1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 #include <linux/sched/isolation.h>
33
34 #include <trace/events/block.h>
35
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-pm.h"
41 #include "blk-stat.h"
42 #include "blk-mq-sched.h"
43 #include "blk-rq-qos.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
48
49 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
50 static void blk_mq_request_bypass_insert(struct request *rq,
51 blk_insert_t flags);
52 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
53 struct list_head *list);
54 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
55 struct io_comp_batch *iob, unsigned int flags);
56
57 /*
58 * Check if any of the ctx, dispatch list or elevator
59 * have pending work in this hardware queue.
60 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)61 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
62 {
63 return !list_empty_careful(&hctx->dispatch) ||
64 sbitmap_any_bit_set(&hctx->ctx_map) ||
65 blk_mq_sched_has_work(hctx);
66 }
67
68 /*
69 * Mark this ctx as having pending work in this hardware queue
70 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)71 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73 {
74 const int bit = ctx->index_hw[hctx->type];
75
76 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
77 sbitmap_set_bit(&hctx->ctx_map, bit);
78 }
79
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 sbitmap_clear_bit(&hctx->ctx_map, bit);
86 }
87
88 struct mq_inflight {
89 struct block_device *part;
90 unsigned int inflight[2];
91 };
92
blk_mq_check_in_driver(struct request * rq,void * priv)93 static bool blk_mq_check_in_driver(struct request *rq, void *priv)
94 {
95 struct mq_inflight *mi = priv;
96
97 if (rq->rq_flags & RQF_IO_STAT &&
98 (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
99 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
100 mi->inflight[rq_data_dir(rq)]++;
101
102 return true;
103 }
104
blk_mq_in_driver_rw(struct block_device * part,unsigned int inflight[2])105 void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2])
106 {
107 struct mq_inflight mi = { .part = part };
108
109 blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver,
110 &mi);
111 inflight[READ] = mi.inflight[READ];
112 inflight[WRITE] = mi.inflight[WRITE];
113 }
114
115 #ifdef CONFIG_LOCKDEP
blk_freeze_set_owner(struct request_queue * q,struct task_struct * owner)116 static bool blk_freeze_set_owner(struct request_queue *q,
117 struct task_struct *owner)
118 {
119 if (!owner)
120 return false;
121
122 if (!q->mq_freeze_depth) {
123 q->mq_freeze_owner = owner;
124 q->mq_freeze_owner_depth = 1;
125 q->mq_freeze_disk_dead = !q->disk ||
126 test_bit(GD_DEAD, &q->disk->state) ||
127 !blk_queue_registered(q);
128 q->mq_freeze_queue_dying = blk_queue_dying(q);
129 return true;
130 }
131
132 if (owner == q->mq_freeze_owner)
133 q->mq_freeze_owner_depth += 1;
134 return false;
135 }
136
137 /* verify the last unfreeze in owner context */
blk_unfreeze_check_owner(struct request_queue * q)138 static bool blk_unfreeze_check_owner(struct request_queue *q)
139 {
140 if (q->mq_freeze_owner != current)
141 return false;
142 if (--q->mq_freeze_owner_depth == 0) {
143 q->mq_freeze_owner = NULL;
144 return true;
145 }
146 return false;
147 }
148
149 #else
150
blk_freeze_set_owner(struct request_queue * q,struct task_struct * owner)151 static bool blk_freeze_set_owner(struct request_queue *q,
152 struct task_struct *owner)
153 {
154 return false;
155 }
156
blk_unfreeze_check_owner(struct request_queue * q)157 static bool blk_unfreeze_check_owner(struct request_queue *q)
158 {
159 return false;
160 }
161 #endif
162
__blk_freeze_queue_start(struct request_queue * q,struct task_struct * owner)163 bool __blk_freeze_queue_start(struct request_queue *q,
164 struct task_struct *owner)
165 {
166 bool freeze;
167
168 mutex_lock(&q->mq_freeze_lock);
169 freeze = blk_freeze_set_owner(q, owner);
170 if (++q->mq_freeze_depth == 1) {
171 percpu_ref_kill(&q->q_usage_counter);
172 mutex_unlock(&q->mq_freeze_lock);
173 if (queue_is_mq(q))
174 blk_mq_run_hw_queues(q, false);
175 } else {
176 mutex_unlock(&q->mq_freeze_lock);
177 }
178
179 return freeze;
180 }
181
blk_freeze_queue_start(struct request_queue * q)182 void blk_freeze_queue_start(struct request_queue *q)
183 {
184 if (__blk_freeze_queue_start(q, current))
185 blk_freeze_acquire_lock(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
188
blk_mq_freeze_queue_wait(struct request_queue * q)189 void blk_mq_freeze_queue_wait(struct request_queue *q)
190 {
191 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
192 }
193 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
194
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)195 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
196 unsigned long timeout)
197 {
198 return wait_event_timeout(q->mq_freeze_wq,
199 percpu_ref_is_zero(&q->q_usage_counter),
200 timeout);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
203
blk_mq_freeze_queue_nomemsave(struct request_queue * q)204 void blk_mq_freeze_queue_nomemsave(struct request_queue *q)
205 {
206 blk_freeze_queue_start(q);
207 blk_mq_freeze_queue_wait(q);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave);
210
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)211 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
212 {
213 bool unfreeze;
214
215 mutex_lock(&q->mq_freeze_lock);
216 if (force_atomic)
217 q->q_usage_counter.data->force_atomic = true;
218 q->mq_freeze_depth--;
219 WARN_ON_ONCE(q->mq_freeze_depth < 0);
220 if (!q->mq_freeze_depth) {
221 percpu_ref_resurrect(&q->q_usage_counter);
222 wake_up_all(&q->mq_freeze_wq);
223 }
224 unfreeze = blk_unfreeze_check_owner(q);
225 mutex_unlock(&q->mq_freeze_lock);
226
227 return unfreeze;
228 }
229
blk_mq_unfreeze_queue_nomemrestore(struct request_queue * q)230 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q)
231 {
232 if (__blk_mq_unfreeze_queue(q, false))
233 blk_unfreeze_release_lock(q);
234 }
235 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore);
236
237 /*
238 * non_owner variant of blk_freeze_queue_start
239 *
240 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
241 * by the same task. This is fragile and should not be used if at all
242 * possible.
243 */
blk_freeze_queue_start_non_owner(struct request_queue * q)244 void blk_freeze_queue_start_non_owner(struct request_queue *q)
245 {
246 __blk_freeze_queue_start(q, NULL);
247 }
248 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
249
250 /* non_owner variant of blk_mq_unfreeze_queue */
blk_mq_unfreeze_queue_non_owner(struct request_queue * q)251 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
252 {
253 __blk_mq_unfreeze_queue(q, false);
254 }
255 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
256
257 /*
258 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
259 * mpt3sas driver such that this function can be removed.
260 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)261 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
262 {
263 unsigned long flags;
264
265 spin_lock_irqsave(&q->queue_lock, flags);
266 if (!q->quiesce_depth++)
267 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
268 spin_unlock_irqrestore(&q->queue_lock, flags);
269 }
270 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
271
272 /**
273 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
274 * @set: tag_set to wait on
275 *
276 * Note: it is driver's responsibility for making sure that quiesce has
277 * been started on or more of the request_queues of the tag_set. This
278 * function only waits for the quiesce on those request_queues that had
279 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
280 */
blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)281 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
282 {
283 if (set->flags & BLK_MQ_F_BLOCKING)
284 synchronize_srcu(set->srcu);
285 else
286 synchronize_rcu();
287 }
288 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
289
290 /**
291 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
292 * @q: request queue.
293 *
294 * Note: this function does not prevent that the struct request end_io()
295 * callback function is invoked. Once this function is returned, we make
296 * sure no dispatch can happen until the queue is unquiesced via
297 * blk_mq_unquiesce_queue().
298 */
blk_mq_quiesce_queue(struct request_queue * q)299 void blk_mq_quiesce_queue(struct request_queue *q)
300 {
301 blk_mq_quiesce_queue_nowait(q);
302 /* nothing to wait for non-mq queues */
303 if (queue_is_mq(q))
304 blk_mq_wait_quiesce_done(q->tag_set);
305 }
306 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
307
308 /*
309 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
310 * @q: request queue.
311 *
312 * This function recovers queue into the state before quiescing
313 * which is done by blk_mq_quiesce_queue.
314 */
blk_mq_unquiesce_queue(struct request_queue * q)315 void blk_mq_unquiesce_queue(struct request_queue *q)
316 {
317 unsigned long flags;
318 bool run_queue = false;
319
320 spin_lock_irqsave(&q->queue_lock, flags);
321 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
322 ;
323 } else if (!--q->quiesce_depth) {
324 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
325 run_queue = true;
326 }
327 spin_unlock_irqrestore(&q->queue_lock, flags);
328
329 /* dispatch requests which are inserted during quiescing */
330 if (run_queue)
331 blk_mq_run_hw_queues(q, true);
332 }
333 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
334
blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)335 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
336 {
337 struct request_queue *q;
338
339 mutex_lock(&set->tag_list_lock);
340 list_for_each_entry(q, &set->tag_list, tag_set_list) {
341 if (!blk_queue_skip_tagset_quiesce(q))
342 blk_mq_quiesce_queue_nowait(q);
343 }
344 mutex_unlock(&set->tag_list_lock);
345
346 blk_mq_wait_quiesce_done(set);
347 }
348 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
349
blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)350 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
351 {
352 struct request_queue *q;
353
354 mutex_lock(&set->tag_list_lock);
355 list_for_each_entry(q, &set->tag_list, tag_set_list) {
356 if (!blk_queue_skip_tagset_quiesce(q))
357 blk_mq_unquiesce_queue(q);
358 }
359 mutex_unlock(&set->tag_list_lock);
360 }
361 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
362
blk_mq_wake_waiters(struct request_queue * q)363 void blk_mq_wake_waiters(struct request_queue *q)
364 {
365 struct blk_mq_hw_ctx *hctx;
366 unsigned long i;
367
368 queue_for_each_hw_ctx(q, hctx, i)
369 if (blk_mq_hw_queue_mapped(hctx))
370 blk_mq_tag_wakeup_all(hctx->tags, true);
371 }
372
blk_rq_init(struct request_queue * q,struct request * rq)373 void blk_rq_init(struct request_queue *q, struct request *rq)
374 {
375 memset(rq, 0, sizeof(*rq));
376
377 INIT_LIST_HEAD(&rq->queuelist);
378 rq->q = q;
379 rq->__sector = (sector_t) -1;
380 rq->phys_gap_bit = 0;
381 INIT_HLIST_NODE(&rq->hash);
382 RB_CLEAR_NODE(&rq->rb_node);
383 rq->tag = BLK_MQ_NO_TAG;
384 rq->internal_tag = BLK_MQ_NO_TAG;
385 rq->start_time_ns = blk_time_get_ns();
386 blk_crypto_rq_set_defaults(rq);
387 }
388 EXPORT_SYMBOL(blk_rq_init);
389
390 /* Set start and alloc time when the allocated request is actually used */
blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)391 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
392 {
393 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
394 if (blk_queue_rq_alloc_time(rq->q))
395 rq->alloc_time_ns = alloc_time_ns;
396 else
397 rq->alloc_time_ns = 0;
398 #endif
399 }
400
blk_mq_bio_issue_init(struct request_queue * q,struct bio * bio)401 static inline void blk_mq_bio_issue_init(struct request_queue *q,
402 struct bio *bio)
403 {
404 #ifdef CONFIG_BLK_CGROUP
405 if (test_bit(QUEUE_FLAG_BIO_ISSUE_TIME, &q->queue_flags))
406 bio->issue_time_ns = blk_time_get_ns();
407 #endif
408 }
409
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)410 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
411 struct blk_mq_tags *tags, unsigned int tag)
412 {
413 struct blk_mq_ctx *ctx = data->ctx;
414 struct blk_mq_hw_ctx *hctx = data->hctx;
415 struct request_queue *q = data->q;
416 struct request *rq = tags->static_rqs[tag];
417
418 rq->q = q;
419 rq->mq_ctx = ctx;
420 rq->mq_hctx = hctx;
421 rq->cmd_flags = data->cmd_flags;
422
423 if (data->flags & BLK_MQ_REQ_PM)
424 data->rq_flags |= RQF_PM;
425 rq->rq_flags = data->rq_flags;
426
427 if (data->rq_flags & RQF_SCHED_TAGS) {
428 rq->tag = BLK_MQ_NO_TAG;
429 rq->internal_tag = tag;
430 } else {
431 rq->tag = tag;
432 rq->internal_tag = BLK_MQ_NO_TAG;
433 }
434 rq->timeout = 0;
435
436 rq->part = NULL;
437 rq->io_start_time_ns = 0;
438 rq->stats_sectors = 0;
439 rq->nr_phys_segments = 0;
440 rq->nr_integrity_segments = 0;
441 rq->end_io = NULL;
442 rq->end_io_data = NULL;
443
444 blk_crypto_rq_set_defaults(rq);
445 INIT_LIST_HEAD(&rq->queuelist);
446 /* tag was already set */
447 WRITE_ONCE(rq->deadline, 0);
448 req_ref_set(rq, 1);
449
450 if (rq->rq_flags & RQF_USE_SCHED) {
451 struct elevator_queue *e = data->q->elevator;
452
453 INIT_HLIST_NODE(&rq->hash);
454 RB_CLEAR_NODE(&rq->rb_node);
455
456 if (e->type->ops.prepare_request)
457 e->type->ops.prepare_request(rq);
458 }
459
460 return rq;
461 }
462
463 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)464 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
465 {
466 unsigned int tag, tag_offset;
467 struct blk_mq_tags *tags;
468 struct request *rq;
469 unsigned long tag_mask;
470 int i, nr = 0;
471
472 do {
473 tag_mask = blk_mq_get_tags(data, data->nr_tags - nr, &tag_offset);
474 if (unlikely(!tag_mask)) {
475 if (nr == 0)
476 return NULL;
477 break;
478 }
479 tags = blk_mq_tags_from_data(data);
480 for (i = 0; tag_mask; i++) {
481 if (!(tag_mask & (1UL << i)))
482 continue;
483 tag = tag_offset + i;
484 prefetch(tags->static_rqs[tag]);
485 tag_mask &= ~(1UL << i);
486 rq = blk_mq_rq_ctx_init(data, tags, tag);
487 rq_list_add_head(data->cached_rqs, rq);
488 nr++;
489 }
490 } while (data->nr_tags > nr);
491
492 if (!(data->rq_flags & RQF_SCHED_TAGS))
493 blk_mq_add_active_requests(data->hctx, nr);
494 /* caller already holds a reference, add for remainder */
495 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
496 data->nr_tags -= nr;
497
498 return rq_list_pop(data->cached_rqs);
499 }
500
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)501 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
502 {
503 struct request_queue *q = data->q;
504 u64 alloc_time_ns = 0;
505 struct request *rq;
506 unsigned int tag;
507
508 /* alloc_time includes depth and tag waits */
509 if (blk_queue_rq_alloc_time(q))
510 alloc_time_ns = blk_time_get_ns();
511
512 if (data->cmd_flags & REQ_NOWAIT)
513 data->flags |= BLK_MQ_REQ_NOWAIT;
514
515 retry:
516 data->ctx = blk_mq_get_ctx(q);
517 data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
518
519 if (q->elevator) {
520 /*
521 * All requests use scheduler tags when an I/O scheduler is
522 * enabled for the queue.
523 */
524 data->rq_flags |= RQF_SCHED_TAGS;
525
526 /*
527 * Flush/passthrough requests are special and go directly to the
528 * dispatch list.
529 */
530 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
531 !blk_op_is_passthrough(data->cmd_flags)) {
532 struct elevator_mq_ops *ops = &q->elevator->type->ops;
533
534 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
535
536 data->rq_flags |= RQF_USE_SCHED;
537 if (ops->limit_depth)
538 ops->limit_depth(data->cmd_flags, data);
539 }
540 } else {
541 blk_mq_tag_busy(data->hctx);
542 }
543
544 if (data->flags & BLK_MQ_REQ_RESERVED)
545 data->rq_flags |= RQF_RESV;
546
547 /*
548 * Try batched alloc if we want more than 1 tag.
549 */
550 if (data->nr_tags > 1) {
551 rq = __blk_mq_alloc_requests_batch(data);
552 if (rq) {
553 blk_mq_rq_time_init(rq, alloc_time_ns);
554 return rq;
555 }
556 data->nr_tags = 1;
557 }
558
559 /*
560 * Waiting allocations only fail because of an inactive hctx. In that
561 * case just retry the hctx assignment and tag allocation as CPU hotplug
562 * should have migrated us to an online CPU by now.
563 */
564 tag = blk_mq_get_tag(data);
565 if (tag == BLK_MQ_NO_TAG) {
566 if (data->flags & BLK_MQ_REQ_NOWAIT)
567 return NULL;
568 /*
569 * Give up the CPU and sleep for a random short time to
570 * ensure that thread using a realtime scheduling class
571 * are migrated off the CPU, and thus off the hctx that
572 * is going away.
573 */
574 msleep(3);
575 goto retry;
576 }
577
578 if (!(data->rq_flags & RQF_SCHED_TAGS))
579 blk_mq_inc_active_requests(data->hctx);
580 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
581 blk_mq_rq_time_init(rq, alloc_time_ns);
582 return rq;
583 }
584
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)585 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
586 struct blk_plug *plug,
587 blk_opf_t opf,
588 blk_mq_req_flags_t flags)
589 {
590 struct blk_mq_alloc_data data = {
591 .q = q,
592 .flags = flags,
593 .shallow_depth = 0,
594 .cmd_flags = opf,
595 .rq_flags = 0,
596 .nr_tags = plug->nr_ios,
597 .cached_rqs = &plug->cached_rqs,
598 .ctx = NULL,
599 .hctx = NULL
600 };
601 struct request *rq;
602
603 if (blk_queue_enter(q, flags))
604 return NULL;
605
606 plug->nr_ios = 1;
607
608 rq = __blk_mq_alloc_requests(&data);
609 if (unlikely(!rq))
610 blk_queue_exit(q);
611 return rq;
612 }
613
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)614 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
615 blk_opf_t opf,
616 blk_mq_req_flags_t flags)
617 {
618 struct blk_plug *plug = current->plug;
619 struct request *rq;
620
621 if (!plug)
622 return NULL;
623
624 if (rq_list_empty(&plug->cached_rqs)) {
625 if (plug->nr_ios == 1)
626 return NULL;
627 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
628 if (!rq)
629 return NULL;
630 } else {
631 rq = rq_list_peek(&plug->cached_rqs);
632 if (!rq || rq->q != q)
633 return NULL;
634
635 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
636 return NULL;
637 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
638 return NULL;
639
640 rq_list_pop(&plug->cached_rqs);
641 blk_mq_rq_time_init(rq, blk_time_get_ns());
642 }
643
644 rq->cmd_flags = opf;
645 INIT_LIST_HEAD(&rq->queuelist);
646 return rq;
647 }
648
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)649 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
650 blk_mq_req_flags_t flags)
651 {
652 struct request *rq;
653
654 rq = blk_mq_alloc_cached_request(q, opf, flags);
655 if (!rq) {
656 struct blk_mq_alloc_data data = {
657 .q = q,
658 .flags = flags,
659 .shallow_depth = 0,
660 .cmd_flags = opf,
661 .rq_flags = 0,
662 .nr_tags = 1,
663 .cached_rqs = NULL,
664 .ctx = NULL,
665 .hctx = NULL
666 };
667 int ret;
668
669 ret = blk_queue_enter(q, flags);
670 if (ret)
671 return ERR_PTR(ret);
672
673 rq = __blk_mq_alloc_requests(&data);
674 if (!rq)
675 goto out_queue_exit;
676 }
677 rq->__data_len = 0;
678 rq->phys_gap_bit = 0;
679 rq->__sector = (sector_t) -1;
680 rq->bio = rq->biotail = NULL;
681 return rq;
682 out_queue_exit:
683 blk_queue_exit(q);
684 return ERR_PTR(-EWOULDBLOCK);
685 }
686 EXPORT_SYMBOL(blk_mq_alloc_request);
687
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)688 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
689 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
690 {
691 struct blk_mq_alloc_data data = {
692 .q = q,
693 .flags = flags,
694 .shallow_depth = 0,
695 .cmd_flags = opf,
696 .rq_flags = 0,
697 .nr_tags = 1,
698 .cached_rqs = NULL,
699 .ctx = NULL,
700 .hctx = NULL
701 };
702 u64 alloc_time_ns = 0;
703 struct request *rq;
704 unsigned int cpu;
705 unsigned int tag;
706 int ret;
707
708 /* alloc_time includes depth and tag waits */
709 if (blk_queue_rq_alloc_time(q))
710 alloc_time_ns = blk_time_get_ns();
711
712 /*
713 * If the tag allocator sleeps we could get an allocation for a
714 * different hardware context. No need to complicate the low level
715 * allocator for this for the rare use case of a command tied to
716 * a specific queue.
