1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 #include <linux/part_stat.h> 31 #include <linux/sched/isolation.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 static DEFINE_MUTEX(blk_mq_cpuhp_lock); 47 48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 49 static void blk_mq_request_bypass_insert(struct request *rq, 50 blk_insert_t flags); 51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 52 struct list_head *list); 53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 54 struct io_comp_batch *iob, unsigned int flags); 55 56 /* 57 * Check if any of the ctx, dispatch list or elevator 58 * have pending work in this hardware queue. 59 */ 60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 61 { 62 return !list_empty_careful(&hctx->dispatch) || 63 sbitmap_any_bit_set(&hctx->ctx_map) || 64 blk_mq_sched_has_work(hctx); 65 } 66 67 /* 68 * Mark this ctx as having pending work in this hardware queue 69 */ 70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 71 struct blk_mq_ctx *ctx) 72 { 73 const int bit = ctx->index_hw[hctx->type]; 74 75 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 76 sbitmap_set_bit(&hctx->ctx_map, bit); 77 } 78 79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 80 struct blk_mq_ctx *ctx) 81 { 82 const int bit = ctx->index_hw[hctx->type]; 83 84 sbitmap_clear_bit(&hctx->ctx_map, bit); 85 } 86 87 struct mq_inflight { 88 struct block_device *part; 89 unsigned int inflight[2]; 90 }; 91 92 static bool blk_mq_check_in_driver(struct request *rq, void *priv) 93 { 94 struct mq_inflight *mi = priv; 95 96 if (rq->rq_flags & RQF_IO_STAT && 97 (!bdev_is_partition(mi->part) || rq->part == mi->part) && 98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 99 mi->inflight[rq_data_dir(rq)]++; 100 101 return true; 102 } 103 104 void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2]) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver, 109 &mi); 110 inflight[READ] = mi.inflight[READ]; 111 inflight[WRITE] = mi.inflight[WRITE]; 112 } 113 114 #ifdef CONFIG_LOCKDEP 115 static bool blk_freeze_set_owner(struct request_queue *q, 116 struct task_struct *owner) 117 { 118 if (!owner) 119 return false; 120 121 if (!q->mq_freeze_depth) { 122 q->mq_freeze_owner = owner; 123 q->mq_freeze_owner_depth = 1; 124 q->mq_freeze_disk_dead = !q->disk || 125 test_bit(GD_DEAD, &q->disk->state) || 126 !blk_queue_registered(q); 127 q->mq_freeze_queue_dying = blk_queue_dying(q); 128 return true; 129 } 130 131 if (owner == q->mq_freeze_owner) 132 q->mq_freeze_owner_depth += 1; 133 return false; 134 } 135 136 /* verify the last unfreeze in owner context */ 137 static bool blk_unfreeze_check_owner(struct request_queue *q) 138 { 139 if (q->mq_freeze_owner != current) 140 return false; 141 if (--q->mq_freeze_owner_depth == 0) { 142 q->mq_freeze_owner = NULL; 143 return true; 144 } 145 return false; 146 } 147 148 #else 149 150 static bool blk_freeze_set_owner(struct request_queue *q, 151 struct task_struct *owner) 152 { 153 return false; 154 } 155 156 static bool blk_unfreeze_check_owner(struct request_queue *q) 157 { 158 return false; 159 } 160 #endif 161 162 bool __blk_freeze_queue_start(struct request_queue *q, 163 struct task_struct *owner) 164 { 165 bool freeze; 166 167 mutex_lock(&q->mq_freeze_lock); 168 freeze = blk_freeze_set_owner(q, owner); 169 if (++q->mq_freeze_depth == 1) { 170 percpu_ref_kill(&q->q_usage_counter); 171 mutex_unlock(&q->mq_freeze_lock); 172 if (queue_is_mq(q)) 173 blk_mq_run_hw_queues(q, false); 174 } else { 175 mutex_unlock(&q->mq_freeze_lock); 176 } 177 178 return freeze; 179 } 180 181 void blk_freeze_queue_start(struct request_queue *q) 182 { 183 if (__blk_freeze_queue_start(q, current)) 184 blk_freeze_acquire_lock(q); 185 } 186 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 187 188 void blk_mq_freeze_queue_wait(struct request_queue *q) 189 { 190 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 191 } 192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 193 194 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 195 unsigned long timeout) 196 { 197 return wait_event_timeout(q->mq_freeze_wq, 198 percpu_ref_is_zero(&q->q_usage_counter), 199 timeout); 200 } 201 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 202 203 void blk_mq_freeze_queue_nomemsave(struct request_queue *q) 204 { 205 blk_freeze_queue_start(q); 206 blk_mq_freeze_queue_wait(q); 207 } 208 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave); 209 210 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 211 { 212 bool unfreeze; 213 214 mutex_lock(&q->mq_freeze_lock); 215 if (force_atomic) 216 q->q_usage_counter.data->force_atomic = true; 217 q->mq_freeze_depth--; 218 WARN_ON_ONCE(q->mq_freeze_depth < 0); 219 if (!q->mq_freeze_depth) { 220 percpu_ref_resurrect(&q->q_usage_counter); 221 wake_up_all(&q->mq_freeze_wq); 222 } 223 unfreeze = blk_unfreeze_check_owner(q); 224 mutex_unlock(&q->mq_freeze_lock); 225 226 return unfreeze; 227 } 228 229 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q) 230 { 231 if (__blk_mq_unfreeze_queue(q, false)) 232 blk_unfreeze_release_lock(q); 233 } 234 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore); 235 236 /* 237 * non_owner variant of blk_freeze_queue_start 238 * 239 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen 240 * by the same task. This is fragile and should not be used if at all 241 * possible. 242 */ 243 void blk_freeze_queue_start_non_owner(struct request_queue *q) 244 { 245 __blk_freeze_queue_start(q, NULL); 246 } 247 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner); 248 249 /* non_owner variant of blk_mq_unfreeze_queue */ 250 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q) 251 { 252 __blk_mq_unfreeze_queue(q, false); 253 } 254 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner); 255 256 /* 257 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 258 * mpt3sas driver such that this function can be removed. 259 */ 260 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 261 { 262 unsigned long flags; 263 264 spin_lock_irqsave(&q->queue_lock, flags); 265 if (!q->quiesce_depth++) 266 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 267 spin_unlock_irqrestore(&q->queue_lock, flags); 268 } 269 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 270 271 /** 272 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 273 * @set: tag_set to wait on 274 * 275 * Note: it is driver's responsibility for making sure that quiesce has 276 * been started on or more of the request_queues of the tag_set. This 277 * function only waits for the quiesce on those request_queues that had 278 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 279 */ 280 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 281 { 282 if (set->flags & BLK_MQ_F_BLOCKING) 283 synchronize_srcu(set->srcu); 284 else 285 synchronize_rcu(); 286 } 287 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 288 289 /** 290 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 291 * @q: request queue. 292 * 293 * Note: this function does not prevent that the struct request end_io() 294 * callback function is invoked. Once this function is returned, we make 295 * sure no dispatch can happen until the queue is unquiesced via 296 * blk_mq_unquiesce_queue(). 297 */ 298 void blk_mq_quiesce_queue(struct request_queue *q) 299 { 300 blk_mq_quiesce_queue_nowait(q); 301 /* nothing to wait for non-mq queues */ 302 if (queue_is_mq(q)) 303 blk_mq_wait_quiesce_done(q->tag_set); 304 } 305 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 306 307 /* 308 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 309 * @q: request queue. 310 * 311 * This function recovers queue into the state before quiescing 312 * which is done by blk_mq_quiesce_queue. 313 */ 314 void blk_mq_unquiesce_queue(struct request_queue *q) 315 { 316 unsigned long flags; 317 bool run_queue = false; 318 319 spin_lock_irqsave(&q->queue_lock, flags); 320 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 321 ; 322 } else if (!--q->quiesce_depth) { 323 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 324 run_queue = true; 325 } 326 spin_unlock_irqrestore(&q->queue_lock, flags); 327 328 /* dispatch requests which are inserted during quiescing */ 329 if (run_queue) 330 blk_mq_run_hw_queues(q, true); 331 } 332 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 333 334 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 335 { 336 struct request_queue *q; 337 338 mutex_lock(&set->tag_list_lock); 339 list_for_each_entry(q, &set->tag_list, tag_set_list) { 340 if (!blk_queue_skip_tagset_quiesce(q)) 341 blk_mq_quiesce_queue_nowait(q); 342 } 343 mutex_unlock(&set->tag_list_lock); 344 345 blk_mq_wait_quiesce_done(set); 346 } 347 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 348 349 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 350 { 351 struct request_queue *q; 352 353 mutex_lock(&set->tag_list_lock); 354 list_for_each_entry(q, &set->tag_list, tag_set_list) { 355 if (!blk_queue_skip_tagset_quiesce(q)) 356 blk_mq_unquiesce_queue(q); 357 } 358 mutex_unlock(&set->tag_list_lock); 359 } 360 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 361 362 void blk_mq_wake_waiters(struct request_queue *q) 363 { 364 struct blk_mq_hw_ctx *hctx; 365 unsigned long i; 366 367 queue_for_each_hw_ctx(q, hctx, i) 368 if (blk_mq_hw_queue_mapped(hctx)) 369 blk_mq_tag_wakeup_all(hctx->tags, true); 370 } 371 372 void blk_rq_init(struct request_queue *q, struct request *rq) 373 { 374 memset(rq, 0, sizeof(*rq)); 375 376 INIT_LIST_HEAD(&rq->queuelist); 377 rq->q = q; 378 rq->__sector = (sector_t) -1; 379 rq->phys_gap_bit = 0; 380 INIT_HLIST_NODE(&rq->hash); 381 RB_CLEAR_NODE(&rq->rb_node); 382 rq->tag = BLK_MQ_NO_TAG; 383 rq->internal_tag = BLK_MQ_NO_TAG; 384 rq->start_time_ns = blk_time_get_ns(); 385 blk_crypto_rq_set_defaults(rq); 386 } 387 EXPORT_SYMBOL(blk_rq_init); 388 389 /* Set start and alloc time when the allocated request is actually used */ 390 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 391 { 392 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 393 if (blk_queue_rq_alloc_time(rq->q)) 394 rq->alloc_time_ns = alloc_time_ns; 395 else 396 rq->alloc_time_ns = 0; 397 #endif 398 } 399 400 static inline void blk_mq_bio_issue_init(struct request_queue *q, 401 struct bio *bio) 402 { 403 #ifdef CONFIG_BLK_CGROUP 404 if (test_bit(QUEUE_FLAG_BIO_ISSUE_TIME, &q->queue_flags)) 405 bio->issue_time_ns = blk_time_get_ns(); 406 #endif 407 } 408 409 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 410 struct blk_mq_tags *tags, unsigned int tag) 411 { 412 struct blk_mq_ctx *ctx = data->ctx; 413 struct blk_mq_hw_ctx *hctx = data->hctx; 414 struct request_queue *q = data->q; 415 struct request *rq = tags->static_rqs[tag]; 416 417 rq->q = q; 418 rq->mq_ctx = ctx; 419 rq->mq_hctx = hctx; 420 rq->cmd_flags = data->cmd_flags; 421 422 if (data->flags & BLK_MQ_REQ_PM) 423 data->rq_flags |= RQF_PM; 424 rq->rq_flags = data->rq_flags; 425 426 if (data->rq_flags & RQF_SCHED_TAGS) { 427 rq->tag = BLK_MQ_NO_TAG; 428 rq->internal_tag = tag; 429 } else { 430 rq->tag = tag; 431 rq->internal_tag = BLK_MQ_NO_TAG; 432 } 433 rq->timeout = 0; 434 435 rq->part = NULL; 436 rq->io_start_time_ns = 0; 437 rq->stats_sectors = 0; 438 rq->nr_phys_segments = 0; 439 rq->nr_integrity_segments = 0; 440 rq->end_io = NULL; 441 rq->end_io_data = NULL; 442 443 blk_crypto_rq_set_defaults(rq); 444 INIT_LIST_HEAD(&rq->queuelist); 445 /* tag was already set */ 446 WRITE_ONCE(rq->deadline, 0); 447 req_ref_set(rq, 1); 448 449 if (rq->rq_flags & RQF_USE_SCHED) { 450 struct elevator_queue *e = data->q->elevator; 451 452 INIT_HLIST_NODE(&rq->hash); 453 RB_CLEAR_NODE(&rq->rb_node); 454 455 if (e->type->ops.prepare_request) 456 e->type->ops.prepare_request(rq); 457 } 458 459 return rq; 460 } 461 462 static inline struct request * 463 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 464 { 465 unsigned int tag, tag_offset; 466 struct blk_mq_tags *tags; 467 struct request *rq; 468 unsigned long tag_mask; 469 int i, nr = 0; 470 471 do { 472 tag_mask = blk_mq_get_tags(data, data->nr_tags - nr, &tag_offset); 473 if (unlikely(!tag_mask)) { 474 if (nr == 0) 475 return NULL; 476 break; 477 } 478 tags = blk_mq_tags_from_data(data); 479 for (i = 0; tag_mask; i++) { 480 if (!(tag_mask & (1UL << i))) 481 continue; 482 tag = tag_offset + i; 483 prefetch(tags->static_rqs[tag]); 484 tag_mask &= ~(1UL << i); 485 rq = blk_mq_rq_ctx_init(data, tags, tag); 486 rq_list_add_head(data->cached_rqs, rq); 487 nr++; 488 } 489 } while (data->nr_tags > nr); 490 491 if (!(data->rq_flags & RQF_SCHED_TAGS)) 492 blk_mq_add_active_requests(data->hctx, nr); 493 /* caller already holds a reference, add for remainder */ 494 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 495 data->nr_tags -= nr; 496 497 return rq_list_pop(data->cached_rqs); 498 } 499 500 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 501 { 502 struct request_queue *q = data->q; 503 u64 alloc_time_ns = 0; 504 struct request *rq; 505 unsigned int tag; 506 507 /* alloc_time includes depth and tag waits */ 508 if (blk_queue_rq_alloc_time(q)) 509 alloc_time_ns = blk_time_get_ns(); 510 511 if (data->cmd_flags & REQ_NOWAIT) 512 data->flags |= BLK_MQ_REQ_NOWAIT; 513 514 retry: 515 data->ctx = blk_mq_get_ctx(q); 516 data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx); 517 518 if (q->elevator) { 519 /* 520 * All requests use scheduler tags when an I/O scheduler is 521 * enabled for the queue. 522 */ 523 data->rq_flags |= RQF_SCHED_TAGS; 524 525 /* 526 * Flush/passthrough requests are special and go directly to the 527 * dispatch list. 528 */ 529 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 530 !blk_op_is_passthrough(data->cmd_flags)) { 531 struct elevator_mq_ops *ops = &q->elevator->type->ops; 532 533 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 534 535 data->rq_flags |= RQF_USE_SCHED; 536 if (ops->limit_depth) 537 ops->limit_depth(data->cmd_flags, data); 538 } 539 } else { 540 blk_mq_tag_busy(data->hctx); 541 } 542 543 if (data->flags & BLK_MQ_REQ_RESERVED) 544 data->rq_flags |= RQF_RESV; 545 546 /* 547 * Try batched alloc if we want more than 1 tag. 548 */ 549 if (data->nr_tags > 1) { 550 rq = __blk_mq_alloc_requests_batch(data); 551 if (rq) { 552 blk_mq_rq_time_init(rq, alloc_time_ns); 553 return rq; 554 } 555 data->nr_tags = 1; 556 } 557 558 /* 559 * Waiting allocations only fail because of an inactive hctx. In that 560 * case just retry the hctx assignment and tag allocation as CPU hotplug 561 * should have migrated us to an online CPU by now. 562 */ 563 tag = blk_mq_get_tag(data); 564 if (tag == BLK_MQ_NO_TAG) { 565 if (data->flags & BLK_MQ_REQ_NOWAIT) 566 return NULL; 567 /* 568 * Give up the CPU and sleep for a random short time to 569 * ensure that thread using a realtime scheduling class 570 * are migrated off the CPU, and thus off the hctx that 571 * is going away. 572 */ 573 msleep(3); 574 goto retry; 575 } 576 577 if (!(data->rq_flags & RQF_SCHED_TAGS)) 578 blk_mq_inc_active_requests(data->hctx); 579 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 580 blk_mq_rq_time_init(rq, alloc_time_ns); 581 return rq; 582 } 583 584 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 585 struct blk_plug *plug, 586 blk_opf_t opf, 587 blk_mq_req_flags_t flags) 588 { 589 struct blk_mq_alloc_data data = { 590 .q = q, 591 .flags = flags, 592 .shallow_depth = 0, 593 .cmd_flags = opf, 594 .rq_flags = 0, 595 .nr_tags = plug->nr_ios, 596 .cached_rqs = &plug->cached_rqs, 597 .ctx = NULL, 598 .hctx = NULL 599 }; 600 struct request *rq; 601 602 if (blk_queue_enter(q, flags)) 603 return NULL; 604 605 plug->nr_ios = 1; 606 607 rq = __blk_mq_alloc_requests(&data); 608 if (unlikely(!rq)) 609 blk_queue_exit(q); 610 return rq; 611 } 612 613 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 614 blk_opf_t opf, 615 blk_mq_req_flags_t flags) 616 { 617 struct blk_plug *plug = current->plug; 618 struct request *rq; 619 620 if (!plug) 621 return NULL; 622 623 if (rq_list_empty(&plug->cached_rqs)) { 624 if (plug->nr_ios == 1) 625 return NULL; 626 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 627 if (!rq) 628 return NULL; 629 } else { 630 rq = rq_list_peek(&plug->cached_rqs); 631 if (!rq || rq->q != q) 632 return NULL; 633 634 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 635 return NULL; 636 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 637 return NULL; 638 639 rq_list_pop(&plug->cached_rqs); 640 blk_mq_rq_time_init(rq, blk_time_get_ns()); 641 } 642 643 rq->cmd_flags = opf; 644 INIT_LIST_HEAD(&rq->queuelist); 645 return rq; 646 } 647 648 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 649 blk_mq_req_flags_t flags) 650 { 651 struct request *rq; 652 653 rq = blk_mq_alloc_cached_request(q, opf, flags); 654 if (!rq) { 655 struct blk_mq_alloc_data data = { 656 .q = q, 657 .flags = flags, 658 .shallow_depth = 0, 659 .cmd_flags = opf, 660 .rq_flags = 0, 661 .nr_tags = 1, 662 .cached_rqs = NULL, 663 .ctx = NULL, 664 .hctx = NULL 665 }; 666 int ret; 667 668 ret = blk_queue_enter(q, flags); 669 if (ret) 670 return ERR_PTR(ret); 671 672 rq = __blk_mq_alloc_requests(&data); 673 if (!rq) 674 goto out_queue_exit; 675 } 676 rq->__data_len = 0; 677 rq->phys_gap_bit = 0; 678 rq->__sector = (sector_t) -1; 679 rq->bio = rq->biotail = NULL; 680 return rq; 681 out_queue_exit: 682 blk_queue_exit(q); 683 return ERR_PTR(-EWOULDBLOCK); 684 } 685 EXPORT_SYMBOL(blk_mq_alloc_request); 686 687 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 688 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 689 { 690 struct blk_mq_alloc_data data = { 691 .q = q, 692 .flags = flags, 693 .shallow_depth = 0, 694 .cmd_flags = opf, 695 .rq_flags = 0, 696 .nr_tags = 1, 697 .cached_rqs = NULL, 698 .ctx = NULL, 699 .hctx = NULL 700 }; 701 u64 alloc_time_ns = 0; 702 struct request *rq; 703 unsigned int cpu; 704 unsigned int tag; 705 int ret; 706 707 /* alloc_time includes depth and tag waits */ 708 if (blk_queue_rq_alloc_time(q)) 709 alloc_time_ns = blk_time_get_ns(); 710 711 /* 712 * If the tag allocator sleeps we could get an allocation for a 713 * different hardware context. No need to complicate the low level 714 * allocator for this for the rare use case of a command tied to 715 * a specific queue. 716 */ 717 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 718 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 719 return ERR_PTR(-EINVAL); 720 721 if (hctx_idx >= q->nr_hw_queues) 722 return ERR_PTR(-EIO); 723 724 ret = blk_queue_enter(q, flags); 725 if (ret) 726 return ERR_PTR(ret); 727 728 /* 729 * Check if the hardware context is actually mapped to anything. 730 * If not tell the caller that it should skip this queue. 