1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4
5 #include <linux/blk-mq.h>
6 #include "blk-stat.h"
7
8 struct blk_mq_tag_set;
9
10 struct blk_mq_ctxs {
11 struct kobject kobj;
12 struct blk_mq_ctx __percpu *queue_ctx;
13 };
14
15 /**
16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17 */
18 struct blk_mq_ctx {
19 struct {
20 spinlock_t lock;
21 struct list_head rq_lists[HCTX_MAX_TYPES];
22 } ____cacheline_aligned_in_smp;
23
24 unsigned int cpu;
25 unsigned short index_hw[HCTX_MAX_TYPES];
26 struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
27
28 struct request_queue *queue;
29 struct blk_mq_ctxs *ctxs;
30 struct kobject kobj;
31 } ____cacheline_aligned_in_smp;
32
33 enum {
34 BLK_MQ_NO_TAG = -1U,
35 BLK_MQ_TAG_MIN = 1,
36 BLK_MQ_TAG_MAX = BLK_MQ_NO_TAG - 1,
37 };
38
39 #define BLK_MQ_CPU_WORK_BATCH (8)
40
41 typedef unsigned int __bitwise blk_insert_t;
42 #define BLK_MQ_INSERT_AT_HEAD ((__force blk_insert_t)0x01)
43
44 void blk_mq_submit_bio(struct bio *bio);
45 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
46 unsigned int flags);
47 void blk_mq_exit_queue(struct request_queue *q);
48 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
49 void blk_mq_wake_waiters(struct request_queue *q);
50 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
51 unsigned int);
52 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
53 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *start);
55 void blk_mq_put_rq_ref(struct request *rq);
56
57 /*
58 * Internal helpers for allocating/freeing the request map
59 */
60 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
61 unsigned int hctx_idx);
62 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
63 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
64 unsigned int hctx_idx, unsigned int depth);
65 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
66 struct blk_mq_tags *tags,
67 unsigned int hctx_idx);
68
69 /*
70 * CPU -> queue mappings
71 */
72 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
73
74 /*
75 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
76 * @q: request queue
77 * @type: the hctx type index
78 * @cpu: CPU
79 */
blk_mq_map_queue_type(struct request_queue * q,enum hctx_type type,unsigned int cpu)80 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
81 enum hctx_type type,
82 unsigned int cpu)
83 {
84 return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]);
85 }
86
blk_mq_get_hctx_type(blk_opf_t opf)87 static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf)
88 {
89 enum hctx_type type = HCTX_TYPE_DEFAULT;
90
91 /*
92 * The caller ensure that if REQ_POLLED, poll must be enabled.
93 */
94 if (opf & REQ_POLLED)
95 type = HCTX_TYPE_POLL;
96 else if ((opf & REQ_OP_MASK) == REQ_OP_READ)
97 type = HCTX_TYPE_READ;
98 return type;
99 }
100
101 /*
102 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
103 * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED).
104 * @ctx: software queue cpu ctx
105 */
blk_mq_map_queue(blk_opf_t opf,struct blk_mq_ctx * ctx)106 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(blk_opf_t opf,
107 struct blk_mq_ctx *ctx)
108 {
109 return ctx->hctxs[blk_mq_get_hctx_type(opf)];
110 }
111
112 /*
113 * sysfs helpers
114 */
115 extern void blk_mq_sysfs_init(struct request_queue *q);
116 extern void blk_mq_sysfs_deinit(struct request_queue *q);
117 int blk_mq_sysfs_register(struct gendisk *disk);
118 void blk_mq_sysfs_unregister(struct gendisk *disk);
119 int blk_mq_sysfs_register_hctxs(struct request_queue *q);
120 void blk_mq_sysfs_unregister_hctxs(struct request_queue *q);
121 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
122 void blk_mq_free_plug_rqs(struct blk_plug *plug);
123 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
124
125 void blk_mq_cancel_work_sync(struct request_queue *q);
126
127 void blk_mq_release(struct request_queue *q);
128
__blk_mq_get_ctx(struct request_queue * q,unsigned int cpu)129 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
130 unsigned int cpu)
131 {
132 return per_cpu_ptr(q->queue_ctx, cpu);
133 }
134
135 /*
136 * This assumes per-cpu software queueing queues. They could be per-node
137 * as well, for instance. For now this is hardcoded as-is. Note that we don't
138 * care about preemption, since we know the ctx's are persistent. This does
139 * mean that we can't rely on ctx always matching the currently running CPU.