717 */
718 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
719 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
720 return ERR_PTR(-EINVAL);
721
722 if (hctx_idx >= q->nr_hw_queues)
723 return ERR_PTR(-EIO);
724
725 ret = blk_queue_enter(q, flags);
726 if (ret)
727 return ERR_PTR(ret);
728
729 /*
730 * Check if the hardware context is actually mapped to anything.
731 * If not tell the caller that it should skip this queue.
732 */
733 ret = -EXDEV;
734 data.hctx = q->queue_hw_ctx[hctx_idx];
735 if (!blk_mq_hw_queue_mapped(data.hctx))
736 goto out_queue_exit;
737 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
738 if (cpu >= nr_cpu_ids)
739 goto out_queue_exit;
740 data.ctx = __blk_mq_get_ctx(q, cpu);
741
742 if (q->elevator)
743 data.rq_flags |= RQF_SCHED_TAGS;
744 else
745 blk_mq_tag_busy(data.hctx);
746
747 if (flags & BLK_MQ_REQ_RESERVED)
748 data.rq_flags |= RQF_RESV;
749
750 ret = -EWOULDBLOCK;
751 tag = blk_mq_get_tag(&data);
752 if (tag == BLK_MQ_NO_TAG)
753 goto out_queue_exit;
754 if (!(data.rq_flags & RQF_SCHED_TAGS))
755 blk_mq_inc_active_requests(data.hctx);
756 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
757 blk_mq_rq_time_init(rq, alloc_time_ns);
758 rq->__data_len = 0;
759 rq->phys_gap_bit = 0;
760 rq->__sector = (sector_t) -1;
761 rq->bio = rq->biotail = NULL;
762 return rq;
763
764 out_queue_exit:
765 blk_queue_exit(q);
766 return ERR_PTR(ret);
767 }
768 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
769
blk_mq_finish_request(struct request * rq)770 static void blk_mq_finish_request(struct request *rq)
771 {
772 struct request_queue *q = rq->q;
773
774 blk_zone_finish_request(rq);
775
776 if (rq->rq_flags & RQF_USE_SCHED) {
777 q->elevator->type->ops.finish_request(rq);
778 /*
779 * For postflush request that may need to be
780 * completed twice, we should clear this flag
781 * to avoid double finish_request() on the rq.
782 */
783 rq->rq_flags &= ~RQF_USE_SCHED;
784 }
785 }
786
__blk_mq_free_request(struct request * rq)787 static void __blk_mq_free_request(struct request *rq)
788 {
789 struct request_queue *q = rq->q;
790 struct blk_mq_ctx *ctx = rq->mq_ctx;
791 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
792 const int sched_tag = rq->internal_tag;
793
794 blk_crypto_free_request(rq);
795 blk_pm_mark_last_busy(rq);
796 rq->mq_hctx = NULL;
797
798 if (rq->tag != BLK_MQ_NO_TAG) {
799 blk_mq_dec_active_requests(hctx);
800 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
801 }
802 if (sched_tag != BLK_MQ_NO_TAG)
803 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
804 blk_mq_sched_restart(hctx);
805 blk_queue_exit(q);
806 }
807
blk_mq_free_request(struct request * rq)808 void blk_mq_free_request(struct request *rq)
809 {
810 struct request_queue *q = rq->q;
811
812 blk_mq_finish_request(rq);
813
814 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
815 laptop_io_completion(q->disk->bdi);
816
817 rq_qos_done(q, rq);
818
819 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
820 if (req_ref_put_and_test(rq))
821 __blk_mq_free_request(rq);
822 }
823 EXPORT_SYMBOL_GPL(blk_mq_free_request);
824
blk_mq_free_plug_rqs(struct blk_plug * plug)825 void blk_mq_free_plug_rqs(struct blk_plug *plug)
826 {
827 struct request *rq;
828
829 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
830 blk_mq_free_request(rq);
831 }
832
blk_dump_rq_flags(struct request * rq,char * msg)833 void blk_dump_rq_flags(struct request *rq, char *msg)
834 {
835 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
836 rq->q->disk ? rq->q->disk->disk_name : "?",
837 (__force unsigned long long) rq->cmd_flags);
838
839 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
840 (unsigned long long)blk_rq_pos(rq),
841 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
842 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
843 rq->bio, rq->biotail, blk_rq_bytes(rq));
844 }
845 EXPORT_SYMBOL(blk_dump_rq_flags);
846
blk_account_io_completion(struct request * req,unsigned int bytes)847 static void blk_account_io_completion(struct request *req, unsigned int bytes)
848 {
849 if (req->rq_flags & RQF_IO_STAT) {
850 const int sgrp = op_stat_group(req_op(req));
851
852 part_stat_lock();
853 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
854 part_stat_unlock();
855 }
856 }
857
blk_print_req_error(struct request * req,blk_status_t status)858 static void blk_print_req_error(struct request *req, blk_status_t status)
859 {
860 printk_ratelimited(KERN_ERR
861 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
862 "phys_seg %u prio class %u\n",
863 blk_status_to_str(status),
864 req->q->disk ? req->q->disk->disk_name : "?",
865 blk_rq_pos(req), (__force u32)req_op(req),
866 blk_op_str(req_op(req)),
867 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
868 req->nr_phys_segments,
869 IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
870 }
871
872 /*
873 * Fully end IO on a request. Does not support partial completions, or
874 * errors.
875 */
blk_complete_request(struct request * req)876 static void blk_complete_request(struct request *req)
877 {
878 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
879 int total_bytes = blk_rq_bytes(req);
880 struct bio *bio = req->bio;
881
882 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
883
884 if (!bio)
885 return;
886
887 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
888 blk_integrity_complete(req, total_bytes);
889
890 /*
891 * Upper layers may call blk_crypto_evict_key() anytime after the last
892 * bio_endio(). Therefore, the keyslot must be released before that.
893 */
894 blk_crypto_rq_put_keyslot(req);
895
896 blk_account_io_completion(req, total_bytes);
897
898 do {
899 struct bio *next = bio->bi_next;
900
901 /* Completion has already been traced */
902 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
903
904 if (blk_req_bio_is_zone_append(req, bio))
905 blk_zone_append_update_request_bio(req, bio);
906
907 if (!is_flush)
908 bio_endio(bio);
909 bio = next;
910 } while (bio);
911
912 /*
913 * Reset counters so that the request stacking driver
914 * can find how many bytes remain in the request
915 * later.
916 */
917 if (!req->end_io) {
918 req->bio = NULL;
919 req->__data_len = 0;
920 }
921 }
922
923 /**
924 * blk_update_request - Complete multiple bytes without completing the request
925 * @req: the request being processed
926 * @error: block status code
927 * @nr_bytes: number of bytes to complete for @req
928 *
929 * Description:
930 * Ends I/O on a number of bytes attached to @req, but doesn't complete
931 * the request structure even if @req doesn't have leftover.
932 * If @req has leftover, sets it up for the next range of segments.
933 *
934 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
935 * %false return from this function.
936 *
937 * Note:
938 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
939 * except in the consistency check at the end of this function.
940 *
941 * Return:
942 * %false - this request doesn't have any more data
943 * %true - this request has more data
944 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)945 bool blk_update_request(struct request *req, blk_status_t error,
946 unsigned int nr_bytes)
947 {
948 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
949 bool quiet = req->rq_flags & RQF_QUIET;
950 int total_bytes;
951
952 trace_block_rq_complete(req, error, nr_bytes);
953
954 if (!req->bio)
955 return false;
956
957 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
958 error == BLK_STS_OK)
959 blk_integrity_complete(req, nr_bytes);
960
961 /*
962 * Upper layers may call blk_crypto_evict_key() anytime after the last
963 * bio_endio(). Therefore, the keyslot must be released before that.
964 */
965 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
966 __blk_crypto_rq_put_keyslot(req);
967
968 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
969 !test_bit(GD_DEAD, &req->q->disk->state)) {
970 blk_print_req_error(req, error);
971 trace_block_rq_error(req, error, nr_bytes);
972 }
973
974 blk_account_io_completion(req, nr_bytes);
975
976 total_bytes = 0;
977 while (req->bio) {
978 struct bio *bio = req->bio;
979 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
980
981 if (unlikely(error))
982 bio->bi_status = error;
983
984 if (bio_bytes == bio->bi_iter.bi_size) {
985 req->bio = bio->bi_next;
986 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
987 /*
988 * Partial zone append completions cannot be supported
989 * as the BIO fragments may end up not being written
990 * sequentially.
991 */
992 bio->bi_status = BLK_STS_IOERR;
993 }
994
995 /* Completion has already been traced */
996 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
997 if (unlikely(quiet))
998 bio_set_flag(bio, BIO_QUIET);
999
1000 bio_advance(bio, bio_bytes);
1001
1002 /* Don't actually finish bio if it's part of flush sequence */
1003 if (!bio->bi_iter.bi_size) {
1004 if (blk_req_bio_is_zone_append(req, bio))
1005 blk_zone_append_update_request_bio(req, bio);
1006 if (!is_flush)
1007 bio_endio(bio);
1008 }
1009
1010 total_bytes += bio_bytes;
1011 nr_bytes -= bio_bytes;
1012
1013 if (!nr_bytes)
1014 break;
1015 }
1016
1017 /*
1018 * completely done
1019 */
1020 if (!req->bio) {
1021 /*
1022 * Reset counters so that the request stacking driver
1023 * can find how many bytes remain in the request
1024 * later.
1025 */
1026 req->__data_len = 0;
1027 return false;
1028 }
1029
1030 req->__data_len -= total_bytes;
1031
1032 /* update sector only for requests with clear definition of sector */
1033 if (!blk_rq_is_passthrough(req))
1034 req->__sector += total_bytes >> 9;
1035
1036 /* mixed attributes always follow the first bio */
1037 if (req->rq_flags & RQF_MIXED_MERGE) {
1038 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1039 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1040 }
1041
1042 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1043 /*
1044 * If total number of sectors is less than the first segment
1045 * size, something has gone terribly wrong.
1046 */
1047 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1048 blk_dump_rq_flags(req, "request botched");
1049 req->__data_len = blk_rq_cur_bytes(req);
1050 }
1051
1052 /* recalculate the number of segments */
1053 req->nr_phys_segments = blk_recalc_rq_segments(req);
1054 }
1055
1056 return true;
1057 }
1058 EXPORT_SYMBOL_GPL(blk_update_request);
1059
blk_account_io_done(struct request * req,u64 now)1060 static inline void blk_account_io_done(struct request *req, u64 now)
1061 {
1062 trace_block_io_done(req);
1063
1064 /*
1065 * Account IO completion. flush_rq isn't accounted as a
1066 * normal IO on queueing nor completion. Accounting the
1067 * containing request is enough.
1068 */
1069 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1070 const int sgrp = op_stat_group(req_op(req));
1071
1072 part_stat_lock();
1073 update_io_ticks(req->part, jiffies, true);
1074 part_stat_inc(req->part, ios[sgrp]);
1075 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1076 part_stat_local_dec(req->part,
1077 in_flight[op_is_write(req_op(req))]);
1078 part_stat_unlock();
1079 }
1080 }
1081
blk_rq_passthrough_stats(struct request * req)1082 static inline bool blk_rq_passthrough_stats(struct request *req)
1083 {
1084 struct bio *bio = req->bio;
1085
1086 if (!blk_queue_passthrough_stat(req->q))
1087 return false;
1088
1089 /* Requests without a bio do not transfer data. */
1090 if (!bio)
1091 return false;
1092
1093 /*
1094 * Stats are accumulated in the bdev, so must have one attached to a
1095 * bio to track stats. Most drivers do not set the bdev for passthrough
1096 * requests, but nvme is one that will set it.
1097 */
1098 if (!bio->bi_bdev)
1099 return false;
1100
1101 /*
1102 * We don't know what a passthrough command does, but we know the
1103 * payload size and data direction. Ensuring the size is aligned to the
1104 * block size filters out most commands with payloads that don't
1105 * represent sector access.
1106 */
1107 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1108 return false;
1109 return true;
1110 }
1111
blk_account_io_start(struct request * req)1112 static inline void blk_account_io_start(struct request *req)
1113 {
1114 trace_block_io_start(req);
1115
1116 if (!blk_queue_io_stat(req->q))
1117 return;
1118 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1119 return;
1120
1121 req->rq_flags |= RQF_IO_STAT;
1122 req->start_time_ns = blk_time_get_ns();
1123
1124 /*
1125 * All non-passthrough requests are created from a bio with one
1126 * exception: when a flush command that is part of a flush sequence
1127 * generated by the state machine in blk-flush.c is cloned onto the
1128 * lower device by dm-multipath we can get here without a bio.
1129 */
1130 if (req->bio)
1131 req->part = req->bio->bi_bdev;
1132 else
1133 req->part = req->q->disk->part0;
1134
1135 part_stat_lock();
1136 update_io_ticks(req->part, jiffies, false);
1137 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1138 part_stat_unlock();
1139 }
1140
__blk_mq_end_request_acct(struct request * rq,u64 now)1141 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1142 {
1143 if (rq->rq_flags & RQF_STATS)
1144 blk_stat_add(rq, now);
1145
1146 blk_mq_sched_completed_request(rq, now);
1147 blk_account_io_done(rq, now);
1148 }
1149
__blk_mq_end_request(struct request * rq,blk_status_t error)1150 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1151 {
1152 if (blk_mq_need_time_stamp(rq))
1153 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1154
1155 blk_mq_finish_request(rq);
1156
1157 if (rq->end_io) {
1158 rq_qos_done(rq->q, rq);
1159 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1160 blk_mq_free_request(rq);
1161 } else {
1162 blk_mq_free_request(rq);
1163 }
1164 }
1165 EXPORT_SYMBOL(__blk_mq_end_request);
1166
blk_mq_end_request(struct request * rq,blk_status_t error)1167 void blk_mq_end_request(struct request *rq, blk_status_t error)
1168 {
1169 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1170 BUG();
1171 __blk_mq_end_request(rq, error);
1172 }
1173 EXPORT_SYMBOL(blk_mq_end_request);
1174
1175 #define TAG_COMP_BATCH 32
1176
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1177 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1178 int *tag_array, int nr_tags)
1179 {
1180 struct request_queue *q = hctx->queue;
1181
1182 blk_mq_sub_active_requests(hctx, nr_tags);
1183
1184 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1185 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1186 }
1187
blk_mq_end_request_batch(struct io_comp_batch * iob)1188 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1189 {
1190 int tags[TAG_COMP_BATCH], nr_tags = 0;
1191 struct blk_mq_hw_ctx *cur_hctx = NULL;
1192 struct request *rq;
1193 u64 now = 0;
1194
1195 if (iob->need_ts)
1196 now = blk_time_get_ns();
1197
1198 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1199 prefetch(rq->bio);
1200 prefetch(rq->rq_next);
1201
1202 blk_complete_request(rq);
1203 if (iob->need_ts)
1204 __blk_mq_end_request_acct(rq, now);
1205
1206 blk_mq_finish_request(rq);
1207
1208 rq_qos_done(rq->q, rq);
1209
1210 /*
1211 * If end_io handler returns NONE, then it still has
1212 * ownership of the request.
1213 */
1214 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1215 continue;
1216
1217 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1218 if (!req_ref_put_and_test(rq))
1219 continue;
1220
1221 blk_crypto_free_request(rq);
1222 blk_pm_mark_last_busy(rq);
1223
1224 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1225 if (cur_hctx)
1226 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1227 nr_tags = 0;
1228 cur_hctx = rq->mq_hctx;
1229 }
1230 tags[nr_tags++] = rq->tag;
1231 }
1232
1233 if (nr_tags)
1234 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1235 }
1236 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1237
blk_complete_reqs(struct llist_head * list)1238 static void blk_complete_reqs(struct llist_head *list)
1239 {
1240 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1241 struct request *rq, *next;
1242
1243 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1244 rq->q->mq_ops->complete(rq);
1245 }
1246
blk_done_softirq(void)1247 static __latent_entropy void blk_done_softirq(void)
1248 {
1249 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1250 }
1251
blk_softirq_cpu_dead(unsigned int cpu)1252 static int blk_softirq_cpu_dead(unsigned int cpu)
1253 {
1254 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1255 return 0;
1256 }
1257
__blk_mq_complete_request_remote(void * data)1258 static void __blk_mq_complete_request_remote(void *data)
1259 {
1260 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1261 }
1262
blk_mq_complete_need_ipi(struct request * rq)1263 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1264 {
1265 int cpu = raw_smp_processor_id();
1266
1267 if (!IS_ENABLED(CONFIG_SMP) ||
1268 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1269 return false;
1270 /*
1271 * With force threaded interrupts enabled, raising softirq from an SMP
1272 * function call will always result in waking the ksoftirqd thread.
1273 * This is probably worse than completing the request on a different
1274 * cache domain.
1275 */
1276 if (force_irqthreads())
1277 return false;
1278
1279 /* same CPU or cache domain and capacity? Complete locally */
1280 if (cpu == rq->mq_ctx->cpu ||
1281 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1282 cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1283 cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1284 return false;
1285
1286 /* don't try to IPI to an offline CPU */
1287 return cpu_online(rq->mq_ctx->cpu);
1288 }
1289
blk_mq_complete_send_ipi(struct request * rq)1290 static void blk_mq_complete_send_ipi(struct request *rq)
1291 {
1292 unsigned int cpu;
1293
1294 cpu = rq->mq_ctx->cpu;
1295 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1296 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1297 }
1298
blk_mq_raise_softirq(struct request * rq)1299 static void blk_mq_raise_softirq(struct request *rq)
1300 {
1301 struct llist_head *list;
1302
1303 preempt_disable();
1304 list = this_cpu_ptr(&blk_cpu_done);
1305 if (llist_add(&rq->ipi_list, list))
1306 raise_softirq(BLOCK_SOFTIRQ);
1307 preempt_enable();
1308 }
1309
blk_mq_complete_request_remote(struct request * rq)1310 bool blk_mq_complete_request_remote(struct request *rq)
1311 {
1312 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1313
1314 /*
1315 * For request which hctx has only one ctx mapping,
1316 * or a polled request, always complete locally,
1317 * it's pointless to redirect the completion.
1318 */
1319 if ((rq->mq_hctx->nr_ctx == 1 &&
1320 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1321 rq->cmd_flags & REQ_POLLED)
1322 return false;
1323
1324 if (blk_mq_complete_need_ipi(rq)) {
1325 blk_mq_complete_send_ipi(rq);
1326 return true;
1327 }
1328
1329 if (rq->q->nr_hw_queues == 1) {
1330 blk_mq_raise_softirq(rq);
1331 return true;
1332 }
1333 return false;
1334 }
1335 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1336
1337 /**
1338 * blk_mq_complete_request - end I/O on a request
1339 * @rq: the request being processed
1340 *
1341 * Description:
1342 * Complete a request by scheduling the ->complete_rq operation.
1343 **/
blk_mq_complete_request(struct request * rq)1344 void blk_mq_complete_request(struct request *rq)
1345 {
1346 if (!blk_mq_complete_request_remote(rq))
1347 rq->q->mq_ops->complete(rq);
1348 }
1349 EXPORT_SYMBOL(blk_mq_complete_request);
1350
1351 /**
1352 * blk_mq_start_request - Start processing a request
1353 * @rq: Pointer to request to be started
1354 *
1355 * Function used by device drivers to notify the block layer that a request
1356 * is going to be processed now, so blk layer can do proper initializations
1357 * such as starting the timeout timer.