731 */ 732 ret = -EXDEV; 733 data.hctx = q->queue_hw_ctx[hctx_idx]; 734 if (!blk_mq_hw_queue_mapped(data.hctx)) 735 goto out_queue_exit; 736 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 737 if (cpu >= nr_cpu_ids) 738 goto out_queue_exit; 739 data.ctx = __blk_mq_get_ctx(q, cpu); 740 741 if (q->elevator) 742 data.rq_flags |= RQF_SCHED_TAGS; 743 else 744 blk_mq_tag_busy(data.hctx); 745 746 if (flags & BLK_MQ_REQ_RESERVED) 747 data.rq_flags |= RQF_RESV; 748 749 ret = -EWOULDBLOCK; 750 tag = blk_mq_get_tag(&data); 751 if (tag == BLK_MQ_NO_TAG) 752 goto out_queue_exit; 753 if (!(data.rq_flags & RQF_SCHED_TAGS)) 754 blk_mq_inc_active_requests(data.hctx); 755 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 756 blk_mq_rq_time_init(rq, alloc_time_ns); 757 rq->__data_len = 0; 758 rq->phys_gap_bit = 0; 759 rq->__sector = (sector_t) -1; 760 rq->bio = rq->biotail = NULL; 761 return rq; 762 763 out_queue_exit: 764 blk_queue_exit(q); 765 return ERR_PTR(ret); 766 } 767 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 768 769 static void blk_mq_finish_request(struct request *rq) 770 { 771 struct request_queue *q = rq->q; 772 773 blk_zone_finish_request(rq); 774 775 if (rq->rq_flags & RQF_USE_SCHED) { 776 q->elevator->type->ops.finish_request(rq); 777 /* 778 * For postflush request that may need to be 779 * completed twice, we should clear this flag 780 * to avoid double finish_request() on the rq. 781 */ 782 rq->rq_flags &= ~RQF_USE_SCHED; 783 } 784 } 785 786 static void __blk_mq_free_request(struct request *rq) 787 { 788 struct request_queue *q = rq->q; 789 struct blk_mq_ctx *ctx = rq->mq_ctx; 790 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 791 const int sched_tag = rq->internal_tag; 792 793 blk_crypto_free_request(rq); 794 blk_pm_mark_last_busy(rq); 795 rq->mq_hctx = NULL; 796 797 if (rq->tag != BLK_MQ_NO_TAG) { 798 blk_mq_dec_active_requests(hctx); 799 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 800 } 801 if (sched_tag != BLK_MQ_NO_TAG) 802 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 803 blk_mq_sched_restart(hctx); 804 blk_queue_exit(q); 805 } 806 807 void blk_mq_free_request(struct request *rq) 808 { 809 struct request_queue *q = rq->q; 810 811 blk_mq_finish_request(rq); 812 813 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 814 laptop_io_completion(q->disk->bdi); 815 816 rq_qos_done(q, rq); 817 818 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 819 if (req_ref_put_and_test(rq)) 820 __blk_mq_free_request(rq); 821 } 822 EXPORT_SYMBOL_GPL(blk_mq_free_request); 823 824 void blk_mq_free_plug_rqs(struct blk_plug *plug) 825 { 826 struct request *rq; 827 828 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL) 829 blk_mq_free_request(rq); 830 } 831 832 void blk_dump_rq_flags(struct request *rq, char *msg) 833 { 834 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 835 rq->q->disk ? rq->q->disk->disk_name : "?", 836 (__force unsigned long long) rq->cmd_flags); 837 838 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 839 (unsigned long long)blk_rq_pos(rq), 840 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 841 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 842 rq->bio, rq->biotail, blk_rq_bytes(rq)); 843 } 844 EXPORT_SYMBOL(blk_dump_rq_flags); 845 846 static void blk_account_io_completion(struct request *req, unsigned int bytes) 847 { 848 if (req->rq_flags & RQF_IO_STAT) { 849 const int sgrp = op_stat_group(req_op(req)); 850 851 part_stat_lock(); 852 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 853 part_stat_unlock(); 854 } 855 } 856 857 static void blk_print_req_error(struct request *req, blk_status_t status) 858 { 859 printk_ratelimited(KERN_ERR 860 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 861 "phys_seg %u prio class %u\n", 862 blk_status_to_str(status), 863 req->q->disk ? req->q->disk->disk_name : "?", 864 blk_rq_pos(req), (__force u32)req_op(req), 865 blk_op_str(req_op(req)), 866 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 867 req->nr_phys_segments, 868 IOPRIO_PRIO_CLASS(req_get_ioprio(req))); 869 } 870 871 /* 872 * Fully end IO on a request. Does not support partial completions, or 873 * errors. 874 */ 875 static void blk_complete_request(struct request *req) 876 { 877 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 878 int total_bytes = blk_rq_bytes(req); 879 struct bio *bio = req->bio; 880 881 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 882 883 if (!bio) 884 return; 885 886 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 887 blk_integrity_complete(req, total_bytes); 888 889 /* 890 * Upper layers may call blk_crypto_evict_key() anytime after the last 891 * bio_endio(). Therefore, the keyslot must be released before that. 892 */ 893 blk_crypto_rq_put_keyslot(req); 894 895 blk_account_io_completion(req, total_bytes); 896 897 do { 898 struct bio *next = bio->bi_next; 899 900 /* Completion has already been traced */ 901 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 902 903 if (blk_req_bio_is_zone_append(req, bio)) 904 blk_zone_append_update_request_bio(req, bio); 905 906 if (!is_flush) 907 bio_endio(bio); 908 bio = next; 909 } while (bio); 910 911 /* 912 * Reset counters so that the request stacking driver 913 * can find how many bytes remain in the request 914 * later. 915 */ 916 if (!req->end_io) { 917 req->bio = NULL; 918 req->__data_len = 0; 919 } 920 } 921 922 /** 923 * blk_update_request - Complete multiple bytes without completing the request 924 * @req: the request being processed 925 * @error: block status code 926 * @nr_bytes: number of bytes to complete for @req 927 * 928 * Description: 929 * Ends I/O on a number of bytes attached to @req, but doesn't complete 930 * the request structure even if @req doesn't have leftover. 931 * If @req has leftover, sets it up for the next range of segments. 932 * 933 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 934 * %false return from this function. 935 * 936 * Note: 937 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 938 * except in the consistency check at the end of this function. 939 * 940 * Return: 941 * %false - this request doesn't have any more data 942 * %true - this request has more data 943 **/ 944 bool blk_update_request(struct request *req, blk_status_t error, 945 unsigned int nr_bytes) 946 { 947 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ; 948 bool quiet = req->rq_flags & RQF_QUIET; 949 int total_bytes; 950 951 trace_block_rq_complete(req, error, nr_bytes); 952 953 if (!req->bio) 954 return false; 955 956 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 957 error == BLK_STS_OK) 958 blk_integrity_complete(req, nr_bytes); 959 960 /* 961 * Upper layers may call blk_crypto_evict_key() anytime after the last 962 * bio_endio(). Therefore, the keyslot must be released before that. 963 */ 964 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 965 __blk_crypto_rq_put_keyslot(req); 966 967 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) && 968 !test_bit(GD_DEAD, &req->q->disk->state)) { 969 blk_print_req_error(req, error); 970 trace_block_rq_error(req, error, nr_bytes); 971 } 972 973 blk_account_io_completion(req, nr_bytes); 974 975 total_bytes = 0; 976 while (req->bio) { 977 struct bio *bio = req->bio; 978 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 979 980 if (unlikely(error)) 981 bio->bi_status = error; 982 983 if (bio_bytes == bio->bi_iter.bi_size) { 984 req->bio = bio->bi_next; 985 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) { 986 /* 987 * Partial zone append completions cannot be supported 988 * as the BIO fragments may end up not being written 989 * sequentially. 990 */ 991 bio->bi_status = BLK_STS_IOERR; 992 } 993 994 /* Completion has already been traced */ 995 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 996 if (unlikely(quiet)) 997 bio_set_flag(bio, BIO_QUIET); 998 999 bio_advance(bio, bio_bytes); 1000 1001 /* Don't actually finish bio if it's part of flush sequence */ 1002 if (!bio->bi_iter.bi_size) { 1003 if (blk_req_bio_is_zone_append(req, bio)) 1004 blk_zone_append_update_request_bio(req, bio); 1005 if (!is_flush) 1006 bio_endio(bio); 1007 } 1008 1009 total_bytes += bio_bytes; 1010 nr_bytes -= bio_bytes; 1011 1012 if (!nr_bytes) 1013 break; 1014 } 1015 1016 /* 1017 * completely done 1018 */ 1019 if (!req->bio) { 1020 /* 1021 * Reset counters so that the request stacking driver 1022 * can find how many bytes remain in the request 1023 * later. 1024 */ 1025 req->__data_len = 0; 1026 return false; 1027 } 1028 1029 req->__data_len -= total_bytes; 1030 1031 /* update sector only for requests with clear definition of sector */ 1032 if (!blk_rq_is_passthrough(req)) 1033 req->__sector += total_bytes >> 9; 1034 1035 /* mixed attributes always follow the first bio */ 1036 if (req->rq_flags & RQF_MIXED_MERGE) { 1037 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1038 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1039 } 1040 1041 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1042 /* 1043 * If total number of sectors is less than the first segment 1044 * size, something has gone terribly wrong. 1045 */ 1046 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1047 blk_dump_rq_flags(req, "request botched"); 1048 req->__data_len = blk_rq_cur_bytes(req); 1049 } 1050 1051 /* recalculate the number of segments */ 1052 req->nr_phys_segments = blk_recalc_rq_segments(req); 1053 } 1054 1055 return true; 1056 } 1057 EXPORT_SYMBOL_GPL(blk_update_request); 1058 1059 static inline void blk_account_io_done(struct request *req, u64 now) 1060 { 1061 trace_block_io_done(req); 1062 1063 /* 1064 * Account IO completion. flush_rq isn't accounted as a 1065 * normal IO on queueing nor completion. Accounting the 1066 * containing request is enough. 1067 */ 1068 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) { 1069 const int sgrp = op_stat_group(req_op(req)); 1070 1071 part_stat_lock(); 1072 update_io_ticks(req->part, jiffies, true); 1073 part_stat_inc(req->part, ios[sgrp]); 1074 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1075 part_stat_local_dec(req->part, 1076 in_flight[op_is_write(req_op(req))]); 1077 part_stat_unlock(); 1078 } 1079 } 1080 1081 static inline bool blk_rq_passthrough_stats(struct request *req) 1082 { 1083 struct bio *bio = req->bio; 1084 1085 if (!blk_queue_passthrough_stat(req->q)) 1086 return false; 1087 1088 /* Requests without a bio do not transfer data. */ 1089 if (!bio) 1090 return false; 1091 1092 /* 1093 * Stats are accumulated in the bdev, so must have one attached to a 1094 * bio to track stats. Most drivers do not set the bdev for passthrough 1095 * requests, but nvme is one that will set it. 1096 */ 1097 if (!bio->bi_bdev) 1098 return false; 1099 1100 /* 1101 * We don't know what a passthrough command does, but we know the 1102 * payload size and data direction. Ensuring the size is aligned to the 1103 * block size filters out most commands with payloads that don't 1104 * represent sector access. 1105 */ 1106 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1)) 1107 return false; 1108 return true; 1109 } 1110 1111 static inline void blk_account_io_start(struct request *req) 1112 { 1113 trace_block_io_start(req); 1114 1115 if (!blk_queue_io_stat(req->q)) 1116 return; 1117 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req)) 1118 return; 1119 1120 req->rq_flags |= RQF_IO_STAT; 1121 req->start_time_ns = blk_time_get_ns(); 1122 1123 /* 1124 * All non-passthrough requests are created from a bio with one 1125 * exception: when a flush command that is part of a flush sequence 1126 * generated by the state machine in blk-flush.c is cloned onto the 1127 * lower device by dm-multipath we can get here without a bio. 1128 */ 1129 if (req->bio) 1130 req->part = req->bio->bi_bdev; 1131 else 1132 req->part = req->q->disk->part0; 1133 1134 part_stat_lock(); 1135 update_io_ticks(req->part, jiffies, false); 1136 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]); 1137 part_stat_unlock(); 1138 } 1139 1140 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1141 { 1142 if (rq->rq_flags & RQF_STATS) 1143 blk_stat_add(rq, now); 1144 1145 blk_mq_sched_completed_request(rq, now); 1146 blk_account_io_done(rq, now); 1147 } 1148 1149 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1150 { 1151 if (blk_mq_need_time_stamp(rq)) 1152 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1153 1154 blk_mq_finish_request(rq); 1155 1156 if (rq->end_io) { 1157 rq_qos_done(rq->q, rq); 1158 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1159 blk_mq_free_request(rq); 1160 } else { 1161 blk_mq_free_request(rq); 1162 } 1163 } 1164 EXPORT_SYMBOL(__blk_mq_end_request); 1165 1166 void blk_mq_end_request(struct request *rq, blk_status_t error) 1167 { 1168 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1169 BUG(); 1170 __blk_mq_end_request(rq, error); 1171 } 1172 EXPORT_SYMBOL(blk_mq_end_request); 1173 1174 #define TAG_COMP_BATCH 32 1175 1176 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1177 int *tag_array, int nr_tags) 1178 { 1179 struct request_queue *q = hctx->queue; 1180 1181 blk_mq_sub_active_requests(hctx, nr_tags); 1182 1183 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1184 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1185 } 1186 1187 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1188 { 1189 int tags[TAG_COMP_BATCH], nr_tags = 0; 1190 struct blk_mq_hw_ctx *cur_hctx = NULL; 1191 struct request *rq; 1192 u64 now = 0; 1193 1194 if (iob->need_ts) 1195 now = blk_time_get_ns(); 1196 1197 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1198 prefetch(rq->bio); 1199 prefetch(rq->rq_next); 1200 1201 blk_complete_request(rq); 1202 if (iob->need_ts) 1203 __blk_mq_end_request_acct(rq, now); 1204 1205 blk_mq_finish_request(rq); 1206 1207 rq_qos_done(rq->q, rq); 1208 1209 /* 1210 * If end_io handler returns NONE, then it still has 1211 * ownership of the request. 1212 */ 1213 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1214 continue; 1215 1216 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1217 if (!req_ref_put_and_test(rq)) 1218 continue; 1219 1220 blk_crypto_free_request(rq); 1221 blk_pm_mark_last_busy(rq); 1222 1223 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1224 if (cur_hctx) 1225 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1226 nr_tags = 0; 1227 cur_hctx = rq->mq_hctx; 1228 } 1229 tags[nr_tags++] = rq->tag; 1230 } 1231 1232 if (nr_tags) 1233 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1234 } 1235 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1236 1237 static void blk_complete_reqs(struct llist_head *list) 1238 { 1239 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1240 struct request *rq, *next; 1241 1242 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1243 rq->q->mq_ops->complete(rq); 1244 } 1245 1246 static __latent_entropy void blk_done_softirq(void) 1247 { 1248 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1249 } 1250 1251 static int blk_softirq_cpu_dead(unsigned int cpu) 1252 { 1253 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1254 return 0; 1255 } 1256 1257 static void __blk_mq_complete_request_remote(void *data) 1258 { 1259 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1260 } 1261 1262 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1263 { 1264 int cpu = raw_smp_processor_id(); 1265 1266 if (!IS_ENABLED(CONFIG_SMP) || 1267 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1268 return false; 1269 /* 1270 * With force threaded interrupts enabled, raising softirq from an SMP 1271 * function call will always result in waking the ksoftirqd thread. 1272 * This is probably worse than completing the request on a different 1273 * cache domain. 1274 */ 1275 if (force_irqthreads()) 1276 return false; 1277 1278 /* same CPU or cache domain and capacity? Complete locally */ 1279 if (cpu == rq->mq_ctx->cpu || 1280 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1281 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1282 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1283 return false; 1284 1285 /* don't try to IPI to an offline CPU */ 1286 return cpu_online(rq->mq_ctx->cpu); 1287 } 1288 1289 static void blk_mq_complete_send_ipi(struct request *rq) 1290 { 1291 unsigned int cpu; 1292 1293 cpu = rq->mq_ctx->cpu; 1294 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1295 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1296 } 1297 1298 static void blk_mq_raise_softirq(struct request *rq) 1299 { 1300 struct llist_head *list; 1301 1302 preempt_disable(); 1303 list = this_cpu_ptr(&blk_cpu_done); 1304 if (llist_add(&rq->ipi_list, list)) 1305 raise_softirq(BLOCK_SOFTIRQ); 1306 preempt_enable(); 1307 } 1308 1309 bool blk_mq_complete_request_remote(struct request *rq) 1310 { 1311 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1312 1313 /* 1314 * For request which hctx has only one ctx mapping, 1315 * or a polled request, always complete locally, 1316 * it's pointless to redirect the completion. 1317 */ 1318 if ((rq->mq_hctx->nr_ctx == 1 && 1319 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1320 rq->cmd_flags & REQ_POLLED) 1321 return false; 1322 1323 if (blk_mq_complete_need_ipi(rq)) { 1324 blk_mq_complete_send_ipi(rq); 1325 return true; 1326 } 1327 1328 if (rq->q->nr_hw_queues == 1) { 1329 blk_mq_raise_softirq(rq); 1330 return true; 1331 } 1332 return false; 1333 } 1334 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1335 1336 /** 1337 * blk_mq_complete_request - end I/O on a request 1338 * @rq: the request being processed 1339 * 1340 * Description: 1341 * Complete a request by scheduling the ->complete_rq operation. 1342 **/ 1343 void blk_mq_complete_request(struct request *rq) 1344 { 1345 if (!blk_mq_complete_request_remote(rq)) 1346 rq->q->mq_ops->complete(rq); 1347 } 1348 EXPORT_SYMBOL(blk_mq_complete_request); 1349 1350 /** 1351 * blk_mq_start_request - Start processing a request 1352 * @rq: Pointer to request to be started 1353 * 1354 * Function used by device drivers to notify the block layer that a request 1355 * is going to be processed now, so blk layer can do proper initializations 1356 * such as starting the timeout timer. 1357 */ 1358 void blk_mq_start_request(struct request *rq) 1359 { 1360 struct request_queue *q = rq->q; 1361 1362 trace_block_rq_issue(rq); 1363 1364 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1365 !blk_rq_is_passthrough(rq)) { 1366 rq->io_start_time_ns = blk_time_get_ns(); 1367 rq->stats_sectors = blk_rq_sectors(rq); 1368 rq->rq_flags |= RQF_STATS; 1369 rq_qos_issue(q, rq); 1370 } 1371 1372 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1373 1374 blk_add_timer(rq); 1375 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1376 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1377 1378 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1379 blk_integrity_prepare(rq); 1380 1381 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1382 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1383 } 1384 EXPORT_SYMBOL(blk_mq_start_request); 1385 1386 /* 1387 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1388 * queues. This is important for md arrays to benefit from merging 1389 * requests. 