xref: /linux/block/blk-mq-sched.c (revision cc25df3e2e22a956d3a0d427369367b4a901d203)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/list_sort.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 #include "blk-mq.h"
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-wbt.h"
18 
19 /*
20  * Mark a hardware queue as needing a restart.
21  */
22 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
23 {
24 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
25 		return;
26 
27 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
28 }
29 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
30 
31 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
32 {
33 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
34 
35 	/*
36 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
37 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
38 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
39 	 * meantime new request added to hctx->dispatch is missed to check in
40 	 * blk_mq_run_hw_queue().
41 	 */
42 	smp_mb();
43 
44 	blk_mq_run_hw_queue(hctx, true);
45 }
46 
47 static int sched_rq_cmp(void *priv, const struct list_head *a,
48 			const struct list_head *b)
49 {
50 	struct request *rqa = container_of(a, struct request, queuelist);
51 	struct request *rqb = container_of(b, struct request, queuelist);
52 
53 	return rqa->mq_hctx > rqb->mq_hctx;
54 }
55 
56 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
57 {
58 	struct blk_mq_hw_ctx *hctx =
59 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
60 	struct request *rq;
61 	LIST_HEAD(hctx_list);
62 
63 	list_for_each_entry(rq, rq_list, queuelist) {
64 		if (rq->mq_hctx != hctx) {
65 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
66 			goto dispatch;
67 		}
68 	}
69 	list_splice_tail_init(rq_list, &hctx_list);
70 
71 dispatch:
72 	return blk_mq_dispatch_rq_list(hctx, &hctx_list, false);
73 }
74 
75 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
76 
77 /*
78  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
79  * its queue by itself in its completion handler, so we don't need to
80  * restart queue if .get_budget() fails to get the budget.
81  *
82  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
83  * be run again.  This is necessary to avoid starving flushes.
84  */
85 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
86 {
87 	struct request_queue *q = hctx->queue;
88 	struct elevator_queue *e = q->elevator;
89 	bool multi_hctxs = false, run_queue = false;
90 	bool dispatched = false, busy = false;
91 	unsigned int max_dispatch;
92 	LIST_HEAD(rq_list);
93 	int count = 0;
94 
95 	if (hctx->dispatch_busy)
96 		max_dispatch = 1;
97 	else
98 		max_dispatch = hctx->queue->nr_requests;
99 
100 	do {
101 		struct request *rq;
102 		int budget_token;
103 
104 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
105 			break;
106 
107 		if (!list_empty_careful(&hctx->dispatch)) {
108 			busy = true;
109 			break;
110 		}
111 
112 		budget_token = blk_mq_get_dispatch_budget(q);
113 		if (budget_token < 0)
114 			break;
115 
116 		rq = e->type->ops.dispatch_request(hctx);
117 		if (!rq) {
118 			blk_mq_put_dispatch_budget(q, budget_token);
119 			/*
120 			 * We're releasing without dispatching. Holding the
121 			 * budget could have blocked any "hctx"s with the
122 			 * same queue and if we didn't dispatch then there's
123 			 * no guarantee anyone will kick the queue.  Kick it
124 			 * ourselves.
125 			 */
126 			run_queue = true;
127 			break;
128 		}
129 
130 		blk_mq_set_rq_budget_token(rq, budget_token);
131 
132 		/*
133 		 * Now this rq owns the budget which has to be released
134 		 * if this rq won't be queued to driver via .queue_rq()
135 		 * in blk_mq_dispatch_rq_list().
136 		 */
137 		list_add_tail(&rq->queuelist, &rq_list);
138 		count++;
139 		if (rq->mq_hctx != hctx)
140 			multi_hctxs = true;
141 
142 		/*
143 		 * If we cannot get tag for the request, stop dequeueing
144 		 * requests from the IO scheduler. We are unlikely to be able
145 		 * to submit them anyway and it creates false impression for
146 		 * scheduling heuristics that the device can take more IO.
147 		 */
148 		if (!blk_mq_get_driver_tag(rq))
149 			break;
150 	} while (count < max_dispatch);
151 
152 	if (!count) {
153 		if (run_queue)
154 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
155 	} else if (multi_hctxs) {
156 		/*
157 		 * Requests from different hctx may be dequeued from some
158 		 * schedulers, such as bfq and deadline.
159 		 *
160 		 * Sort the requests in the list according to their hctx,
161 		 * dispatch batching requests from same hctx at a time.