1358 */
blk_mq_start_request(struct request * rq)1359 void blk_mq_start_request(struct request *rq)
1360 {
1361 struct request_queue *q = rq->q;
1362
1363 trace_block_rq_issue(rq);
1364
1365 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1366 !blk_rq_is_passthrough(rq)) {
1367 rq->io_start_time_ns = blk_time_get_ns();
1368 rq->stats_sectors = blk_rq_sectors(rq);
1369 rq->rq_flags |= RQF_STATS;
1370 rq_qos_issue(q, rq);
1371 }
1372
1373 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1374
1375 blk_add_timer(rq);
1376 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1377 rq->mq_hctx->tags->rqs[rq->tag] = rq;
1378
1379 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1380 blk_integrity_prepare(rq);
1381
1382 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1383 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1384 }
1385 EXPORT_SYMBOL(blk_mq_start_request);
1386
1387 /*
1388 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1389 * queues. This is important for md arrays to benefit from merging
1390 * requests.
1391 */
blk_plug_max_rq_count(struct blk_plug * plug)1392 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1393 {
1394 if (plug->multiple_queues)
1395 return BLK_MAX_REQUEST_COUNT * 2;
1396 return BLK_MAX_REQUEST_COUNT;
1397 }
1398
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1399 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1400 {
1401 struct request *last = rq_list_peek(&plug->mq_list);
1402
1403 if (!plug->rq_count) {
1404 trace_block_plug(rq->q);
1405 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1406 (!blk_queue_nomerges(rq->q) &&
1407 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1408 blk_mq_flush_plug_list(plug, false);
1409 last = NULL;
1410 trace_block_plug(rq->q);
1411 }
1412
1413 if (!plug->multiple_queues && last && last->q != rq->q)
1414 plug->multiple_queues = true;
1415 /*
1416 * Any request allocated from sched tags can't be issued to
1417 * ->queue_rqs() directly
1418 */
1419 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1420 plug->has_elevator = true;
1421 rq_list_add_tail(&plug->mq_list, rq);
1422 plug->rq_count++;
1423 }
1424
1425 /**
1426 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1427 * @rq: request to insert
1428 * @at_head: insert request at head or tail of queue
1429 *
1430 * Description:
1431 * Insert a fully prepared request at the back of the I/O scheduler queue
1432 * for execution. Don't wait for completion.
1433 *
1434 * Note:
1435 * This function will invoke @done directly if the queue is dead.
1436 */
blk_execute_rq_nowait(struct request * rq,bool at_head)1437 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1438 {
1439 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1440
1441 WARN_ON(irqs_disabled());
1442 WARN_ON(!blk_rq_is_passthrough(rq));
1443
1444 blk_account_io_start(rq);
1445
1446 if (current->plug && !at_head) {
1447 blk_add_rq_to_plug(current->plug, rq);
1448 return;
1449 }
1450
1451 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1452 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1453 }
1454 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1455
1456 struct blk_rq_wait {
1457 struct completion done;
1458 blk_status_t ret;
1459 };
1460
blk_end_sync_rq(struct request * rq,blk_status_t ret)1461 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1462 {
1463 struct blk_rq_wait *wait = rq->end_io_data;
1464
1465 wait->ret = ret;
1466 complete(&wait->done);
1467 return RQ_END_IO_NONE;
1468 }
1469
blk_rq_is_poll(struct request * rq)1470 bool blk_rq_is_poll(struct request *rq)
1471 {
1472 if (!rq->mq_hctx)
1473 return false;
1474 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1475 return false;
1476 return true;
1477 }
1478 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1479
blk_rq_poll_completion(struct request * rq,struct completion * wait)1480 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1481 {
1482 do {
1483 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1484 cond_resched();
1485 } while (!completion_done(wait));
1486 }
1487
1488 /**
1489 * blk_execute_rq - insert a request into queue for execution
1490 * @rq: request to insert
1491 * @at_head: insert request at head or tail of queue
1492 *
1493 * Description:
1494 * Insert a fully prepared request at the back of the I/O scheduler queue
1495 * for execution and wait for completion.
1496 * Return: The blk_status_t result provided to blk_mq_end_request().
1497 */
blk_execute_rq(struct request * rq,bool at_head)1498 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1499 {
1500 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1501 struct blk_rq_wait wait = {
1502 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1503 };
1504
1505 WARN_ON(irqs_disabled());
1506 WARN_ON(!blk_rq_is_passthrough(rq));
1507
1508 rq->end_io_data = &wait;
1509 rq->end_io = blk_end_sync_rq;
1510
1511 blk_account_io_start(rq);
1512 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1513 blk_mq_run_hw_queue(hctx, false);
1514
1515 if (blk_rq_is_poll(rq))
1516 blk_rq_poll_completion(rq, &wait.done);
1517 else
1518 blk_wait_io(&wait.done);
1519
1520 return wait.ret;
1521 }
1522 EXPORT_SYMBOL(blk_execute_rq);
1523
__blk_mq_requeue_request(struct request * rq)1524 static void __blk_mq_requeue_request(struct request *rq)
1525 {
1526 struct request_queue *q = rq->q;
1527
1528 blk_mq_put_driver_tag(rq);
1529
1530 trace_block_rq_requeue(rq);
1531 rq_qos_requeue(q, rq);
1532
1533 if (blk_mq_request_started(rq)) {
1534 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1535 rq->rq_flags &= ~RQF_TIMED_OUT;
1536 }
1537 }
1538
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1539 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1540 {
1541 struct request_queue *q = rq->q;
1542 unsigned long flags;
1543
1544 __blk_mq_requeue_request(rq);
1545
1546 /* this request will be re-inserted to io scheduler queue */
1547 blk_mq_sched_requeue_request(rq);
1548
1549 spin_lock_irqsave(&q->requeue_lock, flags);
1550 list_add_tail(&rq->queuelist, &q->requeue_list);
1551 spin_unlock_irqrestore(&q->requeue_lock, flags);
1552
1553 if (kick_requeue_list)
1554 blk_mq_kick_requeue_list(q);
1555 }
1556 EXPORT_SYMBOL(blk_mq_requeue_request);
1557
blk_mq_requeue_work(struct work_struct * work)1558 static void blk_mq_requeue_work(struct work_struct *work)
1559 {
1560 struct request_queue *q =
1561 container_of(work, struct request_queue, requeue_work.work);
1562 LIST_HEAD(rq_list);
1563 LIST_HEAD(flush_list);
1564 struct request *rq;
1565
1566 spin_lock_irq(&q->requeue_lock);
1567 list_splice_init(&q->requeue_list, &rq_list);
1568 list_splice_init(&q->flush_list, &flush_list);
1569 spin_unlock_irq(&q->requeue_lock);
1570
1571 while (!list_empty(&rq_list)) {
1572 rq = list_entry(rq_list.next, struct request, queuelist);
1573 list_del_init(&rq->queuelist);
1574 /*
1575 * If RQF_DONTPREP is set, the request has been started by the
1576 * driver already and might have driver-specific data allocated
1577 * already. Insert it into the hctx dispatch list to avoid
1578 * block layer merges for the request.
1579 */
1580 if (rq->rq_flags & RQF_DONTPREP)
1581 blk_mq_request_bypass_insert(rq, 0);
1582 else
1583 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1584 }
1585
1586 while (!list_empty(&flush_list)) {
1587 rq = list_entry(flush_list.next, struct request, queuelist);
1588 list_del_init(&rq->queuelist);
1589 blk_mq_insert_request(rq, 0);
1590 }
1591
1592 blk_mq_run_hw_queues(q, false);
1593 }
1594
blk_mq_kick_requeue_list(struct request_queue * q)1595 void blk_mq_kick_requeue_list(struct request_queue *q)
1596 {
1597 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1598 }
1599 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1600
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1601 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1602 unsigned long msecs)
1603 {
1604 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1605 msecs_to_jiffies(msecs));
1606 }
1607 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1608
blk_is_flush_data_rq(struct request * rq)1609 static bool blk_is_flush_data_rq(struct request *rq)
1610 {
1611 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1612 }
1613
blk_mq_rq_inflight(struct request * rq,void * priv)1614 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1615 {
1616 /*
1617 * If we find a request that isn't idle we know the queue is busy
1618 * as it's checked in the iter.
1619 * Return false to stop the iteration.
1620 *
1621 * In case of queue quiesce, if one flush data request is completed,
1622 * don't count it as inflight given the flush sequence is suspended,
1623 * and the original flush data request is invisible to driver, just
1624 * like other pending requests because of quiesce
1625 */
1626 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1627 blk_is_flush_data_rq(rq) &&
1628 blk_mq_request_completed(rq))) {
1629 bool *busy = priv;
1630
1631 *busy = true;
1632 return false;
1633 }
1634
1635 return true;
1636 }
1637
blk_mq_queue_inflight(struct request_queue * q)1638 bool blk_mq_queue_inflight(struct request_queue *q)
1639 {
1640 bool busy = false;
1641
1642 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1643 return busy;
1644 }
1645 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1646
blk_mq_rq_timed_out(struct request * req)1647 static void blk_mq_rq_timed_out(struct request *req)
1648 {
1649 req->rq_flags |= RQF_TIMED_OUT;
1650 if (req->q->mq_ops->timeout) {
1651 enum blk_eh_timer_return ret;
1652
1653 ret = req->q->mq_ops->timeout(req);
1654 if (ret == BLK_EH_DONE)
1655 return;
1656 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1657 }
1658
1659 blk_add_timer(req);
1660 }
1661
1662 struct blk_expired_data {
1663 bool has_timedout_rq;
1664 unsigned long next;
1665 unsigned long timeout_start;
1666 };
1667
blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1668 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1669 {
1670 unsigned long deadline;
1671
1672 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1673 return false;
1674 if (rq->rq_flags & RQF_TIMED_OUT)
1675 return false;
1676
1677 deadline = READ_ONCE(rq->deadline);
1678 if (time_after_eq(expired->timeout_start, deadline))
1679 return true;
1680
1681 if (expired->next == 0)
1682 expired->next = deadline;
1683 else if (time_after(expired->next, deadline))
1684 expired->next = deadline;
1685 return false;
1686 }
1687
blk_mq_put_rq_ref(struct request * rq)1688 void blk_mq_put_rq_ref(struct request *rq)
1689 {
1690 if (is_flush_rq(rq)) {
1691 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1692 blk_mq_free_request(rq);
1693 } else if (req_ref_put_and_test(rq)) {
1694 __blk_mq_free_request(rq);
1695 }
1696 }
1697
blk_mq_check_expired(struct request * rq,void * priv)1698 static bool blk_mq_check_expired(struct request *rq, void *priv)
1699 {
1700 struct blk_expired_data *expired = priv;
1701
1702 /*
1703 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1704 * be reallocated underneath the timeout handler's processing, then
1705 * the expire check is reliable. If the request is not expired, then
1706 * it was completed and reallocated as a new request after returning
1707 * from blk_mq_check_expired().
1708 */
1709 if (blk_mq_req_expired(rq, expired)) {
1710 expired->has_timedout_rq = true;
1711 return false;
1712 }
1713 return true;
1714 }
1715
blk_mq_handle_expired(struct request * rq,void * priv)1716 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1717 {
1718 struct blk_expired_data *expired = priv;
1719
1720 if (blk_mq_req_expired(rq, expired))
1721 blk_mq_rq_timed_out(rq);
1722 return true;
1723 }
1724
blk_mq_timeout_work(struct work_struct * work)1725 static void blk_mq_timeout_work(struct work_struct *work)
1726 {
1727 struct request_queue *q =
1728 container_of(work, struct request_queue, timeout_work);
1729 struct blk_expired_data expired = {
1730 .timeout_start = jiffies,
1731 };
1732 struct blk_mq_hw_ctx *hctx;
1733 unsigned long i;
1734
1735 /* A deadlock might occur if a request is stuck requiring a
1736 * timeout at the same time a queue freeze is waiting
1737 * completion, since the timeout code would not be able to
1738 * acquire the queue reference here.
1739 *
1740 * That's why we don't use blk_queue_enter here; instead, we use
1741 * percpu_ref_tryget directly, because we need to be able to
1742 * obtain a reference even in the short window between the queue
1743 * starting to freeze, by dropping the first reference in
1744 * blk_freeze_queue_start, and the moment the last request is
1745 * consumed, marked by the instant q_usage_counter reaches
1746 * zero.
1747 */
1748 if (!percpu_ref_tryget(&q->q_usage_counter))
1749 return;
1750
1751 /* check if there is any timed-out request */
1752 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1753 if (expired.has_timedout_rq) {
1754 /*
1755 * Before walking tags, we must ensure any submit started
1756 * before the current time has finished. Since the submit
1757 * uses srcu or rcu, wait for a synchronization point to
1758 * ensure all running submits have finished
1759 */
1760 blk_mq_wait_quiesce_done(q->tag_set);
1761
1762 expired.next = 0;
1763 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1764 }
1765
1766 if (expired.next != 0) {
1767 mod_timer(&q->timeout, expired.next);
1768 } else {
1769 /*
1770 * Request timeouts are handled as a forward rolling timer. If
1771 * we end up here it means that no requests are pending and
1772 * also that no request has been pending for a while. Mark
1773 * each hctx as idle.
1774 */
1775 queue_for_each_hw_ctx(q, hctx, i) {
1776 /* the hctx may be unmapped, so check it here */
1777 if (blk_mq_hw_queue_mapped(hctx))
1778 blk_mq_tag_idle(hctx);
1779 }
1780 }
1781 blk_queue_exit(q);
1782 }
1783
1784 struct flush_busy_ctx_data {
1785 struct blk_mq_hw_ctx *hctx;
1786 struct list_head *list;
1787 };
1788
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1789 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1790 {
1791 struct flush_busy_ctx_data *flush_data = data;
1792 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1793 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1794 enum hctx_type type = hctx->type;
1795
1796 spin_lock(&ctx->lock);
1797 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1798 sbitmap_clear_bit(sb, bitnr);
1799 spin_unlock(&ctx->lock);
1800 return true;
1801 }
1802
1803 /*
1804 * Process software queues that have been marked busy, splicing them
1805 * to the for-dispatch
1806 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1807 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1808 {
1809 struct flush_busy_ctx_data data = {
1810 .hctx = hctx,
1811 .list = list,
1812 };
1813
1814 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1815 }
1816
1817 struct dispatch_rq_data {
1818 struct blk_mq_hw_ctx *hctx;
1819 struct request *rq;
1820 };
1821
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1822 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1823 void *data)
1824 {
1825 struct dispatch_rq_data *dispatch_data = data;
1826 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1827 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1828 enum hctx_type type = hctx->type;
1829
1830 spin_lock(&ctx->lock);
1831 if (!list_empty(&ctx->rq_lists[type])) {
1832 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1833 list_del_init(&dispatch_data->rq->queuelist);
1834 if (list_empty(&ctx->rq_lists[type]))
1835 sbitmap_clear_bit(sb, bitnr);
1836 }
1837 spin_unlock(&ctx->lock);
1838
1839 return !dispatch_data->rq;
1840 }
1841
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1842 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1843 struct blk_mq_ctx *start)
1844 {
1845 unsigned off = start ? start->index_hw[hctx->type] : 0;
1846 struct dispatch_rq_data data = {
1847 .hctx = hctx,
1848 .rq = NULL,
1849 };
1850
1851 __sbitmap_for_each_set(&hctx->ctx_map, off,
1852 dispatch_rq_from_ctx, &data);
1853
1854 return data.rq;
1855 }
1856
__blk_mq_alloc_driver_tag(struct request * rq)1857 bool __blk_mq_alloc_driver_tag(struct request *rq)
1858 {
1859 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1860 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1861 int tag;
1862
1863 blk_mq_tag_busy(rq->mq_hctx);
1864
1865 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1866 bt = &rq->mq_hctx->tags->breserved_tags;
1867 tag_offset = 0;
1868 } else {
1869 if (!hctx_may_queue(rq->mq_hctx, bt))
1870 return false;
1871 }
1872
1873 tag = __sbitmap_queue_get(bt);
1874 if (tag == BLK_MQ_NO_TAG)
1875 return false;
1876
1877 rq->tag = tag + tag_offset;
1878 blk_mq_inc_active_requests(rq->mq_hctx);
1879 return true;
1880 }
1881
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1882 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1883 int flags, void *key)
1884 {
1885 struct blk_mq_hw_ctx *hctx;
1886
1887 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1888
1889 spin_lock(&hctx->dispatch_wait_lock);
1890 if (!list_empty(&wait->entry)) {
1891 struct sbitmap_queue *sbq;
1892
1893 list_del_init(&wait->entry);
1894 sbq = &hctx->tags->bitmap_tags;
1895 atomic_dec(&sbq->ws_active);
1896 }
1897 spin_unlock(&hctx->dispatch_wait_lock);
1898
1899 blk_mq_run_hw_queue(hctx, true);
1900 return 1;
1901 }
1902
1903 /*
1904 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1905 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1906 * restart. For both cases, take care to check the condition again after
1907 * marking us as waiting.
1908 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1909 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1910 struct request *rq)
1911 {
1912 struct sbitmap_queue *sbq;
1913 struct wait_queue_head *wq;
1914 wait_queue_entry_t *wait;
1915 bool ret;
1916
1917 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1918 !(blk_mq_is_shared_tags(hctx->flags))) {
1919 blk_mq_sched_mark_restart_hctx(hctx);
1920
1921 /*
1922 * It's possible that a tag was freed in the window between the
1923 * allocation failure and adding the hardware queue to the wait
1924 * queue.
1925 *
1926 * Don't clear RESTART here, someone else could have set it.
1927 * At most this will cost an extra queue run.
1928 */
1929 return blk_mq_get_driver_tag(rq);
1930 }
1931
1932 wait = &hctx->dispatch_wait;
1933 if (!list_empty_careful(&wait->entry))
1934 return false;
1935
1936 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1937 sbq = &hctx->tags->breserved_tags;
1938 else
1939 sbq = &hctx->tags->bitmap_tags;
1940 wq = &bt_wait_ptr(sbq, hctx)->wait;
1941
1942 spin_lock_irq(&wq->lock);
1943 spin_lock(&hctx->dispatch_wait_lock);
1944 if (!list_empty(&wait->entry)) {
1945 spin_unlock(&hctx->dispatch_wait_lock);
1946 spin_unlock_irq(&wq->lock);
1947 return false;
1948 }
1949
1950 atomic_inc(&sbq->ws_active);
1951 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1952 __add_wait_queue(wq, wait);
1953
1954 /*
1955 * Add one explicit barrier since blk_mq_get_driver_tag() may
1956 * not imply barrier in case of failure.
1957 *
1958 * Order adding us to wait queue and allocating driver tag.
1959 *
1960 * The pair is the one implied in sbitmap_queue_wake_up() which
1961 * orders clearing sbitmap tag bits and waitqueue_active() in
1962 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1963 *
1964 * Otherwise, re-order of adding wait queue and getting driver tag
1965 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1966 * the waitqueue_active() may not observe us in wait queue.
1967 */
1968 smp_mb();
1969
1970 /*
1971 * It's possible that a tag was freed in the window between the
1972 * allocation failure and adding the hardware queue to the wait
1973 * queue.
1974 */
1975 ret = blk_mq_get_driver_tag(rq);
1976 if (!ret) {
1977 spin_unlock(&hctx->dispatch_wait_lock);
1978 spin_unlock_irq(&wq->lock);
1979 return false;
1980 }
1981
1982 /*
1983 * We got a tag, remove ourselves from the wait queue to ensure
1984 * someone else gets the wakeup.
1985 */
1986 list_del_init(&wait->entry);
1987 atomic_dec(&sbq->ws_active);
1988 spin_unlock(&hctx->dispatch_wait_lock);
1989 spin_unlock_irq(&wq->lock);
1990
1991 return true;
1992 }
1993
1994 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1995 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1996 /*
1997 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1998 * - EWMA is one simple way to compute running average value
1999 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
2000 * - take 4 as factor for avoiding to get too small(0) result, and this
2001 * factor doesn't matter because EWMA decreases exponentially
2002 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)2003 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
2004 {
2005 unsigned int ewma;
2006
2007 ewma = hctx->dispatch_busy;
2008
2009 if (!ewma && !busy)
2010 return;
2011
2012 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
2013 if (busy)
2014 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
2015 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
2016
2017 hctx->dispatch_busy = ewma;
2018 }
2019
2020 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
2021
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)2022 static void blk_mq_handle_dev_resource(struct request *rq,
2023 struct list_head *list)
2024 {
2025 list_add(&rq->queuelist, list);
2026 __blk_mq_requeue_request(rq);
2027 }
2028
2029 enum prep_dispatch {
2030 PREP_DISPATCH_OK,
2031 PREP_DISPATCH_NO_TAG,
2032 PREP_DISPATCH_NO_BUDGET,
2033 };
2034
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)2035 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2036 bool need_budget)
2037 {
2038 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2039 int budget_token = -1;
2040
2041 if (need_budget) {
2042 budget_token = blk_mq_get_dispatch_budget(rq->q);
2043 if (budget_token < 0) {
2044 blk_mq_put_driver_tag(rq);
2045 return PREP_DISPATCH_NO_BUDGET;
2046 }
2047 blk_mq_set_rq_budget_token(rq, budget_token);
2048 }
2049
2050 if (!blk_mq_get_driver_tag(rq)) {
2051 /*
2052 * The initial allocation attempt failed, so we need to
2053 * rerun the hardware queue when a tag is freed. The
2054 * waitqueue takes care of that. If the queue is run
2055 * before we add this entry back on the dispatch list,
2056 * we'll re-run it below.