1390 */ 1391 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1392 { 1393 if (plug->multiple_queues) 1394 return BLK_MAX_REQUEST_COUNT * 2; 1395 return BLK_MAX_REQUEST_COUNT; 1396 } 1397 1398 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1399 { 1400 struct request *last = rq_list_peek(&plug->mq_list); 1401 1402 if (!plug->rq_count) { 1403 trace_block_plug(rq->q); 1404 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1405 (!blk_queue_nomerges(rq->q) && 1406 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1407 blk_mq_flush_plug_list(plug, false); 1408 last = NULL; 1409 trace_block_plug(rq->q); 1410 } 1411 1412 if (!plug->multiple_queues && last && last->q != rq->q) 1413 plug->multiple_queues = true; 1414 /* 1415 * Any request allocated from sched tags can't be issued to 1416 * ->queue_rqs() directly 1417 */ 1418 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1419 plug->has_elevator = true; 1420 rq_list_add_tail(&plug->mq_list, rq); 1421 plug->rq_count++; 1422 } 1423 1424 /** 1425 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1426 * @rq: request to insert 1427 * @at_head: insert request at head or tail of queue 1428 * 1429 * Description: 1430 * Insert a fully prepared request at the back of the I/O scheduler queue 1431 * for execution. Don't wait for completion. 1432 * 1433 * Note: 1434 * This function will invoke @done directly if the queue is dead. 1435 */ 1436 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1437 { 1438 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1439 1440 WARN_ON(irqs_disabled()); 1441 WARN_ON(!blk_rq_is_passthrough(rq)); 1442 1443 blk_account_io_start(rq); 1444 1445 if (current->plug && !at_head) { 1446 blk_add_rq_to_plug(current->plug, rq); 1447 return; 1448 } 1449 1450 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1451 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1452 } 1453 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1454 1455 struct blk_rq_wait { 1456 struct completion done; 1457 blk_status_t ret; 1458 }; 1459 1460 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1461 { 1462 struct blk_rq_wait *wait = rq->end_io_data; 1463 1464 wait->ret = ret; 1465 complete(&wait->done); 1466 return RQ_END_IO_NONE; 1467 } 1468 1469 bool blk_rq_is_poll(struct request *rq) 1470 { 1471 if (!rq->mq_hctx) 1472 return false; 1473 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1474 return false; 1475 return true; 1476 } 1477 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1478 1479 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1480 { 1481 do { 1482 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1483 cond_resched(); 1484 } while (!completion_done(wait)); 1485 } 1486 1487 /** 1488 * blk_execute_rq - insert a request into queue for execution 1489 * @rq: request to insert 1490 * @at_head: insert request at head or tail of queue 1491 * 1492 * Description: 1493 * Insert a fully prepared request at the back of the I/O scheduler queue 1494 * for execution and wait for completion. 1495 * Return: The blk_status_t result provided to blk_mq_end_request(). 1496 */ 1497 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1498 { 1499 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1500 struct blk_rq_wait wait = { 1501 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1502 }; 1503 1504 WARN_ON(irqs_disabled()); 1505 WARN_ON(!blk_rq_is_passthrough(rq)); 1506 1507 rq->end_io_data = &wait; 1508 rq->end_io = blk_end_sync_rq; 1509 1510 blk_account_io_start(rq); 1511 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1512 blk_mq_run_hw_queue(hctx, false); 1513 1514 if (blk_rq_is_poll(rq)) 1515 blk_rq_poll_completion(rq, &wait.done); 1516 else 1517 blk_wait_io(&wait.done); 1518 1519 return wait.ret; 1520 } 1521 EXPORT_SYMBOL(blk_execute_rq); 1522 1523 static void __blk_mq_requeue_request(struct request *rq) 1524 { 1525 struct request_queue *q = rq->q; 1526 1527 blk_mq_put_driver_tag(rq); 1528 1529 trace_block_rq_requeue(rq); 1530 rq_qos_requeue(q, rq); 1531 1532 if (blk_mq_request_started(rq)) { 1533 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1534 rq->rq_flags &= ~RQF_TIMED_OUT; 1535 } 1536 } 1537 1538 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1539 { 1540 struct request_queue *q = rq->q; 1541 unsigned long flags; 1542 1543 __blk_mq_requeue_request(rq); 1544 1545 /* this request will be re-inserted to io scheduler queue */ 1546 blk_mq_sched_requeue_request(rq); 1547 1548 spin_lock_irqsave(&q->requeue_lock, flags); 1549 list_add_tail(&rq->queuelist, &q->requeue_list); 1550 spin_unlock_irqrestore(&q->requeue_lock, flags); 1551 1552 if (kick_requeue_list) 1553 blk_mq_kick_requeue_list(q); 1554 } 1555 EXPORT_SYMBOL(blk_mq_requeue_request); 1556 1557 static void blk_mq_requeue_work(struct work_struct *work) 1558 { 1559 struct request_queue *q = 1560 container_of(work, struct request_queue, requeue_work.work); 1561 LIST_HEAD(rq_list); 1562 LIST_HEAD(flush_list); 1563 struct request *rq; 1564 1565 spin_lock_irq(&q->requeue_lock); 1566 list_splice_init(&q->requeue_list, &rq_list); 1567 list_splice_init(&q->flush_list, &flush_list); 1568 spin_unlock_irq(&q->requeue_lock); 1569 1570 while (!list_empty(&rq_list)) { 1571 rq = list_entry(rq_list.next, struct request, queuelist); 1572 list_del_init(&rq->queuelist); 1573 /* 1574 * If RQF_DONTPREP is set, the request has been started by the 1575 * driver already and might have driver-specific data allocated 1576 * already. Insert it into the hctx dispatch list to avoid 1577 * block layer merges for the request. 1578 */ 1579 if (rq->rq_flags & RQF_DONTPREP) 1580 blk_mq_request_bypass_insert(rq, 0); 1581 else 1582 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1583 } 1584 1585 while (!list_empty(&flush_list)) { 1586 rq = list_entry(flush_list.next, struct request, queuelist); 1587 list_del_init(&rq->queuelist); 1588 blk_mq_insert_request(rq, 0); 1589 } 1590 1591 blk_mq_run_hw_queues(q, false); 1592 } 1593 1594 void blk_mq_kick_requeue_list(struct request_queue *q) 1595 { 1596 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1597 } 1598 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1599 1600 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1601 unsigned long msecs) 1602 { 1603 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1604 msecs_to_jiffies(msecs)); 1605 } 1606 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1607 1608 static bool blk_is_flush_data_rq(struct request *rq) 1609 { 1610 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1611 } 1612 1613 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1614 { 1615 /* 1616 * If we find a request that isn't idle we know the queue is busy 1617 * as it's checked in the iter. 1618 * Return false to stop the iteration. 1619 * 1620 * In case of queue quiesce, if one flush data request is completed, 1621 * don't count it as inflight given the flush sequence is suspended, 1622 * and the original flush data request is invisible to driver, just 1623 * like other pending requests because of quiesce 1624 */ 1625 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1626 blk_is_flush_data_rq(rq) && 1627 blk_mq_request_completed(rq))) { 1628 bool *busy = priv; 1629 1630 *busy = true; 1631 return false; 1632 } 1633 1634 return true; 1635 } 1636 1637 bool blk_mq_queue_inflight(struct request_queue *q) 1638 { 1639 bool busy = false; 1640 1641 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1642 return busy; 1643 } 1644 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1645 1646 static void blk_mq_rq_timed_out(struct request *req) 1647 { 1648 req->rq_flags |= RQF_TIMED_OUT; 1649 if (req->q->mq_ops->timeout) { 1650 enum blk_eh_timer_return ret; 1651 1652 ret = req->q->mq_ops->timeout(req); 1653 if (ret == BLK_EH_DONE) 1654 return; 1655 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1656 } 1657 1658 blk_add_timer(req); 1659 } 1660 1661 struct blk_expired_data { 1662 bool has_timedout_rq; 1663 unsigned long next; 1664 unsigned long timeout_start; 1665 }; 1666 1667 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1668 { 1669 unsigned long deadline; 1670 1671 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1672 return false; 1673 if (rq->rq_flags & RQF_TIMED_OUT) 1674 return false; 1675 1676 deadline = READ_ONCE(rq->deadline); 1677 if (time_after_eq(expired->timeout_start, deadline)) 1678 return true; 1679 1680 if (expired->next == 0) 1681 expired->next = deadline; 1682 else if (time_after(expired->next, deadline)) 1683 expired->next = deadline; 1684 return false; 1685 } 1686 1687 void blk_mq_put_rq_ref(struct request *rq) 1688 { 1689 if (is_flush_rq(rq)) { 1690 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1691 blk_mq_free_request(rq); 1692 } else if (req_ref_put_and_test(rq)) { 1693 __blk_mq_free_request(rq); 1694 } 1695 } 1696 1697 static bool blk_mq_check_expired(struct request *rq, void *priv) 1698 { 1699 struct blk_expired_data *expired = priv; 1700 1701 /* 1702 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1703 * be reallocated underneath the timeout handler's processing, then 1704 * the expire check is reliable. If the request is not expired, then 1705 * it was completed and reallocated as a new request after returning 1706 * from blk_mq_check_expired(). 1707 */ 1708 if (blk_mq_req_expired(rq, expired)) { 1709 expired->has_timedout_rq = true; 1710 return false; 1711 } 1712 return true; 1713 } 1714 1715 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1716 { 1717 struct blk_expired_data *expired = priv; 1718 1719 if (blk_mq_req_expired(rq, expired)) 1720 blk_mq_rq_timed_out(rq); 1721 return true; 1722 } 1723 1724 static void blk_mq_timeout_work(struct work_struct *work) 1725 { 1726 struct request_queue *q = 1727 container_of(work, struct request_queue, timeout_work); 1728 struct blk_expired_data expired = { 1729 .timeout_start = jiffies, 1730 }; 1731 struct blk_mq_hw_ctx *hctx; 1732 unsigned long i; 1733 1734 /* A deadlock might occur if a request is stuck requiring a 1735 * timeout at the same time a queue freeze is waiting 1736 * completion, since the timeout code would not be able to 1737 * acquire the queue reference here. 1738 * 1739 * That's why we don't use blk_queue_enter here; instead, we use 1740 * percpu_ref_tryget directly, because we need to be able to 1741 * obtain a reference even in the short window between the queue 1742 * starting to freeze, by dropping the first reference in 1743 * blk_freeze_queue_start, and the moment the last request is 1744 * consumed, marked by the instant q_usage_counter reaches 1745 * zero. 1746 */ 1747 if (!percpu_ref_tryget(&q->q_usage_counter)) 1748 return; 1749 1750 /* check if there is any timed-out request */ 1751 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1752 if (expired.has_timedout_rq) { 1753 /* 1754 * Before walking tags, we must ensure any submit started 1755 * before the current time has finished. Since the submit 1756 * uses srcu or rcu, wait for a synchronization point to 1757 * ensure all running submits have finished 1758 */ 1759 blk_mq_wait_quiesce_done(q->tag_set); 1760 1761 expired.next = 0; 1762 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1763 } 1764 1765 if (expired.next != 0) { 1766 mod_timer(&q->timeout, expired.next); 1767 } else { 1768 /* 1769 * Request timeouts are handled as a forward rolling timer. If 1770 * we end up here it means that no requests are pending and 1771 * also that no request has been pending for a while. Mark 1772 * each hctx as idle. 1773 */ 1774 queue_for_each_hw_ctx(q, hctx, i) { 1775 /* the hctx may be unmapped, so check it here */ 1776 if (blk_mq_hw_queue_mapped(hctx)) 1777 blk_mq_tag_idle(hctx); 1778 } 1779 } 1780 blk_queue_exit(q); 1781 } 1782 1783 struct flush_busy_ctx_data { 1784 struct blk_mq_hw_ctx *hctx; 1785 struct list_head *list; 1786 }; 1787 1788 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1789 { 1790 struct flush_busy_ctx_data *flush_data = data; 1791 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1792 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1793 enum hctx_type type = hctx->type; 1794 1795 spin_lock(&ctx->lock); 1796 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1797 sbitmap_clear_bit(sb, bitnr); 1798 spin_unlock(&ctx->lock); 1799 return true; 1800 } 1801 1802 /* 1803 * Process software queues that have been marked busy, splicing them 1804 * to the for-dispatch 1805 */ 1806 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1807 { 1808 struct flush_busy_ctx_data data = { 1809 .hctx = hctx, 1810 .list = list, 1811 }; 1812 1813 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1814 } 1815 1816 struct dispatch_rq_data { 1817 struct blk_mq_hw_ctx *hctx; 1818 struct request *rq; 1819 }; 1820 1821 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1822 void *data) 1823 { 1824 struct dispatch_rq_data *dispatch_data = data; 1825 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1826 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1827 enum hctx_type type = hctx->type; 1828 1829 spin_lock(&ctx->lock); 1830 if (!list_empty(&ctx->rq_lists[type])) { 1831 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1832 list_del_init(&dispatch_data->rq->queuelist); 1833 if (list_empty(&ctx->rq_lists[type])) 1834 sbitmap_clear_bit(sb, bitnr); 1835 } 1836 spin_unlock(&ctx->lock); 1837 1838 return !dispatch_data->rq; 1839 } 1840 1841 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1842 struct blk_mq_ctx *start) 1843 { 1844 unsigned off = start ? start->index_hw[hctx->type] : 0; 1845 struct dispatch_rq_data data = { 1846 .hctx = hctx, 1847 .rq = NULL, 1848 }; 1849 1850 __sbitmap_for_each_set(&hctx->ctx_map, off, 1851 dispatch_rq_from_ctx, &data); 1852 1853 return data.rq; 1854 } 1855 1856 bool __blk_mq_alloc_driver_tag(struct request *rq) 1857 { 1858 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1859 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1860 int tag; 1861 1862 blk_mq_tag_busy(rq->mq_hctx); 1863 1864 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1865 bt = &rq->mq_hctx->tags->breserved_tags; 1866 tag_offset = 0; 1867 } else { 1868 if (!hctx_may_queue(rq->mq_hctx, bt)) 1869 return false; 1870 } 1871 1872 tag = __sbitmap_queue_get(bt); 1873 if (tag == BLK_MQ_NO_TAG) 1874 return false; 1875 1876 rq->tag = tag + tag_offset; 1877 blk_mq_inc_active_requests(rq->mq_hctx); 1878 return true; 1879 } 1880 1881 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1882 int flags, void *key) 1883 { 1884 struct blk_mq_hw_ctx *hctx; 1885 1886 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1887 1888 spin_lock(&hctx->dispatch_wait_lock); 1889 if (!list_empty(&wait->entry)) { 1890 struct sbitmap_queue *sbq; 1891 1892 list_del_init(&wait->entry); 1893 sbq = &hctx->tags->bitmap_tags; 1894 atomic_dec(&sbq->ws_active); 1895 } 1896 spin_unlock(&hctx->dispatch_wait_lock); 1897 1898 blk_mq_run_hw_queue(hctx, true); 1899 return 1; 1900 } 1901 1902 /* 1903 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1904 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1905 * restart. For both cases, take care to check the condition again after 1906 * marking us as waiting. 1907 */ 1908 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1909 struct request *rq) 1910 { 1911 struct sbitmap_queue *sbq; 1912 struct wait_queue_head *wq; 1913 wait_queue_entry_t *wait; 1914 bool ret; 1915 1916 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1917 !(blk_mq_is_shared_tags(hctx->flags))) { 1918 blk_mq_sched_mark_restart_hctx(hctx); 1919 1920 /* 1921 * It's possible that a tag was freed in the window between the 1922 * allocation failure and adding the hardware queue to the wait 1923 * queue. 1924 * 1925 * Don't clear RESTART here, someone else could have set it. 1926 * At most this will cost an extra queue run. 1927 */ 1928 return blk_mq_get_driver_tag(rq); 1929 } 1930 1931 wait = &hctx->dispatch_wait; 1932 if (!list_empty_careful(&wait->entry)) 1933 return false; 1934 1935 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1936 sbq = &hctx->tags->breserved_tags; 1937 else 1938 sbq = &hctx->tags->bitmap_tags; 1939 wq = &bt_wait_ptr(sbq, hctx)->wait; 1940 1941 spin_lock_irq(&wq->lock); 1942 spin_lock(&hctx->dispatch_wait_lock); 1943 if (!list_empty(&wait->entry)) { 1944 spin_unlock(&hctx->dispatch_wait_lock); 1945 spin_unlock_irq(&wq->lock); 1946 return false; 1947 } 1948 1949 atomic_inc(&sbq->ws_active); 1950 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1951 __add_wait_queue(wq, wait); 1952 1953 /* 1954 * Add one explicit barrier since blk_mq_get_driver_tag() may 1955 * not imply barrier in case of failure. 1956 * 1957 * Order adding us to wait queue and allocating driver tag. 1958 * 1959 * The pair is the one implied in sbitmap_queue_wake_up() which 1960 * orders clearing sbitmap tag bits and waitqueue_active() in 1961 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1962 * 1963 * Otherwise, re-order of adding wait queue and getting driver tag 1964 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1965 * the waitqueue_active() may not observe us in wait queue. 1966 */ 1967 smp_mb(); 1968 1969 /* 1970 * It's possible that a tag was freed in the window between the 1971 * allocation failure and adding the hardware queue to the wait 1972 * queue. 1973 */ 1974 ret = blk_mq_get_driver_tag(rq); 1975 if (!ret) { 1976 spin_unlock(&hctx->dispatch_wait_lock); 1977 spin_unlock_irq(&wq->lock); 1978 return false; 1979 } 1980 1981 /* 1982 * We got a tag, remove ourselves from the wait queue to ensure 1983 * someone else gets the wakeup. 