140 */
blk_mq_get_ctx(struct request_queue * q)141 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
142 {
143 return __blk_mq_get_ctx(q, raw_smp_processor_id());
144 }
145
146 struct blk_mq_alloc_data {
147 /* input parameter */
148 struct request_queue *q;
149 blk_mq_req_flags_t flags;
150 unsigned int shallow_depth;
151 blk_opf_t cmd_flags;
152 req_flags_t rq_flags;
153
154 /* allocate multiple requests/tags in one go */
155 unsigned int nr_tags;
156 struct rq_list *cached_rqs;
157
158 /* input & output parameter */
159 struct blk_mq_ctx *ctx;
160 struct blk_mq_hw_ctx *hctx;
161 };
162
163 struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags,
164 unsigned int reserved_tags, unsigned int flags, int node);
165 void blk_mq_free_tags(struct blk_mq_tags *tags);
166
167 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data);
168 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
169 unsigned int *offset);
170 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
171 unsigned int tag);
172 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags);
173 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
174 struct blk_mq_tags **tags, unsigned int depth, bool can_grow);
175 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set,
176 unsigned int size);
177 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q);
178
179 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool);
180 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
181 void *priv);
182 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
183 void *priv);
184
bt_wait_ptr(struct sbitmap_queue * bt,struct blk_mq_hw_ctx * hctx)185 static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt,
186 struct blk_mq_hw_ctx *hctx)
187 {
188 if (!hctx)
189 return &bt->ws[0];
190 return sbq_wait_ptr(bt, &hctx->wait_index);
191 }
192
193 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *);
194 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *);
195
blk_mq_tag_busy(struct blk_mq_hw_ctx * hctx)196 static inline void blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
197 {
198 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
199 __blk_mq_tag_busy(hctx);
200 }
201
blk_mq_tag_idle(struct blk_mq_hw_ctx * hctx)202 static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
203 {
204 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
205 __blk_mq_tag_idle(hctx);
206 }
207
blk_mq_tag_is_reserved(struct blk_mq_tags * tags,unsigned int tag)208 static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags,
209 unsigned int tag)
210 {
211 return tag < tags->nr_reserved_tags;
212 }
213
blk_mq_is_shared_tags(unsigned int flags)214 static inline bool blk_mq_is_shared_tags(unsigned int flags)
215 {
216 return flags & BLK_MQ_F_TAG_HCTX_SHARED;
217 }
218
blk_mq_tags_from_data(struct blk_mq_alloc_data * data)219 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
220 {
221 if (data->rq_flags & RQF_SCHED_TAGS)
222 return data->hctx->sched_tags;
223 return data->hctx->tags;
224 }
225
blk_mq_hctx_stopped(struct blk_mq_hw_ctx * hctx)226 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
227 {
228 /* Fast path: hardware queue is not stopped most of the time. */
229 if (likely(!test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
230 return false;
231
232 /*
233 * This barrier is used to order adding of dispatch list before and
234 * the test of BLK_MQ_S_STOPPED below. Pairs with the memory barrier
235 * in blk_mq_start_stopped_hw_queue() so that dispatch code could
236 * either see BLK_MQ_S_STOPPED is cleared or dispatch list is not
237 * empty to avoid missing dispatching requests.
238 */
239 smp_mb();
240
241 return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
242 }
243
blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx * hctx)244 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
245 {
246 return hctx->nr_ctx && hctx->tags;
247 }
248
249 unsigned int blk_mq_in_flight(struct request_queue *q,
250 struct block_device *part);
251 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
252 unsigned int inflight[2]);
253
blk_mq_put_dispatch_budget(struct request_queue * q,int budget_token)254 static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
255 int budget_token)
256 {
257 if (q->mq_ops->put_budget)
258 q->mq_ops->put_budget(q, budget_token);
259 }
260
blk_mq_get_dispatch_budget(struct request_queue * q)261 static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
262 {
263 if (q->mq_ops->get_budget)
264 return q->mq_ops->get_budget(q);
265 return 0;
266 }
267
blk_mq_set_rq_budget_token(struct request * rq,int token)268 static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
269 {
270 if (token < 0)
271 return;
272
273 if (rq->q->mq_ops->set_rq_budget_token)
274 rq->q->mq_ops->set_rq_budget_token(rq, token);
275 }
276
blk_mq_get_rq_budget_token(struct request * rq)277 static inline int blk_mq_get_rq_budget_token(struct request *rq)
278 {
279 if (rq->q->mq_ops->get_rq_budget_token)
280 return rq->q->mq_ops->get_rq_budget_token(rq);
281 return -1;
282 }
283
__blk_mq_add_active_requests(struct blk_mq_hw_ctx * hctx,int val)284 static inline void __blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
285 int val)
286 {
287 if (blk_mq_is_shared_tags(hctx->flags))
288 atomic_add(val, &hctx->queue->nr_active_requests_shared_tags);
289 else