162 		 */
163 		list_sort(NULL, &rq_list, sched_rq_cmp);
164 		do {
165 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
166 		} while (!list_empty(&rq_list));
167 	} else {
168 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, false);
169 	}
170 
171 	if (busy)
172 		return -EAGAIN;
173 	return !!dispatched;
174 }
175 
176 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
177 {
178 	unsigned long end = jiffies + HZ;
179 	int ret;
180 
181 	do {
182 		ret = __blk_mq_do_dispatch_sched(hctx);
183 		if (ret != 1)
184 			break;
185 		if (need_resched() || time_is_before_jiffies(end)) {
186 			blk_mq_delay_run_hw_queue(hctx, 0);
187 			break;
188 		}
189 	} while (1);
190 
191 	return ret;
192 }
193 
194 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
195 					  struct blk_mq_ctx *ctx)
196 {
197 	unsigned short idx = ctx->index_hw[hctx->type];
198 
199 	if (++idx == hctx->nr_ctx)
200 		idx = 0;
201 
202 	return hctx->ctxs[idx];
203 }
204 
205 /*
206  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
207  * its queue by itself in its completion handler, so we don't need to
208  * restart queue if .get_budget() fails to get the budget.
209  *
210  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
211  * be run again.  This is necessary to avoid starving flushes.
212  */
213 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
214 {
215 	struct request_queue *q = hctx->queue;
216 	LIST_HEAD(rq_list);
217 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
218 	int ret = 0;
219 	struct request *rq;
220 
221 	do {
222 		int budget_token;
223 
224 		if (!list_empty_careful(&hctx->dispatch)) {
225 			ret = -EAGAIN;
226 			break;
227 		}
228 
229 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
230 			break;
231 
232 		budget_token = blk_mq_get_dispatch_budget(q);
233 		if (budget_token < 0)
234 			break;
235 
236 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
237 		if (!rq) {
238 			blk_mq_put_dispatch_budget(q, budget_token);
239 			/*
240 			 * We're releasing without dispatching. Holding the
241 			 * budget could have blocked any "hctx"s with the
242 			 * same queue and if we didn't dispatch then there's
243 			 * no guarantee anyone will kick the queue.  Kick it
244 			 * ourselves.
245 			 */
246 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
247 			break;
248 		}
249 
250 		blk_mq_set_rq_budget_token(rq, budget_token);
251 
252 		/*
253 		 * Now this rq owns the budget which has to be released
254 		 * if this rq won't be queued to driver via .queue_rq()
255 		 * in blk_mq_dispatch_rq_list().
256 		 */
257 		list_add(&rq->queuelist, &rq_list);
258 
259 		/* round robin for fair dispatch */
260 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
261 
262 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, false));
263 
264 	WRITE_ONCE(hctx->dispatch_from, ctx);
265 	return ret;
266 }
267 
268 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
269 {
270 	bool need_dispatch = false;
271 	LIST_HEAD(rq_list);
272 
273 	/*
274 	 * If we have previous entries on our dispatch list, grab them first for
275 	 * more fair dispatch.
276 	 */
277 	if (!list_empty_careful(&hctx->dispatch)) {
278 		spin_lock(&hctx->lock);
279 		if (!list_empty(&hctx->dispatch))
280 			list_splice_init(&hctx->dispatch, &rq_list);
281 		spin_unlock(&hctx->lock);
282 	}
283 
284 	/*
285 	 * Only ask the scheduler for requests, if we didn't have residual
286 	 * requests from the dispatch list. This is to avoid the case where
287 	 * we only ever dispatch a fraction of the requests available because
288 	 * of low device queue depth. Once we pull requests out of the IO
289 	 * scheduler, we can no longer merge or sort them. So it's best to
290 	 * leave them there for as long as we can. Mark the hw queue as
291 	 * needing a restart in that case.
292 	 *
293 	 * We want to dispatch from the scheduler if there was nothing
294 	 * on the dispatch list or we were able to dispatch from the
295 	 * dispatch list.
296 	 */
297 	if (!list_empty(&rq_list)) {
298 		blk_mq_sched_mark_restart_hctx(hctx);
299 		if (!blk_mq_dispatch_rq_list(hctx, &rq_list, true))
300 			return 0;
301 		need_dispatch = true;
302 	} else {
303 		need_dispatch = hctx->dispatch_busy;
304 	}
305 
306 	if (hctx->queue->elevator)
307 		return blk_mq_do_dispatch_sched(hctx);
308 
309 	/* dequeue request one by one from sw queue if queue is busy */
310 	if (need_dispatch)
311 		return blk_mq_do_dispatch_ctx(hctx);
312 	blk_mq_flush_busy_ctxs(hctx, &rq_list);
313 	blk_mq_dispatch_rq_list(hctx, &rq_list, true);
314 	return 0;
315 }
316 
317 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
318 {
319 	struct request_queue *q = hctx->queue;
320 
321 	/* RCU or SRCU read lock is needed before checking quiesced flag */
322 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
323 		return;
324 
325 	/*
326 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
327 	 * empty and we must run again in order to avoid starving flushes.