1984 */ 1985 list_del_init(&wait->entry); 1986 atomic_dec(&sbq->ws_active); 1987 spin_unlock(&hctx->dispatch_wait_lock); 1988 spin_unlock_irq(&wq->lock); 1989 1990 return true; 1991 } 1992 1993 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1994 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1995 /* 1996 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1997 * - EWMA is one simple way to compute running average value 1998 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1999 * - take 4 as factor for avoiding to get too small(0) result, and this 2000 * factor doesn't matter because EWMA decreases exponentially 2001 */ 2002 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 2003 { 2004 unsigned int ewma; 2005 2006 ewma = hctx->dispatch_busy; 2007 2008 if (!ewma && !busy) 2009 return; 2010 2011 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 2012 if (busy) 2013 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 2014 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 2015 2016 hctx->dispatch_busy = ewma; 2017 } 2018 2019 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 2020 2021 static void blk_mq_handle_dev_resource(struct request *rq, 2022 struct list_head *list) 2023 { 2024 list_add(&rq->queuelist, list); 2025 __blk_mq_requeue_request(rq); 2026 } 2027 2028 enum prep_dispatch { 2029 PREP_DISPATCH_OK, 2030 PREP_DISPATCH_NO_TAG, 2031 PREP_DISPATCH_NO_BUDGET, 2032 }; 2033 2034 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 2035 bool need_budget) 2036 { 2037 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2038 int budget_token = -1; 2039 2040 if (need_budget) { 2041 budget_token = blk_mq_get_dispatch_budget(rq->q); 2042 if (budget_token < 0) { 2043 blk_mq_put_driver_tag(rq); 2044 return PREP_DISPATCH_NO_BUDGET; 2045 } 2046 blk_mq_set_rq_budget_token(rq, budget_token); 2047 } 2048 2049 if (!blk_mq_get_driver_tag(rq)) { 2050 /* 2051 * The initial allocation attempt failed, so we need to 2052 * rerun the hardware queue when a tag is freed. The 2053 * waitqueue takes care of that. If the queue is run 2054 * before we add this entry back on the dispatch list, 2055 * we'll re-run it below. 2056 */ 2057 if (!blk_mq_mark_tag_wait(hctx, rq)) { 2058 /* 2059 * All budgets not got from this function will be put 2060 * together during handling partial dispatch 2061 */ 2062 if (need_budget) 2063 blk_mq_put_dispatch_budget(rq->q, budget_token); 2064 return PREP_DISPATCH_NO_TAG; 2065 } 2066 } 2067 2068 return PREP_DISPATCH_OK; 2069 } 2070 2071 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2072 static void blk_mq_release_budgets(struct request_queue *q, 2073 struct list_head *list) 2074 { 2075 struct request *rq; 2076 2077 list_for_each_entry(rq, list, queuelist) { 2078 int budget_token = blk_mq_get_rq_budget_token(rq); 2079 2080 if (budget_token >= 0) 2081 blk_mq_put_dispatch_budget(q, budget_token); 2082 } 2083 } 2084 2085 /* 2086 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2087 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2088 * details) 2089 * Attention, we should explicitly call this in unusual cases: 2090 * 1) did not queue everything initially scheduled to queue 2091 * 2) the last attempt to queue a request failed 2092 */ 2093 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2094 bool from_schedule) 2095 { 2096 if (hctx->queue->mq_ops->commit_rqs && queued) { 2097 trace_block_unplug(hctx->queue, queued, !from_schedule); 2098 hctx->queue->mq_ops->commit_rqs(hctx); 2099 } 2100 } 2101 2102 /* 2103 * Returns true if we did some work AND can potentially do more. 2104 */ 2105 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2106 bool get_budget) 2107 { 2108 enum prep_dispatch prep; 2109 struct request_queue *q = hctx->queue; 2110 struct request *rq; 2111 int queued; 2112 blk_status_t ret = BLK_STS_OK; 2113 bool needs_resource = false; 2114 2115 if (list_empty(list)) 2116 return false; 2117 2118 /* 2119 * Now process all the entries, sending them to the driver. 2120 */ 2121 queued = 0; 2122 do { 2123 struct blk_mq_queue_data bd; 2124 2125 rq = list_first_entry(list, struct request, queuelist); 2126 2127 WARN_ON_ONCE(hctx != rq->mq_hctx); 2128 prep = blk_mq_prep_dispatch_rq(rq, get_budget); 2129 if (prep != PREP_DISPATCH_OK) 2130 break; 2131 2132 list_del_init(&rq->queuelist); 2133 2134 bd.rq = rq; 2135 bd.last = list_empty(list); 2136 2137 ret = q->mq_ops->queue_rq(hctx, &bd); 2138 switch (ret) { 2139 case BLK_STS_OK: 2140 queued++; 2141 break; 2142 case BLK_STS_RESOURCE: 2143 needs_resource = true; 2144 fallthrough; 2145 case BLK_STS_DEV_RESOURCE: 2146 blk_mq_handle_dev_resource(rq, list); 2147 goto out; 2148 default: 2149 blk_mq_end_request(rq, ret); 2150 } 2151 } while (!list_empty(list)); 2152 out: 2153 /* If we didn't flush the entire list, we could have told the driver 2154 * there was more coming, but that turned out to be a lie. 2155 */ 2156 if (!list_empty(list) || ret != BLK_STS_OK) 2157 blk_mq_commit_rqs(hctx, queued, false); 2158 2159 /* 2160 * Any items that need requeuing? Stuff them into hctx->dispatch, 2161 * that is where we will continue on next queue run. 2162 */ 2163 if (!list_empty(list)) { 2164 bool needs_restart; 2165 /* For non-shared tags, the RESTART check will suffice */ 2166 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2167 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2168 blk_mq_is_shared_tags(hctx->flags)); 2169 2170 /* 2171 * If the caller allocated budgets, free the budgets of the 2172 * requests that have not yet been passed to the block driver. 2173 */ 2174 if (!get_budget) 2175 blk_mq_release_budgets(q, list); 2176 2177 spin_lock(&hctx->lock); 2178 list_splice_tail_init(list, &hctx->dispatch); 2179 spin_unlock(&hctx->lock); 2180 2181 /* 2182 * Order adding requests to hctx->dispatch and checking 2183 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2184 * in blk_mq_sched_restart(). Avoid restart code path to 2185 * miss the new added requests to hctx->dispatch, meantime 2186 * SCHED_RESTART is observed here. 2187 */ 2188 smp_mb(); 2189 2190 /* 2191 * If SCHED_RESTART was set by the caller of this function and 2192 * it is no longer set that means that it was cleared by another 2193 * thread and hence that a queue rerun is needed. 2194 * 2195 * If 'no_tag' is set, that means that we failed getting 2196 * a driver tag with an I/O scheduler attached. If our dispatch 2197 * waitqueue is no longer active, ensure that we run the queue 2198 * AFTER adding our entries back to the list. 2199 * 2200 * If no I/O scheduler has been configured it is possible that 2201 * the hardware queue got stopped and restarted before requests 2202 * were pushed back onto the dispatch list. Rerun the queue to 2203 * avoid starvation. Notes: 2204 * - blk_mq_run_hw_queue() checks whether or not a queue has 2205 * been stopped before rerunning a queue. 2206 * - Some but not all block drivers stop a queue before 2207 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2208 * and dm-rq. 2209 * 2210 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2211 * bit is set, run queue after a delay to avoid IO stalls 2212 * that could otherwise occur if the queue is idle. We'll do 2213 * similar if we couldn't get budget or couldn't lock a zone 2214 * and SCHED_RESTART is set. 2215 */ 2216 needs_restart = blk_mq_sched_needs_restart(hctx); 2217 if (prep == PREP_DISPATCH_NO_BUDGET) 2218 needs_resource = true; 2219 if (!needs_restart || 2220 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2221 blk_mq_run_hw_queue(hctx, true); 2222 else if (needs_resource) 2223 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2224 2225 blk_mq_update_dispatch_busy(hctx, true); 2226 return false; 2227 } 2228 2229 blk_mq_update_dispatch_busy(hctx, false); 2230 return true; 2231 } 2232 2233 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2234 { 2235 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2236 2237 if (cpu >= nr_cpu_ids) 2238 cpu = cpumask_first(hctx->cpumask); 2239 return cpu; 2240 } 2241 2242 /* 2243 * ->next_cpu is always calculated from hctx->cpumask, so simply use 2244 * it for speeding up the check 2245 */ 2246 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx) 2247 { 2248 return hctx->next_cpu >= nr_cpu_ids; 2249 } 2250 2251 /* 2252 * It'd be great if the workqueue API had a way to pass 2253 * in a mask and had some smarts for more clever placement. 2254 * For now we just round-robin here, switching for every 2255 * BLK_MQ_CPU_WORK_BATCH queued items. 2256 */ 2257 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2258 { 2259 bool tried = false; 2260 int next_cpu = hctx->next_cpu; 2261 2262 /* Switch to unbound if no allowable CPUs in this hctx */ 2263 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx)) 2264 return WORK_CPU_UNBOUND; 2265 2266 if (--hctx->next_cpu_batch <= 0) { 2267 select_cpu: 2268 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2269 cpu_online_mask); 2270 if (next_cpu >= nr_cpu_ids) 2271 next_cpu = blk_mq_first_mapped_cpu(hctx); 2272 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2273 } 2274 2275 /* 2276 * Do unbound schedule if we can't find a online CPU for this hctx, 2277 * and it should only happen in the path of handling CPU DEAD. 2278 */ 2279 if (!cpu_online(next_cpu)) { 2280 if (!tried) { 2281 tried = true; 2282 goto select_cpu; 2283 } 2284 2285 /* 2286 * Make sure to re-select CPU next time once after CPUs 2287 * in hctx->cpumask become online again. 2288 */ 2289 hctx->next_cpu = next_cpu; 2290 hctx->next_cpu_batch = 1; 2291 return WORK_CPU_UNBOUND; 2292 } 2293 2294 hctx->next_cpu = next_cpu; 2295 return next_cpu; 2296 } 2297 2298 /** 2299 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2300 * @hctx: Pointer to the hardware queue to run. 2301 * @msecs: Milliseconds of delay to wait before running the queue. 2302 * 2303 * Run a hardware queue asynchronously with a delay of @msecs. 2304 */ 2305 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2306 { 2307 if (unlikely(blk_mq_hctx_stopped(hctx))) 2308 return; 2309 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2310 msecs_to_jiffies(msecs)); 2311 } 2312 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2313 2314 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx) 2315 { 2316 bool need_run; 2317 2318 /* 2319 * When queue is quiesced, we may be switching io scheduler, or 2320 * updating nr_hw_queues, or other things, and we can't run queue 2321 * any more, even blk_mq_hctx_has_pending() can't be called safely. 2322 * 2323 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2324 * quiesced. 2325 */ 2326 __blk_mq_run_dispatch_ops(hctx->queue, false, 2327 need_run = !blk_queue_quiesced(hctx->queue) && 2328 blk_mq_hctx_has_pending(hctx)); 2329 return need_run; 2330 } 2331 2332 /** 2333 * blk_mq_run_hw_queue - Start to run a hardware queue. 2334 * @hctx: Pointer to the hardware queue to run. 2335 * @async: If we want to run the queue asynchronously. 2336 * 2337 * Check if the request queue is not in a quiesced state and if there are 2338 * pending requests to be sent. If this is true, run the queue to send requests 2339 * to hardware. 2340 */ 2341 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2342 { 2343 bool need_run; 2344 2345 /* 2346 * We can't run the queue inline with interrupts disabled. 2347 */ 2348 WARN_ON_ONCE(!async && in_interrupt()); 2349 2350 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2351 2352 need_run = blk_mq_hw_queue_need_run(hctx); 2353 if (!need_run) { 2354 unsigned long flags; 2355 2356 /* 2357 * Synchronize with blk_mq_unquiesce_queue(), because we check 2358 * if hw queue is quiesced locklessly above, we need the use 2359 * ->queue_lock to make sure we see the up-to-date status to 2360 * not miss rerunning the hw queue. 2361 */ 2362 spin_lock_irqsave(&hctx->queue->queue_lock, flags); 2363 need_run = blk_mq_hw_queue_need_run(hctx); 2364 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags); 2365 2366 if (!need_run) 2367 return; 2368 } 2369 2370 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2371 blk_mq_delay_run_hw_queue(hctx, 0); 2372 return; 2373 } 2374 2375 blk_mq_run_dispatch_ops(hctx->queue, 2376 blk_mq_sched_dispatch_requests(hctx)); 2377 } 2378 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2379 2380 /* 2381 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2382 * scheduler. 2383 */ 2384 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2385 { 2386 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2387 /* 2388 * If the IO scheduler does not respect hardware queues when 2389 * dispatching, we just don't bother with multiple HW queues and 2390 * dispatch from hctx for the current CPU since running multiple queues 2391 * just causes lock contention inside the scheduler and pointless cache 2392 * bouncing. 2393 */ 2394 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2395 2396 if (!blk_mq_hctx_stopped(hctx)) 2397 return hctx; 2398 return NULL; 2399 } 2400 2401 /** 2402 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2403 * @q: Pointer to the request queue to run. 2404 * @async: If we want to run the queue asynchronously. 2405 */ 2406 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2407 { 2408 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2409 unsigned long i; 2410 2411 sq_hctx = NULL; 2412 if (blk_queue_sq_sched(q)) 2413 sq_hctx = blk_mq_get_sq_hctx(q); 2414 queue_for_each_hw_ctx(q, hctx, i) { 2415 if (blk_mq_hctx_stopped(hctx)) 2416 continue; 2417 /* 2418 * Dispatch from this hctx either if there's no hctx preferred 2419 * by IO scheduler or if it has requests that bypass the 2420 * scheduler. 2421 */ 2422 if (!sq_hctx || sq_hctx == hctx || 2423 !list_empty_careful(&hctx->dispatch)) 2424 blk_mq_run_hw_queue(hctx, async); 2425 } 2426 } 2427 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2428 2429 /** 2430 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2431 * @q: Pointer to the request queue to run. 2432 * @msecs: Milliseconds of delay to wait before running the queues. 2433 */ 2434 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2435 { 2436 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2437 unsigned long i; 2438 2439 sq_hctx = NULL; 2440 if (blk_queue_sq_sched(q)) 2441 sq_hctx = blk_mq_get_sq_hctx(q); 2442 queue_for_each_hw_ctx(q, hctx, i) { 2443 if (blk_mq_hctx_stopped(hctx)) 2444 continue; 2445 /* 2446 * If there is already a run_work pending, leave the 2447 * pending delay untouched. Otherwise, a hctx can stall 2448 * if another hctx is re-delaying the other's work 2449 * before the work executes. 2450 */ 2451 if (delayed_work_pending(&hctx->run_work)) 2452 continue; 2453 /* 2454 * Dispatch from this hctx either if there's no hctx preferred 2455 * by IO scheduler or if it has requests that bypass the 2456 * scheduler. 2457 */ 2458 if (!sq_hctx || sq_hctx == hctx || 2459 !list_empty_careful(&hctx->dispatch)) 2460 blk_mq_delay_run_hw_queue(hctx, msecs); 2461 } 2462 } 2463 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2464 2465 /* 2466 * This function is often used for pausing .queue_rq() by driver when 2467 * there isn't enough resource or some conditions aren't satisfied, and 2468 * BLK_STS_RESOURCE is usually returned. 2469 * 2470 * We do not guarantee that dispatch can be drained or blocked 2471 * after blk_mq_stop_hw_queue() returns. Please use 2472 * blk_mq_quiesce_queue() for that requirement. 2473 */ 2474 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2475 { 2476 cancel_delayed_work(&hctx->run_work); 2477 2478 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2479 } 2480 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2481 2482 /* 2483 * This function is often used for pausing .queue_rq() by driver when 2484 * there isn't enough resource or some conditions aren't satisfied, and 2485 * BLK_STS_RESOURCE is usually returned. 2486 * 2487 * We do not guarantee that dispatch can be drained or blocked 2488 * after blk_mq_stop_hw_queues() returns. Please use 2489 * blk_mq_quiesce_queue() for that requirement. 2490 */ 2491 void blk_mq_stop_hw_queues(struct request_queue *q) 2492 { 2493 struct blk_mq_hw_ctx *hctx; 2494 unsigned long i; 2495 2496 queue_for_each_hw_ctx(q, hctx, i) 2497 blk_mq_stop_hw_queue(hctx); 2498 } 2499 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2500 2501 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2502 { 2503 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2504 2505 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2506 } 2507 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2508 2509 void blk_mq_start_hw_queues(struct request_queue *q) 2510 { 2511 struct blk_mq_hw_ctx *hctx; 2512 unsigned long i; 2513 2514 queue_for_each_hw_ctx(q, hctx, i) 2515 blk_mq_start_hw_queue(hctx); 2516 } 2517 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2518 2519 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2520 { 2521 if (!blk_mq_hctx_stopped(hctx)) 2522 return; 2523 2524 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2525 /* 2526 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the 2527 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch 2528 * list in the subsequent routine. 2529 */ 2530 smp_mb__after_atomic(); 2531 blk_mq_run_hw_queue(hctx, async); 2532 } 2533 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2534 2535 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2536 { 2537 struct blk_mq_hw_ctx *hctx; 2538 unsigned long i; 2539 2540 queue_for_each_hw_ctx(q, hctx, i) 2541 blk_mq_start_stopped_hw_queue(hctx, async || 2542 (hctx->flags & BLK_MQ_F_BLOCKING)); 2543 } 2544 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2545 2546 static void blk_mq_run_work_fn(struct work_struct *work) 2547 { 2548 struct blk_mq_hw_ctx *hctx = 2549 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2550 2551 blk_mq_run_dispatch_ops(hctx->queue, 2552 blk_mq_sched_dispatch_requests(hctx)); 2553 } 2554 2555 /** 2556 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2557 * @rq: Pointer to request to be inserted. 2558 * @flags: BLK_MQ_INSERT_* 2559 * 2560 * Should only be used carefully, when the caller knows we want to 2561 * bypass a potential IO scheduler on the target device. 2562 */ 2563 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2564 { 2565 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2566 2567 spin_lock(&hctx->lock); 2568 if (flags & BLK_MQ_INSERT_AT_HEAD) 2569 list_add(&rq->queuelist, &hctx->dispatch); 2570 else 2571 list_add_tail(&rq->queuelist, &hctx->dispatch); 2572 spin_unlock(&hctx->lock); 2573 } 2574 2575 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2576 struct blk_mq_ctx *ctx, struct list_head *list, 2577 bool run_queue_async) 2578 { 2579 struct request *rq; 2580 enum hctx_type type = hctx->type; 2581 2582 /* 2583 * Try to issue requests directly if the hw queue isn't busy to save an 2584 * extra enqueue & dequeue to the sw queue. 