xref: /linux/block/blk-mq.h (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4 
5 #include <linux/blk-mq.h>
6 #include "blk-stat.h"
7 
8 struct blk_mq_tag_set;
9 
10 struct blk_mq_ctxs {
11 	struct kobject kobj;
12 	struct blk_mq_ctx __percpu	*queue_ctx;
13 };
14 
15 /**
16  * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17  */
18 struct blk_mq_ctx {
19 	struct {
20 		spinlock_t		lock;
21 		struct list_head	rq_lists[HCTX_MAX_TYPES];
22 	} ____cacheline_aligned_in_smp;
23 
24 	unsigned int		cpu;
25 	unsigned short		index_hw[HCTX_MAX_TYPES];
26 	struct blk_mq_hw_ctx 	*hctxs[HCTX_MAX_TYPES];
27 
28 	struct request_queue	*queue;
29 	struct blk_mq_ctxs      *ctxs;
30 	struct kobject		kobj;
31 } ____cacheline_aligned_in_smp;
32 
33 enum {
34 	BLK_MQ_NO_TAG		= -1U,
35 	BLK_MQ_TAG_MIN		= 1,
36 	BLK_MQ_TAG_MAX		= BLK_MQ_NO_TAG - 1,
37 };
38 
39 #define BLK_MQ_CPU_WORK_BATCH	(8)
40 
41 typedef unsigned int __bitwise blk_insert_t;
42 #define BLK_MQ_INSERT_AT_HEAD		((__force blk_insert_t)0x01)
43 
44 void blk_mq_submit_bio(struct bio *bio);
45 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
46 		unsigned int flags);
47 void blk_mq_exit_queue(struct request_queue *q);
48 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
49 void blk_mq_wake_waiters(struct request_queue *q);
50 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
51 			     unsigned int);
52 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
53 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
54 					struct blk_mq_ctx *start);
55 void blk_mq_put_rq_ref(struct request *rq);
56 
57 /*
58  * Internal helpers for allocating/freeing the request map
59  */
60 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
61 		     unsigned int hctx_idx);
62 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
63 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
64 				unsigned int hctx_idx, unsigned int depth);
65 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
66 			     struct blk_mq_tags *tags,
67 			     unsigned int hctx_idx);
68 
69 /*
70  * CPU -> queue mappings
71  */
72 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
73 
74 /*
75  * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
76  * @q: request queue
77  * @type: the hctx type index
78  * @cpu: CPU
79  */
blk_mq_map_queue_type(struct request_queue * q,enum hctx_type type,unsigned int cpu)80 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
81 							  enum hctx_type type,
82 							  unsigned int cpu)
83 {
84 	return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]);
85 }
86 
blk_mq_get_hctx_type(blk_opf_t opf)87 static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf)
88 {
89 	enum hctx_type type = HCTX_TYPE_DEFAULT;
90 
91 	/*
92 	 * The caller ensure that if REQ_POLLED, poll must be enabled.
93 	 */
94 	if (opf & REQ_POLLED)
95 		type = HCTX_TYPE_POLL;
96 	else if ((opf & REQ_OP_MASK) == REQ_OP_READ)
97 		type = HCTX_TYPE_READ;
98 	return type;
99 }
100 
101 /*
102  * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
103  * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED).
104  * @ctx: software queue cpu ctx
105  */
blk_mq_map_queue(blk_opf_t opf,struct blk_mq_ctx * ctx)106 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(blk_opf_t opf,
107 						     struct blk_mq_ctx *ctx)
108 {
109 	return ctx->hctxs[blk_mq_get_hctx_type(opf)];
110 }
111 
112 /*
113  * sysfs helpers
114  */
115 extern void blk_mq_sysfs_init(struct request_queue *q);
116 extern void blk_mq_sysfs_deinit(struct request_queue *q);
117 int blk_mq_sysfs_register(struct gendisk *disk);
118 void blk_mq_sysfs_unregister(struct gendisk *disk);
119 int blk_mq_sysfs_register_hctxs(struct request_queue *q);
120 void blk_mq_sysfs_unregister_hctxs(struct request_queue *q);
121 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
122 void blk_mq_free_plug_rqs(struct blk_plug *plug);
123 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
124 
125 void blk_mq_cancel_work_sync(struct request_queue *q);
126 
127 void blk_mq_release(struct request_queue *q);
128 
__blk_mq_get_ctx(struct request_queue * q,unsigned int cpu)129 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
130 					   unsigned int cpu)
131 {
132 	return per_cpu_ptr(q->queue_ctx, cpu);
133 }
134 
135 /*
136  * This assumes per-cpu software queueing queues. They could be per-node
137  * as well, for instance. For now this is hardcoded as-is. Note that we don't
138  * care about preemption, since we know the ctx's are persistent. This does
139  * mean that we can't rely on ctx always matching the currently running CPU.
