
271 LIST_HEAD(rq_list);
272
273 /*
274 * If we have previous entries on our dispatch list, grab them first for
275 * more fair dispatch.
276 */
277 if (!list_empty_careful(&hctx->dispatch)) {
278 spin_lock(&hctx->lock);
279 if (!list_empty(&hctx->dispatch))
280 list_splice_init(&hctx->dispatch, &rq_list);
281 spin_unlock(&hctx->lock);
282 }
283
284 /*
285 * Only ask the scheduler for requests, if we didn't have residual
286 * requests from the dispatch list. This is to avoid the case where
287 * we only ever dispatch a fraction of the requests available because
288 * of low device queue depth. Once we pull requests out of the IO
289 * scheduler, we can no longer merge or sort them. So it's best to
290 * leave them there for as long as we can. Mark the hw queue as
291 * needing a restart in that case.
292 *
293 * We want to dispatch from the scheduler if there was nothing
294 * on the dispatch list or we were able to dispatch from the
295 * dispatch list.
296 */
297 if (!list_empty(&rq_list)) {
298 blk_mq_sched_mark_restart_hctx(hctx);
299 if (!blk_mq_dispatch_rq_list(hctx, &rq_list, true))
300 return 0;
301 need_dispatch = true;
302 } else {
303 need_dispatch = hctx->dispatch_busy;
304 }
305
306 if (hctx->queue->elevator)
307 return blk_mq_do_dispatch_sched(hctx);
308
309 /* dequeue request one by one from sw queue if queue is busy */
310 if (need_dispatch)
311 return blk_mq_do_dispatch_ctx(hctx);
312 blk_mq_flush_busy_ctxs(hctx, &rq_list);
313 blk_mq_dispatch_rq_list(hctx, &rq_list, true);
314 return 0;
315 }
316
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)317 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
318 {
319 struct request_queue *q = hctx->queue;
320
321 /* RCU or SRCU read lock is needed before checking quiesced flag */
322 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
323 return;
324
325 /*
326 * A return of -EAGAIN is an indication that hctx->dispatch is not
327 * empty and we must run again in order to avoid starving flushes.
328 */
329 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
330 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
331 blk_mq_run_hw_queue(hctx, true);
332 }
333 }
334
blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)335 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
336 unsigned int nr_segs)
337 {
338 struct elevator_queue *e = q->elevator;
339 struct blk_mq_ctx *ctx;
340 struct blk_mq_hw_ctx *hctx;
341 bool ret = false;
342 enum hctx_type type;
343
344 if (e && e->type->ops.bio_merge) {
345 ret = e->type->ops.bio_merge(q, bio, nr_segs);
346 goto out_put;
347 }
348
349 ctx = blk_mq_get_ctx(q);
350 hctx = blk_mq_map_queue(bio->bi_opf, ctx);
351 type = hctx->type;
352 if (list_empty_careful(&ctx->rq_lists[type]))
353 goto out_put;
354
355 /* default per sw-queue merge */
356 spin_lock(&ctx->lock);
357 /*
358 * Reverse check our software queue for entries that we could
359 * potentially merge with. Currently includes a hand-wavy stop
360 * count of 8, to not spend too much time checking for merges.