2585 */ 2586 if (!hctx->dispatch_busy && !run_queue_async) { 2587 blk_mq_run_dispatch_ops(hctx->queue, 2588 blk_mq_try_issue_list_directly(hctx, list)); 2589 if (list_empty(list)) 2590 goto out; 2591 } 2592 2593 /* 2594 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2595 * offline now 2596 */ 2597 list_for_each_entry(rq, list, queuelist) { 2598 BUG_ON(rq->mq_ctx != ctx); 2599 trace_block_rq_insert(rq); 2600 if (rq->cmd_flags & REQ_NOWAIT) 2601 run_queue_async = true; 2602 } 2603 2604 spin_lock(&ctx->lock); 2605 list_splice_tail_init(list, &ctx->rq_lists[type]); 2606 blk_mq_hctx_mark_pending(hctx, ctx); 2607 spin_unlock(&ctx->lock); 2608 out: 2609 blk_mq_run_hw_queue(hctx, run_queue_async); 2610 } 2611 2612 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2613 { 2614 struct request_queue *q = rq->q; 2615 struct blk_mq_ctx *ctx = rq->mq_ctx; 2616 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2617 2618 if (blk_rq_is_passthrough(rq)) { 2619 /* 2620 * Passthrough request have to be added to hctx->dispatch 2621 * directly. The device may be in a situation where it can't 2622 * handle FS request, and always returns BLK_STS_RESOURCE for 2623 * them, which gets them added to hctx->dispatch. 2624 * 2625 * If a passthrough request is required to unblock the queues, 2626 * and it is added to the scheduler queue, there is no chance to 2627 * dispatch it given we prioritize requests in hctx->dispatch. 2628 */ 2629 blk_mq_request_bypass_insert(rq, flags); 2630 } else if (req_op(rq) == REQ_OP_FLUSH) { 2631 /* 2632 * Firstly normal IO request is inserted to scheduler queue or 2633 * sw queue, meantime we add flush request to dispatch queue( 2634 * hctx->dispatch) directly and there is at most one in-flight 2635 * flush request for each hw queue, so it doesn't matter to add 2636 * flush request to tail or front of the dispatch queue. 2637 * 2638 * Secondly in case of NCQ, flush request belongs to non-NCQ 2639 * command, and queueing it will fail when there is any 2640 * in-flight normal IO request(NCQ command). When adding flush 2641 * rq to the front of hctx->dispatch, it is easier to introduce 2642 * extra time to flush rq's latency because of S_SCHED_RESTART 2643 * compared with adding to the tail of dispatch queue, then 2644 * chance of flush merge is increased, and less flush requests 2645 * will be issued to controller. It is observed that ~10% time 2646 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2647 * drive when adding flush rq to the front of hctx->dispatch. 2648 * 2649 * Simply queue flush rq to the front of hctx->dispatch so that 2650 * intensive flush workloads can benefit in case of NCQ HW. 2651 */ 2652 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2653 } else if (q->elevator) { 2654 LIST_HEAD(list); 2655 2656 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2657 2658 list_add(&rq->queuelist, &list); 2659 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2660 } else { 2661 trace_block_rq_insert(rq); 2662 2663 spin_lock(&ctx->lock); 2664 if (flags & BLK_MQ_INSERT_AT_HEAD) 2665 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2666 else 2667 list_add_tail(&rq->queuelist, 2668 &ctx->rq_lists[hctx->type]); 2669 blk_mq_hctx_mark_pending(hctx, ctx); 2670 spin_unlock(&ctx->lock); 2671 } 2672 } 2673 2674 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2675 unsigned int nr_segs) 2676 { 2677 int err; 2678 2679 if (bio->bi_opf & REQ_RAHEAD) 2680 rq->cmd_flags |= REQ_FAILFAST_MASK; 2681 2682 rq->bio = rq->biotail = bio; 2683 rq->__sector = bio->bi_iter.bi_sector; 2684 rq->__data_len = bio->bi_iter.bi_size; 2685 rq->phys_gap_bit = bio->bi_bvec_gap_bit; 2686 2687 rq->nr_phys_segments = nr_segs; 2688 if (bio_integrity(bio)) 2689 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q, 2690 bio); 2691 2692 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2693 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2694 WARN_ON_ONCE(err); 2695 2696 blk_account_io_start(rq); 2697 } 2698 2699 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2700 struct request *rq, bool last) 2701 { 2702 struct request_queue *q = rq->q; 2703 struct blk_mq_queue_data bd = { 2704 .rq = rq, 2705 .last = last, 2706 }; 2707 blk_status_t ret; 2708 2709 /* 2710 * For OK queue, we are done. For error, caller may kill it. 2711 * Any other error (busy), just add it to our list as we 2712 * previously would have done. 2713 */ 2714 ret = q->mq_ops->queue_rq(hctx, &bd); 2715 switch (ret) { 2716 case BLK_STS_OK: 2717 blk_mq_update_dispatch_busy(hctx, false); 2718 break; 2719 case BLK_STS_RESOURCE: 2720 case BLK_STS_DEV_RESOURCE: 2721 blk_mq_update_dispatch_busy(hctx, true); 2722 __blk_mq_requeue_request(rq); 2723 break; 2724 default: 2725 blk_mq_update_dispatch_busy(hctx, false); 2726 break; 2727 } 2728 2729 return ret; 2730 } 2731 2732 static bool blk_mq_get_budget_and_tag(struct request *rq) 2733 { 2734 int budget_token; 2735 2736 budget_token = blk_mq_get_dispatch_budget(rq->q); 2737 if (budget_token < 0) 2738 return false; 2739 blk_mq_set_rq_budget_token(rq, budget_token); 2740 if (!blk_mq_get_driver_tag(rq)) { 2741 blk_mq_put_dispatch_budget(rq->q, budget_token); 2742 return false; 2743 } 2744 return true; 2745 } 2746 2747 /** 2748 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2749 * @hctx: Pointer of the associated hardware queue. 2750 * @rq: Pointer to request to be sent. 2751 * 2752 * If the device has enough resources to accept a new request now, send the 2753 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2754 * we can try send it another time in the future. Requests inserted at this 2755 * queue have higher priority. 2756 */ 2757 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2758 struct request *rq) 2759 { 2760 blk_status_t ret; 2761 2762 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2763 blk_mq_insert_request(rq, 0); 2764 blk_mq_run_hw_queue(hctx, false); 2765 return; 2766 } 2767 2768 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2769 blk_mq_insert_request(rq, 0); 2770 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2771 return; 2772 } 2773 2774 ret = __blk_mq_issue_directly(hctx, rq, true); 2775 switch (ret) { 2776 case BLK_STS_OK: 2777 break; 2778 case BLK_STS_RESOURCE: 2779 case BLK_STS_DEV_RESOURCE: 2780 blk_mq_request_bypass_insert(rq, 0); 2781 blk_mq_run_hw_queue(hctx, false); 2782 break; 2783 default: 2784 blk_mq_end_request(rq, ret); 2785 break; 2786 } 2787 } 2788 2789 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2790 { 2791 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2792 2793 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2794 blk_mq_insert_request(rq, 0); 2795 blk_mq_run_hw_queue(hctx, false); 2796 return BLK_STS_OK; 2797 } 2798 2799 if (!blk_mq_get_budget_and_tag(rq)) 2800 return BLK_STS_RESOURCE; 2801 return __blk_mq_issue_directly(hctx, rq, last); 2802 } 2803 2804 static void blk_mq_issue_direct(struct rq_list *rqs) 2805 { 2806 struct blk_mq_hw_ctx *hctx = NULL; 2807 struct request *rq; 2808 int queued = 0; 2809 blk_status_t ret = BLK_STS_OK; 2810 2811 while ((rq = rq_list_pop(rqs))) { 2812 bool last = rq_list_empty(rqs); 2813 2814 if (hctx != rq->mq_hctx) { 2815 if (hctx) { 2816 blk_mq_commit_rqs(hctx, queued, false); 2817 queued = 0; 2818 } 2819 hctx = rq->mq_hctx; 2820 } 2821 2822 ret = blk_mq_request_issue_directly(rq, last); 2823 switch (ret) { 2824 case BLK_STS_OK: 2825 queued++; 2826 break; 2827 case BLK_STS_RESOURCE: 2828 case BLK_STS_DEV_RESOURCE: 2829 blk_mq_request_bypass_insert(rq, 0); 2830 blk_mq_run_hw_queue(hctx, false); 2831 goto out; 2832 default: 2833 blk_mq_end_request(rq, ret); 2834 break; 2835 } 2836 } 2837 2838 out: 2839 if (ret != BLK_STS_OK) 2840 blk_mq_commit_rqs(hctx, queued, false); 2841 } 2842 2843 static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs) 2844 { 2845 if (blk_queue_quiesced(q)) 2846 return; 2847 q->mq_ops->queue_rqs(rqs); 2848 } 2849 2850 static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs, 2851 struct rq_list *queue_rqs) 2852 { 2853 struct request *rq = rq_list_pop(rqs); 2854 struct request_queue *this_q = rq->q; 2855 struct request **prev = &rqs->head; 2856 struct rq_list matched_rqs = {}; 2857 struct request *last = NULL; 2858 unsigned depth = 1; 2859 2860 rq_list_add_tail(&matched_rqs, rq); 2861 while ((rq = *prev)) { 2862 if (rq->q == this_q) { 2863 /* move rq from rqs to matched_rqs */ 2864 *prev = rq->rq_next; 2865 rq_list_add_tail(&matched_rqs, rq); 2866 depth++; 2867 } else { 2868 /* leave rq in rqs */ 2869 prev = &rq->rq_next; 2870 last = rq; 2871 } 2872 } 2873 2874 rqs->tail = last; 2875 *queue_rqs = matched_rqs; 2876 return depth; 2877 } 2878 2879 static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth) 2880 { 2881 struct request_queue *q = rq_list_peek(rqs)->q; 2882 2883 trace_block_unplug(q, depth, true); 2884 2885 /* 2886 * Peek first request and see if we have a ->queue_rqs() hook. 2887 * If we do, we can dispatch the whole list in one go. 2888 * We already know at this point that all requests belong to the 2889 * same queue, caller must ensure that's the case. 2890 */ 2891 if (q->mq_ops->queue_rqs) { 2892 blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs)); 2893 if (rq_list_empty(rqs)) 2894 return; 2895 } 2896 2897 blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs)); 2898 } 2899 2900 static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched) 2901 { 2902 struct blk_mq_hw_ctx *this_hctx = NULL; 2903 struct blk_mq_ctx *this_ctx = NULL; 2904 struct rq_list requeue_list = {}; 2905 unsigned int depth = 0; 2906 bool is_passthrough = false; 2907 LIST_HEAD(list); 2908 2909 do { 2910 struct request *rq = rq_list_pop(rqs); 2911 2912 if (!this_hctx) { 2913 this_hctx = rq->mq_hctx; 2914 this_ctx = rq->mq_ctx; 2915 is_passthrough = blk_rq_is_passthrough(rq); 2916 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2917 is_passthrough != blk_rq_is_passthrough(rq)) { 2918 rq_list_add_tail(&requeue_list, rq); 2919 continue; 2920 } 2921 list_add_tail(&rq->queuelist, &list); 2922 depth++; 2923 } while (!rq_list_empty(rqs)); 2924 2925 *rqs = requeue_list; 2926 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2927 2928 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2929 /* passthrough requests should never be issued to the I/O scheduler */ 2930 if (is_passthrough) { 2931 spin_lock(&this_hctx->lock); 2932 list_splice_tail_init(&list, &this_hctx->dispatch); 2933 spin_unlock(&this_hctx->lock); 2934 blk_mq_run_hw_queue(this_hctx, from_sched); 2935 } else if (this_hctx->queue->elevator) { 2936 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2937 &list, 0); 2938 blk_mq_run_hw_queue(this_hctx, from_sched); 2939 } else { 2940 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2941 } 2942 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2943 } 2944 2945 static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs) 2946 { 2947 do { 2948 struct rq_list queue_rqs; 2949 unsigned depth; 2950 2951 depth = blk_mq_extract_queue_requests(rqs, &queue_rqs); 2952 blk_mq_dispatch_queue_requests(&queue_rqs, depth); 2953 while (!rq_list_empty(&queue_rqs)) 2954 blk_mq_dispatch_list(&queue_rqs, false); 2955 } while (!rq_list_empty(rqs)); 2956 } 2957 2958 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2959 { 2960 unsigned int depth; 2961 2962 /* 2963 * We may have been called recursively midway through handling 2964 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2965 * To avoid mq_list changing under our feet, clear rq_count early and 2966 * bail out specifically if rq_count is 0 rather than checking 2967 * whether the mq_list is empty. 2968 */ 2969 if (plug->rq_count == 0) 2970 return; 2971 depth = plug->rq_count; 2972 plug->rq_count = 0; 2973 2974 if (!plug->has_elevator && !from_schedule) { 2975 if (plug->multiple_queues) { 2976 blk_mq_dispatch_multiple_queue_requests(&plug->mq_list); 2977 return; 2978 } 2979 2980 blk_mq_dispatch_queue_requests(&plug->mq_list, depth); 2981 if (rq_list_empty(&plug->mq_list)) 2982 return; 2983 } 2984 2985 do { 2986 blk_mq_dispatch_list(&plug->mq_list, from_schedule); 2987 } while (!rq_list_empty(&plug->mq_list)); 2988 } 2989 2990 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2991 struct list_head *list) 2992 { 2993 int queued = 0; 2994 blk_status_t ret = BLK_STS_OK; 2995 2996 while (!list_empty(list)) { 2997 struct request *rq = list_first_entry(list, struct request, 2998 queuelist); 2999 3000 list_del_init(&rq->queuelist); 3001 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 3002 switch (ret) { 3003 case BLK_STS_OK: 3004 queued++; 3005 break; 3006 case BLK_STS_RESOURCE: 3007 case BLK_STS_DEV_RESOURCE: 3008 blk_mq_request_bypass_insert(rq, 0); 3009 if (list_empty(list)) 3010 blk_mq_run_hw_queue(hctx, false); 3011 goto out; 3012 default: 3013 blk_mq_end_request(rq, ret); 3014 break; 3015 } 3016 } 3017 3018 out: 3019 if (ret != BLK_STS_OK) 3020 blk_mq_commit_rqs(hctx, queued, false); 3021 } 3022 3023 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 3024 struct bio *bio, unsigned int nr_segs) 3025 { 3026 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 3027 if (blk_attempt_plug_merge(q, bio, nr_segs)) 3028 return true; 3029 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 3030 return true; 3031 } 3032 return false; 3033 } 3034 3035 static struct request *blk_mq_get_new_requests(struct request_queue *q, 3036 struct blk_plug *plug, 3037 struct bio *bio) 3038 { 3039 struct blk_mq_alloc_data data = { 3040 .q = q, 3041 .flags = 0, 3042 .shallow_depth = 0, 3043 .cmd_flags = bio->bi_opf, 3044 .rq_flags = 0, 3045 .nr_tags = 1, 3046 .cached_rqs = NULL, 3047 .ctx = NULL, 3048 .hctx = NULL 3049 }; 3050 struct request *rq; 3051 3052 rq_qos_throttle(q, bio); 3053 3054 if (plug) { 3055 data.nr_tags = plug->nr_ios; 3056 plug->nr_ios = 1; 3057 data.cached_rqs = &plug->cached_rqs; 3058 } 3059 3060 rq = __blk_mq_alloc_requests(&data); 3061 if (unlikely(!rq)) 3062 rq_qos_cleanup(q, bio); 3063 return rq; 3064 } 3065 3066 /* 3067 * Check if there is a suitable cached request and return it. 3068 */ 3069 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 3070 struct request_queue *q, blk_opf_t opf) 3071 { 3072 enum hctx_type type = blk_mq_get_hctx_type(opf); 3073 struct request *rq; 3074 3075 if (!plug) 3076 return NULL; 3077 rq = rq_list_peek(&plug->cached_rqs); 3078 if (!rq || rq->q != q) 3079 return NULL; 3080 if (type != rq->mq_hctx->type && 3081 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 3082 return NULL; 3083 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 3084 return NULL; 3085 return rq; 3086 } 3087 3088 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 3089 struct bio *bio) 3090 { 3091 if (rq_list_pop(&plug->cached_rqs) != rq) 3092 WARN_ON_ONCE(1); 3093 3094 /* 3095 * If any qos ->throttle() end up blocking, we will have flushed the 3096 * plug and hence killed the cached_rq list as well. Pop this entry 3097 * before we throttle. 3098 */ 3099 rq_qos_throttle(rq->q, bio); 3100 3101 blk_mq_rq_time_init(rq, blk_time_get_ns()); 3102 rq->cmd_flags = bio->bi_opf; 3103 INIT_LIST_HEAD(&rq->queuelist); 3104 } 3105 3106 static bool bio_unaligned(const struct bio *bio, struct request_queue *q) 3107 { 3108 unsigned int bs_mask = queue_logical_block_size(q) - 1; 3109 3110 /* .bi_sector of any zero sized bio need to be initialized */ 3111 if ((bio->bi_iter.bi_size & bs_mask) || 3112 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask)) 3113 return true; 3114 return false; 3115 } 3116 3117 /** 3118 * blk_mq_submit_bio - Create and send a request to block device. 3119 * @bio: Bio pointer. 3120 * 3121 * Builds up a request structure from @q and @bio and send to the device. The 3122 * request may not be queued directly to hardware if: 3123 * * This request can be merged with another one 3124 * * We want to place request at plug queue for possible future merging 3125 * * There is an IO scheduler active at this queue 3126 * 3127 * It will not queue the request if there is an error with the bio, or at the 3128 * request creation. 3129 */ 3130 void blk_mq_submit_bio(struct bio *bio) 3131 { 3132 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 3133 struct blk_plug *plug = current->plug; 3134 const int is_sync = op_is_sync(bio->bi_opf); 3135 struct blk_mq_hw_ctx *hctx; 3136 unsigned int nr_segs; 3137 struct request *rq; 3138 blk_status_t ret; 3139 3140 /* 3141 * If the plug has a cached request for this queue, try to use it. 3142 */ 3143 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 3144 3145 /* 3146 * A BIO that was released from a zone write plug has already been 3147 * through the preparation in this function, already holds a reference 3148 * on the queue usage counter, and is the only write BIO in-flight for 3149 * the target zone. Go straight to preparing a request for it. 3150 */ 3151 if (bio_zone_write_plugging(bio)) { 3152 nr_segs = bio->__bi_nr_segments; 3153 if (rq) 3154 blk_queue_exit(q); 3155 goto new_request; 3156 } 3157 3158 /* 3159 * The cached request already holds a q_usage_counter reference and we 3160 * don't have to acquire a new one if we use it. 3161 */ 3162 if (!rq) { 3163 if (unlikely(bio_queue_enter(bio))) 3164 return; 3165 } 3166 3167 /* 3168 * Device reconfiguration may change logical block size or reduce the 3169 * number of poll queues, so the checks for alignment and poll support 3170 * have to be done with queue usage counter held. 3171 */ 3172 if (unlikely(bio_unaligned(bio, q))) { 3173 bio_io_error(bio); 3174 goto queue_exit; 3175 } 3176 3177 if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) { 3178 bio->bi_status = BLK_STS_NOTSUPP; 3179 bio_endio(bio); 3180 goto queue_exit; 3181 } 3182 3183 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3184 if (!bio) 3185 goto queue_exit; 3186 3187 if (!bio_integrity_prep(bio)) 3188 goto queue_exit; 3189 3190 blk_mq_bio_issue_init(q, bio); 3191 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3192 goto queue_exit; 3193 3194 if (bio_needs_zone_write_plugging(bio)) { 3195 if (blk_zone_plug_bio(bio, nr_segs)) 3196 goto queue_exit; 3197 } 3198 3199 new_request: 3200 if (rq) { 3201 blk_mq_use_cached_rq(rq, plug, bio); 3202 } else { 3203 rq = blk_mq_get_new_requests(q, plug, bio); 3204 if (unlikely(!rq)) { 3205 if (bio->bi_opf & REQ_NOWAIT) 3206 bio_wouldblock_error(bio); 3207 goto queue_exit; 3208 } 3209 } 3210 3211 trace_block_getrq(bio); 3212 3213 rq_qos_track(q, rq, bio); 3214 3215 blk_mq_bio_to_request(rq, bio, nr_segs); 3216 3217 ret = blk_crypto_rq_get_keyslot(rq); 3218 if (ret != BLK_STS_OK) { 3219 bio->bi_status = ret; 3220 bio_endio(bio); 3221 blk_mq_free_request(rq); 3222 return; 3223 } 3224 3225 if (bio_zone_write_plugging(bio)) 3226 blk_zone_write_plug_init_request(rq); 3227 3228 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3229 return; 3230 3231 if (plug) { 3232 blk_add_rq_to_plug(plug, rq); 3233 return; 3234 } 3235 3236 hctx = rq->mq_hctx; 3237 if ((rq->rq_flags & RQF_USE_SCHED) || 3238 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3239 blk_mq_insert_request(rq, 0); 3240 blk_mq_run_hw_queue(hctx, true); 3241 } else { 3242 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3243 } 3244 return; 3245 3246 queue_exit: 3247 /* 3248 * Don't drop the queue reference if we were trying to use a cached 3249 * request and thus didn't acquire one. 3250 */ 3251 if (!rq) 3252 blk_queue_exit(q); 3253 } 3254 3255 #ifdef CONFIG_BLK_MQ_STACKING 3256 /** 3257 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3258 * @rq: the request being queued 3259 */ 3260 blk_status_t blk_insert_cloned_request(struct request *rq) 3261 { 3262 struct request_queue *q = rq->q; 3263 unsigned int max_sectors = blk_queue_get_max_sectors(rq); 3264 unsigned int max_segments = blk_rq_get_max_segments(rq); 3265 blk_status_t ret; 3266 3267 if (blk_rq_sectors(rq) > max_sectors) { 3268 /* 3269 * SCSI device does not have a good way to return if 3270 * Write Same/Zero is actually supported. If a device rejects 3271 * a non-read/write command (discard, write same,etc.) the 3272 * low-level device driver will set the relevant queue limit to 3273 * 0 to prevent blk-lib from issuing more of the offending 3274 * operations. Commands queued prior to the queue limit being 3275 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3276 * errors being propagated to upper layers. 