2057 */
2058 if (!blk_mq_mark_tag_wait(hctx, rq)) {
2059 /*
2060 * All budgets not got from this function will be put
2061 * together during handling partial dispatch
2062 */
2063 if (need_budget)
2064 blk_mq_put_dispatch_budget(rq->q, budget_token);
2065 return PREP_DISPATCH_NO_TAG;
2066 }
2067 }
2068
2069 return PREP_DISPATCH_OK;
2070 }
2071
2072 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2073 static void blk_mq_release_budgets(struct request_queue *q,
2074 struct list_head *list)
2075 {
2076 struct request *rq;
2077
2078 list_for_each_entry(rq, list, queuelist) {
2079 int budget_token = blk_mq_get_rq_budget_token(rq);
2080
2081 if (budget_token >= 0)
2082 blk_mq_put_dispatch_budget(q, budget_token);
2083 }
2084 }
2085
2086 /*
2087 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2088 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2089 * details)
2090 * Attention, we should explicitly call this in unusual cases:
2091 * 1) did not queue everything initially scheduled to queue
2092 * 2) the last attempt to queue a request failed
2093 */
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2094 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2095 bool from_schedule)
2096 {
2097 if (hctx->queue->mq_ops->commit_rqs && queued) {
2098 trace_block_unplug(hctx->queue, queued, !from_schedule);
2099 hctx->queue->mq_ops->commit_rqs(hctx);
2100 }
2101 }
2102
2103 /*
2104 * Returns true if we did some work AND can potentially do more.
2105 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,bool get_budget)2106 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2107 bool get_budget)
2108 {
2109 enum prep_dispatch prep;
2110 struct request_queue *q = hctx->queue;
2111 struct request *rq;
2112 int queued;
2113 blk_status_t ret = BLK_STS_OK;
2114 bool needs_resource = false;
2115
2116 if (list_empty(list))
2117 return false;
2118
2119 /*
2120 * Now process all the entries, sending them to the driver.
2121 */
2122 queued = 0;
2123 do {
2124 struct blk_mq_queue_data bd;
2125
2126 rq = list_first_entry(list, struct request, queuelist);
2127
2128 WARN_ON_ONCE(hctx != rq->mq_hctx);
2129 prep = blk_mq_prep_dispatch_rq(rq, get_budget);
2130 if (prep != PREP_DISPATCH_OK)
2131 break;
2132
2133 list_del_init(&rq->queuelist);
2134
2135 bd.rq = rq;
2136 bd.last = list_empty(list);
2137
2138 ret = q->mq_ops->queue_rq(hctx, &bd);
2139 switch (ret) {
2140 case BLK_STS_OK:
2141 queued++;
2142 break;
2143 case BLK_STS_RESOURCE:
2144 needs_resource = true;
2145 fallthrough;
2146 case BLK_STS_DEV_RESOURCE:
2147 blk_mq_handle_dev_resource(rq, list);
2148 goto out;
2149 default:
2150 blk_mq_end_request(rq, ret);
2151 }
2152 } while (!list_empty(list));
2153 out:
2154 /* If we didn't flush the entire list, we could have told the driver
2155 * there was more coming, but that turned out to be a lie.
2156 */
2157 if (!list_empty(list) || ret != BLK_STS_OK)
2158 blk_mq_commit_rqs(hctx, queued, false);
2159
2160 /*
2161 * Any items that need requeuing? Stuff them into hctx->dispatch,
2162 * that is where we will continue on next queue run.
2163 */
2164 if (!list_empty(list)) {
2165 bool needs_restart;
2166 /* For non-shared tags, the RESTART check will suffice */
2167 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2168 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2169 blk_mq_is_shared_tags(hctx->flags));
2170
2171 /*
2172 * If the caller allocated budgets, free the budgets of the
2173 * requests that have not yet been passed to the block driver.
2174 */
2175 if (!get_budget)
2176 blk_mq_release_budgets(q, list);
2177
2178 spin_lock(&hctx->lock);
2179 list_splice_tail_init(list, &hctx->dispatch);
2180 spin_unlock(&hctx->lock);
2181
2182 /*
2183 * Order adding requests to hctx->dispatch and checking
2184 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2185 * in blk_mq_sched_restart(). Avoid restart code path to
2186 * miss the new added requests to hctx->dispatch, meantime
2187 * SCHED_RESTART is observed here.
2188 */
2189 smp_mb();
2190
2191 /*
2192 * If SCHED_RESTART was set by the caller of this function and
2193 * it is no longer set that means that it was cleared by another
2194 * thread and hence that a queue rerun is needed.
2195 *
2196 * If 'no_tag' is set, that means that we failed getting
2197 * a driver tag with an I/O scheduler attached. If our dispatch
2198 * waitqueue is no longer active, ensure that we run the queue
2199 * AFTER adding our entries back to the list.
2200 *
2201 * If no I/O scheduler has been configured it is possible that
2202 * the hardware queue got stopped and restarted before requests
2203 * were pushed back onto the dispatch list. Rerun the queue to
2204 * avoid starvation. Notes:
2205 * - blk_mq_run_hw_queue() checks whether or not a queue has
2206 * been stopped before rerunning a queue.
2207 * - Some but not all block drivers stop a queue before
2208 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2209 * and dm-rq.
2210 *
2211 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2212 * bit is set, run queue after a delay to avoid IO stalls
2213 * that could otherwise occur if the queue is idle. We'll do
2214 * similar if we couldn't get budget or couldn't lock a zone
2215 * and SCHED_RESTART is set.
2216 */
2217 needs_restart = blk_mq_sched_needs_restart(hctx);
2218 if (prep == PREP_DISPATCH_NO_BUDGET)
2219 needs_resource = true;
2220 if (!needs_restart ||
2221 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2222 blk_mq_run_hw_queue(hctx, true);
2223 else if (needs_resource)
2224 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2225
2226 blk_mq_update_dispatch_busy(hctx, true);
2227 return false;
2228 }
2229
2230 blk_mq_update_dispatch_busy(hctx, false);
2231 return true;
2232 }
2233
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2234 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2235 {
2236 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2237
2238 if (cpu >= nr_cpu_ids)
2239 cpu = cpumask_first(hctx->cpumask);
2240 return cpu;
2241 }
2242
2243 /*
2244 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2245 * it for speeding up the check
2246 */
blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx * hctx)2247 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2248 {
2249 return hctx->next_cpu >= nr_cpu_ids;
2250 }
2251
2252 /*
2253 * It'd be great if the workqueue API had a way to pass
2254 * in a mask and had some smarts for more clever placement.
2255 * For now we just round-robin here, switching for every
2256 * BLK_MQ_CPU_WORK_BATCH queued items.
2257 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2258 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2259 {
2260 bool tried = false;
2261 int next_cpu = hctx->next_cpu;
2262
2263 /* Switch to unbound if no allowable CPUs in this hctx */
2264 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2265 return WORK_CPU_UNBOUND;
2266
2267 if (--hctx->next_cpu_batch <= 0) {
2268 select_cpu:
2269 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2270 cpu_online_mask);
2271 if (next_cpu >= nr_cpu_ids)
2272 next_cpu = blk_mq_first_mapped_cpu(hctx);
2273 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2274 }
2275
2276 /*
2277 * Do unbound schedule if we can't find a online CPU for this hctx,
2278 * and it should only happen in the path of handling CPU DEAD.
2279 */
2280 if (!cpu_online(next_cpu)) {
2281 if (!tried) {
2282 tried = true;
2283 goto select_cpu;
2284 }
2285
2286 /*
2287 * Make sure to re-select CPU next time once after CPUs
2288 * in hctx->cpumask become online again.
2289 */
2290 hctx->next_cpu = next_cpu;
2291 hctx->next_cpu_batch = 1;
2292 return WORK_CPU_UNBOUND;
2293 }
2294
2295 hctx->next_cpu = next_cpu;
2296 return next_cpu;
2297 }
2298
2299 /**
2300 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2301 * @hctx: Pointer to the hardware queue to run.
2302 * @msecs: Milliseconds of delay to wait before running the queue.
2303 *
2304 * Run a hardware queue asynchronously with a delay of @msecs.
2305 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2306 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2307 {
2308 if (unlikely(blk_mq_hctx_stopped(hctx)))
2309 return;
2310 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2311 msecs_to_jiffies(msecs));
2312 }
2313 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2314
blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx * hctx)2315 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2316 {
2317 bool need_run;
2318
2319 /*
2320 * When queue is quiesced, we may be switching io scheduler, or
2321 * updating nr_hw_queues, or other things, and we can't run queue
2322 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2323 *
2324 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2325 * quiesced.
2326 */
2327 __blk_mq_run_dispatch_ops(hctx->queue, false,
2328 need_run = !blk_queue_quiesced(hctx->queue) &&
2329 blk_mq_hctx_has_pending(hctx));
2330 return need_run;
2331 }
2332
2333 /**
2334 * blk_mq_run_hw_queue - Start to run a hardware queue.
2335 * @hctx: Pointer to the hardware queue to run.
2336 * @async: If we want to run the queue asynchronously.
2337 *
2338 * Check if the request queue is not in a quiesced state and if there are
2339 * pending requests to be sent. If this is true, run the queue to send requests
2340 * to hardware.
2341 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2342 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2343 {
2344 bool need_run;
2345
2346 /*
2347 * We can't run the queue inline with interrupts disabled.
2348 */
2349 WARN_ON_ONCE(!async && in_interrupt());
2350
2351 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2352
2353 need_run = blk_mq_hw_queue_need_run(hctx);
2354 if (!need_run) {
2355 unsigned long flags;
2356
2357 /*
2358 * Synchronize with blk_mq_unquiesce_queue(), because we check
2359 * if hw queue is quiesced locklessly above, we need the use
2360 * ->queue_lock to make sure we see the up-to-date status to
2361 * not miss rerunning the hw queue.
2362 */
2363 spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2364 need_run = blk_mq_hw_queue_need_run(hctx);
2365 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2366
2367 if (!need_run)
2368 return;
2369 }
2370
2371 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2372 blk_mq_delay_run_hw_queue(hctx, 0);
2373 return;
2374 }
2375
2376 blk_mq_run_dispatch_ops(hctx->queue,
2377 blk_mq_sched_dispatch_requests(hctx));
2378 }
2379 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2380
2381 /*
2382 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2383 * scheduler.
2384 */
blk_mq_get_sq_hctx(struct request_queue * q)2385 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2386 {
2387 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2388 /*
2389 * If the IO scheduler does not respect hardware queues when
2390 * dispatching, we just don't bother with multiple HW queues and
2391 * dispatch from hctx for the current CPU since running multiple queues
2392 * just causes lock contention inside the scheduler and pointless cache
2393 * bouncing.
2394 */
2395 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2396
2397 if (!blk_mq_hctx_stopped(hctx))
2398 return hctx;
2399 return NULL;
2400 }
2401
2402 /**
2403 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2404 * @q: Pointer to the request queue to run.
2405 * @async: If we want to run the queue asynchronously.
2406 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2407 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2408 {
2409 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2410 unsigned long i;
2411
2412 sq_hctx = NULL;
2413 if (blk_queue_sq_sched(q))
2414 sq_hctx = blk_mq_get_sq_hctx(q);
2415 queue_for_each_hw_ctx(q, hctx, i) {
2416 if (blk_mq_hctx_stopped(hctx))
2417 continue;
2418 /*
2419 * Dispatch from this hctx either if there's no hctx preferred
2420 * by IO scheduler or if it has requests that bypass the
2421 * scheduler.
2422 */
2423 if (!sq_hctx || sq_hctx == hctx ||
2424 !list_empty_careful(&hctx->dispatch))
2425 blk_mq_run_hw_queue(hctx, async);
2426 }
2427 }
2428 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2429
2430 /**
2431 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2432 * @q: Pointer to the request queue to run.
2433 * @msecs: Milliseconds of delay to wait before running the queues.
2434 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2435 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2436 {
2437 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2438 unsigned long i;
2439
2440 sq_hctx = NULL;
2441 if (blk_queue_sq_sched(q))
2442 sq_hctx = blk_mq_get_sq_hctx(q);
2443 queue_for_each_hw_ctx(q, hctx, i) {
2444 if (blk_mq_hctx_stopped(hctx))
2445 continue;
2446 /*
2447 * If there is already a run_work pending, leave the
2448 * pending delay untouched. Otherwise, a hctx can stall
2449 * if another hctx is re-delaying the other's work
2450 * before the work executes.
2451 */
2452 if (delayed_work_pending(&hctx->run_work))
2453 continue;
2454 /*
2455 * Dispatch from this hctx either if there's no hctx preferred
2456 * by IO scheduler or if it has requests that bypass the
2457 * scheduler.
2458 */
2459 if (!sq_hctx || sq_hctx == hctx ||
2460 !list_empty_careful(&hctx->dispatch))
2461 blk_mq_delay_run_hw_queue(hctx, msecs);
2462 }
2463 }
2464 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2465
2466 /*
2467 * This function is often used for pausing .queue_rq() by driver when
2468 * there isn't enough resource or some conditions aren't satisfied, and
2469 * BLK_STS_RESOURCE is usually returned.
2470 *
2471 * We do not guarantee that dispatch can be drained or blocked
2472 * after blk_mq_stop_hw_queue() returns. Please use
2473 * blk_mq_quiesce_queue() for that requirement.
2474 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2475 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2476 {
2477 cancel_delayed_work(&hctx->run_work);
2478
2479 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2480 }
2481 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2482
2483 /*
2484 * This function is often used for pausing .queue_rq() by driver when
2485 * there isn't enough resource or some conditions aren't satisfied, and
2486 * BLK_STS_RESOURCE is usually returned.
2487 *
2488 * We do not guarantee that dispatch can be drained or blocked
2489 * after blk_mq_stop_hw_queues() returns. Please use
2490 * blk_mq_quiesce_queue() for that requirement.
2491 */
blk_mq_stop_hw_queues(struct request_queue * q)2492 void blk_mq_stop_hw_queues(struct request_queue *q)
2493 {
2494 struct blk_mq_hw_ctx *hctx;
2495 unsigned long i;
2496
2497 queue_for_each_hw_ctx(q, hctx, i)
2498 blk_mq_stop_hw_queue(hctx);
2499 }
2500 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2501
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2502 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2503 {
2504 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2505
2506 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2507 }
2508 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2509
blk_mq_start_hw_queues(struct request_queue * q)2510 void blk_mq_start_hw_queues(struct request_queue *q)
2511 {
2512 struct blk_mq_hw_ctx *hctx;
2513 unsigned long i;
2514
2515 queue_for_each_hw_ctx(q, hctx, i)
2516 blk_mq_start_hw_queue(hctx);
2517 }
2518 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2519
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2520 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2521 {
2522 if (!blk_mq_hctx_stopped(hctx))
2523 return;
2524
2525 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2526 /*
2527 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2528 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2529 * list in the subsequent routine.
2530 */
2531 smp_mb__after_atomic();
2532 blk_mq_run_hw_queue(hctx, async);
2533 }
2534 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2535
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2536 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2537 {
2538 struct blk_mq_hw_ctx *hctx;
2539 unsigned long i;
2540
2541 queue_for_each_hw_ctx(q, hctx, i)
2542 blk_mq_start_stopped_hw_queue(hctx, async ||
2543 (hctx->flags & BLK_MQ_F_BLOCKING));
2544 }
2545 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2546
blk_mq_run_work_fn(struct work_struct * work)2547 static void blk_mq_run_work_fn(struct work_struct *work)
2548 {
2549 struct blk_mq_hw_ctx *hctx =
2550 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2551
2552 blk_mq_run_dispatch_ops(hctx->queue,
2553 blk_mq_sched_dispatch_requests(hctx));
2554 }
2555
2556 /**
2557 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2558 * @rq: Pointer to request to be inserted.
2559 * @flags: BLK_MQ_INSERT_*
2560 *
2561 * Should only be used carefully, when the caller knows we want to
2562 * bypass a potential IO scheduler on the target device.
2563 */
blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2564 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2565 {
2566 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2567
2568 spin_lock(&hctx->lock);
2569 if (flags & BLK_MQ_INSERT_AT_HEAD)
2570 list_add(&rq->queuelist, &hctx->dispatch);
2571 else
2572 list_add_tail(&rq->queuelist, &hctx->dispatch);
2573 spin_unlock(&hctx->lock);
2574 }
2575
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2576 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2577 struct blk_mq_ctx *ctx, struct list_head *list,
2578 bool run_queue_async)
2579 {
2580 struct request *rq;
2581 enum hctx_type type = hctx->type;
2582
2583 /*
2584 * Try to issue requests directly if the hw queue isn't busy to save an
2585 * extra enqueue & dequeue to the sw queue.
2586 */
2587 if (!hctx->dispatch_busy && !run_queue_async) {
2588 blk_mq_run_dispatch_ops(hctx->queue,
2589 blk_mq_try_issue_list_directly(hctx, list));
2590 if (list_empty(list))
2591 goto out;
2592 }
2593
2594 /*
2595 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2596 * offline now
2597 */
2598 list_for_each_entry(rq, list, queuelist) {
2599 BUG_ON(rq->mq_ctx != ctx);
2600 trace_block_rq_insert(rq);
2601 if (rq->cmd_flags & REQ_NOWAIT)
2602 run_queue_async = true;
2603 }
2604
2605 spin_lock(&ctx->lock);
2606 list_splice_tail_init(list, &ctx->rq_lists[type]);
2607 blk_mq_hctx_mark_pending(hctx, ctx);
2608 spin_unlock(&ctx->lock);
2609 out:
2610 blk_mq_run_hw_queue(hctx, run_queue_async);
2611 }
2612
blk_mq_insert_request(struct request * rq,blk_insert_t flags)2613 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2614 {
2615 struct request_queue *q = rq->q;
2616 struct blk_mq_ctx *ctx = rq->mq_ctx;
2617 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2618
2619 if (blk_rq_is_passthrough(rq)) {
2620 /*
2621 * Passthrough request have to be added to hctx->dispatch
2622 * directly. The device may be in a situation where it can't
2623 * handle FS request, and always returns BLK_STS_RESOURCE for
2624 * them, which gets them added to hctx->dispatch.
2625 *
2626 * If a passthrough request is required to unblock the queues,
2627 * and it is added to the scheduler queue, there is no chance to
2628 * dispatch it given we prioritize requests in hctx->dispatch.
2629 */
2630 blk_mq_request_bypass_insert(rq, flags);
2631 } else if (req_op(rq) == REQ_OP_FLUSH) {
2632 /*
2633 * Firstly normal IO request is inserted to scheduler queue or
2634 * sw queue, meantime we add flush request to dispatch queue(
2635 * hctx->dispatch) directly and there is at most one in-flight
2636 * flush request for each hw queue, so it doesn't matter to add
2637 * flush request to tail or front of the dispatch queue.
2638 *
2639 * Secondly in case of NCQ, flush request belongs to non-NCQ
2640 * command, and queueing it will fail when there is any
2641 * in-flight normal IO request(NCQ command). When adding flush
2642 * rq to the front of hctx->dispatch, it is easier to introduce
2643 * extra time to flush rq's latency because of S_SCHED_RESTART
2644 * compared with adding to the tail of dispatch queue, then
2645 * chance of flush merge is increased, and less flush requests
2646 * will be issued to controller. It is observed that ~10% time
2647 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2648 * drive when adding flush rq to the front of hctx->dispatch.
2649 *
2650 * Simply queue flush rq to the front of hctx->dispatch so that
2651 * intensive flush workloads can benefit in case of NCQ HW.