140  */
blk_mq_get_ctx(struct request_queue * q)141 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
142 {
143 	return __blk_mq_get_ctx(q, raw_smp_processor_id());
144 }
145 
146 struct blk_mq_alloc_data {
147 	/* input parameter */
148 	struct request_queue *q;
149 	blk_mq_req_flags_t flags;
150 	unsigned int shallow_depth;
151 	blk_opf_t cmd_flags;
152 	req_flags_t rq_flags;
153 
154 	/* allocate multiple requests/tags in one go */
155 	unsigned int nr_tags;
156 	struct rq_list *cached_rqs;
157 
158 	/* input & output parameter */
159 	struct blk_mq_ctx *ctx;
160 	struct blk_mq_hw_ctx *hctx;
161 };
162 
163 struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags,
164 		unsigned int reserved_tags, unsigned int flags, int node);
165 void blk_mq_free_tags(struct blk_mq_tags *tags);
166 
167 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data);
168 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
169 		unsigned int *offset);
170 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
171 		unsigned int tag);
172 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags);
173 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
174 		struct blk_mq_tags **tags, unsigned int depth, bool can_grow);
175 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set,
176 		unsigned int size);
177 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q);
178 
179 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool);
180 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
181 		void *priv);
182 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
183 		void *priv);
184 
bt_wait_ptr(struct sbitmap_queue * bt,struct blk_mq_hw_ctx * hctx)185 static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt,
186 						 struct blk_mq_hw_ctx *hctx)
187 {
188 	if (!hctx)
189 		return &bt->ws[0];
190 	return sbq_wait_ptr(bt, &hctx->wait_index);
191 }
192 
193 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *);
194 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *);
195 
blk_mq_tag_busy(struct blk_mq_hw_ctx * hctx)196 static inline void blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
197 {
198 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
199 		__blk_mq_tag_busy(hctx);
200 }
201 
blk_mq_tag_idle(struct blk_mq_hw_ctx * hctx)202 static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
203 {
204 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
205 		__blk_mq_tag_idle(hctx);
206 }
207 
blk_mq_tag_is_reserved(struct blk_mq_tags * tags,unsigned int tag)208 static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags,
209 					  unsigned int tag)
210 {
211 	return tag < tags->nr_reserved_tags;
212 }
213 
blk_mq_is_shared_tags(unsigned int flags)214 static inline bool blk_mq_is_shared_tags(unsigned int flags)
215 {
216 	return flags & BLK_MQ_F_TAG_HCTX_SHARED;
217 }
218 
blk_mq_tags_from_data(struct blk_mq_alloc_data * data)219 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
220 {
221 	if (data->rq_flags & RQF_SCHED_TAGS)
222 		return data->hctx->sched_tags;
223 	return data->hctx->tags;
224 }
225 
blk_mq_hctx_stopped(struct blk_mq_hw_ctx * hctx)226 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
227 {
228 	/* Fast path: hardware queue is not stopped most of the time. */
229 	if (likely(!test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
230 		return false;
231 
232 	/*
233 	 * This barrier is used to order adding of dispatch list before and
234 	 * the test of BLK_MQ_S_STOPPED below. Pairs with the memory barrier
235 	 * in blk_mq_start_stopped_hw_queue() so that dispatch code could
236 	 * either see BLK_MQ_S_STOPPED is cleared or dispatch list is not
237 	 * empty to avoid missing dispatching requests.
238 	 */
239 	smp_mb();
240 
241 	return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
242 }
243 
blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx * hctx)244 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
245 {
246 	return hctx->nr_ctx && hctx->tags;
247 }
248 
249 unsigned int blk_mq_in_flight(struct request_queue *q,
250 		struct block_device *part);
251 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
252 		unsigned int inflight[2]);
253 
blk_mq_put_dispatch_budget(struct request_queue * q,int budget_token)254 static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
255 					      int budget_token)
256 {
257 	if (q->mq_ops->put_budget)
258 		q->mq_ops->put_budget(q, budget_token);
259 }
260 
blk_mq_get_dispatch_budget(struct request_queue * q)261 static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
262 {
263 	if (q->mq_ops->get_budget)
264 		return q->mq_ops->get_budget(q);
265 	return 0;
266 }
267 
blk_mq_set_rq_budget_token(struct request * rq,int token)268 static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
269 {
270 	if (token < 0)
271 		return;
272 
273 	if (rq->q->mq_ops->set_rq_budget_token)
274 		rq->q->mq_ops->set_rq_budget_token(rq, token);
275 }
276 
blk_mq_get_rq_budget_token(struct request * rq)277 static inline int blk_mq_get_rq_budget_token(struct request *rq)
278 {
279 	if (rq->q->mq_ops->get_rq_budget_token)
280 		return rq->q->mq_ops->get_rq_budget_token(rq);
281 	return -1;
282 }
283 
__blk_mq_add_active_requests(struct blk_mq_hw_ctx * hctx,int val)284 static inline void __blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
285 						int val)
286 {
287 	if (blk_mq_is_shared_tags(hctx->flags))
288 		atomic_add(val, &hctx->queue->nr_active_requests_shared_tags);
289 	else
290 		atomic_add(val, &hctx->nr_active);
291 }
292 
__blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)293 static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
294 {
295 	__blk_mq_add_active_requests(hctx, 1);
296 }
297 
__blk_mq_sub_active_requests(struct blk_mq_hw_ctx * hctx,int val)298 static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
299 		int val)
300 {
301 	if (blk_mq_is_shared_tags(hctx->flags))
302 		atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
303 	else
304 		atomic_sub(val, &hctx->nr_active);
305 }
306 
__blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)307 static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
308 {
309 	__blk_mq_sub_active_requests(hctx, 1);
310 }
311 
blk_mq_add_active_requests(struct blk_mq_hw_ctx * hctx,int val)312 static inline void blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
313 					      int val)
314 {
315 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
316 		__blk_mq_add_active_requests(hctx, val);
317 }
318 
blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)319 static inline void blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
320 {
321 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
322 		__blk_mq_inc_active_requests(hctx);
323 }
324 
blk_mq_sub_active_requests(struct blk_mq_hw_ctx * hctx,int val)325 static inline void blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
326 					      int val)
327 {
328 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
329 		__blk_mq_sub_active_requests(hctx, val);
330 }
331 
blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)332 static inline void blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
333 {
334 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
335 		__blk_mq_dec_active_requests(hctx);
336 }
337 
__blk_mq_active_requests(struct blk_mq_hw_ctx * hctx)338 static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
339 {
340 	if (blk_mq_is_shared_tags(hctx->flags))
341 		return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
342 	return atomic_read(&hctx->nr_active);
343 }
__blk_mq_put_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)344 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
345 					   struct request *rq)
346 {
347 	blk_mq_dec_active_requests(hctx);
348 	blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
349 	rq->tag = BLK_MQ_NO_TAG;
350 }
351 
blk_mq_put_driver_tag(struct request * rq)352 static inline void blk_mq_put_driver_tag(struct request *rq)
353 {
354 	if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
355 		return;
356 
357 	__blk_mq_put_driver_tag(rq->mq_hctx, rq);
358 }
359 
360 bool __blk_mq_alloc_driver_tag(struct request *rq);
361 
blk_mq_get_driver_tag(struct request * rq)362 static inline bool blk_mq_get_driver_tag(struct request *rq)
363 {
364 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
365 		return false;
366 
367 	return true;
368 }
369 
blk_mq_clear_mq_map(struct blk_mq_queue_map * qmap)370 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
371 {
372 	int cpu;
373 
374 	for_each_possible_cpu(cpu)
375 		qmap->mq_map[cpu] = 0;
376 }
377 
378 /* Free all requests on the list */
blk_mq_free_requests(struct list_head * list)379 static inline void blk_mq_free_requests(struct list_head *list)
380 {
381 	while (!list_empty(list)) {
382 		struct request *rq = list_entry_rq(list->next);
383 
384 		list_del_init(&rq->queuelist);
385 		blk_mq_free_request(rq);
386 	}
387 }
388 
389 /*
390  * For shared tag users, we track the number of currently active users
391  * and attempt to provide a fair share of the tag depth for each of them.
392  */
hctx_may_queue(struct blk_mq_hw_ctx * hctx,struct sbitmap_queue * bt)393 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
394 				  struct sbitmap_queue *bt)
395 {
396 	unsigned int depth, users;
397 
398 	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
399 		return true;
400 
401 	/*
402 	 * Don't try dividing an ant
403 	 */
404 	if (bt->sb.depth == 1)
405 		return true;
406 
407 	if (blk_mq_is_shared_tags(hctx->flags)) {
408 		struct request_queue *q = hctx->queue;
409 
410 		if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
411 			return true;
412 	} else {
413 		if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
414 			return true;
415 	}
416 
417 	users = READ_ONCE(hctx->tags->active_queues);
418 	if (!users)
419 		return true;
420 
421 	/*
422 	 * Allow at least some tags
423 	 */
424 	depth = max((bt->sb.depth + users - 1) / users, 4U);
425 	return __blk_mq_active_requests(hctx) < depth;
426 }
427 
428 /* run the code block in @dispatch_ops with rcu/srcu read lock held */
429 #define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops)	\
430 do {								\
431 	if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) {		\
432 		struct blk_mq_tag_set *__tag_set = (q)->tag_set; \
433 		int srcu_idx;					\
434 								\
435 		might_sleep_if(check_sleep);			\
436 		srcu_idx = srcu_read_lock(__tag_set->srcu);	\
437 		(dispatch_ops);					\
438 		srcu_read_unlock(__tag_set->srcu, srcu_idx);	\
439 	} else {						\
440 		rcu_read_lock();				\
441 		(dispatch_ops);					\
442 		rcu_read_unlock();				\
443 	}							\
444 } while (0)
445 
446 #define blk_mq_run_dispatch_ops(q, dispatch_ops)		\
447 	__blk_mq_run_dispatch_ops(q, true, dispatch_ops)	\
448 
blk_mq_can_poll(struct request_queue * q)449 static inline bool blk_mq_can_poll(struct request_queue *q)
450 {
451 	return (q->limits.features & BLK_FEAT_POLL) &&
452 		q->tag_set->map[HCTX_TYPE_POLL].nr_queues;
453 }
454 
455 #endif
456