3277 */ 3278 if (max_sectors == 0) 3279 return BLK_STS_NOTSUPP; 3280 3281 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3282 __func__, blk_rq_sectors(rq), max_sectors); 3283 return BLK_STS_IOERR; 3284 } 3285 3286 /* 3287 * The queue settings related to segment counting may differ from the 3288 * original queue. 3289 */ 3290 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3291 if (rq->nr_phys_segments > max_segments) { 3292 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3293 __func__, rq->nr_phys_segments, max_segments); 3294 return BLK_STS_IOERR; 3295 } 3296 3297 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3298 return BLK_STS_IOERR; 3299 3300 ret = blk_crypto_rq_get_keyslot(rq); 3301 if (ret != BLK_STS_OK) 3302 return ret; 3303 3304 blk_account_io_start(rq); 3305 3306 /* 3307 * Since we have a scheduler attached on the top device, 3308 * bypass a potential scheduler on the bottom device for 3309 * insert. 3310 */ 3311 blk_mq_run_dispatch_ops(q, 3312 ret = blk_mq_request_issue_directly(rq, true)); 3313 if (ret) 3314 blk_account_io_done(rq, blk_time_get_ns()); 3315 return ret; 3316 } 3317 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3318 3319 /** 3320 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3321 * @rq: the clone request to be cleaned up 3322 * 3323 * Description: 3324 * Free all bios in @rq for a cloned request. 3325 */ 3326 void blk_rq_unprep_clone(struct request *rq) 3327 { 3328 struct bio *bio; 3329 3330 while ((bio = rq->bio) != NULL) { 3331 rq->bio = bio->bi_next; 3332 3333 bio_put(bio); 3334 } 3335 } 3336 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3337 3338 /** 3339 * blk_rq_prep_clone - Helper function to setup clone request 3340 * @rq: the request to be setup 3341 * @rq_src: original request to be cloned 3342 * @bs: bio_set that bios for clone are allocated from 3343 * @gfp_mask: memory allocation mask for bio 3344 * @bio_ctr: setup function to be called for each clone bio. 3345 * Returns %0 for success, non %0 for failure. 3346 * @data: private data to be passed to @bio_ctr 3347 * 3348 * Description: 3349 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3350 * Also, pages which the original bios are pointing to are not copied 3351 * and the cloned bios just point same pages. 3352 * So cloned bios must be completed before original bios, which means 3353 * the caller must complete @rq before @rq_src. 3354 */ 3355 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3356 struct bio_set *bs, gfp_t gfp_mask, 3357 int (*bio_ctr)(struct bio *, struct bio *, void *), 3358 void *data) 3359 { 3360 struct bio *bio_src; 3361 3362 if (!bs) 3363 bs = &fs_bio_set; 3364 3365 __rq_for_each_bio(bio_src, rq_src) { 3366 struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src, 3367 gfp_mask, bs); 3368 if (!bio) 3369 goto free_and_out; 3370 3371 if (bio_ctr && bio_ctr(bio, bio_src, data)) { 3372 bio_put(bio); 3373 goto free_and_out; 3374 } 3375 3376 if (rq->bio) { 3377 rq->biotail->bi_next = bio; 3378 rq->biotail = bio; 3379 } else { 3380 rq->bio = rq->biotail = bio; 3381 } 3382 } 3383 3384 /* Copy attributes of the original request to the clone request. */ 3385 rq->__sector = blk_rq_pos(rq_src); 3386 rq->__data_len = blk_rq_bytes(rq_src); 3387 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3388 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3389 rq->special_vec = rq_src->special_vec; 3390 } 3391 rq->nr_phys_segments = rq_src->nr_phys_segments; 3392 rq->nr_integrity_segments = rq_src->nr_integrity_segments; 3393 rq->phys_gap_bit = rq_src->phys_gap_bit; 3394 3395 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3396 goto free_and_out; 3397 3398 return 0; 3399 3400 free_and_out: 3401 blk_rq_unprep_clone(rq); 3402 3403 return -ENOMEM; 3404 } 3405 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3406 #endif /* CONFIG_BLK_MQ_STACKING */ 3407 3408 /* 3409 * Steal bios from a request and add them to a bio list. 3410 * The request must not have been partially completed before. 3411 */ 3412 void blk_steal_bios(struct bio_list *list, struct request *rq) 3413 { 3414 if (rq->bio) { 3415 if (list->tail) 3416 list->tail->bi_next = rq->bio; 3417 else 3418 list->head = rq->bio; 3419 list->tail = rq->biotail; 3420 3421 rq->bio = NULL; 3422 rq->biotail = NULL; 3423 } 3424 3425 rq->__data_len = 0; 3426 } 3427 EXPORT_SYMBOL_GPL(blk_steal_bios); 3428 3429 static size_t order_to_size(unsigned int order) 3430 { 3431 return (size_t)PAGE_SIZE << order; 3432 } 3433 3434 /* called before freeing request pool in @tags */ 3435 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3436 struct blk_mq_tags *tags) 3437 { 3438 struct page *page; 3439 3440 /* 3441 * There is no need to clear mapping if driver tags is not initialized 3442 * or the mapping belongs to the driver tags. 3443 */ 3444 if (!drv_tags || drv_tags == tags) 3445 return; 3446 3447 list_for_each_entry(page, &tags->page_list, lru) { 3448 unsigned long start = (unsigned long)page_address(page); 3449 unsigned long end = start + order_to_size(page->private); 3450 int i; 3451 3452 for (i = 0; i < drv_tags->nr_tags; i++) { 3453 struct request *rq = drv_tags->rqs[i]; 3454 unsigned long rq_addr = (unsigned long)rq; 3455 3456 if (rq_addr >= start && rq_addr < end) { 3457 WARN_ON_ONCE(req_ref_read(rq) != 0); 3458 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3459 } 3460 } 3461 } 3462 } 3463 3464 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3465 unsigned int hctx_idx) 3466 { 3467 struct blk_mq_tags *drv_tags; 3468 3469 if (list_empty(&tags->page_list)) 3470 return; 3471 3472 if (blk_mq_is_shared_tags(set->flags)) 3473 drv_tags = set->shared_tags; 3474 else 3475 drv_tags = set->tags[hctx_idx]; 3476 3477 if (tags->static_rqs && set->ops->exit_request) { 3478 int i; 3479 3480 for (i = 0; i < tags->nr_tags; i++) { 3481 struct request *rq = tags->static_rqs[i]; 3482 3483 if (!rq) 3484 continue; 3485 set->ops->exit_request(set, rq, hctx_idx); 3486 tags->static_rqs[i] = NULL; 3487 } 3488 } 3489 3490 blk_mq_clear_rq_mapping(drv_tags, tags); 3491 /* 3492 * Free request pages in SRCU callback, which is called from 3493 * blk_mq_free_tags(). 3494 */ 3495 } 3496 3497 void blk_mq_free_rq_map(struct blk_mq_tag_set *set, struct blk_mq_tags *tags) 3498 { 3499 kfree(tags->rqs); 3500 tags->rqs = NULL; 3501 kfree(tags->static_rqs); 3502 tags->static_rqs = NULL; 3503 3504 blk_mq_free_tags(set, tags); 3505 } 3506 3507 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3508 unsigned int hctx_idx) 3509 { 3510 int i; 3511 3512 for (i = 0; i < set->nr_maps; i++) { 3513 unsigned int start = set->map[i].queue_offset; 3514 unsigned int end = start + set->map[i].nr_queues; 3515 3516 if (hctx_idx >= start && hctx_idx < end) 3517 break; 3518 } 3519 3520 if (i >= set->nr_maps) 3521 i = HCTX_TYPE_DEFAULT; 3522 3523 return i; 3524 } 3525 3526 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3527 unsigned int hctx_idx) 3528 { 3529 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3530 3531 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3532 } 3533 3534 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3535 unsigned int hctx_idx, 3536 unsigned int nr_tags, 3537 unsigned int reserved_tags) 3538 { 3539 int node = blk_mq_get_hctx_node(set, hctx_idx); 3540 struct blk_mq_tags *tags; 3541 3542 if (node == NUMA_NO_NODE) 3543 node = set->numa_node; 3544 3545 tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node); 3546 if (!tags) 3547 return NULL; 3548 3549 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3550 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3551 node); 3552 if (!tags->rqs) 3553 goto err_free_tags; 3554 3555 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3556 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3557 node); 3558 if (!tags->static_rqs) 3559 goto err_free_rqs; 3560 3561 return tags; 3562 3563 err_free_rqs: 3564 kfree(tags->rqs); 3565 err_free_tags: 3566 blk_mq_free_tags(set, tags); 3567 return NULL; 3568 } 3569 3570 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3571 unsigned int hctx_idx, int node) 3572 { 3573 int ret; 3574 3575 if (set->ops->init_request) { 3576 ret = set->ops->init_request(set, rq, hctx_idx, node); 3577 if (ret) 3578 return ret; 3579 } 3580 3581 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3582 return 0; 3583 } 3584 3585 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3586 struct blk_mq_tags *tags, 3587 unsigned int hctx_idx, unsigned int depth) 3588 { 3589 unsigned int i, j, entries_per_page, max_order = 4; 3590 int node = blk_mq_get_hctx_node(set, hctx_idx); 3591 size_t rq_size, left; 3592 3593 if (node == NUMA_NO_NODE) 3594 node = set->numa_node; 3595 3596 /* 3597 * rq_size is the size of the request plus driver payload, rounded 3598 * to the cacheline size 3599 */ 3600 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3601 cache_line_size()); 3602 left = rq_size * depth; 3603 3604 for (i = 0; i < depth; ) { 3605 int this_order = max_order; 3606 struct page *page; 3607 int to_do; 3608 void *p; 3609 3610 while (this_order && left < order_to_size(this_order - 1)) 3611 this_order--; 3612 3613 do { 3614 page = alloc_pages_node(node, 3615 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3616 this_order); 3617 if (page) 3618 break; 3619 if (!this_order--) 3620 break; 3621 if (order_to_size(this_order) < rq_size) 3622 break; 3623 } while (1); 3624 3625 if (!page) 3626 goto fail; 3627 3628 page->private = this_order; 3629 list_add_tail(&page->lru, &tags->page_list); 3630 3631 p = page_address(page); 3632 /* 3633 * Allow kmemleak to scan these pages as they contain pointers 3634 * to additional allocations like via ops->init_request(). 3635 */ 3636 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3637 entries_per_page = order_to_size(this_order) / rq_size; 3638 to_do = min(entries_per_page, depth - i); 3639 left -= to_do * rq_size; 3640 for (j = 0; j < to_do; j++) { 3641 struct request *rq = p; 3642 3643 tags->static_rqs[i] = rq; 3644 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3645 tags->static_rqs[i] = NULL; 3646 goto fail; 3647 } 3648 3649 p += rq_size; 3650 i++; 3651 } 3652 } 3653 return 0; 3654 3655 fail: 3656 blk_mq_free_rqs(set, tags, hctx_idx); 3657 return -ENOMEM; 3658 } 3659 3660 struct rq_iter_data { 3661 struct blk_mq_hw_ctx *hctx; 3662 bool has_rq; 3663 }; 3664 3665 static bool blk_mq_has_request(struct request *rq, void *data) 3666 { 3667 struct rq_iter_data *iter_data = data; 3668 3669 if (rq->mq_hctx != iter_data->hctx) 3670 return true; 3671 iter_data->has_rq = true; 3672 return false; 3673 } 3674 3675 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3676 { 3677 struct blk_mq_tags *tags = hctx->sched_tags ? 3678 hctx->sched_tags : hctx->tags; 3679 struct rq_iter_data data = { 3680 .hctx = hctx, 3681 }; 3682 int srcu_idx; 3683 3684 srcu_idx = srcu_read_lock(&hctx->queue->tag_set->tags_srcu); 3685 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3686 srcu_read_unlock(&hctx->queue->tag_set->tags_srcu, srcu_idx); 3687 3688 return data.has_rq; 3689 } 3690 3691 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx, 3692 unsigned int this_cpu) 3693 { 3694 enum hctx_type type = hctx->type; 3695 int cpu; 3696 3697 /* 3698 * hctx->cpumask has to rule out isolated CPUs, but userspace still 3699 * might submit IOs on these isolated CPUs, so use the queue map to 3700 * check if all CPUs mapped to this hctx are offline 3701 */ 3702 for_each_online_cpu(cpu) { 3703 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue, 3704 type, cpu); 3705 3706 if (h != hctx) 3707 continue; 3708 3709 /* this hctx has at least one online CPU */ 3710 if (this_cpu != cpu) 3711 return true; 3712 } 3713 3714 return false; 3715 } 3716 3717 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3718 { 3719 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3720 struct blk_mq_hw_ctx, cpuhp_online); 3721 3722 if (blk_mq_hctx_has_online_cpu(hctx, cpu)) 3723 return 0; 3724 3725 /* 3726 * Prevent new request from being allocated on the current hctx. 3727 * 3728 * The smp_mb__after_atomic() Pairs with the implied barrier in 3729 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3730 * seen once we return from the tag allocator. 3731 */ 3732 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3733 smp_mb__after_atomic(); 3734 3735 /* 3736 * Try to grab a reference to the queue and wait for any outstanding 3737 * requests. If we could not grab a reference the queue has been 3738 * frozen and there are no requests. 3739 */ 3740 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3741 while (blk_mq_hctx_has_requests(hctx)) 3742 msleep(5); 3743 percpu_ref_put(&hctx->queue->q_usage_counter); 3744 } 3745 3746 return 0; 3747 } 3748 3749 /* 3750 * Check if one CPU is mapped to the specified hctx 3751 * 3752 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed 3753 * to be used for scheduling kworker only. For other usage, please call this 3754 * helper for checking if one CPU belongs to the specified hctx 3755 */ 3756 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu, 3757 const struct blk_mq_hw_ctx *hctx) 3758 { 3759 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue, 3760 hctx->type, cpu); 3761 3762 return mapped_hctx == hctx; 3763 } 3764 3765 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3766 { 3767 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3768 struct blk_mq_hw_ctx, cpuhp_online); 3769 3770 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3771 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3772 return 0; 3773 } 3774 3775 /* 3776 * 'cpu' is going away. splice any existing rq_list entries from this 3777 * software queue to the hw queue dispatch list, and ensure that it 3778 * gets run. 3779 */ 3780 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3781 { 3782 struct blk_mq_hw_ctx *hctx; 3783 struct blk_mq_ctx *ctx; 3784 LIST_HEAD(tmp); 3785 enum hctx_type type; 3786 3787 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3788 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3789 return 0; 3790 3791 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3792 type = hctx->type; 3793 3794 spin_lock(&ctx->lock); 3795 if (!list_empty(&ctx->rq_lists[type])) { 3796 list_splice_init(&ctx->rq_lists[type], &tmp); 3797 blk_mq_hctx_clear_pending(hctx, ctx); 3798 } 3799 spin_unlock(&ctx->lock); 3800 3801 if (list_empty(&tmp)) 3802 return 0; 3803 3804 spin_lock(&hctx->lock); 3805 list_splice_tail_init(&tmp, &hctx->dispatch); 3806 spin_unlock(&hctx->lock); 3807 3808 blk_mq_run_hw_queue(hctx, true); 3809 return 0; 3810 } 3811 3812 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3813 { 3814 lockdep_assert_held(&blk_mq_cpuhp_lock); 3815 3816 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3817 !hlist_unhashed(&hctx->cpuhp_online)) { 3818 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3819 &hctx->cpuhp_online); 3820 INIT_HLIST_NODE(&hctx->cpuhp_online); 3821 } 3822 3823 if (!hlist_unhashed(&hctx->cpuhp_dead)) { 3824 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3825 &hctx->cpuhp_dead); 3826 INIT_HLIST_NODE(&hctx->cpuhp_dead); 3827 } 3828 } 3829 3830 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3831 { 3832 mutex_lock(&blk_mq_cpuhp_lock); 3833 __blk_mq_remove_cpuhp(hctx); 3834 mutex_unlock(&blk_mq_cpuhp_lock); 3835 } 3836 3837 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx) 3838 { 3839 lockdep_assert_held(&blk_mq_cpuhp_lock); 3840 3841 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3842 hlist_unhashed(&hctx->cpuhp_online)) 3843 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3844 &hctx->cpuhp_online); 3845 3846 if (hlist_unhashed(&hctx->cpuhp_dead)) 3847 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3848 &hctx->cpuhp_dead); 3849 } 3850 3851 static void __blk_mq_remove_cpuhp_list(struct list_head *head) 3852 { 3853 struct blk_mq_hw_ctx *hctx; 3854 3855 lockdep_assert_held(&blk_mq_cpuhp_lock); 3856 3857 list_for_each_entry(hctx, head, hctx_list) 3858 __blk_mq_remove_cpuhp(hctx); 3859 } 3860 3861 /* 3862 * Unregister cpuhp callbacks from exited hw queues 3863 * 3864 * Safe to call if this `request_queue` is live 3865 */ 3866 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q) 3867 { 3868 LIST_HEAD(hctx_list); 3869 3870 spin_lock(&q->unused_hctx_lock); 3871 list_splice_init(&q->unused_hctx_list, &hctx_list); 3872 spin_unlock(&q->unused_hctx_lock); 3873 3874 mutex_lock(&blk_mq_cpuhp_lock); 3875 __blk_mq_remove_cpuhp_list(&hctx_list); 3876 mutex_unlock(&blk_mq_cpuhp_lock); 3877 3878 spin_lock(&q->unused_hctx_lock); 3879 list_splice(&hctx_list, &q->unused_hctx_list); 3880 spin_unlock(&q->unused_hctx_lock); 3881 } 3882 3883 /* 3884 * Register cpuhp callbacks from all hw queues 3885 * 3886 * Safe to call if this `request_queue` is live 3887 */ 3888 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q) 3889 { 3890 struct blk_mq_hw_ctx *hctx; 3891 unsigned long i; 3892 3893 mutex_lock(&blk_mq_cpuhp_lock); 3894 queue_for_each_hw_ctx(q, hctx, i) 3895 __blk_mq_add_cpuhp(hctx); 3896 mutex_unlock(&blk_mq_cpuhp_lock); 3897 } 3898 3899 /* 3900 * Before freeing hw queue, clearing the flush request reference in 3901 * tags->rqs[] for avoiding potential UAF. 3902 */ 3903 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3904 unsigned int queue_depth, struct request *flush_rq) 3905 { 3906 int i; 3907 3908 /* The hw queue may not be mapped yet */ 3909 if (!tags) 3910 return; 3911 3912 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3913 3914 for (i = 0; i < queue_depth; i++) 3915 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3916 } 3917 3918 static void blk_free_flush_queue_callback(struct rcu_head *head) 