2652 */
2653 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2654 } else if (q->elevator) {
2655 LIST_HEAD(list);
2656
2657 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2658
2659 list_add(&rq->queuelist, &list);
2660 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2661 } else {
2662 trace_block_rq_insert(rq);
2663
2664 spin_lock(&ctx->lock);
2665 if (flags & BLK_MQ_INSERT_AT_HEAD)
2666 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2667 else
2668 list_add_tail(&rq->queuelist,
2669 &ctx->rq_lists[hctx->type]);
2670 blk_mq_hctx_mark_pending(hctx, ctx);
2671 spin_unlock(&ctx->lock);
2672 }
2673 }
2674
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2675 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2676 unsigned int nr_segs)
2677 {
2678 int err;
2679
2680 if (bio->bi_opf & REQ_RAHEAD)
2681 rq->cmd_flags |= REQ_FAILFAST_MASK;
2682
2683 rq->bio = rq->biotail = bio;
2684 rq->__sector = bio->bi_iter.bi_sector;
2685 rq->__data_len = bio->bi_iter.bi_size;
2686 rq->phys_gap_bit = bio->bi_bvec_gap_bit;
2687
2688 rq->nr_phys_segments = nr_segs;
2689 if (bio_integrity(bio))
2690 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2691 bio);
2692
2693 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2694 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2695 WARN_ON_ONCE(err);
2696
2697 blk_account_io_start(rq);
2698 }
2699
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2700 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2701 struct request *rq, bool last)
2702 {
2703 struct request_queue *q = rq->q;
2704 struct blk_mq_queue_data bd = {
2705 .rq = rq,
2706 .last = last,
2707 };
2708 blk_status_t ret;
2709
2710 /*
2711 * For OK queue, we are done. For error, caller may kill it.
2712 * Any other error (busy), just add it to our list as we
2713 * previously would have done.
2714 */
2715 ret = q->mq_ops->queue_rq(hctx, &bd);
2716 switch (ret) {
2717 case BLK_STS_OK:
2718 blk_mq_update_dispatch_busy(hctx, false);
2719 break;
2720 case BLK_STS_RESOURCE:
2721 case BLK_STS_DEV_RESOURCE:
2722 blk_mq_update_dispatch_busy(hctx, true);
2723 __blk_mq_requeue_request(rq);
2724 break;
2725 default:
2726 blk_mq_update_dispatch_busy(hctx, false);
2727 break;
2728 }
2729
2730 return ret;
2731 }
2732
blk_mq_get_budget_and_tag(struct request * rq)2733 static bool blk_mq_get_budget_and_tag(struct request *rq)
2734 {
2735 int budget_token;
2736
2737 budget_token = blk_mq_get_dispatch_budget(rq->q);
2738 if (budget_token < 0)
2739 return false;
2740 blk_mq_set_rq_budget_token(rq, budget_token);
2741 if (!blk_mq_get_driver_tag(rq)) {
2742 blk_mq_put_dispatch_budget(rq->q, budget_token);
2743 return false;
2744 }
2745 return true;
2746 }
2747
2748 /**
2749 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2750 * @hctx: Pointer of the associated hardware queue.
2751 * @rq: Pointer to request to be sent.
2752 *
2753 * If the device has enough resources to accept a new request now, send the
2754 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2755 * we can try send it another time in the future. Requests inserted at this
2756 * queue have higher priority.
2757 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2758 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2759 struct request *rq)
2760 {
2761 blk_status_t ret;
2762
2763 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2764 blk_mq_insert_request(rq, 0);
2765 blk_mq_run_hw_queue(hctx, false);
2766 return;
2767 }
2768
2769 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2770 blk_mq_insert_request(rq, 0);
2771 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2772 return;
2773 }
2774
2775 ret = __blk_mq_issue_directly(hctx, rq, true);
2776 switch (ret) {
2777 case BLK_STS_OK:
2778 break;
2779 case BLK_STS_RESOURCE:
2780 case BLK_STS_DEV_RESOURCE:
2781 blk_mq_request_bypass_insert(rq, 0);
2782 blk_mq_run_hw_queue(hctx, false);
2783 break;
2784 default:
2785 blk_mq_end_request(rq, ret);
2786 break;
2787 }
2788 }
2789
blk_mq_request_issue_directly(struct request * rq,bool last)2790 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2791 {
2792 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2793
2794 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2795 blk_mq_insert_request(rq, 0);
2796 blk_mq_run_hw_queue(hctx, false);
2797 return BLK_STS_OK;
2798 }
2799
2800 if (!blk_mq_get_budget_and_tag(rq))
2801 return BLK_STS_RESOURCE;
2802 return __blk_mq_issue_directly(hctx, rq, last);
2803 }
2804
blk_mq_issue_direct(struct rq_list * rqs)2805 static void blk_mq_issue_direct(struct rq_list *rqs)
2806 {
2807 struct blk_mq_hw_ctx *hctx = NULL;
2808 struct request *rq;
2809 int queued = 0;
2810 blk_status_t ret = BLK_STS_OK;
2811
2812 while ((rq = rq_list_pop(rqs))) {
2813 bool last = rq_list_empty(rqs);
2814
2815 if (hctx != rq->mq_hctx) {
2816 if (hctx) {
2817 blk_mq_commit_rqs(hctx, queued, false);
2818 queued = 0;
2819 }
2820 hctx = rq->mq_hctx;
2821 }
2822
2823 ret = blk_mq_request_issue_directly(rq, last);
2824 switch (ret) {
2825 case BLK_STS_OK:
2826 queued++;
2827 break;
2828 case BLK_STS_RESOURCE:
2829 case BLK_STS_DEV_RESOURCE:
2830 blk_mq_request_bypass_insert(rq, 0);
2831 blk_mq_run_hw_queue(hctx, false);
2832 goto out;
2833 default:
2834 blk_mq_end_request(rq, ret);
2835 break;
2836 }
2837 }
2838
2839 out:
2840 if (ret != BLK_STS_OK)
2841 blk_mq_commit_rqs(hctx, queued, false);
2842 }
2843
__blk_mq_flush_list(struct request_queue * q,struct rq_list * rqs)2844 static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs)
2845 {
2846 if (blk_queue_quiesced(q))
2847 return;
2848 q->mq_ops->queue_rqs(rqs);
2849 }
2850
blk_mq_extract_queue_requests(struct rq_list * rqs,struct rq_list * queue_rqs)2851 static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs,
2852 struct rq_list *queue_rqs)
2853 {
2854 struct request *rq = rq_list_pop(rqs);
2855 struct request_queue *this_q = rq->q;
2856 struct request **prev = &rqs->head;
2857 struct rq_list matched_rqs = {};
2858 struct request *last = NULL;
2859 unsigned depth = 1;
2860
2861 rq_list_add_tail(&matched_rqs, rq);
2862 while ((rq = *prev)) {
2863 if (rq->q == this_q) {
2864 /* move rq from rqs to matched_rqs */
2865 *prev = rq->rq_next;
2866 rq_list_add_tail(&matched_rqs, rq);
2867 depth++;
2868 } else {
2869 /* leave rq in rqs */
2870 prev = &rq->rq_next;
2871 last = rq;
2872 }
2873 }
2874
2875 rqs->tail = last;
2876 *queue_rqs = matched_rqs;
2877 return depth;
2878 }
2879
blk_mq_dispatch_queue_requests(struct rq_list * rqs,unsigned depth)2880 static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth)
2881 {
2882 struct request_queue *q = rq_list_peek(rqs)->q;
2883
2884 trace_block_unplug(q, depth, true);
2885
2886 /*
2887 * Peek first request and see if we have a ->queue_rqs() hook.
2888 * If we do, we can dispatch the whole list in one go.
2889 * We already know at this point that all requests belong to the
2890 * same queue, caller must ensure that's the case.
2891 */
2892 if (q->mq_ops->queue_rqs) {
2893 blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs));
2894 if (rq_list_empty(rqs))
2895 return;
2896 }
2897
2898 blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs));
2899 }
2900
blk_mq_dispatch_list(struct rq_list * rqs,bool from_sched)2901 static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched)
2902 {
2903 struct blk_mq_hw_ctx *this_hctx = NULL;
2904 struct blk_mq_ctx *this_ctx = NULL;
2905 struct rq_list requeue_list = {};
2906 unsigned int depth = 0;
2907 bool is_passthrough = false;
2908 LIST_HEAD(list);
2909
2910 do {
2911 struct request *rq = rq_list_pop(rqs);
2912
2913 if (!this_hctx) {
2914 this_hctx = rq->mq_hctx;
2915 this_ctx = rq->mq_ctx;
2916 is_passthrough = blk_rq_is_passthrough(rq);
2917 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2918 is_passthrough != blk_rq_is_passthrough(rq)) {
2919 rq_list_add_tail(&requeue_list, rq);
2920 continue;
2921 }
2922 list_add_tail(&rq->queuelist, &list);
2923 depth++;
2924 } while (!rq_list_empty(rqs));
2925
2926 *rqs = requeue_list;
2927 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2928
2929 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2930 /* passthrough requests should never be issued to the I/O scheduler */
2931 if (is_passthrough) {
2932 spin_lock(&this_hctx->lock);
2933 list_splice_tail_init(&list, &this_hctx->dispatch);
2934 spin_unlock(&this_hctx->lock);
2935 blk_mq_run_hw_queue(this_hctx, from_sched);
2936 } else if (this_hctx->queue->elevator) {
2937 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2938 &list, 0);
2939 blk_mq_run_hw_queue(this_hctx, from_sched);
2940 } else {
2941 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2942 }
2943 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2944 }
2945
blk_mq_dispatch_multiple_queue_requests(struct rq_list * rqs)2946 static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs)
2947 {
2948 do {
2949 struct rq_list queue_rqs;
2950 unsigned depth;
2951
2952 depth = blk_mq_extract_queue_requests(rqs, &queue_rqs);
2953 blk_mq_dispatch_queue_requests(&queue_rqs, depth);
2954 while (!rq_list_empty(&queue_rqs))
2955 blk_mq_dispatch_list(&queue_rqs, false);
2956 } while (!rq_list_empty(rqs));
2957 }
2958
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2959 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2960 {
2961 unsigned int depth;
2962
2963 /*
2964 * We may have been called recursively midway through handling
2965 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2966 * To avoid mq_list changing under our feet, clear rq_count early and
2967 * bail out specifically if rq_count is 0 rather than checking
2968 * whether the mq_list is empty.
2969 */
2970 if (plug->rq_count == 0)
2971 return;
2972 depth = plug->rq_count;
2973 plug->rq_count = 0;
2974
2975 if (!plug->has_elevator && !from_schedule) {
2976 if (plug->multiple_queues) {
2977 blk_mq_dispatch_multiple_queue_requests(&plug->mq_list);
2978 return;
2979 }
2980
2981 blk_mq_dispatch_queue_requests(&plug->mq_list, depth);
2982 if (rq_list_empty(&plug->mq_list))
2983 return;
2984 }
2985
2986 do {
2987 blk_mq_dispatch_list(&plug->mq_list, from_schedule);
2988 } while (!rq_list_empty(&plug->mq_list));
2989 }
2990
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2991 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2992 struct list_head *list)
2993 {
2994 int queued = 0;
2995 blk_status_t ret = BLK_STS_OK;
2996
2997 while (!list_empty(list)) {
2998 struct request *rq = list_first_entry(list, struct request,
2999 queuelist);
3000
3001 list_del_init(&rq->queuelist);
3002 ret = blk_mq_request_issue_directly(rq, list_empty(list));
3003 switch (ret) {
3004 case BLK_STS_OK:
3005 queued++;
3006 break;
3007 case BLK_STS_RESOURCE:
3008 case BLK_STS_DEV_RESOURCE:
3009 blk_mq_request_bypass_insert(rq, 0);
3010 if (list_empty(list))
3011 blk_mq_run_hw_queue(hctx, false);
3012 goto out;
3013 default:
3014 blk_mq_end_request(rq, ret);
3015 break;
3016 }
3017 }
3018
3019 out:
3020 if (ret != BLK_STS_OK)
3021 blk_mq_commit_rqs(hctx, queued, false);
3022 }
3023
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)3024 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
3025 struct bio *bio, unsigned int nr_segs)
3026 {
3027 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
3028 if (blk_attempt_plug_merge(q, bio, nr_segs))
3029 return true;
3030 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
3031 return true;
3032 }
3033 return false;
3034 }
3035
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio)3036 static struct request *blk_mq_get_new_requests(struct request_queue *q,
3037 struct blk_plug *plug,
3038 struct bio *bio)
3039 {
3040 struct blk_mq_alloc_data data = {
3041 .q = q,
3042 .flags = 0,
3043 .shallow_depth = 0,
3044 .cmd_flags = bio->bi_opf,
3045 .rq_flags = 0,
3046 .nr_tags = 1,
3047 .cached_rqs = NULL,
3048 .ctx = NULL,
3049 .hctx = NULL
3050 };
3051 struct request *rq;
3052
3053 rq_qos_throttle(q, bio);
3054
3055 if (plug) {
3056 data.nr_tags = plug->nr_ios;
3057 plug->nr_ios = 1;
3058 data.cached_rqs = &plug->cached_rqs;
3059 }
3060
3061 rq = __blk_mq_alloc_requests(&data);
3062 if (unlikely(!rq))
3063 rq_qos_cleanup(q, bio);
3064 return rq;
3065 }
3066
3067 /*
3068 * Check if there is a suitable cached request and return it.
3069 */
blk_mq_peek_cached_request(struct blk_plug * plug,struct request_queue * q,blk_opf_t opf)3070 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
3071 struct request_queue *q, blk_opf_t opf)
3072 {
3073 enum hctx_type type = blk_mq_get_hctx_type(opf);
3074 struct request *rq;
3075
3076 if (!plug)
3077 return NULL;
3078 rq = rq_list_peek(&plug->cached_rqs);
3079 if (!rq || rq->q != q)
3080 return NULL;
3081 if (type != rq->mq_hctx->type &&
3082 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3083 return NULL;
3084 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3085 return NULL;
3086 return rq;
3087 }
3088
blk_mq_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)3089 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3090 struct bio *bio)
3091 {
3092 if (rq_list_pop(&plug->cached_rqs) != rq)
3093 WARN_ON_ONCE(1);
3094
3095 /*
3096 * If any qos ->throttle() end up blocking, we will have flushed the
3097 * plug and hence killed the cached_rq list as well. Pop this entry
3098 * before we throttle.
3099 */
3100 rq_qos_throttle(rq->q, bio);
3101
3102 blk_mq_rq_time_init(rq, blk_time_get_ns());
3103 rq->cmd_flags = bio->bi_opf;
3104 INIT_LIST_HEAD(&rq->queuelist);
3105 }
3106
bio_unaligned(const struct bio * bio,struct request_queue * q)3107 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3108 {
3109 unsigned int bs_mask = queue_logical_block_size(q) - 1;
3110
3111 /* .bi_sector of any zero sized bio need to be initialized */
3112 if ((bio->bi_iter.bi_size & bs_mask) ||
3113 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3114 return true;
3115 return false;
3116 }
3117
3118 /**
3119 * blk_mq_submit_bio - Create and send a request to block device.
3120 * @bio: Bio pointer.
3121 *
3122 * Builds up a request structure from @q and @bio and send to the device. The
3123 * request may not be queued directly to hardware if:
3124 * * This request can be merged with another one
3125 * * We want to place request at plug queue for possible future merging
3126 * * There is an IO scheduler active at this queue
3127 *
3128 * It will not queue the request if there is an error with the bio, or at the
3129 * request creation.
3130 */
blk_mq_submit_bio(struct bio * bio)3131 void blk_mq_submit_bio(struct bio *bio)
3132 {
3133 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3134 struct blk_plug *plug = current->plug;
3135 const int is_sync = op_is_sync(bio->bi_opf);
3136 struct blk_mq_hw_ctx *hctx;
3137 unsigned int nr_segs;
3138 struct request *rq;
3139 blk_status_t ret;
3140
3141 /*
3142 * If the plug has a cached request for this queue, try to use it.
3143 */
3144 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3145
3146 /*
3147 * A BIO that was released from a zone write plug has already been
3148 * through the preparation in this function, already holds a reference
3149 * on the queue usage counter, and is the only write BIO in-flight for
3150 * the target zone. Go straight to preparing a request for it.
3151 */
3152 if (bio_zone_write_plugging(bio)) {
3153 nr_segs = bio->__bi_nr_segments;
3154 if (rq)
3155 blk_queue_exit(q);
3156 goto new_request;
3157 }
3158
3159 /*
3160 * The cached request already holds a q_usage_counter reference and we
3161 * don't have to acquire a new one if we use it.
3162 */
3163 if (!rq) {
3164 if (unlikely(bio_queue_enter(bio)))
3165 return;
3166 }
3167
3168 /*
3169 * Device reconfiguration may change logical block size or reduce the
3170 * number of poll queues, so the checks for alignment and poll support
3171 * have to be done with queue usage counter held.
3172 */
3173 if (unlikely(bio_unaligned(bio, q))) {
3174 bio_io_error(bio);
3175 goto queue_exit;
3176 }
3177
3178 if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3179 bio->bi_status = BLK_STS_NOTSUPP;
3180 bio_endio(bio);
3181 goto queue_exit;
3182 }
3183
3184 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3185 if (!bio)
3186 goto queue_exit;
3187
3188 if (!bio_integrity_prep(bio))
3189 goto queue_exit;
3190
3191 blk_mq_bio_issue_init(q, bio);
3192 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3193 goto queue_exit;
3194
3195 if (bio_needs_zone_write_plugging(bio)) {
3196 if (blk_zone_plug_bio(bio, nr_segs))
3197 goto queue_exit;
3198 }
3199
3200 new_request:
3201 if (rq) {
3202 blk_mq_use_cached_rq(rq, plug, bio);
3203 } else {
3204 rq = blk_mq_get_new_requests(q, plug, bio);
3205 if (unlikely(!rq)) {
3206 if (bio->bi_opf & REQ_NOWAIT)
3207 bio_wouldblock_error(bio);
3208 goto queue_exit;
3209 }
3210 }
3211
3212 trace_block_getrq(bio);
3213
3214 rq_qos_track(q, rq, bio);
3215
3216 blk_mq_bio_to_request(rq, bio, nr_segs);
3217
3218 ret = blk_crypto_rq_get_keyslot(rq);
3219 if (ret != BLK_STS_OK) {
3220 bio->bi_status = ret;
3221 bio_endio(bio);
3222 blk_mq_free_request(rq);
3223 return;
3224 }
3225
3226 if (bio_zone_write_plugging(bio))
3227 blk_zone_write_plug_init_request(rq);
3228
3229 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3230 return;
3231
3232 if (plug) {
3233 blk_add_rq_to_plug(plug, rq);
3234 return;
3235 }
3236
3237 hctx = rq->mq_hctx;
3238 if ((rq->rq_flags & RQF_USE_SCHED) ||
3239 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3240 blk_mq_insert_request(rq, 0);
3241 blk_mq_run_hw_queue(hctx, true);
3242 } else {
3243 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3244 }
3245 return;
3246
3247 queue_exit:
3248 /*
3249 * Don't drop the queue reference if we were trying to use a cached
3250 * request and thus didn't acquire one.
3251 */
3252 if (!rq)
3253 blk_queue_exit(q);
3254 }
3255
3256 #ifdef CONFIG_BLK_MQ_STACKING
3257 /**
3258 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3259 * @rq: the request being queued
3260 */
blk_insert_cloned_request(struct request * rq)3261 blk_status_t blk_insert_cloned_request(struct request *rq)
3262 {
3263 struct request_queue *q = rq->q;
3264 unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3265 unsigned int max_segments = blk_rq_get_max_segments(rq);
3266 blk_status_t ret;
3267
3268 if (blk_rq_sectors(rq) > max_sectors) {
3269 /*
3270 * SCSI device does not have a good way to return if
3271 * Write Same/Zero is actually supported. If a device rejects
3272 * a non-read/write command (discard, write same,etc.) the
3273 * low-level device driver will set the relevant queue limit to
3274 * 0 to prevent blk-lib from issuing more of the offending
3275 * operations. Commands queued prior to the queue limit being
3276 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3277 * errors being propagated to upper layers.
3278 */
3279 if (max_sectors == 0)
3280 return BLK_STS_NOTSUPP;
3281
3282 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3283 __func__, blk_rq_sectors(rq), max_sectors);
3284 return BLK_STS_IOERR;
3285 }
3286
3287 /*
3288 * The queue settings related to segment counting may differ from the
3289 * original queue.