290 atomic_add(val, &hctx->nr_active);
291 }
292
__blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)293 static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
294 {
295 __blk_mq_add_active_requests(hctx, 1);
296 }
297
__blk_mq_sub_active_requests(struct blk_mq_hw_ctx * hctx,int val)298 static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
299 int val)
300 {
301 if (blk_mq_is_shared_tags(hctx->flags))
302 atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
303 else
304 atomic_sub(val, &hctx->nr_active);
305 }
306
__blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)307 static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
308 {
309 __blk_mq_sub_active_requests(hctx, 1);
310 }
311
blk_mq_add_active_requests(struct blk_mq_hw_ctx * hctx,int val)312 static inline void blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
313 int val)
314 {
315 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
316 __blk_mq_add_active_requests(hctx, val);
317 }
318
blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)319 static inline void blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
320 {
321 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
322 __blk_mq_inc_active_requests(hctx);
323 }
324
blk_mq_sub_active_requests(struct blk_mq_hw_ctx * hctx,int val)325 static inline void blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
326 int val)
327 {
328 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
329 __blk_mq_sub_active_requests(hctx, val);
330 }
331
blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)332 static inline void blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
333 {
334 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
335 __blk_mq_dec_active_requests(hctx);
336 }
337
__blk_mq_active_requests(struct blk_mq_hw_ctx * hctx)338 static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
339 {
340 if (blk_mq_is_shared_tags(hctx->flags))
341 return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
342 return atomic_read(&hctx->nr_active);
343 }
__blk_mq_put_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)344 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
345 struct request *rq)
346 {
347 blk_mq_dec_active_requests(hctx);
348 blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
349 rq->tag = BLK_MQ_NO_TAG;
350 }
351
blk_mq_put_driver_tag(struct request * rq)352 static inline void blk_mq_put_driver_tag(struct request *rq)
353 {
354 if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
355 return;
356
357 __blk_mq_put_driver_tag(rq->mq_hctx, rq);
358 }
359
360 bool __blk_mq_alloc_driver_tag(struct request *rq);
361
blk_mq_get_driver_tag(struct request * rq)362 static inline bool blk_mq_get_driver_tag(struct request *rq)
363 {
364 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
365 return false;
366
367 return true;
368 }
369
blk_mq_clear_mq_map(struct blk_mq_queue_map * qmap)370 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
371 {
372 int cpu;
373
374 for_each_possible_cpu(cpu)
375 qmap->mq_map[cpu] = 0;
376 }
377
378 /* Free all requests on the list */
blk_mq_free_requests(struct list_head * list)379 static inline void blk_mq_free_requests(struct list_head *list)
380 {
381 while (!list_empty(list)) {
382 struct request *rq = list_entry_rq(list->next);
383
384 list_del_init(&rq->queuelist);
385 blk_mq_free_request(rq);
386 }
387 }
388
389 /*
390 * For shared tag users, we track the number of currently active users
391 * and attempt to provide a fair share of the tag depth for each of them.
392 */
hctx_may_queue(struct blk_mq_hw_ctx * hctx,struct sbitmap_queue * bt)393 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
394 struct sbitmap_queue *bt)
395 {
396 unsigned int depth, users;
397
398 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
399 return true;
400
401 /*
402 * Don't try dividing an ant
403 */
404 if (bt->sb.depth == 1)
405 return true;
406
407 if (blk_mq_is_shared_tags(hctx->flags)) {
408 struct request_queue *q = hctx->queue;
409
410 if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
411 return true;
412 } else {
413 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
414 return true;
415 }
416
417 users = READ_ONCE(hctx->tags->active_queues);
418 if (!users)
419 return true;
420
421 /*
422 * Allow at least some tags
423 */
424 depth = max((bt->sb.depth + users - 1) / users, 4U);
425 return __blk_mq_active_requests(hctx) < depth;
426 }
427
428 /* run the code block in @dispatch_ops with rcu/srcu read lock held */
429 #define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops) \
430 do { \
431 if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) { \
432 struct blk_mq_tag_set *__tag_set = (q)->tag_set; \
433 int srcu_idx; \
434 \
435 might_sleep_if(check_sleep); \
436 srcu_idx = srcu_read_lock(__tag_set->srcu); \
437 (dispatch_ops); \
438 srcu_read_unlock(__tag_set->srcu, srcu_idx); \
439 } else { \
440 rcu_read_lock(); \
441 (dispatch_ops); \
442 rcu_read_unlock(); \
443 } \
444 } while (0)
445
446 #define blk_mq_run_dispatch_ops(q, dispatch_ops) \
447 __blk_mq_run_dispatch_ops(q, true, dispatch_ops) \
448
blk_mq_can_poll(struct request_queue * q)449 static inline bool blk_mq_can_poll(struct request_queue *q)
450 {
451 return (q->limits.features & BLK_FEAT_POLL) &&
452 q->tag_set->map[HCTX_TYPE_POLL].nr_queues;
453 }
454
455 #endif
456