328 	 */
329 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
330 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
331 			blk_mq_run_hw_queue(hctx, true);
332 	}
333 }
334 
335 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
336 		unsigned int nr_segs)
337 {
338 	struct elevator_queue *e = q->elevator;
339 	struct blk_mq_ctx *ctx;
340 	struct blk_mq_hw_ctx *hctx;
341 	bool ret = false;
342 	enum hctx_type type;
343 
344 	if (e && e->type->ops.bio_merge) {
345 		ret = e->type->ops.bio_merge(q, bio, nr_segs);
346 		goto out_put;
347 	}
348 
349 	ctx = blk_mq_get_ctx(q);
350 	hctx = blk_mq_map_queue(bio->bi_opf, ctx);
351 	type = hctx->type;
352 	if (list_empty_careful(&ctx->rq_lists[type]))
353 		goto out_put;
354 
355 	/* default per sw-queue merge */
356 	spin_lock(&ctx->lock);
357 	/*
358 	 * Reverse check our software queue for entries that we could
359 	 * potentially merge with. Currently includes a hand-wavy stop
360 	 * count of 8, to not spend too much time checking for merges.
361 	 */
362 	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs))
363 		ret = true;
364 
365 	spin_unlock(&ctx->lock);
366 out_put:
367 	return ret;
368 }
369 
370 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
371 				   struct list_head *free)
372 {
373 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
374 }
375 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
376 
377 /* called in queue's release handler, tagset has gone away */
378 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags)
379 {
380 	struct blk_mq_hw_ctx *hctx;
381 	unsigned long i;
382 
383 	queue_for_each_hw_ctx(q, hctx, i)
384 		hctx->sched_tags = NULL;
385 
386 	if (blk_mq_is_shared_tags(flags))
387 		q->sched_shared_tags = NULL;
388 }
389 
390 void blk_mq_sched_reg_debugfs(struct request_queue *q)
391 {
392 	struct blk_mq_hw_ctx *hctx;
393 	unsigned long i;
394 
395 	mutex_lock(&q->debugfs_mutex);
396 	blk_mq_debugfs_register_sched(q);
397 	queue_for_each_hw_ctx(q, hctx, i)
398 		blk_mq_debugfs_register_sched_hctx(q, hctx);
399 	mutex_unlock(&q->debugfs_mutex);
400 }
401 
402 void blk_mq_sched_unreg_debugfs(struct request_queue *q)
403 {
404 	struct blk_mq_hw_ctx *hctx;
405 	unsigned long i;
406 
407 	mutex_lock(&q->debugfs_mutex);
408 	queue_for_each_hw_ctx(q, hctx, i)
409 		blk_mq_debugfs_unregister_sched_hctx(hctx);
410 	blk_mq_debugfs_unregister_sched(q);
411 	mutex_unlock(&q->debugfs_mutex);
412 }
413 
414 void blk_mq_free_sched_tags(struct elevator_tags *et,
415 		struct blk_mq_tag_set *set)
416 {
417 	unsigned long i;
418 
419 	/* Shared tags are stored at index 0 in @tags. */
420 	if (blk_mq_is_shared_tags(set->flags))
421 		blk_mq_free_map_and_rqs(set, et->tags[0], BLK_MQ_NO_HCTX_IDX);
422 	else {
423 		for (i = 0; i < et->nr_hw_queues; i++)
424 			blk_mq_free_map_and_rqs(set, et->tags[i], i);
425 	}
426 
427 	kfree(et);
428 }
429 
430 void blk_mq_free_sched_res(struct elevator_resources *res,
431 		struct elevator_type *type,
432 		struct blk_mq_tag_set *set)
433 {
434 	if (res->et) {
435 		blk_mq_free_sched_tags(res->et, set);
436 		res->et = NULL;
437 	}
438 	if (res->data) {
439 		blk_mq_free_sched_data(type, res->data);
440 		res->data = NULL;
441 	}
442 }
443 
444 void blk_mq_free_sched_res_batch(struct xarray *elv_tbl,
445 		struct blk_mq_tag_set *set)
446 {
447 	struct request_queue *q;
448 	struct elv_change_ctx *ctx;
449 
450 	lockdep_assert_held_write(&set->update_nr_hwq_lock);
451 
452 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
453 		/*
454 		 * Accessing q->elevator without holding q->elevator_lock is
455 		 * safe because we're holding here set->update_nr_hwq_lock in
456 		 * the writer context. So, scheduler update/switch code (which
457 		 * acquires the same lock but in the reader context) can't run
458 		 * concurrently.