3919 { 3920 struct blk_flush_queue *fq = 3921 container_of(head, struct blk_flush_queue, rcu_head); 3922 3923 blk_free_flush_queue(fq); 3924 } 3925 3926 /* hctx->ctxs will be freed in queue's release handler */ 3927 static void blk_mq_exit_hctx(struct request_queue *q, 3928 struct blk_mq_tag_set *set, 3929 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3930 { 3931 struct request *flush_rq = hctx->fq->flush_rq; 3932 3933 if (blk_mq_hw_queue_mapped(hctx)) 3934 blk_mq_tag_idle(hctx); 3935 3936 if (blk_queue_init_done(q)) 3937 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3938 set->queue_depth, flush_rq); 3939 if (set->ops->exit_request) 3940 set->ops->exit_request(set, flush_rq, hctx_idx); 3941 3942 if (set->ops->exit_hctx) 3943 set->ops->exit_hctx(hctx, hctx_idx); 3944 3945 call_srcu(&set->tags_srcu, &hctx->fq->rcu_head, 3946 blk_free_flush_queue_callback); 3947 hctx->fq = NULL; 3948 3949 spin_lock(&q->unused_hctx_lock); 3950 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3951 spin_unlock(&q->unused_hctx_lock); 3952 } 3953 3954 static void blk_mq_exit_hw_queues(struct request_queue *q, 3955 struct blk_mq_tag_set *set, int nr_queue) 3956 { 3957 struct blk_mq_hw_ctx *hctx; 3958 unsigned long i; 3959 3960 queue_for_each_hw_ctx(q, hctx, i) { 3961 if (i == nr_queue) 3962 break; 3963 blk_mq_remove_cpuhp(hctx); 3964 blk_mq_exit_hctx(q, set, hctx, i); 3965 } 3966 } 3967 3968 static int blk_mq_init_hctx(struct request_queue *q, 3969 struct blk_mq_tag_set *set, 3970 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3971 { 3972 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3973 3974 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3975 if (!hctx->fq) 3976 goto fail; 3977 3978 hctx->queue_num = hctx_idx; 3979 3980 hctx->tags = set->tags[hctx_idx]; 3981 3982 if (set->ops->init_hctx && 3983 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3984 goto fail_free_fq; 3985 3986 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3987 hctx->numa_node)) 3988 goto exit_hctx; 3989 3990 return 0; 3991 3992 exit_hctx: 3993 if (set->ops->exit_hctx) 3994 set->ops->exit_hctx(hctx, hctx_idx); 3995 fail_free_fq: 3996 blk_free_flush_queue(hctx->fq); 3997 hctx->fq = NULL; 3998 fail: 3999 return -1; 4000 } 4001 4002 static struct blk_mq_hw_ctx * 4003 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 4004 int node) 4005 { 4006 struct blk_mq_hw_ctx *hctx; 4007 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 4008 4009 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 4010 if (!hctx) 4011 goto fail_alloc_hctx; 4012 4013 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 4014 goto free_hctx; 4015 4016 atomic_set(&hctx->nr_active, 0); 4017 if (node == NUMA_NO_NODE) 4018 node = set->numa_node; 4019 hctx->numa_node = node; 4020 4021 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 4022 spin_lock_init(&hctx->lock); 4023 INIT_LIST_HEAD(&hctx->dispatch); 4024 INIT_HLIST_NODE(&hctx->cpuhp_dead); 4025 INIT_HLIST_NODE(&hctx->cpuhp_online); 4026 hctx->queue = q; 4027 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 4028 4029 INIT_LIST_HEAD(&hctx->hctx_list); 4030 4031 /* 4032 * Allocate space for all possible cpus to avoid allocation at 4033 * runtime 4034 */ 4035 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 4036 gfp, node); 4037 if (!hctx->ctxs) 4038 goto free_cpumask; 4039 4040 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 4041 gfp, node, false, false)) 4042 goto free_ctxs; 4043 hctx->nr_ctx = 0; 4044 4045 spin_lock_init(&hctx->dispatch_wait_lock); 4046 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 4047 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 4048 4049 blk_mq_hctx_kobj_init(hctx); 4050 4051 return hctx; 4052 4053 free_ctxs: 4054 kfree(hctx->ctxs); 4055 free_cpumask: 4056 free_cpumask_var(hctx->cpumask); 4057 free_hctx: 4058 kfree(hctx); 4059 fail_alloc_hctx: 4060 return NULL; 4061 } 4062 4063 static void blk_mq_init_cpu_queues(struct request_queue *q, 4064 unsigned int nr_hw_queues) 4065 { 4066 struct blk_mq_tag_set *set = q->tag_set; 4067 unsigned int i, j; 4068 4069 for_each_possible_cpu(i) { 4070 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 4071 struct blk_mq_hw_ctx *hctx; 4072 int k; 4073 4074 __ctx->cpu = i; 4075 spin_lock_init(&__ctx->lock); 4076 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 4077 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 4078 4079 __ctx->queue = q; 4080 4081 /* 4082 * Set local node, IFF we have more than one hw queue. If 4083 * not, we remain on the home node of the device 4084 */ 4085 for (j = 0; j < set->nr_maps; j++) { 4086 hctx = blk_mq_map_queue_type(q, j, i); 4087 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 4088 hctx->numa_node = cpu_to_node(i); 4089 } 4090 } 4091 } 4092 4093 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 4094 unsigned int hctx_idx, 4095 unsigned int depth) 4096 { 4097 struct blk_mq_tags *tags; 4098 int ret; 4099 4100 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 4101 if (!tags) 4102 return NULL; 4103 4104 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 4105 if (ret) { 4106 blk_mq_free_rq_map(set, tags); 4107 return NULL; 4108 } 4109 4110 return tags; 4111 } 4112 4113 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 4114 int hctx_idx) 4115 { 4116 if (blk_mq_is_shared_tags(set->flags)) { 4117 set->tags[hctx_idx] = set->shared_tags; 4118 4119 return true; 4120 } 4121 4122 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 4123 set->queue_depth); 4124 4125 return set->tags[hctx_idx]; 4126 } 4127 4128 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4129 struct blk_mq_tags *tags, 4130 unsigned int hctx_idx) 4131 { 4132 if (tags) { 4133 blk_mq_free_rqs(set, tags, hctx_idx); 4134 blk_mq_free_rq_map(set, tags); 4135 } 4136 } 4137 4138 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4139 unsigned int hctx_idx) 4140 { 4141 if (!blk_mq_is_shared_tags(set->flags)) 4142 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 4143 4144 set->tags[hctx_idx] = NULL; 4145 } 4146 4147 static void blk_mq_map_swqueue(struct request_queue *q) 4148 { 4149 unsigned int j, hctx_idx; 4150 unsigned long i; 4151 struct blk_mq_hw_ctx *hctx; 4152 struct blk_mq_ctx *ctx; 4153 struct blk_mq_tag_set *set = q->tag_set; 4154 4155 queue_for_each_hw_ctx(q, hctx, i) { 4156 cpumask_clear(hctx->cpumask); 4157 hctx->nr_ctx = 0; 4158 hctx->dispatch_from = NULL; 4159 } 4160 4161 /* 4162 * Map software to hardware queues. 4163 * 4164 * If the cpu isn't present, the cpu is mapped to first hctx. 4165 */ 4166 for_each_possible_cpu(i) { 4167 4168 ctx = per_cpu_ptr(q->queue_ctx, i); 4169 for (j = 0; j < set->nr_maps; j++) { 4170 if (!set->map[j].nr_queues) { 4171 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4172 HCTX_TYPE_DEFAULT, i); 4173 continue; 4174 } 4175 hctx_idx = set->map[j].mq_map[i]; 4176 /* unmapped hw queue can be remapped after CPU topo changed */ 4177 if (!set->tags[hctx_idx] && 4178 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 4179 /* 4180 * If tags initialization fail for some hctx, 4181 * that hctx won't be brought online. In this 4182 * case, remap the current ctx to hctx[0] which 4183 * is guaranteed to always have tags allocated 4184 */ 4185 set->map[j].mq_map[i] = 0; 4186 } 4187 4188 hctx = blk_mq_map_queue_type(q, j, i); 4189 ctx->hctxs[j] = hctx; 4190 /* 4191 * If the CPU is already set in the mask, then we've 4192 * mapped this one already. This can happen if 4193 * devices share queues across queue maps. 4194 */ 4195 if (cpumask_test_cpu(i, hctx->cpumask)) 4196 continue; 4197 4198 cpumask_set_cpu(i, hctx->cpumask); 4199 hctx->type = j; 4200 ctx->index_hw[hctx->type] = hctx->nr_ctx; 4201 hctx->ctxs[hctx->nr_ctx++] = ctx; 4202 4203 /* 4204 * If the nr_ctx type overflows, we have exceeded the 4205 * amount of sw queues we can support. 4206 */ 4207 BUG_ON(!hctx->nr_ctx); 4208 } 4209 4210 for (; j < HCTX_MAX_TYPES; j++) 4211 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4212 HCTX_TYPE_DEFAULT, i); 4213 } 4214 4215 queue_for_each_hw_ctx(q, hctx, i) { 4216 int cpu; 4217 4218 /* 4219 * If no software queues are mapped to this hardware queue, 4220 * disable it and free the request entries. 4221 */ 4222 if (!hctx->nr_ctx) { 4223 /* Never unmap queue 0. We need it as a 4224 * fallback in case of a new remap fails 4225 * allocation 4226 */ 4227 if (i) 4228 __blk_mq_free_map_and_rqs(set, i); 4229 4230 hctx->tags = NULL; 4231 continue; 4232 } 4233 4234 hctx->tags = set->tags[i]; 4235 WARN_ON(!hctx->tags); 4236 4237 /* 4238 * Set the map size to the number of mapped software queues. 4239 * This is more accurate and more efficient than looping 4240 * over all possibly mapped software queues. 4241 */ 4242 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 4243 4244 /* 4245 * Rule out isolated CPUs from hctx->cpumask to avoid 4246 * running block kworker on isolated CPUs 4247 */ 4248 for_each_cpu(cpu, hctx->cpumask) { 4249 if (cpu_is_isolated(cpu)) 4250 cpumask_clear_cpu(cpu, hctx->cpumask); 4251 } 4252 4253 /* 4254 * Initialize batch roundrobin counts 4255 */ 4256 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 4257 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 4258 } 4259 } 4260 4261 /* 4262 * Caller needs to ensure that we're either frozen/quiesced, or that 4263 * the queue isn't live yet. 4264 */ 4265 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 4266 { 4267 struct blk_mq_hw_ctx *hctx; 4268 unsigned long i; 4269 4270 queue_for_each_hw_ctx(q, hctx, i) { 4271 if (shared) { 4272 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4273 } else { 4274 blk_mq_tag_idle(hctx); 4275 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4276 } 4277 } 4278 } 4279 4280 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4281 bool shared) 4282 { 4283 struct request_queue *q; 4284 unsigned int memflags; 4285 4286 lockdep_assert_held(&set->tag_list_lock); 4287 4288 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4289 memflags = blk_mq_freeze_queue(q); 4290 queue_set_hctx_shared(q, shared); 4291 blk_mq_unfreeze_queue(q, memflags); 4292 } 4293 } 4294 4295 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4296 { 4297 struct blk_mq_tag_set *set = q->tag_set; 4298 4299 mutex_lock(&set->tag_list_lock); 4300 list_del(&q->tag_set_list); 4301 if (list_is_singular(&set->tag_list)) { 4302 /* just transitioned to unshared */ 4303 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4304 /* update existing queue */ 4305 blk_mq_update_tag_set_shared(set, false); 4306 } 4307 mutex_unlock(&set->tag_list_lock); 4308 INIT_LIST_HEAD(&q->tag_set_list); 4309 } 4310 4311 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4312 struct request_queue *q) 4313 { 4314 mutex_lock(&set->tag_list_lock); 4315 4316 /* 4317 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4318 */ 4319 if (!list_empty(&set->tag_list) && 4320 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4321 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4322 /* update existing queue */ 4323 blk_mq_update_tag_set_shared(set, true); 4324 } 4325 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4326 queue_set_hctx_shared(q, true); 4327 list_add_tail(&q->tag_set_list, &set->tag_list); 4328 4329 mutex_unlock(&set->tag_list_lock); 4330 } 4331 4332 /* All allocations will be freed in release handler of q->mq_kobj */ 4333 static int blk_mq_alloc_ctxs(struct request_queue *q) 4334 { 4335 struct blk_mq_ctxs *ctxs; 4336 int cpu; 4337 4338 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4339 if (!ctxs) 4340 return -ENOMEM; 4341 4342 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4343 if (!ctxs->queue_ctx) 4344 goto fail; 4345 4346 for_each_possible_cpu(cpu) { 4347 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4348 ctx->ctxs = ctxs; 4349 } 4350 4351 q->mq_kobj = &ctxs->kobj; 4352 q->queue_ctx = ctxs->queue_ctx; 4353 4354 return 0; 4355 fail: 4356 kfree(ctxs); 4357 return -ENOMEM; 4358 } 4359 4360 /* 4361 * It is the actual release handler for mq, but we do it from 4362 * request queue's release handler for avoiding use-after-free 4363 * and headache because q->mq_kobj shouldn't have been introduced, 4364 * but we can't group ctx/kctx kobj without it. 4365 */ 4366 void blk_mq_release(struct request_queue *q) 4367 { 4368 struct blk_mq_hw_ctx *hctx, *next; 4369 unsigned long i; 4370 4371 queue_for_each_hw_ctx(q, hctx, i) 4372 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4373 4374 /* all hctx are in .unused_hctx_list now */ 4375 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4376 list_del_init(&hctx->hctx_list); 4377 kobject_put(&hctx->kobj); 4378 } 4379 4380 kfree(q->queue_hw_ctx); 4381 4382 /* 4383 * release .mq_kobj and sw queue's kobject now because 4384 * both share lifetime with request queue. 4385 */ 4386 blk_mq_sysfs_deinit(q); 4387 } 4388 4389 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4390 struct queue_limits *lim, void *queuedata) 4391 { 4392 struct queue_limits default_lim = { }; 4393 struct request_queue *q; 4394 int ret; 4395 4396 if (!lim) 4397 lim = &default_lim; 4398 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT; 4399 if (set->nr_maps > HCTX_TYPE_POLL) 4400 lim->features |= BLK_FEAT_POLL; 4401 4402 q = blk_alloc_queue(lim, set->numa_node); 4403 if (IS_ERR(q)) 4404 return q; 4405 q->queuedata = queuedata; 4406 ret = blk_mq_init_allocated_queue(set, q); 4407 if (ret) { 4408 blk_put_queue(q); 4409 return ERR_PTR(ret); 4410 } 4411 return q; 4412 } 4413 EXPORT_SYMBOL(blk_mq_alloc_queue); 4414 4415 /** 4416 * blk_mq_destroy_queue - shutdown a request queue 4417 * @q: request queue to shutdown 4418 * 4419 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4420 * requests will be failed with -ENODEV. The caller is responsible for dropping 4421 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4422 * 4423 * Context: can sleep 4424 */ 4425 void blk_mq_destroy_queue(struct request_queue *q) 4426 { 4427 WARN_ON_ONCE(!queue_is_mq(q)); 4428 WARN_ON_ONCE(blk_queue_registered(q)); 4429 4430 might_sleep(); 4431 4432 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4433 blk_queue_start_drain(q); 4434 blk_mq_freeze_queue_wait(q); 4435 4436 blk_sync_queue(q); 4437 blk_mq_cancel_work_sync(q); 4438 blk_mq_exit_queue(q); 4439 } 4440 EXPORT_SYMBOL(blk_mq_destroy_queue); 4441 4442 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4443 struct queue_limits *lim, void *queuedata, 4444 struct lock_class_key *lkclass) 4445 { 4446 struct request_queue *q; 4447 struct gendisk *disk; 4448 4449 q = blk_mq_alloc_queue(set, lim, queuedata); 4450 if (IS_ERR(q)) 4451 return ERR_CAST(q); 4452 4453 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4454 if (!disk) { 4455 blk_mq_destroy_queue(q); 4456 blk_put_queue(q); 4457 return ERR_PTR(-ENOMEM); 4458 } 4459 set_bit(GD_OWNS_QUEUE, &disk->state); 4460 return disk; 4461 } 4462 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4463 4464 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4465 struct lock_class_key *lkclass) 4466 { 4467 struct gendisk *disk; 4468 4469 if (!blk_get_queue(q)) 4470 return NULL; 4471 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4472 if (!disk) 4473 blk_put_queue(q); 4474 return disk; 4475 } 4476 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4477 4478 /* 4479 * Only hctx removed from cpuhp list can be reused 4480 */ 4481 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx) 4482 { 4483 return hlist_unhashed(&hctx->cpuhp_online) && 4484 hlist_unhashed(&hctx->cpuhp_dead); 4485 } 4486 4487 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4488 struct blk_mq_tag_set *set, struct request_queue *q, 4489 int hctx_idx, int node) 4490 { 4491 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4492 4493 /* reuse dead hctx first */ 4494 spin_lock(&q->unused_hctx_lock); 4495 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4496 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) { 4497 hctx = tmp; 4498 break; 4499 } 4500 } 4501 if (hctx) 4502 list_del_init(&hctx->hctx_list); 4503 spin_unlock(&q->unused_hctx_lock); 4504 4505 if (!hctx) 4506 hctx = blk_mq_alloc_hctx(q, set, node); 4507 if (!hctx) 4508 goto fail; 4509 4510 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4511 goto free_hctx; 4512 4513 return hctx; 4514 4515 free_hctx: 4516 kobject_put(&hctx->kobj); 4517 fail: 4518 return NULL; 4519 } 4520 4521 static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4522 struct request_queue *q) 4523 { 4524 int i, j, end; 4525 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 4526 4527 if (q->nr_hw_queues < set->nr_hw_queues) { 4528 struct blk_mq_hw_ctx **new_hctxs; 4529 4530 new_hctxs = kcalloc_node(set->nr_hw_queues, 4531 sizeof(*new_hctxs), GFP_KERNEL, 4532 set->numa_node); 4533 if (!new_hctxs) 4534 return; 4535 if (hctxs) 4536 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 4537 sizeof(*hctxs)); 4538 rcu_assign_pointer(q->queue_hw_ctx, new_hctxs); 4539 /* 4540 * Make sure reading the old queue_hw_ctx from other 4541 * context concurrently won't trigger uaf. 4542 */ 4543 synchronize_rcu_expedited(); 4544 kfree(hctxs); 4545 hctxs = new_hctxs; 4546 } 4547 4548 for (i = 0; i < set->nr_hw_queues; i++) { 4549 int old_node; 4550 int node = blk_mq_get_hctx_node(set, i); 4551 struct blk_mq_hw_ctx *old_hctx = hctxs[i]; 4552 4553 if (old_hctx) { 4554 old_node = old_hctx->numa_node; 4555 blk_mq_exit_hctx(q, set, old_hctx, i); 4556 } 4557 4558 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i, node); 4559 if (!hctxs[i]) { 4560 if (!old_hctx) 4561 break; 4562 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4563 node, old_node); 4564 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i, 4565 old_node); 4566 WARN_ON_ONCE(!hctxs[i]); 4567 } 4568 } 4569 /* 4570 * Increasing nr_hw_queues fails. Free the newly allocated 4571 * hctxs and keep the previous q->nr_hw_queues. 