361 */
362 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs))
363 ret = true;
364
365 spin_unlock(&ctx->lock);
366 out_put:
367 return ret;
368 }
369
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)370 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
371 struct list_head *free)
372 {
373 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
374 }
375 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
376
377 /* called in queue's release handler, tagset has gone away */
blk_mq_sched_tags_teardown(struct request_queue * q,unsigned int flags)378 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags)
379 {
380 struct blk_mq_hw_ctx *hctx;
381 unsigned long i;
382
383 queue_for_each_hw_ctx(q, hctx, i)
384 hctx->sched_tags = NULL;
385
386 if (blk_mq_is_shared_tags(flags))
387 q->sched_shared_tags = NULL;
388 }
389
blk_mq_sched_reg_debugfs(struct request_queue * q)390 void blk_mq_sched_reg_debugfs(struct request_queue *q)
391 {
392 struct blk_mq_hw_ctx *hctx;
393 unsigned long i;
394
395 mutex_lock(&q->debugfs_mutex);
396 blk_mq_debugfs_register_sched(q);
397 queue_for_each_hw_ctx(q, hctx, i)
398 blk_mq_debugfs_register_sched_hctx(q, hctx);
399 mutex_unlock(&q->debugfs_mutex);
400 }
401
blk_mq_sched_unreg_debugfs(struct request_queue * q)402 void blk_mq_sched_unreg_debugfs(struct request_queue *q)
403 {
404 struct blk_mq_hw_ctx *hctx;
405 unsigned long i;
406
407 mutex_lock(&q->debugfs_mutex);
408 queue_for_each_hw_ctx(q, hctx, i)
409 blk_mq_debugfs_unregister_sched_hctx(hctx);
410 blk_mq_debugfs_unregister_sched(q);
411 mutex_unlock(&q->debugfs_mutex);
412 }
413
blk_mq_free_sched_tags(struct elevator_tags * et,struct blk_mq_tag_set * set)414 void blk_mq_free_sched_tags(struct elevator_tags *et,
415 struct blk_mq_tag_set *set)
416 {
417 unsigned long i;
418
419 /* Shared tags are stored at index 0 in @tags. */
420 if (blk_mq_is_shared_tags(set->flags))
421 blk_mq_free_map_and_rqs(set, et->tags[0], BLK_MQ_NO_HCTX_IDX);
422 else {
423 for (i = 0; i < et->nr_hw_queues; i++)
424 blk_mq_free_map_and_rqs(set, et->tags[i], i);
425 }
426
427 kfree(et);
428 }
429
blk_mq_free_sched_tags_batch(struct xarray * et_table,struct blk_mq_tag_set * set)430 void blk_mq_free_sched_tags_batch(struct xarray *et_table,
431 struct blk_mq_tag_set *set)
432 {
433 struct request_queue *q;
434 struct elevator_tags *et;
435
436 lockdep_assert_held_write(&set->update_nr_hwq_lock);
437
438 list_for_each_entry(q, &set->tag_list, tag_set_list) {
439 /*
440 * Accessing q->elevator without holding q->elevator_lock is
441 * safe because we're holding here set->update_nr_hwq_lock in
442 * the writer context. So, scheduler update/switch code (which
443 * acquires the same lock but in the reader context) can't run
444 * concurrently.
445 */
446 if (q->elevator) {
447 et = xa_load(et_table, q->id);
448 if (unlikely(!et))
449 WARN_ON_ONCE(1);
450 else
451 blk_mq_free_sched_tags(et, set);
452 }
453 }
454 }
455
blk_mq_alloc_sched_tags(struct blk_mq_tag_set * set,unsigned int nr_hw_queues)456 struct elevator_tags *blk_mq_alloc_sched_tags(struct blk_mq_tag_set *set,
457 unsigned int nr_hw_queues)
458 {
459 unsigned int nr_tags;
460 int i;
461 struct elevator_tags *et;
462 gfp_t gfp = GFP_NOIO | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
463
464 if (blk_mq_is_shared_tags(set->flags))
465 nr_tags = 1;
466 else
467 nr_tags = nr_hw_queues;
468
469 et = kmalloc(sizeof(struct elevator_tags) +
470 nr_tags * sizeof(struct blk_mq_tags *), gfp);
471 if (!et)
472 return NULL;
473 /*
474 * Default to double of smaller one between hw queue_depth and
475 * 128, since we don't split into sync/async like the old code
476 * did. Additionally, this is a per-hw queue depth.
477 */
478 et->nr_requests = 2 * min_t(unsigned int, set->queue_depth,
479 BLKDEV_DEFAULT_RQ);
480 et->nr_hw_queues = nr_hw_queues;
481
482 if (blk_mq_is_shared_tags(set->flags)) {
483 /* Shared tags are stored at index 0 in @tags. */
484 et->tags[0] = blk_mq_alloc_map_and_rqs(set, BLK_MQ_NO_HCTX_IDX,
485 MAX_SCHED_RQ);
486 if (!et->tags[0])
487 goto out;
488 } else {
489 for (i = 0; i < et->nr_hw_queues; i++) {
490 et->tags[i] = blk_mq_alloc_map_and_rqs(set, i,
491 et->nr_requests);
492 if (!et->tags[i])
493 goto out_unwind;
494 }
495 }
496
497 return et;
498 out_unwind:
499 while (--i >= 0)
500 blk_mq_free_map_and_rqs(set, et->tags[i], i);
501 out:
502 kfree(et);
503 return NULL;
504 }
505
blk_mq_alloc_sched_tags_batch(struct xarray * et_table,struct blk_mq_tag_set * set,unsigned int nr_hw_queues)506 int blk_mq_alloc_sched_tags_batch(struct xarray *et_table,
507 struct blk_mq_tag_set *set, unsigned int nr_hw_queues)
508 {
509 struct request_queue *q;
510 struct elevator_tags *et;
511 gfp_t gfp = GFP_NOIO | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
512
513 lockdep_assert_held_write(&set->update_nr_hwq_lock);
514
515 list_for_each_entry(q, &set->tag_list, tag_set_list) {
516 /*
517 * Accessing q->elevator without holding q->elevator_lock is
518 * safe because we're holding here set->update_nr_hwq_lock in
519 * the writer context. So, scheduler update/switch code (which
520 * acquires the same lock but in the reader context) can't run
521 * concurrently.
