xref: /linux/include/linux/bio.h (revision 8cbd01ba9c38eb16f3a572300da486ac544519b7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4  */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7 
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12 
13 #define BIO_MAX_VECS		256U
14 
15 struct queue_limits;
16 
bio_max_segs(unsigned int nr_segs)17 static inline unsigned int bio_max_segs(unsigned int nr_segs)
18 {
19 	return min(nr_segs, BIO_MAX_VECS);
20 }
21 
22 #define bio_prio(bio)			(bio)->bi_ioprio
23 #define bio_set_prio(bio, prio)		((bio)->bi_ioprio = prio)
24 
25 #define bio_iter_iovec(bio, iter)				\
26 	bvec_iter_bvec((bio)->bi_io_vec, (iter))
27 
28 #define bio_iter_page(bio, iter)				\
29 	bvec_iter_page((bio)->bi_io_vec, (iter))
30 #define bio_iter_len(bio, iter)					\
31 	bvec_iter_len((bio)->bi_io_vec, (iter))
32 #define bio_iter_offset(bio, iter)				\
33 	bvec_iter_offset((bio)->bi_io_vec, (iter))
34 
35 #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
36 #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
37 #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
38 
39 #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
40 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
41 
42 #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
43 #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
44 
45 /*
46  * Return the data direction, READ or WRITE.
47  */
48 #define bio_data_dir(bio) \
49 	(op_is_write(bio_op(bio)) ? WRITE : READ)
50 
51 /*
52  * Check whether this bio carries any data or not. A NULL bio is allowed.
53  */
bio_has_data(struct bio * bio)54 static inline bool bio_has_data(struct bio *bio)
55 {
56 	if (bio &&
57 	    bio->bi_iter.bi_size &&
58 	    bio_op(bio) != REQ_OP_DISCARD &&
59 	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
60 	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
61 		return true;
62 
63 	return false;
64 }
65 
bio_no_advance_iter(const struct bio * bio)66 static inline bool bio_no_advance_iter(const struct bio *bio)
67 {
68 	return bio_op(bio) == REQ_OP_DISCARD ||
69 	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
70 	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
71 }
72 
bio_data(struct bio * bio)73 static inline void *bio_data(struct bio *bio)
74 {
75 	if (bio_has_data(bio))
76 		return page_address(bio_page(bio)) + bio_offset(bio);
77 
78 	return NULL;
79 }
80 
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)81 static inline bool bio_next_segment(const struct bio *bio,
82 				    struct bvec_iter_all *iter)
83 {
84 	if (iter->idx >= bio->bi_vcnt)
85 		return false;
86 
87 	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
88 	return true;
89 }
90 
91 /*
92  * drivers should _never_ use the all version - the bio may have been split
93  * before it got to the driver and the driver won't own all of it
94  */
95 #define bio_for_each_segment_all(bvl, bio, iter) \
96 	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
97 
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)98 static inline void bio_advance_iter(const struct bio *bio,
99 				    struct bvec_iter *iter, unsigned int bytes)
100 {
101 	iter->bi_sector += bytes >> 9;
102 
103 	if (bio_no_advance_iter(bio))
104 		iter->bi_size -= bytes;
105 	else
106 		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
107 		/* TODO: It is reasonable to complete bio with error here. */
108 }
109 
110 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)111 static inline void bio_advance_iter_single(const struct bio *bio,
112 					   struct bvec_iter *iter,
113 					   unsigned int bytes)
114 {
115 	iter->bi_sector += bytes >> 9;
116 
117 	if (bio_no_advance_iter(bio))
118 		iter->bi_size -= bytes;
119 	else
120 		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
121 }
122 
123 void __bio_advance(struct bio *, unsigned bytes);
124 
125 /**
126  * bio_advance - increment/complete a bio by some number of bytes
127  * @bio:	bio to advance
128  * @nbytes:	number of bytes to complete
129  *
130  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
131  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
132  * be updated on the last bvec as well.
133  *
134  * @bio will then represent the remaining, uncompleted portion of the io.
135  */
bio_advance(struct bio * bio,unsigned int nbytes)136 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
137 {
138 	if (nbytes == bio->bi_iter.bi_size) {
139 		bio->bi_iter.bi_size = 0;
140 		return;
141 	}
142 	__bio_advance(bio, nbytes);
143 }
144 
145 #define __bio_for_each_segment(bvl, bio, iter, start)			\
146 	for (iter = (start);						\
147 	     (iter).bi_size &&						\
148 		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
149 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
150 
151 #define bio_for_each_segment(bvl, bio, iter)				\
152 	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
153 
154 #define __bio_for_each_bvec(bvl, bio, iter, start)		\
155 	for (iter = (start);						\
156 	     (iter).bi_size &&						\
157 		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
158 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
159 
160 /* iterate over multi-page bvec */
161 #define bio_for_each_bvec(bvl, bio, iter)			\
162 	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
163 
164 /*
165  * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
166  * same reasons as bio_for_each_segment_all().