4572 */ 4573 if (i != set->nr_hw_queues) { 4574 j = q->nr_hw_queues; 4575 end = i; 4576 } else { 4577 j = i; 4578 end = q->nr_hw_queues; 4579 q->nr_hw_queues = set->nr_hw_queues; 4580 } 4581 4582 for (; j < end; j++) { 4583 struct blk_mq_hw_ctx *hctx = hctxs[j]; 4584 4585 if (hctx) { 4586 blk_mq_exit_hctx(q, set, hctx, j); 4587 hctxs[j] = NULL; 4588 } 4589 } 4590 } 4591 4592 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4593 struct request_queue *q) 4594 { 4595 __blk_mq_realloc_hw_ctxs(set, q); 4596 4597 /* unregister cpuhp callbacks for exited hctxs */ 4598 blk_mq_remove_hw_queues_cpuhp(q); 4599 4600 /* register cpuhp for new initialized hctxs */ 4601 blk_mq_add_hw_queues_cpuhp(q); 4602 } 4603 4604 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4605 struct request_queue *q) 4606 { 4607 /* mark the queue as mq asap */ 4608 q->mq_ops = set->ops; 4609 4610 /* 4611 * ->tag_set has to be setup before initialize hctx, which cpuphp 4612 * handler needs it for checking queue mapping 4613 */ 4614 q->tag_set = set; 4615 4616 if (blk_mq_alloc_ctxs(q)) 4617 goto err_exit; 4618 4619 /* init q->mq_kobj and sw queues' kobjects */ 4620 blk_mq_sysfs_init(q); 4621 4622 INIT_LIST_HEAD(&q->unused_hctx_list); 4623 spin_lock_init(&q->unused_hctx_lock); 4624 4625 blk_mq_realloc_hw_ctxs(set, q); 4626 if (!q->nr_hw_queues) 4627 goto err_hctxs; 4628 4629 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4630 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4631 4632 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4633 4634 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4635 INIT_LIST_HEAD(&q->flush_list); 4636 INIT_LIST_HEAD(&q->requeue_list); 4637 spin_lock_init(&q->requeue_lock); 4638 4639 q->nr_requests = set->queue_depth; 4640 4641 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4642 blk_mq_map_swqueue(q); 4643 blk_mq_add_queue_tag_set(set, q); 4644 return 0; 4645 4646 err_hctxs: 4647 blk_mq_release(q); 4648 err_exit: 4649 q->mq_ops = NULL; 4650 return -ENOMEM; 4651 } 4652 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4653 4654 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4655 void blk_mq_exit_queue(struct request_queue *q) 4656 { 4657 struct blk_mq_tag_set *set = q->tag_set; 4658 4659 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4660 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4661 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4662 blk_mq_del_queue_tag_set(q); 4663 } 4664 4665 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4666 { 4667 int i; 4668 4669 if (blk_mq_is_shared_tags(set->flags)) { 4670 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4671 BLK_MQ_NO_HCTX_IDX, 4672 set->queue_depth); 4673 if (!set->shared_tags) 4674 return -ENOMEM; 4675 } 4676 4677 for (i = 0; i < set->nr_hw_queues; i++) { 4678 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4679 goto out_unwind; 4680 cond_resched(); 4681 } 4682 4683 return 0; 4684 4685 out_unwind: 4686 while (--i >= 0) 4687 __blk_mq_free_map_and_rqs(set, i); 4688 4689 if (blk_mq_is_shared_tags(set->flags)) { 4690 blk_mq_free_map_and_rqs(set, set->shared_tags, 4691 BLK_MQ_NO_HCTX_IDX); 4692 } 4693 4694 return -ENOMEM; 4695 } 4696 4697 /* 4698 * Allocate the request maps associated with this tag_set. Note that this 4699 * may reduce the depth asked for, if memory is tight. set->queue_depth 4700 * will be updated to reflect the allocated depth. 4701 */ 4702 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4703 { 4704 unsigned int depth; 4705 int err; 4706 4707 depth = set->queue_depth; 4708 do { 4709 err = __blk_mq_alloc_rq_maps(set); 4710 if (!err) 4711 break; 4712 4713 set->queue_depth >>= 1; 4714 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4715 err = -ENOMEM; 4716 break; 4717 } 4718 } while (set->queue_depth); 4719 4720 if (!set->queue_depth || err) { 4721 pr_err("blk-mq: failed to allocate request map\n"); 4722 return -ENOMEM; 4723 } 4724 4725 if (depth != set->queue_depth) 4726 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4727 depth, set->queue_depth); 4728 4729 return 0; 4730 } 4731 4732 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4733 { 4734 /* 4735 * blk_mq_map_queues() and multiple .map_queues() implementations 4736 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4737 * number of hardware queues. 4738 */ 4739 if (set->nr_maps == 1) 4740 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4741 4742 if (set->ops->map_queues) { 4743 int i; 4744 4745 /* 4746 * transport .map_queues is usually done in the following 4747 * way: 4748 * 4749 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4750 * mask = get_cpu_mask(queue) 4751 * for_each_cpu(cpu, mask) 4752 * set->map[x].mq_map[cpu] = queue; 4753 * } 4754 * 4755 * When we need to remap, the table has to be cleared for 4756 * killing stale mapping since one CPU may not be mapped 4757 * to any hw queue. 4758 */ 4759 for (i = 0; i < set->nr_maps; i++) 4760 blk_mq_clear_mq_map(&set->map[i]); 4761 4762 set->ops->map_queues(set); 4763 } else { 4764 BUG_ON(set->nr_maps > 1); 4765 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4766 } 4767 } 4768 4769 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4770 int new_nr_hw_queues) 4771 { 4772 struct blk_mq_tags **new_tags; 4773 int i; 4774 4775 if (set->nr_hw_queues >= new_nr_hw_queues) 4776 goto done; 4777 4778 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4779 GFP_KERNEL, set->numa_node); 4780 if (!new_tags) 4781 return -ENOMEM; 4782 4783 if (set->tags) 4784 memcpy(new_tags, set->tags, set->nr_hw_queues * 4785 sizeof(*set->tags)); 4786 kfree(set->tags); 4787 set->tags = new_tags; 4788 4789 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4790 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4791 while (--i >= set->nr_hw_queues) 4792 __blk_mq_free_map_and_rqs(set, i); 4793 return -ENOMEM; 4794 } 4795 cond_resched(); 4796 } 4797 4798 done: 4799 set->nr_hw_queues = new_nr_hw_queues; 4800 return 0; 4801 } 4802 4803 /* 4804 * Alloc a tag set to be associated with one or more request queues. 4805 * May fail with EINVAL for various error conditions. May adjust the 4806 * requested depth down, if it's too large. In that case, the set 4807 * value will be stored in set->queue_depth. 4808 */ 4809 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4810 { 4811 int i, ret; 4812 4813 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4814 4815 if (!set->nr_hw_queues) 4816 return -EINVAL; 4817 if (!set->queue_depth) 4818 return -EINVAL; 4819 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4820 return -EINVAL; 4821 4822 if (!set->ops->queue_rq) 4823 return -EINVAL; 4824 4825 if (!set->ops->get_budget ^ !set->ops->put_budget) 4826 return -EINVAL; 4827 4828 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4829 pr_info("blk-mq: reduced tag depth to %u\n", 4830 BLK_MQ_MAX_DEPTH); 4831 set->queue_depth = BLK_MQ_MAX_DEPTH; 4832 } 4833 4834 if (!set->nr_maps) 4835 set->nr_maps = 1; 4836 else if (set->nr_maps > HCTX_MAX_TYPES) 4837 return -EINVAL; 4838 4839 /* 4840 * If a crashdump is active, then we are potentially in a very 4841 * memory constrained environment. Limit us to 64 tags to prevent 4842 * using too much memory. 4843 */ 4844 if (is_kdump_kernel()) 4845 set->queue_depth = min(64U, set->queue_depth); 4846 4847 /* 4848 * There is no use for more h/w queues than cpus if we just have 4849 * a single map 4850 */ 4851 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4852 set->nr_hw_queues = nr_cpu_ids; 4853 4854 if (set->flags & BLK_MQ_F_BLOCKING) { 4855 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4856 if (!set->srcu) 4857 return -ENOMEM; 4858 ret = init_srcu_struct(set->srcu); 4859 if (ret) 4860 goto out_free_srcu; 4861 } 4862 ret = init_srcu_struct(&set->tags_srcu); 4863 if (ret) 4864 goto out_cleanup_srcu; 4865 4866 init_rwsem(&set->update_nr_hwq_lock); 4867 4868 ret = -ENOMEM; 4869 set->tags = kcalloc_node(set->nr_hw_queues, 4870 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4871 set->numa_node); 4872 if (!set->tags) 4873 goto out_cleanup_tags_srcu; 4874 4875 for (i = 0; i < set->nr_maps; i++) { 4876 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4877 sizeof(set->map[i].mq_map[0]), 4878 GFP_KERNEL, set->numa_node); 4879 if (!set->map[i].mq_map) 4880 goto out_free_mq_map; 4881 set->map[i].nr_queues = set->nr_hw_queues; 4882 } 4883 4884 blk_mq_update_queue_map(set); 4885 4886 ret = blk_mq_alloc_set_map_and_rqs(set); 4887 if (ret) 4888 goto out_free_mq_map; 4889 4890 mutex_init(&set->tag_list_lock); 4891 INIT_LIST_HEAD(&set->tag_list); 4892 4893 return 0; 4894 4895 out_free_mq_map: 4896 for (i = 0; i < set->nr_maps; i++) { 4897 kfree(set->map[i].mq_map); 4898 set->map[i].mq_map = NULL; 4899 } 4900 kfree(set->tags); 4901 set->tags = NULL; 4902 out_cleanup_tags_srcu: 4903 cleanup_srcu_struct(&set->tags_srcu); 4904 out_cleanup_srcu: 4905 if (set->flags & BLK_MQ_F_BLOCKING) 4906 cleanup_srcu_struct(set->srcu); 4907 out_free_srcu: 4908 if (set->flags & BLK_MQ_F_BLOCKING) 4909 kfree(set->srcu); 4910 return ret; 4911 } 4912 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4913 4914 /* allocate and initialize a tagset for a simple single-queue device */ 4915 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4916 const struct blk_mq_ops *ops, unsigned int queue_depth, 4917 unsigned int set_flags) 4918 { 4919 memset(set, 0, sizeof(*set)); 4920 set->ops = ops; 4921 set->nr_hw_queues = 1; 4922 set->nr_maps = 1; 4923 set->queue_depth = queue_depth; 4924 set->numa_node = NUMA_NO_NODE; 4925 set->flags = set_flags; 4926 return blk_mq_alloc_tag_set(set); 4927 } 4928 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4929 4930 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4931 { 4932 int i, j; 4933 4934 for (i = 0; i < set->nr_hw_queues; i++) 4935 __blk_mq_free_map_and_rqs(set, i); 4936 4937 if (blk_mq_is_shared_tags(set->flags)) { 4938 blk_mq_free_map_and_rqs(set, set->shared_tags, 4939 BLK_MQ_NO_HCTX_IDX); 4940 } 4941 4942 for (j = 0; j < set->nr_maps; j++) { 4943 kfree(set->map[j].mq_map); 4944 set->map[j].mq_map = NULL; 4945 } 4946 4947 kfree(set->tags); 4948 set->tags = NULL; 4949 4950 srcu_barrier(&set->tags_srcu); 4951 cleanup_srcu_struct(&set->tags_srcu); 4952 if (set->flags & BLK_MQ_F_BLOCKING) { 4953 cleanup_srcu_struct(set->srcu); 4954 kfree(set->srcu); 4955 } 4956 } 4957 EXPORT_SYMBOL(blk_mq_free_tag_set); 4958 4959 struct elevator_tags *blk_mq_update_nr_requests(struct request_queue *q, 4960 struct elevator_tags *et, 4961 unsigned int nr) 4962 { 4963 struct blk_mq_tag_set *set = q->tag_set; 4964 struct elevator_tags *old_et = NULL; 4965 struct blk_mq_hw_ctx *hctx; 4966 unsigned long i; 4967 4968 blk_mq_quiesce_queue(q); 4969 4970 if (blk_mq_is_shared_tags(set->flags)) { 4971 /* 4972 * Shared tags, for sched tags, we allocate max initially hence 4973 * tags can't grow, see blk_mq_alloc_sched_tags(). 4974 */ 4975 if (q->elevator) 4976 blk_mq_tag_update_sched_shared_tags(q, nr); 4977 else 4978 blk_mq_tag_resize_shared_tags(set, nr); 4979 } else if (!q->elevator) { 4980 /* 4981 * Non-shared hardware tags, nr is already checked from 4982 * queue_requests_store() and tags can't grow. 4983 */ 4984 queue_for_each_hw_ctx(q, hctx, i) { 4985 if (!hctx->tags) 4986 continue; 4987 sbitmap_queue_resize(&hctx->tags->bitmap_tags, 4988 nr - hctx->tags->nr_reserved_tags); 4989 } 4990 } else if (nr <= q->elevator->et->nr_requests) { 4991 /* Non-shared sched tags, and tags don't grow. */ 4992 queue_for_each_hw_ctx(q, hctx, i) { 4993 if (!hctx->sched_tags) 4994 continue; 4995 sbitmap_queue_resize(&hctx->sched_tags->bitmap_tags, 4996 nr - hctx->sched_tags->nr_reserved_tags); 4997 } 4998 } else { 4999 /* Non-shared sched tags, and tags grow */ 5000 queue_for_each_hw_ctx(q, hctx, i) 5001 hctx->sched_tags = et->tags[i]; 5002 old_et = q->elevator->et; 5003 q->elevator->et = et; 5004 } 5005 5006 q->nr_requests = nr; 5007 if (q->elevator && q->elevator->type->ops.depth_updated) 5008 q->elevator->type->ops.depth_updated(q); 5009 5010 blk_mq_unquiesce_queue(q); 5011 return old_et; 5012 } 5013 5014 /* 5015 * Switch back to the elevator type stored in the xarray. 5016 */ 5017 static void blk_mq_elv_switch_back(struct request_queue *q, 5018 struct xarray *elv_tbl) 5019 { 5020 struct elv_change_ctx *ctx = xa_load(elv_tbl, q->id); 5021 5022 if (WARN_ON_ONCE(!ctx)) 5023 return; 5024 5025 /* The elv_update_nr_hw_queues unfreezes the queue. */ 5026 elv_update_nr_hw_queues(q, ctx); 5027 5028 /* Drop the reference acquired in blk_mq_elv_switch_none. */ 5029 if (ctx->type) 5030 elevator_put(ctx->type); 5031 } 5032 5033 /* 5034 * Stores elevator name and type in ctx and set current elevator to none. 5035 */ 5036 static int blk_mq_elv_switch_none(struct request_queue *q, 5037 struct xarray *elv_tbl) 5038 { 5039 struct elv_change_ctx *ctx; 5040 5041 lockdep_assert_held_write(&q->tag_set->update_nr_hwq_lock); 5042 5043 /* 5044 * Accessing q->elevator without holding q->elevator_lock is safe here 5045 * because we're called from nr_hw_queue update which is protected by 5046 * set->update_nr_hwq_lock in the writer context. So, scheduler update/ 5047 * switch code (which acquires the same lock in the reader context) 5048 * can't run concurrently. 5049 */ 5050 if (q->elevator) { 5051 ctx = xa_load(elv_tbl, q->id); 5052 if (WARN_ON_ONCE(!ctx)) 5053 return -ENOENT; 5054 5055 ctx->name = q->elevator->type->elevator_name; 5056 5057 /* 5058 * Before we switch elevator to 'none', take a reference to 5059 * the elevator module so that while nr_hw_queue update is 5060 * running, no one can remove elevator module. We'd put the 5061 * reference to elevator module later when we switch back 5062 * elevator. 5063 */ 5064 __elevator_get(q->elevator->type); 5065 5066 /* 5067 * Store elevator type so that we can release the reference 5068 * taken above later. 5069 */ 5070 ctx->type = q->elevator->type; 5071 elevator_set_none(q); 5072 } 5073 return 0; 5074 } 5075 5076 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 5077 int nr_hw_queues) 5078 { 5079 struct request_queue *q; 5080 int prev_nr_hw_queues = set->nr_hw_queues; 5081 unsigned int memflags; 5082 int i; 5083 struct xarray elv_tbl; 5084 bool queues_frozen = false; 5085 5086 lockdep_assert_held(&set->tag_list_lock); 5087 5088 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 5089 nr_hw_queues = nr_cpu_ids; 5090 if (nr_hw_queues < 1) 5091 return; 5092 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 5093 return; 5094 5095 memflags = memalloc_noio_save(); 5096 5097 xa_init(&elv_tbl); 5098 if (blk_mq_alloc_sched_ctx_batch(&elv_tbl, set) < 0) 5099 goto out_free_ctx; 5100 5101 if (blk_mq_alloc_sched_res_batch(&elv_tbl, set, nr_hw_queues) < 0) 5102 goto out_free_ctx; 5103 5104 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5105 blk_mq_debugfs_unregister_hctxs(q); 5106 blk_mq_sysfs_unregister_hctxs(q); 5107 } 5108 5109 /* 5110 * Switch IO scheduler to 'none', cleaning up the data associated 5111 * with the previous scheduler. We will switch back once we are done 5112 * updating the new sw to hw queue mappings. 5113 */ 5114 list_for_each_entry(q, &set->tag_list, tag_set_list) 5115 if (blk_mq_elv_switch_none(q, &elv_tbl)) 5116 goto switch_back; 5117 5118 list_for_each_entry(q, &set->tag_list, tag_set_list) 5119 blk_mq_freeze_queue_nomemsave(q); 5120 queues_frozen = true; 5121 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 5122 goto switch_back; 5123 5124 fallback: 5125 blk_mq_update_queue_map(set); 5126 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5127 __blk_mq_realloc_hw_ctxs(set, q); 5128 5129 if (q->nr_hw_queues != set->nr_hw_queues) { 5130 int i = prev_nr_hw_queues; 5131 5132 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 5133 nr_hw_queues, prev_nr_hw_queues); 5134 for (; i < set->nr_hw_queues; i++) 5135 __blk_mq_free_map_and_rqs(set, i); 5136 5137 set->nr_hw_queues = prev_nr_hw_queues; 5138 goto fallback; 5139 } 5140 blk_mq_map_swqueue(q); 5141 } 5142 switch_back: 5143 /* The blk_mq_elv_switch_back unfreezes queue for us. */ 5144 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5145 /* switch_back expects queue to be frozen */ 5146 if (!queues_frozen) 5147 blk_mq_freeze_queue_nomemsave(q); 5148 blk_mq_elv_switch_back(q, &elv_tbl); 5149 } 5150 5151 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5152 blk_mq_sysfs_register_hctxs(q); 5153 blk_mq_debugfs_register_hctxs(q); 5154 5155 blk_mq_remove_hw_queues_cpuhp(q); 5156 blk_mq_add_hw_queues_cpuhp(q); 5157 } 5158 5159 out_free_ctx: 5160 blk_mq_free_sched_ctx_batch(&elv_tbl); 5161 xa_destroy(&elv_tbl); 5162 memalloc_noio_restore(memflags); 5163 5164 /* Free the excess tags when nr_hw_queues shrink. */ 5165 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 5166 __blk_mq_free_map_and_rqs(set, i); 5167 } 5168 5169 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 5170 { 5171 down_write(&set->update_nr_hwq_lock); 5172 mutex_lock(&set->tag_list_lock); 5173 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 5174 mutex_unlock(&set->tag_list_lock); 5175 up_write(&set->update_nr_hwq_lock); 5176 } 5177 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 5178 5179 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 5180 struct io_comp_batch *iob, unsigned int flags) 5181 { 5182 long state = get_current_state(); 5183 int ret; 5184 5185 do { 5186 ret = q->mq_ops->poll(hctx, iob); 5187 if (ret > 0) { 5188 __set_current_state(TASK_RUNNING); 5189 return ret; 5190 } 5191 5192 if (signal_pending_state(state, current)) 5193 __set_current_state(TASK_RUNNING); 5194 if (task_is_running(current)) 5195 return 1; 5196 5197 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 5198 break; 5199 cpu_relax(); 5200 } while (!need_resched()); 5201 5202 __set_current_state(TASK_RUNNING); 5203 return 0; 5204 } 5205 5206 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 5207 struct io_comp_batch *iob, unsigned int flags) 5208 { 5209 if (!blk_mq_can_poll(q)) 5210 return 0; 5211 return blk_hctx_poll(q, q->queue_hw_ctx[cookie], iob, flags); 5212 } 5213 5214 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 5215 unsigned int poll_flags) 5216 { 5217 struct request_queue *q = rq->q; 5218 int ret; 5219 5220 if (!blk_rq_is_poll(rq)) 5221 return 0; 5222 if (!percpu_ref_tryget(&q->q_usage_counter)) 5223 return 0; 5224 5225 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 5226 blk_queue_exit(q); 5227 5228 return ret; 5229 } 5230 EXPORT_SYMBOL_GPL(blk_rq_poll); 5231 5232 unsigned int blk_mq_rq_cpu(struct request *rq) 5233 { 5234 return rq->mq_ctx->cpu; 5235 } 5236 EXPORT_SYMBOL(blk_mq_rq_cpu); 5237 5238 void blk_mq_cancel_work_sync(struct request_queue *q) 5239 { 5240 struct blk_mq_hw_ctx *hctx; 5241 unsigned long i; 5242 5243 cancel_delayed_work_sync(&q->requeue_work); 5244 5245 queue_for_each_hw_ctx(q, hctx, i) 5246 cancel_delayed_work_sync(&hctx->run_work); 5247 } 5248 5249 static int __init blk_mq_init(void) 5250 { 5251 int i; 5252 5253 for_each_possible_cpu(i) 5254 init_llist_head(&per_cpu(blk_cpu_done, i)); 5255 for_each_possible_cpu(i) 5256 INIT_CSD(&per_cpu(blk_cpu_csd, i), 5257 __blk_mq_complete_request_remote, NULL); 5258 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 5259 5260 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 5261 "block/softirq:dead", NULL, 5262 blk_softirq_cpu_dead); 5263 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 5264 blk_mq_hctx_notify_dead); 5265 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 5266 blk_mq_hctx_notify_online, 5267 blk_mq_hctx_notify_offline); 5268 return 0; 5269 } 5270 subsys_initcall(blk_mq_init); 5271