522 */
523 if (q->elevator) {
524 et = blk_mq_alloc_sched_tags(set, nr_hw_queues);
525 if (!et)
526 goto out_unwind;
527 if (xa_insert(et_table, q->id, et, gfp))
528 goto out_free_tags;
529 }
530 }
531 return 0;
532 out_free_tags:
533 blk_mq_free_sched_tags(et, set);
534 out_unwind:
535 list_for_each_entry_continue_reverse(q, &set->tag_list, tag_set_list) {
536 if (q->elevator) {
537 et = xa_load(et_table, q->id);
538 if (et)
539 blk_mq_free_sched_tags(et, set);
540 }
541 }
542 return -ENOMEM;
543 }
544
545 /* caller must have a reference to @e, will grab another one if successful */
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e,struct elevator_tags * et)546 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e,
547 struct elevator_tags *et)
548 {
549 unsigned int flags = q->tag_set->flags;
550 struct blk_mq_hw_ctx *hctx;
551 struct elevator_queue *eq;
552 unsigned long i;
553 int ret;
554
555 eq = elevator_alloc(q, e, et);
556 if (!eq)
557 return -ENOMEM;
558
559 q->nr_requests = et->nr_requests;
560
561 if (blk_mq_is_shared_tags(flags)) {
562 /* Shared tags are stored at index 0 in @et->tags. */
563 q->sched_shared_tags = et->tags[0];
564 blk_mq_tag_update_sched_shared_tags(q);
565 }
566
567 queue_for_each_hw_ctx(q, hctx, i) {
568 if (blk_mq_is_shared_tags(flags))
569 hctx->sched_tags = q->sched_shared_tags;
570 else
571 hctx->sched_tags = et->tags[i];
572 }
573
574 ret = e->ops.init_sched(q, eq);
575 if (ret)
576 goto out;
577
578 queue_for_each_hw_ctx(q, hctx, i) {
579 if (e->ops.init_hctx) {
580 ret = e->ops.init_hctx(hctx, i);
581 if (ret) {
582 blk_mq_exit_sched(q, eq);
583 kobject_put(&eq->kobj);
584 return ret;
585 }
586 }
587 }
588 return 0;
589
590 out:
591 blk_mq_sched_tags_teardown(q, flags);
592 kobject_put(&eq->kobj);
593 q->elevator = NULL;
594 return ret;
595 }
596
597 /*
598 * called in either blk_queue_cleanup or elevator_switch, tagset
599 * is required for freeing requests
600 */
blk_mq_sched_free_rqs(struct request_queue * q)601 void blk_mq_sched_free_rqs(struct request_queue *q)
602 {
603 struct blk_mq_hw_ctx *hctx;
604 unsigned long i;
605
606 if (blk_mq_is_shared_tags(q->tag_set->flags)) {
607 blk_mq_free_rqs(q->tag_set, q->sched_shared_tags,
608 BLK_MQ_NO_HCTX_IDX);
609 } else {
610 queue_for_each_hw_ctx(q, hctx, i) {
611 if (hctx->sched_tags)
612 blk_mq_free_rqs(q->tag_set,
613 hctx->sched_tags, i);
614 }
615 }
616 }
617
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)618 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
619 {
620 struct blk_mq_hw_ctx *hctx;
621 unsigned long i;
622 unsigned int flags = 0;
623
624 queue_for_each_hw_ctx(q, hctx, i) {
625 if (e->type->ops.exit_hctx && hctx->sched_data) {
626 e->type->ops.exit_hctx(hctx, i);
627 hctx->sched_data = NULL;
628 }
629 flags = hctx->flags;
630 }
631
632 if (e->type->ops.exit_sched)
633 e->type->ops.exit_sched(e);
634 blk_mq_sched_tags_teardown(q, flags);
635 set_bit(ELEVATOR_FLAG_DYING, &q->elevator->flags);
636 q->elevator = NULL;
637 }
638