3290 */
3291 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3292 if (rq->nr_phys_segments > max_segments) {
3293 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3294 __func__, rq->nr_phys_segments, max_segments);
3295 return BLK_STS_IOERR;
3296 }
3297
3298 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3299 return BLK_STS_IOERR;
3300
3301 ret = blk_crypto_rq_get_keyslot(rq);
3302 if (ret != BLK_STS_OK)
3303 return ret;
3304
3305 blk_account_io_start(rq);
3306
3307 /*
3308 * Since we have a scheduler attached on the top device,
3309 * bypass a potential scheduler on the bottom device for
3310 * insert.
3311 */
3312 blk_mq_run_dispatch_ops(q,
3313 ret = blk_mq_request_issue_directly(rq, true));
3314 if (ret)
3315 blk_account_io_done(rq, blk_time_get_ns());
3316 return ret;
3317 }
3318 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3319
3320 /**
3321 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3322 * @rq: the clone request to be cleaned up
3323 *
3324 * Description:
3325 * Free all bios in @rq for a cloned request.
3326 */
blk_rq_unprep_clone(struct request * rq)3327 void blk_rq_unprep_clone(struct request *rq)
3328 {
3329 struct bio *bio;
3330
3331 while ((bio = rq->bio) != NULL) {
3332 rq->bio = bio->bi_next;
3333
3334 bio_put(bio);
3335 }
3336 }
3337 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3338
3339 /**
3340 * blk_rq_prep_clone - Helper function to setup clone request
3341 * @rq: the request to be setup
3342 * @rq_src: original request to be cloned
3343 * @bs: bio_set that bios for clone are allocated from
3344 * @gfp_mask: memory allocation mask for bio
3345 * @bio_ctr: setup function to be called for each clone bio.
3346 * Returns %0 for success, non %0 for failure.
3347 * @data: private data to be passed to @bio_ctr
3348 *
3349 * Description:
3350 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3351 * Also, pages which the original bios are pointing to are not copied
3352 * and the cloned bios just point same pages.
3353 * So cloned bios must be completed before original bios, which means
3354 * the caller must complete @rq before @rq_src.
3355 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3356 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3357 struct bio_set *bs, gfp_t gfp_mask,
3358 int (*bio_ctr)(struct bio *, struct bio *, void *),
3359 void *data)
3360 {
3361 struct bio *bio_src;
3362
3363 if (!bs)
3364 bs = &fs_bio_set;
3365
3366 __rq_for_each_bio(bio_src, rq_src) {
3367 struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src,
3368 gfp_mask, bs);
3369 if (!bio)
3370 goto free_and_out;
3371
3372 if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3373 bio_put(bio);
3374 goto free_and_out;
3375 }
3376
3377 if (rq->bio) {
3378 rq->biotail->bi_next = bio;
3379 rq->biotail = bio;
3380 } else {
3381 rq->bio = rq->biotail = bio;
3382 }
3383 }
3384
3385 /* Copy attributes of the original request to the clone request. */
3386 rq->__sector = blk_rq_pos(rq_src);
3387 rq->__data_len = blk_rq_bytes(rq_src);
3388 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3389 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3390 rq->special_vec = rq_src->special_vec;
3391 }
3392 rq->nr_phys_segments = rq_src->nr_phys_segments;
3393 rq->nr_integrity_segments = rq_src->nr_integrity_segments;
3394 rq->phys_gap_bit = rq_src->phys_gap_bit;
3395
3396 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3397 goto free_and_out;
3398
3399 return 0;
3400
3401 free_and_out:
3402 blk_rq_unprep_clone(rq);
3403
3404 return -ENOMEM;
3405 }
3406 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3407 #endif /* CONFIG_BLK_MQ_STACKING */
3408
3409 /*
3410 * Steal bios from a request and add them to a bio list.
3411 * The request must not have been partially completed before.
3412 */
blk_steal_bios(struct bio_list * list,struct request * rq)3413 void blk_steal_bios(struct bio_list *list, struct request *rq)
3414 {
3415 if (rq->bio) {
3416 if (list->tail)
3417 list->tail->bi_next = rq->bio;
3418 else
3419 list->head = rq->bio;
3420 list->tail = rq->biotail;
3421
3422 rq->bio = NULL;
3423 rq->biotail = NULL;
3424 }
3425
3426 rq->__data_len = 0;
3427 }
3428 EXPORT_SYMBOL_GPL(blk_steal_bios);
3429
order_to_size(unsigned int order)3430 static size_t order_to_size(unsigned int order)
3431 {
3432 return (size_t)PAGE_SIZE << order;
3433 }
3434
3435 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3436 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3437 struct blk_mq_tags *tags)
3438 {
3439 struct page *page;
3440
3441 /*
3442 * There is no need to clear mapping if driver tags is not initialized
3443 * or the mapping belongs to the driver tags.
3444 */
3445 if (!drv_tags || drv_tags == tags)
3446 return;
3447
3448 list_for_each_entry(page, &tags->page_list, lru) {
3449 unsigned long start = (unsigned long)page_address(page);
3450 unsigned long end = start + order_to_size(page->private);
3451 int i;
3452
3453 for (i = 0; i < drv_tags->nr_tags; i++) {
3454 struct request *rq = drv_tags->rqs[i];
3455 unsigned long rq_addr = (unsigned long)rq;
3456
3457 if (rq_addr >= start && rq_addr < end) {
3458 WARN_ON_ONCE(req_ref_read(rq) != 0);
3459 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3460 }
3461 }
3462 }
3463 }
3464
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3465 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3466 unsigned int hctx_idx)
3467 {
3468 struct blk_mq_tags *drv_tags;
3469
3470 if (list_empty(&tags->page_list))
3471 return;
3472
3473 if (blk_mq_is_shared_tags(set->flags))
3474 drv_tags = set->shared_tags;
3475 else
3476 drv_tags = set->tags[hctx_idx];
3477
3478 if (tags->static_rqs && set->ops->exit_request) {
3479 int i;
3480
3481 for (i = 0; i < tags->nr_tags; i++) {
3482 struct request *rq = tags->static_rqs[i];
3483
3484 if (!rq)
3485 continue;
3486 set->ops->exit_request(set, rq, hctx_idx);
3487 tags->static_rqs[i] = NULL;
3488 }
3489 }
3490
3491 blk_mq_clear_rq_mapping(drv_tags, tags);
3492 /*
3493 * Free request pages in SRCU callback, which is called from
3494 * blk_mq_free_tags().
3495 */
3496 }
3497
blk_mq_free_rq_map(struct blk_mq_tag_set * set,struct blk_mq_tags * tags)3498 void blk_mq_free_rq_map(struct blk_mq_tag_set *set, struct blk_mq_tags *tags)
3499 {
3500 kfree(tags->rqs);
3501 tags->rqs = NULL;
3502 kfree(tags->static_rqs);
3503 tags->static_rqs = NULL;
3504
3505 blk_mq_free_tags(set, tags);
3506 }
3507
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3508 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3509 unsigned int hctx_idx)
3510 {
3511 int i;
3512
3513 for (i = 0; i < set->nr_maps; i++) {
3514 unsigned int start = set->map[i].queue_offset;
3515 unsigned int end = start + set->map[i].nr_queues;
3516
3517 if (hctx_idx >= start && hctx_idx < end)
3518 break;
3519 }
3520
3521 if (i >= set->nr_maps)
3522 i = HCTX_TYPE_DEFAULT;
3523
3524 return i;
3525 }
3526
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3527 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3528 unsigned int hctx_idx)
3529 {
3530 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3531
3532 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3533 }
3534
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3535 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3536 unsigned int hctx_idx,
3537 unsigned int nr_tags,
3538 unsigned int reserved_tags)
3539 {
3540 int node = blk_mq_get_hctx_node(set, hctx_idx);
3541 struct blk_mq_tags *tags;
3542
3543 if (node == NUMA_NO_NODE)
3544 node = set->numa_node;
3545
3546 tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node);
3547 if (!tags)
3548 return NULL;
3549
3550 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3551 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3552 node);
3553 if (!tags->rqs)
3554 goto err_free_tags;
3555
3556 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3557 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3558 node);
3559 if (!tags->static_rqs)
3560 goto err_free_rqs;
3561
3562 return tags;
3563
3564 err_free_rqs:
3565 kfree(tags->rqs);
3566 err_free_tags:
3567 blk_mq_free_tags(set, tags);
3568 return NULL;
3569 }
3570
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3571 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3572 unsigned int hctx_idx, int node)
3573 {
3574 int ret;
3575
3576 if (set->ops->init_request) {
3577 ret = set->ops->init_request(set, rq, hctx_idx, node);
3578 if (ret)
3579 return ret;
3580 }
3581
3582 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3583 return 0;
3584 }
3585
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3586 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3587 struct blk_mq_tags *tags,
3588 unsigned int hctx_idx, unsigned int depth)
3589 {
3590 unsigned int i, j, entries_per_page, max_order = 4;
3591 int node = blk_mq_get_hctx_node(set, hctx_idx);
3592 size_t rq_size, left;
3593
3594 if (node == NUMA_NO_NODE)
3595 node = set->numa_node;
3596
3597 /*
3598 * rq_size is the size of the request plus driver payload, rounded
3599 * to the cacheline size
3600 */
3601 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3602 cache_line_size());
3603 left = rq_size * depth;
3604
3605 for (i = 0; i < depth; ) {
3606 int this_order = max_order;
3607 struct page *page;
3608 int to_do;
3609 void *p;
3610
3611 while (this_order && left < order_to_size(this_order - 1))
3612 this_order--;
3613
3614 do {
3615 page = alloc_pages_node(node,
3616 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3617 this_order);
3618 if (page)
3619 break;
3620 if (!this_order--)
3621 break;
3622 if (order_to_size(this_order) < rq_size)
3623 break;
3624 } while (1);
3625
3626 if (!page)
3627 goto fail;
3628
3629 page->private = this_order;
3630 list_add_tail(&page->lru, &tags->page_list);
3631
3632 p = page_address(page);
3633 /*
3634 * Allow kmemleak to scan these pages as they contain pointers
3635 * to additional allocations like via ops->init_request().
3636 */
3637 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3638 entries_per_page = order_to_size(this_order) / rq_size;
3639 to_do = min(entries_per_page, depth - i);
3640 left -= to_do * rq_size;
3641 for (j = 0; j < to_do; j++) {
3642 struct request *rq = p;
3643
3644 tags->static_rqs[i] = rq;
3645 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3646 tags->static_rqs[i] = NULL;
3647 goto fail;
3648 }
3649
3650 p += rq_size;
3651 i++;
3652 }
3653 }
3654 return 0;
3655
3656 fail:
3657 blk_mq_free_rqs(set, tags, hctx_idx);
3658 return -ENOMEM;
3659 }
3660
3661 struct rq_iter_data {
3662 struct blk_mq_hw_ctx *hctx;
3663 bool has_rq;
3664 };
3665
blk_mq_has_request(struct request * rq,void * data)3666 static bool blk_mq_has_request(struct request *rq, void *data)
3667 {
3668 struct rq_iter_data *iter_data = data;
3669
3670 if (rq->mq_hctx != iter_data->hctx)
3671 return true;
3672 iter_data->has_rq = true;
3673 return false;
3674 }
3675
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3676 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3677 {
3678 struct blk_mq_tags *tags = hctx->sched_tags ?
3679 hctx->sched_tags : hctx->tags;
3680 struct rq_iter_data data = {
3681 .hctx = hctx,
3682 };
3683 int srcu_idx;
3684
3685 srcu_idx = srcu_read_lock(&hctx->queue->tag_set->tags_srcu);
3686 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3687 srcu_read_unlock(&hctx->queue->tag_set->tags_srcu, srcu_idx);
3688
3689 return data.has_rq;
3690 }
3691
blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx * hctx,unsigned int this_cpu)3692 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3693 unsigned int this_cpu)
3694 {
3695 enum hctx_type type = hctx->type;
3696 int cpu;
3697
3698 /*
3699 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3700 * might submit IOs on these isolated CPUs, so use the queue map to
3701 * check if all CPUs mapped to this hctx are offline
3702 */
3703 for_each_online_cpu(cpu) {
3704 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3705 type, cpu);
3706
3707 if (h != hctx)
3708 continue;
3709
3710 /* this hctx has at least one online CPU */
3711 if (this_cpu != cpu)
3712 return true;
3713 }
3714
3715 return false;
3716 }
3717
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3718 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3719 {
3720 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3721 struct blk_mq_hw_ctx, cpuhp_online);
3722 int ret = 0;
3723
3724 if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3725 return 0;
3726
3727 /*
3728 * Prevent new request from being allocated on the current hctx.
3729 *
3730 * The smp_mb__after_atomic() Pairs with the implied barrier in
3731 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3732 * seen once we return from the tag allocator.
3733 */
3734 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3735 smp_mb__after_atomic();
3736
3737 /*
3738 * Try to grab a reference to the queue and wait for any outstanding
3739 * requests. If we could not grab a reference the queue has been
3740 * frozen and there are no requests.
3741 */
3742 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3743 while (blk_mq_hctx_has_requests(hctx)) {
3744 /*
3745 * The wakeup capable IRQ handler of block device is
3746 * not called during suspend. Skip the loop by checking
3747 * pm_wakeup_pending to prevent the deadlock and improve
3748 * suspend latency.
3749 */
3750 if (pm_wakeup_pending()) {
3751 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3752 ret = -EBUSY;
3753 break;
3754 }
3755 msleep(5);
3756 }
3757 percpu_ref_put(&hctx->queue->q_usage_counter);
3758 }
3759
3760 return ret;
3761 }
3762
3763 /*
3764 * Check if one CPU is mapped to the specified hctx
3765 *
3766 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3767 * to be used for scheduling kworker only. For other usage, please call this
3768 * helper for checking if one CPU belongs to the specified hctx
3769 */
blk_mq_cpu_mapped_to_hctx(unsigned int cpu,const struct blk_mq_hw_ctx * hctx)3770 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3771 const struct blk_mq_hw_ctx *hctx)
3772 {
3773 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3774 hctx->type, cpu);
3775
3776 return mapped_hctx == hctx;
3777 }
3778
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3779 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3780 {
3781 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3782 struct blk_mq_hw_ctx, cpuhp_online);
3783
3784 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3785 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3786 return 0;
3787 }
3788
3789 /*
3790 * 'cpu' is going away. splice any existing rq_list entries from this
3791 * software queue to the hw queue dispatch list, and ensure that it
3792 * gets run.
3793 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3794 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3795 {
3796 struct blk_mq_hw_ctx *hctx;
3797 struct blk_mq_ctx *ctx;
3798 LIST_HEAD(tmp);
3799 enum hctx_type type;
3800
3801 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3802 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3803 return 0;
3804
3805 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3806 type = hctx->type;
3807
3808 spin_lock(&ctx->lock);
3809 if (!list_empty(&ctx->rq_lists[type])) {
3810 list_splice_init(&ctx->rq_lists[type], &tmp);
3811 blk_mq_hctx_clear_pending(hctx, ctx);
3812 }
3813 spin_unlock(&ctx->lock);
3814
3815 if (list_empty(&tmp))
3816 return 0;
3817
3818 spin_lock(&hctx->lock);
3819 list_splice_tail_init(&tmp, &hctx->dispatch);
3820 spin_unlock(&hctx->lock);
3821
3822 blk_mq_run_hw_queue(hctx, true);
3823 return 0;
3824 }
3825
__blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3826 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3827 {
3828 lockdep_assert_held(&blk_mq_cpuhp_lock);
3829
3830 if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3831 !hlist_unhashed(&hctx->cpuhp_online)) {
3832 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3833 &hctx->cpuhp_online);
3834 INIT_HLIST_NODE(&hctx->cpuhp_online);
3835 }
3836
3837 if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3838 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3839 &hctx->cpuhp_dead);
3840 INIT_HLIST_NODE(&hctx->cpuhp_dead);
3841 }
3842 }
3843
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3844 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3845 {
3846 mutex_lock(&blk_mq_cpuhp_lock);
3847 __blk_mq_remove_cpuhp(hctx);
3848 mutex_unlock(&blk_mq_cpuhp_lock);
3849 }
3850
__blk_mq_add_cpuhp(struct blk_mq_hw_ctx * hctx)3851 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3852 {
3853 lockdep_assert_held(&blk_mq_cpuhp_lock);
3854
3855 if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3856 hlist_unhashed(&hctx->cpuhp_online))
3857 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3858 &hctx->cpuhp_online);
3859
3860 if (hlist_unhashed(&hctx->cpuhp_dead))
3861 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3862 &hctx->cpuhp_dead);
3863 }
3864
__blk_mq_remove_cpuhp_list(struct list_head * head)3865 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3866 {
3867 struct blk_mq_hw_ctx *hctx;
3868
3869 lockdep_assert_held(&blk_mq_cpuhp_lock);
3870
3871 list_for_each_entry(hctx, head, hctx_list)
3872 __blk_mq_remove_cpuhp(hctx);
3873 }
3874
3875 /*
3876 * Unregister cpuhp callbacks from exited hw queues
3877 *
3878 * Safe to call if this `request_queue` is live
3879 */
blk_mq_remove_hw_queues_cpuhp(struct request_queue * q)3880 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3881 {
3882 LIST_HEAD(hctx_list);
3883
3884 spin_lock(&q->unused_hctx_lock);
3885 list_splice_init(&q->unused_hctx_list, &hctx_list);
3886 spin_unlock(&q->unused_hctx_lock);
3887
3888 mutex_lock(&blk_mq_cpuhp_lock);
3889 __blk_mq_remove_cpuhp_list(&hctx_list);
3890 mutex_unlock(&blk_mq_cpuhp_lock);
3891
3892 spin_lock(&q->unused_hctx_lock);
3893 list_splice(&hctx_list, &q->unused_hctx_list);
3894 spin_unlock(&q->unused_hctx_lock);
3895 }
3896
3897 /*
3898 * Register cpuhp callbacks from all hw queues
3899 *
3900 * Safe to call if this `request_queue` is live
3901 */
blk_mq_add_hw_queues_cpuhp(struct request_queue * q)3902 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3903 {
3904 struct blk_mq_hw_ctx *hctx;
3905 unsigned long i;
3906
3907 mutex_lock(&blk_mq_cpuhp_lock);
3908 queue_for_each_hw_ctx(q, hctx, i)
3909 __blk_mq_add_cpuhp(hctx);
3910 mutex_unlock(&blk_mq_cpuhp_lock);
3911 }
3912
3913 /*
3914 * Before freeing hw queue, clearing the flush request reference in
3915 * tags->rqs[] for avoiding potential UAF.