459 		 */
460 		if (q->elevator) {
461 			ctx = xa_load(elv_tbl, q->id);
462 			if (!ctx) {
463 				WARN_ON_ONCE(1);
464 				continue;
465 			}
466 			blk_mq_free_sched_res(&ctx->res, ctx->type, set);
467 		}
468 	}
469 }
470 
471 void blk_mq_free_sched_ctx_batch(struct xarray *elv_tbl)
472 {
473 	unsigned long i;
474 	struct elv_change_ctx *ctx;
475 
476 	xa_for_each(elv_tbl, i, ctx) {
477 		xa_erase(elv_tbl, i);
478 		kfree(ctx);
479 	}
480 }
481 
482 int blk_mq_alloc_sched_ctx_batch(struct xarray *elv_tbl,
483 		struct blk_mq_tag_set *set)
484 {
485 	struct request_queue *q;
486 	struct elv_change_ctx *ctx;
487 
488 	lockdep_assert_held_write(&set->update_nr_hwq_lock);
489 
490 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
491 		ctx = kzalloc(sizeof(struct elv_change_ctx), GFP_KERNEL);
492 		if (!ctx)
493 			return -ENOMEM;
494 
495 		if (xa_insert(elv_tbl, q->id, ctx, GFP_KERNEL)) {
496 			kfree(ctx);
497 			return -ENOMEM;
498 		}
499 	}
500 	return 0;
501 }
502 
503 struct elevator_tags *blk_mq_alloc_sched_tags(struct blk_mq_tag_set *set,
504 		unsigned int nr_hw_queues, unsigned int nr_requests)
505 {
506 	unsigned int nr_tags;
507 	int i;
508 	struct elevator_tags *et;
509 	gfp_t gfp = GFP_NOIO | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
510 
511 	if (blk_mq_is_shared_tags(set->flags))
512 		nr_tags = 1;
513 	else
514 		nr_tags = nr_hw_queues;
515 
516 	et = kmalloc(struct_size(et, tags, nr_tags), gfp);
517 	if (!et)
518 		return NULL;
519 
520 	et->nr_requests = nr_requests;
521 	et->nr_hw_queues = nr_hw_queues;
522 
523 	if (blk_mq_is_shared_tags(set->flags)) {
524 		/* Shared tags are stored at index 0 in @tags. */
525 		et->tags[0] = blk_mq_alloc_map_and_rqs(set, BLK_MQ_NO_HCTX_IDX,
526 					MAX_SCHED_RQ);
527 		if (!et->tags[0])
528 			goto out;
529 	} else {
530 		for (i = 0; i < et->nr_hw_queues; i++) {
531 			et->tags[i] = blk_mq_alloc_map_and_rqs(set, i,
532 					et->nr_requests);
533 			if (!et->tags[i])
534 				goto out_unwind;
535 		}
536 	}
537 
538 	return et;
539 out_unwind:
540 	while (--i >= 0)
541 		blk_mq_free_map_and_rqs(set, et->tags[i], i);
542 out:
543 	kfree(et);
544 	return NULL;
545 }
546 
547 int blk_mq_alloc_sched_res(struct request_queue *q,
548 		struct elevator_type *type,
549 		struct elevator_resources *res,
550 		unsigned int nr_hw_queues)
551 {
552 	struct blk_mq_tag_set *set = q->tag_set;
553 
554 	res->et = blk_mq_alloc_sched_tags(set, nr_hw_queues,
555 			blk_mq_default_nr_requests(set));
556 	if (!res->et)
557 		return -ENOMEM;
558 
559 	res->data = blk_mq_alloc_sched_data(q, type);
560 	if (IS_ERR(res->data)) {
561 		blk_mq_free_sched_tags(res->et, set);
562 		return -ENOMEM;
563 	}
564 
565 	return 0;
566 }
567 
568 int blk_mq_alloc_sched_res_batch(struct xarray *elv_tbl,
569 		struct blk_mq_tag_set *set, unsigned int nr_hw_queues)
570 {
571 	struct elv_change_ctx *ctx;
572 	struct request_queue *q;
573 	int ret = -ENOMEM;
574 
575 	lockdep_assert_held_write(&set->update_nr_hwq_lock);
576 
577 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
578 		/*
579 		 * Accessing q->elevator without holding q->elevator_lock is
580 		 * safe because we're holding here set->update_nr_hwq_lock in
581 		 * the writer context. So, scheduler update/switch code (which
582 		 * acquires the same lock but in the reader context) can't run
583 		 * concurrently.