3916 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3917 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3918 unsigned int queue_depth, struct request *flush_rq)
3919 {
3920 int i;
3921
3922 /* The hw queue may not be mapped yet */
3923 if (!tags)
3924 return;
3925
3926 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3927
3928 for (i = 0; i < queue_depth; i++)
3929 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3930 }
3931
blk_free_flush_queue_callback(struct rcu_head * head)3932 static void blk_free_flush_queue_callback(struct rcu_head *head)
3933 {
3934 struct blk_flush_queue *fq =
3935 container_of(head, struct blk_flush_queue, rcu_head);
3936
3937 blk_free_flush_queue(fq);
3938 }
3939
3940 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3941 static void blk_mq_exit_hctx(struct request_queue *q,
3942 struct blk_mq_tag_set *set,
3943 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3944 {
3945 struct request *flush_rq = hctx->fq->flush_rq;
3946
3947 if (blk_mq_hw_queue_mapped(hctx))
3948 blk_mq_tag_idle(hctx);
3949
3950 if (blk_queue_init_done(q))
3951 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3952 set->queue_depth, flush_rq);
3953 if (set->ops->exit_request)
3954 set->ops->exit_request(set, flush_rq, hctx_idx);
3955
3956 if (set->ops->exit_hctx)
3957 set->ops->exit_hctx(hctx, hctx_idx);
3958
3959 call_srcu(&set->tags_srcu, &hctx->fq->rcu_head,
3960 blk_free_flush_queue_callback);
3961 hctx->fq = NULL;
3962
3963 spin_lock(&q->unused_hctx_lock);
3964 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3965 spin_unlock(&q->unused_hctx_lock);
3966 }
3967
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3968 static void blk_mq_exit_hw_queues(struct request_queue *q,
3969 struct blk_mq_tag_set *set, int nr_queue)
3970 {
3971 struct blk_mq_hw_ctx *hctx;
3972 unsigned long i;
3973
3974 queue_for_each_hw_ctx(q, hctx, i) {
3975 if (i == nr_queue)
3976 break;
3977 blk_mq_remove_cpuhp(hctx);
3978 blk_mq_exit_hctx(q, set, hctx, i);
3979 }
3980 }
3981
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3982 static int blk_mq_init_hctx(struct request_queue *q,
3983 struct blk_mq_tag_set *set,
3984 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3985 {
3986 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3987
3988 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3989 if (!hctx->fq)
3990 goto fail;
3991
3992 hctx->queue_num = hctx_idx;
3993
3994 hctx->tags = set->tags[hctx_idx];
3995
3996 if (set->ops->init_hctx &&
3997 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3998 goto fail_free_fq;
3999
4000 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
4001 hctx->numa_node))
4002 goto exit_hctx;
4003
4004 return 0;
4005
4006 exit_hctx:
4007 if (set->ops->exit_hctx)
4008 set->ops->exit_hctx(hctx, hctx_idx);
4009 fail_free_fq:
4010 blk_free_flush_queue(hctx->fq);
4011 hctx->fq = NULL;
4012 fail:
4013 return -1;
4014 }
4015
4016 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)4017 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
4018 int node)
4019 {
4020 struct blk_mq_hw_ctx *hctx;
4021 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
4022
4023 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
4024 if (!hctx)
4025 goto fail_alloc_hctx;
4026
4027 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
4028 goto free_hctx;
4029
4030 atomic_set(&hctx->nr_active, 0);
4031 if (node == NUMA_NO_NODE)
4032 node = set->numa_node;
4033 hctx->numa_node = node;
4034
4035 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
4036 spin_lock_init(&hctx->lock);
4037 INIT_LIST_HEAD(&hctx->dispatch);
4038 INIT_HLIST_NODE(&hctx->cpuhp_dead);
4039 INIT_HLIST_NODE(&hctx->cpuhp_online);
4040 hctx->queue = q;
4041 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
4042
4043 INIT_LIST_HEAD(&hctx->hctx_list);
4044
4045 /*
4046 * Allocate space for all possible cpus to avoid allocation at
4047 * runtime
4048 */
4049 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
4050 gfp, node);
4051 if (!hctx->ctxs)
4052 goto free_cpumask;
4053
4054 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
4055 gfp, node, false, false))
4056 goto free_ctxs;
4057 hctx->nr_ctx = 0;
4058
4059 spin_lock_init(&hctx->dispatch_wait_lock);
4060 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
4061 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
4062
4063 blk_mq_hctx_kobj_init(hctx);
4064
4065 return hctx;
4066
4067 free_ctxs:
4068 kfree(hctx->ctxs);
4069 free_cpumask:
4070 free_cpumask_var(hctx->cpumask);
4071 free_hctx:
4072 kfree(hctx);
4073 fail_alloc_hctx:
4074 return NULL;
4075 }
4076
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)4077 static void blk_mq_init_cpu_queues(struct request_queue *q,
4078 unsigned int nr_hw_queues)
4079 {
4080 struct blk_mq_tag_set *set = q->tag_set;
4081 unsigned int i, j;
4082
4083 for_each_possible_cpu(i) {
4084 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4085 struct blk_mq_hw_ctx *hctx;
4086 int k;
4087
4088 __ctx->cpu = i;
4089 spin_lock_init(&__ctx->lock);
4090 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4091 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4092
4093 __ctx->queue = q;
4094
4095 /*
4096 * Set local node, IFF we have more than one hw queue. If
4097 * not, we remain on the home node of the device
4098 */
4099 for (j = 0; j < set->nr_maps; j++) {
4100 hctx = blk_mq_map_queue_type(q, j, i);
4101 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4102 hctx->numa_node = cpu_to_node(i);
4103 }
4104 }
4105 }
4106
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)4107 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4108 unsigned int hctx_idx,
4109 unsigned int depth)
4110 {
4111 struct blk_mq_tags *tags;
4112 int ret;
4113
4114 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4115 if (!tags)
4116 return NULL;
4117
4118 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4119 if (ret) {
4120 blk_mq_free_rq_map(set, tags);
4121 return NULL;
4122 }
4123
4124 return tags;
4125 }
4126
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)4127 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4128 int hctx_idx)
4129 {
4130 if (blk_mq_is_shared_tags(set->flags)) {
4131 set->tags[hctx_idx] = set->shared_tags;
4132
4133 return true;
4134 }
4135
4136 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4137 set->queue_depth);
4138
4139 return set->tags[hctx_idx];
4140 }
4141
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)4142 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4143 struct blk_mq_tags *tags,
4144 unsigned int hctx_idx)
4145 {
4146 if (tags) {
4147 blk_mq_free_rqs(set, tags, hctx_idx);
4148 blk_mq_free_rq_map(set, tags);
4149 }
4150 }
4151
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)4152 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4153 unsigned int hctx_idx)
4154 {
4155 if (!blk_mq_is_shared_tags(set->flags))
4156 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4157
4158 set->tags[hctx_idx] = NULL;
4159 }
4160
blk_mq_map_swqueue(struct request_queue * q)4161 static void blk_mq_map_swqueue(struct request_queue *q)
4162 {
4163 unsigned int j, hctx_idx;
4164 unsigned long i;
4165 struct blk_mq_hw_ctx *hctx;
4166 struct blk_mq_ctx *ctx;
4167 struct blk_mq_tag_set *set = q->tag_set;
4168
4169 queue_for_each_hw_ctx(q, hctx, i) {
4170 cpumask_clear(hctx->cpumask);
4171 hctx->nr_ctx = 0;
4172 hctx->dispatch_from = NULL;
4173 }
4174
4175 /*
4176 * Map software to hardware queues.
4177 *
4178 * If the cpu isn't present, the cpu is mapped to first hctx.
4179 */
4180 for_each_possible_cpu(i) {
4181
4182 ctx = per_cpu_ptr(q->queue_ctx, i);
4183 for (j = 0; j < set->nr_maps; j++) {
4184 if (!set->map[j].nr_queues) {
4185 ctx->hctxs[j] = blk_mq_map_queue_type(q,
4186 HCTX_TYPE_DEFAULT, i);
4187 continue;
4188 }
4189 hctx_idx = set->map[j].mq_map[i];
4190 /* unmapped hw queue can be remapped after CPU topo changed */
4191 if (!set->tags[hctx_idx] &&
4192 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4193 /*
4194 * If tags initialization fail for some hctx,
4195 * that hctx won't be brought online. In this
4196 * case, remap the current ctx to hctx[0] which
4197 * is guaranteed to always have tags allocated
4198 */
4199 set->map[j].mq_map[i] = 0;
4200 }
4201
4202 hctx = blk_mq_map_queue_type(q, j, i);
4203 ctx->hctxs[j] = hctx;
4204 /*
4205 * If the CPU is already set in the mask, then we've
4206 * mapped this one already. This can happen if
4207 * devices share queues across queue maps.
4208 */
4209 if (cpumask_test_cpu(i, hctx->cpumask))
4210 continue;
4211
4212 cpumask_set_cpu(i, hctx->cpumask);
4213 hctx->type = j;
4214 ctx->index_hw[hctx->type] = hctx->nr_ctx;
4215 hctx->ctxs[hctx->nr_ctx++] = ctx;
4216
4217 /*
4218 * If the nr_ctx type overflows, we have exceeded the
4219 * amount of sw queues we can support.
4220 */
4221 BUG_ON(!hctx->nr_ctx);
4222 }
4223
4224 for (; j < HCTX_MAX_TYPES; j++)
4225 ctx->hctxs[j] = blk_mq_map_queue_type(q,
4226 HCTX_TYPE_DEFAULT, i);
4227 }
4228
4229 queue_for_each_hw_ctx(q, hctx, i) {
4230 int cpu;
4231
4232 /*
4233 * If no software queues are mapped to this hardware queue,
4234 * disable it and free the request entries.
4235 */
4236 if (!hctx->nr_ctx) {
4237 /* Never unmap queue 0. We need it as a
4238 * fallback in case of a new remap fails
4239 * allocation
4240 */
4241 if (i)
4242 __blk_mq_free_map_and_rqs(set, i);
4243
4244 hctx->tags = NULL;
4245 continue;
4246 }
4247
4248 hctx->tags = set->tags[i];
4249 WARN_ON(!hctx->tags);
4250
4251 /*
4252 * Set the map size to the number of mapped software queues.
4253 * This is more accurate and more efficient than looping
4254 * over all possibly mapped software queues.
4255 */
4256 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4257
4258 /*
4259 * Rule out isolated CPUs from hctx->cpumask to avoid
4260 * running block kworker on isolated CPUs
4261 */
4262 for_each_cpu(cpu, hctx->cpumask) {
4263 if (cpu_is_isolated(cpu))
4264 cpumask_clear_cpu(cpu, hctx->cpumask);
4265 }
4266
4267 /*
4268 * Initialize batch roundrobin counts
4269 */
4270 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4271 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4272 }
4273 }
4274
4275 /*
4276 * Caller needs to ensure that we're either frozen/quiesced, or that
4277 * the queue isn't live yet.
4278 */
queue_set_hctx_shared(struct request_queue * q,bool shared)4279 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4280 {
4281 struct blk_mq_hw_ctx *hctx;
4282 unsigned long i;
4283
4284 queue_for_each_hw_ctx(q, hctx, i) {
4285 if (shared) {
4286 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4287 } else {
4288 blk_mq_tag_idle(hctx);
4289 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4290 }
4291 }
4292 }
4293
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)4294 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4295 bool shared)
4296 {
4297 struct request_queue *q;
4298 unsigned int memflags;
4299
4300 lockdep_assert_held(&set->tag_list_lock);
4301
4302 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4303 memflags = blk_mq_freeze_queue(q);
4304 queue_set_hctx_shared(q, shared);
4305 blk_mq_unfreeze_queue(q, memflags);
4306 }
4307 }
4308
blk_mq_del_queue_tag_set(struct request_queue * q)4309 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4310 {
4311 struct blk_mq_tag_set *set = q->tag_set;
4312
4313 mutex_lock(&set->tag_list_lock);
4314 list_del(&q->tag_set_list);
4315 if (list_is_singular(&set->tag_list)) {
4316 /* just transitioned to unshared */
4317 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4318 /* update existing queue */
4319 blk_mq_update_tag_set_shared(set, false);
4320 }
4321 mutex_unlock(&set->tag_list_lock);
4322 INIT_LIST_HEAD(&q->tag_set_list);
4323 }
4324
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4325 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4326 struct request_queue *q)
4327 {
4328 mutex_lock(&set->tag_list_lock);
4329
4330 /*
4331 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4332 */
4333 if (!list_empty(&set->tag_list) &&
4334 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4335 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4336 /* update existing queue */
4337 blk_mq_update_tag_set_shared(set, true);
4338 }
4339 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4340 queue_set_hctx_shared(q, true);
4341 list_add_tail(&q->tag_set_list, &set->tag_list);
4342
4343 mutex_unlock(&set->tag_list_lock);
4344 }
4345
4346 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)4347 static int blk_mq_alloc_ctxs(struct request_queue *q)
4348 {
4349 struct blk_mq_ctxs *ctxs;
4350 int cpu;
4351
4352 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4353 if (!ctxs)
4354 return -ENOMEM;
4355
4356 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4357 if (!ctxs->queue_ctx)
4358 goto fail;
4359
4360 for_each_possible_cpu(cpu) {
4361 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4362 ctx->ctxs = ctxs;
4363 }
4364
4365 q->mq_kobj = &ctxs->kobj;
4366 q->queue_ctx = ctxs->queue_ctx;
4367
4368 return 0;
4369 fail:
4370 kfree(ctxs);
4371 return -ENOMEM;
4372 }
4373
4374 /*
4375 * It is the actual release handler for mq, but we do it from
4376 * request queue's release handler for avoiding use-after-free
4377 * and headache because q->mq_kobj shouldn't have been introduced,
4378 * but we can't group ctx/kctx kobj without it.
4379 */
blk_mq_release(struct request_queue * q)4380 void blk_mq_release(struct request_queue *q)
4381 {
4382 struct blk_mq_hw_ctx *hctx, *next;
4383 unsigned long i;
4384
4385 queue_for_each_hw_ctx(q, hctx, i)
4386 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4387
4388 /* all hctx are in .unused_hctx_list now */
4389 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4390 list_del_init(&hctx->hctx_list);
4391 kobject_put(&hctx->kobj);
4392 }
4393
4394 kfree(q->queue_hw_ctx);
4395
4396 /*
4397 * release .mq_kobj and sw queue's kobject now because
4398 * both share lifetime with request queue.
4399 */
4400 blk_mq_sysfs_deinit(q);
4401 }
4402
blk_mq_alloc_queue(struct blk_mq_tag_set * set,struct queue_limits * lim,void * queuedata)4403 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4404 struct queue_limits *lim, void *queuedata)
4405 {
4406 struct queue_limits default_lim = { };
4407 struct request_queue *q;
4408 int ret;
4409
4410 if (!lim)
4411 lim = &default_lim;
4412 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4413 if (set->nr_maps > HCTX_TYPE_POLL)
4414 lim->features |= BLK_FEAT_POLL;
4415
4416 q = blk_alloc_queue(lim, set->numa_node);
4417 if (IS_ERR(q))
4418 return q;
4419 q->queuedata = queuedata;
4420 ret = blk_mq_init_allocated_queue(set, q);
4421 if (ret) {
4422 blk_put_queue(q);
4423 return ERR_PTR(ret);
4424 }
4425 return q;
4426 }
4427 EXPORT_SYMBOL(blk_mq_alloc_queue);
4428
4429 /**
4430 * blk_mq_destroy_queue - shutdown a request queue
4431 * @q: request queue to shutdown
4432 *
4433 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4434 * requests will be failed with -ENODEV. The caller is responsible for dropping
4435 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4436 *
4437 * Context: can sleep
4438 */
blk_mq_destroy_queue(struct request_queue * q)4439 void blk_mq_destroy_queue(struct request_queue *q)
4440 {
4441 WARN_ON_ONCE(!queue_is_mq(q));
4442 WARN_ON_ONCE(blk_queue_registered(q));
4443
4444 might_sleep();
4445
4446 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4447 blk_queue_start_drain(q);
4448 blk_mq_freeze_queue_wait(q);
4449
4450 blk_sync_queue(q);
4451 blk_mq_cancel_work_sync(q);
4452 blk_mq_exit_queue(q);
4453 }
4454 EXPORT_SYMBOL(blk_mq_destroy_queue);
4455
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,struct queue_limits * lim,void * queuedata,struct lock_class_key * lkclass)4456 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4457 struct queue_limits *lim, void *queuedata,
4458 struct lock_class_key *lkclass)
4459 {
4460 struct request_queue *q;
4461 struct gendisk *disk;
4462
4463 q = blk_mq_alloc_queue(set, lim, queuedata);
4464 if (IS_ERR(q))
4465 return ERR_CAST(q);
4466
4467 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4468 if (!disk) {
4469 blk_mq_destroy_queue(q);
4470 blk_put_queue(q);
4471 return ERR_PTR(-ENOMEM);
4472 }
4473 set_bit(GD_OWNS_QUEUE, &disk->state);
4474 return disk;
4475 }
4476 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4477
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4478 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4479 struct lock_class_key *lkclass)
4480 {
4481 struct gendisk *disk;
4482
4483 if (!blk_get_queue(q))
4484 return NULL;
4485 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4486 if (!disk)
4487 blk_put_queue(q);
4488 return disk;
4489 }
4490 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4491
4492 /*
4493 * Only hctx removed from cpuhp list can be reused
4494 */
blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx * hctx)4495 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4496 {
4497 return hlist_unhashed(&hctx->cpuhp_online) &&
4498 hlist_unhashed(&hctx->cpuhp_dead);
4499 }
4500
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4501 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4502 struct blk_mq_tag_set *set, struct request_queue *q,
4503 int hctx_idx, int node)
4504 {
4505 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4506
4507 /* reuse dead hctx first */
4508 spin_lock(&q->unused_hctx_lock);
4509 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4510 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4511 hctx = tmp;
4512 break;
4513 }
4514 }
4515 if (hctx)
4516 list_del_init(&hctx->hctx_list);
4517 spin_unlock(&q->unused_hctx_lock);
4518
4519 if (!hctx)
4520 hctx = blk_mq_alloc_hctx(q, set, node);
4521 if (!hctx)
4522 goto fail;
4523
4524 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4525 goto free_hctx;
4526
4527 return hctx;
4528
4529 free_hctx:
4530 kobject_put(&hctx->kobj);
4531 fail:
4532 return NULL;
4533 }
4534
__blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4535 static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4536 struct request_queue *q)
4537 {
4538 int i, j, end;
4539 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
4540
4541 if (q->nr_hw_queues < set->nr_hw_queues) {
4542 struct blk_mq_hw_ctx **new_hctxs;
4543
4544 new_hctxs = kcalloc_node(set->nr_hw_queues,
4545 sizeof(*new_hctxs), GFP_KERNEL,
4546 set->numa_node);
4547 if (!new_hctxs)
4548 return;
4549 if (hctxs)
4550 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
4551 sizeof(*hctxs));
4552 rcu_assign_pointer(q->queue_hw_ctx, new_hctxs);
4553 /*
4554 * Make sure reading the old queue_hw_ctx from other
4555 * context concurrently won't trigger uaf.
4556 */
4557 synchronize_rcu_expedited();
4558 kfree(hctxs);
4559 hctxs = new_hctxs;
4560 }
4561
4562 for (i = 0; i < set->nr_hw_queues; i++) {
4563 int old_node;
4564 int node = blk_mq_get_hctx_node(set, i);
4565 struct blk_mq_hw_ctx *old_hctx = hctxs[i];
4566
4567 if (old_hctx) {
4568 old_node = old_hctx->numa_node;
4569 blk_mq_exit_hctx(q, set, old_hctx, i);
4570 }
4571
4572 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i, node);
4573 if (!hctxs[i]) {
4574 if (!old_hctx)
4575 break;
4576 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4577 node, old_node);
4578 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i,
4579 old_node);
4580 WARN_ON_ONCE(!hctxs[i]);
4581 }
4582 }
4583 /*
4584 * Increasing nr_hw_queues fails. Free the newly allocated
4585 * hctxs and keep the previous q->nr_hw_queues.
4586 */
4587 if (i != set->nr_hw_queues) {
4588 j = q->nr_hw_queues;
4589 end = i;
4590 } else {
4591 j = i;
4592 end = q->nr_hw_queues;
4593 q->nr_hw_queues = set->nr_hw_queues;
4594 }
4595
4596 for (; j < end; j++) {
4597 struct blk_mq_hw_ctx *hctx = hctxs[j];
4598
4599 if (hctx) {
4600 blk_mq_exit_hctx(q, set, hctx, j);
4601 hctxs[j] = NULL;
4602 }
4603 }
4604 }
4605
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4606 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4607 struct request_queue *q)
4608 {
4609 __blk_mq_realloc_hw_ctxs(set, q);
4610
4611 /* unregister cpuhp callbacks for exited hctxs */
4612 blk_mq_remove_hw_queues_cpuhp(q);
4613
4614 /* register cpuhp for new initialized hctxs */
4615 blk_mq_add_hw_queues_cpuhp(q);
4616 }
4617
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4618 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4619 struct request_queue *q)
4620 {
4621 /* mark the queue as mq asap */
4622 q->mq_ops = set->ops;
4623
4624 /*
4625 * ->tag_set has to be setup before initialize hctx, which cpuphp
4626 * handler needs it for checking queue mapping
4627 */
4628 q->tag_set = set;
4629
4630 if (blk_mq_alloc_ctxs(q))
4631 goto err_exit;
4632
4633 /* init q->mq_kobj and sw queues' kobjects */
4634 blk_mq_sysfs_init(q);
4635
4636 INIT_LIST_HEAD(&q->unused_hctx_list);
4637 spin_lock_init(&q->unused_hctx_lock);
4638
4639 blk_mq_realloc_hw_ctxs(set, q);
4640 if (!q->nr_hw_queues)
4641 goto err_hctxs;
4642
4643 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4644 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4645
4646 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4647
4648 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4649 INIT_LIST_HEAD(&q->flush_list);
4650 INIT_LIST_HEAD(&q->requeue_list);
4651 spin_lock_init(&q->requeue_lock);
4652
4653 q->nr_requests = set->queue_depth;
4654
4655 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4656 blk_mq_map_swqueue(q);
4657 blk_mq_add_queue_tag_set(set, q);
4658 return 0;
4659
4660 err_hctxs:
4661 blk_mq_release(q);
4662 err_exit:
4663 q->mq_ops = NULL;
4664 return -ENOMEM;
4665 }
4666 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4667
4668 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4669 void blk_mq_exit_queue(struct request_queue *q)
4670 {
4671 struct blk_mq_tag_set *set = q->tag_set;
4672
4673 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4674 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4675 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4676 blk_mq_del_queue_tag_set(q);
4677 }
4678
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4679 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4680 {
4681 int i;
4682
4683 if (blk_mq_is_shared_tags(set->flags)) {
4684 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4685 BLK_MQ_NO_HCTX_IDX,
4686 set->queue_depth);
4687 if (!set->shared_tags)
4688 return -ENOMEM;
4689 }
4690
4691 for (i = 0; i < set->nr_hw_queues; i++) {
4692 if (!__blk_mq_alloc_map_and_rqs(set, i))
4693 goto out_unwind;
4694 cond_resched();
4695 }
4696
4697 return 0;
4698
4699 out_unwind:
4700 while (--i >= 0)
4701 __blk_mq_free_map_and_rqs(set, i);
4702
4703 if (blk_mq_is_shared_tags(set->flags)) {
4704 blk_mq_free_map_and_rqs(set, set->shared_tags,
4705 BLK_MQ_NO_HCTX_IDX);
4706 }
4707
4708 return -ENOMEM;
4709 }
4710
4711 /*
4712 * Allocate the request maps associated with this tag_set. Note that this
4713 * may reduce the depth asked for, if memory is tight. set->queue_depth
4714 * will be updated to reflect the allocated depth.
4715 */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4716 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4717 {
4718 unsigned int depth;
4719 int err;
4720
4721 depth = set->queue_depth;
4722 do {
4723 err = __blk_mq_alloc_rq_maps(set);
4724 if (!err)
4725 break;
4726
4727 set->queue_depth >>= 1;
4728 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4729 err = -ENOMEM;
4730 break;
4731 }
4732 } while (set->queue_depth);
4733
4734 if (!set->queue_depth || err) {
4735 pr_err("blk-mq: failed to allocate request map\n");
4736 return -ENOMEM;
4737 }
4738
4739 if (depth != set->queue_depth)
4740 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4741 depth, set->queue_depth);
4742
4743 return 0;
4744 }
4745
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4746 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4747 {
4748 /*
4749 * blk_mq_map_queues() and multiple .map_queues() implementations
4750 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4751 * number of hardware queues.
4752 */
4753 if (set->nr_maps == 1)
4754 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4755
4756 if (set->ops->map_queues) {
4757 int i;
4758
4759 /*
4760 * transport .map_queues is usually done in the following
4761 * way:
4762 *
4763 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4764 * mask = get_cpu_mask(queue)
4765 * for_each_cpu(cpu, mask)
4766 * set->map[x].mq_map[cpu] = queue;
4767 * }
4768 *
4769 * When we need to remap, the table has to be cleared for
4770 * killing stale mapping since one CPU may not be mapped
4771 * to any hw queue.
4772 */
4773 for (i = 0; i < set->nr_maps; i++)
4774 blk_mq_clear_mq_map(&set->map[i]);
4775
4776 set->ops->map_queues(set);
4777 } else {
4778 BUG_ON(set->nr_maps > 1);
4779 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4780 }
4781 }
4782
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4783 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4784 int new_nr_hw_queues)
4785 {
4786 struct blk_mq_tags **new_tags;
4787 int i;
4788
4789 if (set->nr_hw_queues >= new_nr_hw_queues)
4790 goto done;
4791
4792 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4793 GFP_KERNEL, set->numa_node);
4794 if (!new_tags)
4795 return -ENOMEM;
4796
4797 if (set->tags)
4798 memcpy(new_tags, set->tags, set->nr_hw_queues *
4799 sizeof(*set->tags));
4800 kfree(set->tags);
4801 set->tags = new_tags;
4802
4803 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4804 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4805 while (--i >= set->nr_hw_queues)
4806 __blk_mq_free_map_and_rqs(set, i);
4807 return -ENOMEM;
4808 }
4809 cond_resched();
4810 }
4811
4812 done:
4813 set->nr_hw_queues = new_nr_hw_queues;
4814 return 0;
4815 }
4816
4817 /*
4818 * Alloc a tag set to be associated with one or more request queues.
4819 * May fail with EINVAL for various error conditions. May adjust the
4820 * requested depth down, if it's too large. In that case, the set
4821 * value will be stored in set->queue_depth.
4822 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4823 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4824 {
4825 int i, ret;
4826
4827 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4828
4829 if (!set->nr_hw_queues)
4830 return -EINVAL;
4831 if (!set->queue_depth)
4832 return -EINVAL;
4833 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4834 return -EINVAL;
4835
4836 if (!set->ops->queue_rq)
4837 return -EINVAL;
4838
4839 if (!set->ops->get_budget ^ !set->ops->put_budget)
4840 return -EINVAL;
4841
4842 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4843 pr_info("blk-mq: reduced tag depth to %u\n",
4844 BLK_MQ_MAX_DEPTH);
4845 set->queue_depth = BLK_MQ_MAX_DEPTH;
4846 }
4847
4848 if (!set->nr_maps)
4849 set->nr_maps = 1;
4850 else if (set->nr_maps > HCTX_MAX_TYPES)
4851 return -EINVAL;
4852
4853 /*
4854 * If a crashdump is active, then we are potentially in a very
4855 * memory constrained environment. Limit us to 64 tags to prevent
4856 * using too much memory.
4857 */
4858 if (is_kdump_kernel())
4859 set->queue_depth = min(64U, set->queue_depth);
4860
4861 /*
4862 * There is no use for more h/w queues than cpus if we just have
4863 * a single map
4864 */
4865 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4866 set->nr_hw_queues = nr_cpu_ids;
4867
4868 if (set->flags & BLK_MQ_F_BLOCKING) {
4869 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4870 if (!set->srcu)
4871 return -ENOMEM;
4872 ret = init_srcu_struct(set->srcu);
4873 if (ret)
4874 goto out_free_srcu;
4875 }
4876 ret = init_srcu_struct(&set->tags_srcu);
4877 if (ret)
4878 goto out_cleanup_srcu;
4879
4880 init_rwsem(&set->update_nr_hwq_lock);
4881
4882 ret = -ENOMEM;
4883 set->tags = kcalloc_node(set->nr_hw_queues,
4884 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4885 set->numa_node);
4886 if (!set->tags)
4887 goto out_cleanup_tags_srcu;
4888
4889 for (i = 0; i < set->nr_maps; i++) {
4890 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4891 sizeof(set->map[i].mq_map[0]),
4892 GFP_KERNEL, set->numa_node);
4893 if (!set->map[i].mq_map)
4894 goto out_free_mq_map;
4895 set->map[i].nr_queues = set->nr_hw_queues;
4896 }
4897
4898 blk_mq_update_queue_map(set);
4899
4900 ret = blk_mq_alloc_set_map_and_rqs(set);
4901 if (ret)
4902 goto out_free_mq_map;
4903
4904 mutex_init(&set->tag_list_lock);
4905 INIT_LIST_HEAD(&set->tag_list);
4906
4907 return 0;
4908
4909 out_free_mq_map:
4910 for (i = 0; i < set->nr_maps; i++) {
4911 kfree(set->map[i].mq_map);
4912 set->map[i].mq_map = NULL;
4913 }
4914 kfree(set->tags);
4915 set->tags = NULL;
4916 out_cleanup_tags_srcu:
4917 cleanup_srcu_struct(&set->tags_srcu);
4918 out_cleanup_srcu:
4919 if (set->flags & BLK_MQ_F_BLOCKING)
4920 cleanup_srcu_struct(set->srcu);
4921 out_free_srcu:
4922 if (set->flags & BLK_MQ_F_BLOCKING)
4923 kfree(set->srcu);
4924 return ret;
4925 }
4926 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4927
4928 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4929 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4930 const struct blk_mq_ops *ops, unsigned int queue_depth,
4931 unsigned int set_flags)
4932 {
4933 memset(set, 0, sizeof(*set));
4934 set->ops = ops;
4935 set->nr_hw_queues = 1;
4936 set->nr_maps = 1;
4937 set->queue_depth = queue_depth;
4938 set->numa_node = NUMA_NO_NODE;
4939 set->flags = set_flags;
4940 return blk_mq_alloc_tag_set(set);
4941 }
4942 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4943
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4944 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4945 {
4946 int i, j;
4947
4948 for (i = 0; i < set->nr_hw_queues; i++)
4949 __blk_mq_free_map_and_rqs(set, i);
4950
4951 if (blk_mq_is_shared_tags(set->flags)) {
4952 blk_mq_free_map_and_rqs(set, set->shared_tags,
4953 BLK_MQ_NO_HCTX_IDX);
4954 }
4955
4956 for (j = 0; j < set->nr_maps; j++) {
4957 kfree(set->map[j].mq_map);
4958 set->map[j].mq_map = NULL;
4959 }
4960
4961 kfree(set->tags);
4962 set->tags = NULL;
4963
4964 srcu_barrier(&set->tags_srcu);
4965 cleanup_srcu_struct(&set->tags_srcu);
4966 if (set->flags & BLK_MQ_F_BLOCKING) {
4967 cleanup_srcu_struct(set->srcu);
4968 kfree(set->srcu);
4969 }
4970 }
4971 EXPORT_SYMBOL(blk_mq_free_tag_set);
4972
blk_mq_update_nr_requests(struct request_queue * q,struct elevator_tags * et,unsigned int nr)4973 struct elevator_tags *blk_mq_update_nr_requests(struct request_queue *q,
4974 struct elevator_tags *et,
4975 unsigned int nr)
4976 {
4977 struct blk_mq_tag_set *set = q->tag_set;
4978 struct elevator_tags *old_et = NULL;
4979 struct blk_mq_hw_ctx *hctx;
4980 unsigned long i;
4981
4982 blk_mq_quiesce_queue(q);
4983
4984 if (blk_mq_is_shared_tags(set->flags)) {
4985 /*
4986 * Shared tags, for sched tags, we allocate max initially hence
4987 * tags can't grow, see blk_mq_alloc_sched_tags().
4988 */
4989 if (q->elevator)
4990 blk_mq_tag_update_sched_shared_tags(q, nr);
4991 else
4992 blk_mq_tag_resize_shared_tags(set, nr);
4993 } else if (!q->elevator) {
4994 /*
4995 * Non-shared hardware tags, nr is already checked from
4996 * queue_requests_store() and tags can't grow.
4997 */
4998 queue_for_each_hw_ctx(q, hctx, i) {
4999 if (!hctx->tags)
5000 continue;
5001 sbitmap_queue_resize(&hctx->tags->bitmap_tags,
5002 nr - hctx->tags->nr_reserved_tags);
5003 }
5004 } else if (nr <= q->elevator->et->nr_requests) {
5005 /* Non-shared sched tags, and tags don't grow. */
5006 queue_for_each_hw_ctx(q, hctx, i) {
5007 if (!hctx->sched_tags)
5008 continue;
5009 sbitmap_queue_resize(&hctx->sched_tags->bitmap_tags,
5010 nr - hctx->sched_tags->nr_reserved_tags);
5011 }
5012 } else {
5013 /* Non-shared sched tags, and tags grow */
5014 queue_for_each_hw_ctx(q, hctx, i)
5015 hctx->sched_tags = et->tags[i];
5016 old_et = q->elevator->et;
5017 q->elevator->et = et;
5018 }
5019
5020 q->nr_requests = nr;
5021 if (q->elevator && q->elevator->type->ops.depth_updated)
5022 q->elevator->type->ops.depth_updated(q);
5023
5024 blk_mq_unquiesce_queue(q);
5025 return old_et;
5026 }
5027
5028 /*
5029 * Switch back to the elevator type stored in the xarray.
5030 */
blk_mq_elv_switch_back(struct request_queue * q,struct xarray * elv_tbl)5031 static void blk_mq_elv_switch_back(struct request_queue *q,
5032 struct xarray *elv_tbl)
5033 {
5034 struct elv_change_ctx *ctx = xa_load(elv_tbl, q->id);
5035
5036 if (WARN_ON_ONCE(!ctx))
5037 return;
5038
5039 /* The elv_update_nr_hw_queues unfreezes the queue. */
5040 elv_update_nr_hw_queues(q, ctx);
5041
5042 /* Drop the reference acquired in blk_mq_elv_switch_none. */
5043 if (ctx->type)
5044 elevator_put(ctx->type);
5045 }
5046
5047 /*
5048 * Stores elevator name and type in ctx and set current elevator to none.
5049 */
blk_mq_elv_switch_none(struct request_queue * q,struct xarray * elv_tbl)5050 static int blk_mq_elv_switch_none(struct request_queue *q,
5051 struct xarray *elv_tbl)
5052 {
5053 struct elv_change_ctx *ctx;
5054
5055 lockdep_assert_held_write(&q->tag_set->update_nr_hwq_lock);
5056
5057 /*
5058 * Accessing q->elevator without holding q->elevator_lock is safe here
5059 * because we're called from nr_hw_queue update which is protected by
5060 * set->update_nr_hwq_lock in the writer context. So, scheduler update/
5061 * switch code (which acquires the same lock in the reader context)
5062 * can't run concurrently.
5063 */
5064 if (q->elevator) {
5065 ctx = xa_load(elv_tbl, q->id);
5066 if (WARN_ON_ONCE(!ctx))
5067 return -ENOENT;
5068
5069 ctx->name = q->elevator->type->elevator_name;
5070
5071 /*
5072 * Before we switch elevator to 'none', take a reference to
5073 * the elevator module so that while nr_hw_queue update is
5074 * running, no one can remove elevator module. We'd put the
5075 * reference to elevator module later when we switch back
5076 * elevator.
5077 */
5078 __elevator_get(q->elevator->type);
5079
5080 /*
5081 * Store elevator type so that we can release the reference
5082 * taken above later.
5083 */
5084 ctx->type = q->elevator->type;
5085 elevator_set_none(q);
5086 }
5087 return 0;
5088 }
5089
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)5090 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
5091 int nr_hw_queues)
5092 {
5093 struct request_queue *q;
5094 int prev_nr_hw_queues = set->nr_hw_queues;
5095 unsigned int memflags;
5096 int i;
5097 struct xarray elv_tbl;
5098 bool queues_frozen = false;
5099
5100 lockdep_assert_held(&set->tag_list_lock);
5101
5102 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
5103 nr_hw_queues = nr_cpu_ids;
5104 if (nr_hw_queues < 1)
5105 return;
5106 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5107 return;
5108
5109 memflags = memalloc_noio_save();
5110
5111 xa_init(&elv_tbl);
5112 if (blk_mq_alloc_sched_ctx_batch(&elv_tbl, set) < 0)
5113 goto out_free_ctx;
5114
5115 if (blk_mq_alloc_sched_res_batch(&elv_tbl, set, nr_hw_queues) < 0)
5116 goto out_free_ctx;
5117
5118 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5119 blk_mq_debugfs_unregister_hctxs(q);
5120 blk_mq_sysfs_unregister_hctxs(q);
5121 }
5122
5123 /*
5124 * Switch IO scheduler to 'none', cleaning up the data associated
5125 * with the previous scheduler. We will switch back once we are done
5126 * updating the new sw to hw queue mappings.
5127 */
5128 list_for_each_entry(q, &set->tag_list, tag_set_list)
5129 if (blk_mq_elv_switch_none(q, &elv_tbl))
5130 goto switch_back;
5131
5132 list_for_each_entry(q, &set->tag_list, tag_set_list)
5133 blk_mq_freeze_queue_nomemsave(q);
5134 queues_frozen = true;
5135 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5136 goto switch_back;
5137
5138 fallback:
5139 blk_mq_update_queue_map(set);
5140 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5141 __blk_mq_realloc_hw_ctxs(set, q);
5142
5143 if (q->nr_hw_queues != set->nr_hw_queues) {
5144 int i = prev_nr_hw_queues;
5145
5146 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5147 nr_hw_queues, prev_nr_hw_queues);
5148 for (; i < set->nr_hw_queues; i++)
5149 __blk_mq_free_map_and_rqs(set, i);
5150
5151 set->nr_hw_queues = prev_nr_hw_queues;
5152 goto fallback;
5153 }
5154 blk_mq_map_swqueue(q);
5155 }
5156 switch_back:
5157 /* The blk_mq_elv_switch_back unfreezes queue for us. */
5158 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5159 /* switch_back expects queue to be frozen */
5160 if (!queues_frozen)
5161 blk_mq_freeze_queue_nomemsave(q);
5162 blk_mq_elv_switch_back(q, &elv_tbl);
5163 }
5164
5165 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5166 blk_mq_sysfs_register_hctxs(q);
5167 blk_mq_debugfs_register_hctxs(q);
5168
5169 blk_mq_remove_hw_queues_cpuhp(q);
5170 blk_mq_add_hw_queues_cpuhp(q);
5171 }
5172
5173 out_free_ctx:
5174 blk_mq_free_sched_ctx_batch(&elv_tbl);
5175 xa_destroy(&elv_tbl);
5176 memalloc_noio_restore(memflags);
5177
5178 /* Free the excess tags when nr_hw_queues shrink. */
5179 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5180 __blk_mq_free_map_and_rqs(set, i);
5181 }
5182
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)5183 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5184 {
5185 down_write(&set->update_nr_hwq_lock);
5186 mutex_lock(&set->tag_list_lock);
5187 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5188 mutex_unlock(&set->tag_list_lock);
5189 up_write(&set->update_nr_hwq_lock);
5190 }
5191 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5192
blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)5193 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5194 struct io_comp_batch *iob, unsigned int flags)
5195 {
5196 long state = get_current_state();
5197 int ret;
5198
5199 do {
5200 ret = q->mq_ops->poll(hctx, iob);
5201 if (ret > 0) {
5202 __set_current_state(TASK_RUNNING);
5203 return ret;
5204 }
5205
5206 if (signal_pending_state(state, current))
5207 __set_current_state(TASK_RUNNING);
5208 if (task_is_running(current))
5209 return 1;
5210
5211 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5212 break;
5213 cpu_relax();
5214 } while (!need_resched());
5215
5216 __set_current_state(TASK_RUNNING);
5217 return 0;
5218 }
5219
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)5220 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5221 struct io_comp_batch *iob, unsigned int flags)
5222 {
5223 if (!blk_mq_can_poll(q))
5224 return 0;
5225 return blk_hctx_poll(q, q->queue_hw_ctx[cookie], iob, flags);
5226 }
5227
blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)5228 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5229 unsigned int poll_flags)
5230 {
5231 struct request_queue *q = rq->q;
5232 int ret;
5233
5234 if (!blk_rq_is_poll(rq))
5235 return 0;
5236 if (!percpu_ref_tryget(&q->q_usage_counter))
5237 return 0;
5238
5239 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5240 blk_queue_exit(q);
5241
5242 return ret;
5243 }
5244 EXPORT_SYMBOL_GPL(blk_rq_poll);
5245
blk_mq_rq_cpu(struct request * rq)5246 unsigned int blk_mq_rq_cpu(struct request *rq)
5247 {
5248 return rq->mq_ctx->cpu;
5249 }
5250 EXPORT_SYMBOL(blk_mq_rq_cpu);
5251
blk_mq_cancel_work_sync(struct request_queue * q)5252 void blk_mq_cancel_work_sync(struct request_queue *q)
5253 {
5254 struct blk_mq_hw_ctx *hctx;
5255 unsigned long i;
5256
5257 cancel_delayed_work_sync(&q->requeue_work);
5258
5259 queue_for_each_hw_ctx(q, hctx, i)
5260 cancel_delayed_work_sync(&hctx->run_work);
5261 }
5262
blk_mq_init(void)5263 static int __init blk_mq_init(void)
5264 {
5265 int i;
5266
5267 for_each_possible_cpu(i)
5268 init_llist_head(&per_cpu(blk_cpu_done, i));
5269 for_each_possible_cpu(i)
5270 INIT_CSD(&per_cpu(blk_cpu_csd, i),
5271 __blk_mq_complete_request_remote, NULL);
5272 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5273
5274 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5275 "block/softirq:dead", NULL,
5276 blk_softirq_cpu_dead);
5277 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5278 blk_mq_hctx_notify_dead);
5279 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5280 blk_mq_hctx_notify_online,
5281 blk_mq_hctx_notify_offline);
5282 return 0;
5283 }
5284 subsys_initcall(blk_mq_init);
5285