584 		 */
585 		if (q->elevator) {
586 			ctx = xa_load(elv_tbl, q->id);
587 			if (WARN_ON_ONCE(!ctx)) {
588 				ret = -ENOENT;
589 				goto out_unwind;
590 			}
591 
592 			ret = blk_mq_alloc_sched_res(q, q->elevator->type,
593 					&ctx->res, nr_hw_queues);
594 			if (ret)
595 				goto out_unwind;
596 		}
597 	}
598 	return 0;
599 
600 out_unwind:
601 	list_for_each_entry_continue_reverse(q, &set->tag_list, tag_set_list) {
602 		if (q->elevator) {
603 			ctx = xa_load(elv_tbl, q->id);
604 			if (ctx)
605 				blk_mq_free_sched_res(&ctx->res,
606 						ctx->type, set);
607 		}
608 	}
609 	return ret;
610 }
611 
612 /* caller must have a reference to @e, will grab another one if successful */
613 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e,
614 		struct elevator_resources *res)
615 {
616 	unsigned int flags = q->tag_set->flags;
617 	struct elevator_tags *et = res->et;
618 	struct blk_mq_hw_ctx *hctx;
619 	struct elevator_queue *eq;
620 	unsigned long i;
621 	int ret;
622 
623 	eq = elevator_alloc(q, e, res);
624 	if (!eq)
625 		return -ENOMEM;
626 
627 	q->nr_requests = et->nr_requests;
628 
629 	if (blk_mq_is_shared_tags(flags)) {
630 		/* Shared tags are stored at index 0 in @et->tags. */
631 		q->sched_shared_tags = et->tags[0];
632 		blk_mq_tag_update_sched_shared_tags(q, et->nr_requests);
633 	}
634 
635 	queue_for_each_hw_ctx(q, hctx, i) {
636 		if (blk_mq_is_shared_tags(flags))
637 			hctx->sched_tags = q->sched_shared_tags;
638 		else
639 			hctx->sched_tags = et->tags[i];
640 	}
641 
642 	ret = e->ops.init_sched(q, eq);
643 	if (ret)
644 		goto out;
645 
646 	queue_for_each_hw_ctx(q, hctx, i) {
647 		if (e->ops.init_hctx) {
648 			ret = e->ops.init_hctx(hctx, i);
649 			if (ret) {
650 				blk_mq_exit_sched(q, eq);
651 				kobject_put(&eq->kobj);
652 				return ret;
653 			}
654 		}
655 	}
656 	return 0;
657 
658 out:
659 	blk_mq_sched_tags_teardown(q, flags);
660 	kobject_put(&eq->kobj);
661 	q->elevator = NULL;
662 	return ret;
663 }
664 
665 /*
666  * called in either blk_queue_cleanup or elevator_switch, tagset
667  * is required for freeing requests
668  */
669 void blk_mq_sched_free_rqs(struct request_queue *q)
670 {
671 	struct blk_mq_hw_ctx *hctx;
672 	unsigned long i;
673 
674 	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
675 		blk_mq_free_rqs(q->tag_set, q->sched_shared_tags,
676 				BLK_MQ_NO_HCTX_IDX);
677 	} else {
678 		queue_for_each_hw_ctx(q, hctx, i) {
679 			if (hctx->sched_tags)
680 				blk_mq_free_rqs(q->tag_set,
681 						hctx->sched_tags, i);
682 		}
683 	}
684 }
685 
686 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
687 {
688 	struct blk_mq_hw_ctx *hctx;
689 	unsigned long i;
690 	unsigned int flags = 0;
691 
692 	queue_for_each_hw_ctx(q, hctx, i) {
693 		if (e->type->ops.exit_hctx && hctx->sched_data) {
694 			e->type->ops.exit_hctx(hctx, i);
695 			hctx->sched_data = NULL;
696 		}
697 		flags = hctx->flags;
698 	}
699 
700 	if (e->type->ops.exit_sched)
701 		e->type->ops.exit_sched(e);
702 	blk_mq_sched_tags_teardown(q, flags);
703 	set_bit(ELEVATOR_FLAG_DYING, &q->elevator->flags);
704 	q->elevator = NULL;
705 }
706