167  */
168 #define bio_for_each_bvec_all(bvl, bio, i)		\
169 	for (i = 0, bvl = bio_first_bvec_all(bio);	\
170 	     i < (bio)->bi_vcnt; i++, bvl++)
171 
172 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
173 
bio_segments(struct bio * bio)174 static inline unsigned bio_segments(struct bio *bio)
175 {
176 	unsigned segs = 0;
177 	struct bio_vec bv;
178 	struct bvec_iter iter;
179 
180 	/*
181 	 * We special case discard/write same/write zeroes, because they
182 	 * interpret bi_size differently:
183 	 */
184 
185 	switch (bio_op(bio)) {
186 	case REQ_OP_DISCARD:
187 	case REQ_OP_SECURE_ERASE:
188 	case REQ_OP_WRITE_ZEROES:
189 		return 0;
190 	default:
191 		break;
192 	}
193 
194 	bio_for_each_segment(bv, bio, iter)
195 		segs++;
196 
197 	return segs;
198 }
199 
200 /*
201  * get a reference to a bio, so it won't disappear. the intended use is
202  * something like:
203  *
204  * bio_get(bio);
205  * submit_bio(rw, bio);
206  * if (bio->bi_flags ...)
207  *	do_something
208  * bio_put(bio);
209  *
210  * without the bio_get(), it could potentially complete I/O before submit_bio
211  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
212  * runs
213  */
bio_get(struct bio * bio)214 static inline void bio_get(struct bio *bio)
215 {
216 	bio->bi_flags |= (1 << BIO_REFFED);
217 	smp_mb__before_atomic();
218 	atomic_inc(&bio->__bi_cnt);
219 }
220 
bio_cnt_set(struct bio * bio,unsigned int count)221 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
222 {
223 	if (count != 1) {
224 		bio->bi_flags |= (1 << BIO_REFFED);
225 		smp_mb();
226 	}
227 	atomic_set(&bio->__bi_cnt, count);
228 }
229 
bio_flagged(struct bio * bio,unsigned int bit)230 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
231 {
232 	return bio->bi_flags & (1U << bit);
233 }
234 
bio_set_flag(struct bio * bio,unsigned int bit)235 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
236 {
237 	bio->bi_flags |= (1U << bit);
238 }
239 
bio_clear_flag(struct bio * bio,unsigned int bit)240 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
241 {
242 	bio->bi_flags &= ~(1U << bit);
243 }
244 
bio_first_bvec_all(struct bio * bio)245 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
246 {
247 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
248 	return bio->bi_io_vec;
249 }
250 
bio_first_page_all(struct bio * bio)251 static inline struct page *bio_first_page_all(struct bio *bio)
252 {
253 	return bio_first_bvec_all(bio)->bv_page;
254 }
255 
bio_first_folio_all(struct bio * bio)256 static inline struct folio *bio_first_folio_all(struct bio *bio)
257 {
258 	return page_folio(bio_first_page_all(bio));
259 }
260 
bio_last_bvec_all(struct bio * bio)261 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
262 {
263 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
264 	return &bio->bi_io_vec[bio->bi_vcnt - 1];
265 }
266 
267 /**
268  * struct folio_iter - State for iterating all folios in a bio.
269  * @folio: The current folio we're iterating.  NULL after the last folio.
270  * @offset: The byte offset within the current folio.
271  * @length: The number of bytes in this iteration (will not cross folio
272  *	boundary).
273  */
274 struct folio_iter {
275 	struct folio *folio;
276 	size_t offset;
277 	size_t length;
278 	/* private: for use by the iterator */
279 	struct folio *_next;
280 	size_t _seg_count;
281 	int _i;
282 };
283 
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)284 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
285 				   int i)
286 {
287 	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
288 
289 	if (unlikely(i >= bio->bi_vcnt)) {
290 		fi->folio = NULL;
291 		return;
292 	}
293 
294 	fi->folio = page_folio(bvec->bv_page);
295 	fi->offset = bvec->bv_offset +
296 			PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
297 	fi->_seg_count = bvec->bv_len;
298 	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
299 	fi->_next = folio_next(fi->folio);
300 	fi->_i = i;
301 }
302 
bio_next_folio(struct folio_iter * fi,struct bio * bio)303 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
304 {
305 	fi->_seg_count -= fi->length;
306 	if (fi->_seg_count) {
307 		fi->folio = fi->_next;
308 		fi->offset = 0;
309 		fi->length = min(folio_size(fi->folio), fi->_seg_count);
310 		fi->_next = folio_next(fi->folio);
311 	} else {
312 		bio_first_folio(fi, bio, fi->_i + 1);
313 	}
314 }
315 
316 /**
317  * bio_for_each_folio_all - Iterate over each folio in a bio.
318  * @fi: struct folio_iter which is updated for each folio.
319  * @bio: struct bio to iterate over.
320  */
321 #define bio_for_each_folio_all(fi, bio)				\
322 	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
323 
324 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
325 extern struct bio *bio_split(struct bio *bio, int sectors,
326 			     gfp_t gfp, struct bio_set *bs);
327 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
328 		unsigned *segs, unsigned max_bytes);
329 
330 /**
331  * bio_next_split - get next @sectors from a bio, splitting if necessary
332  * @bio:	bio to split
333  * @sectors:	number of sectors to split from the front of @bio
334  * @gfp:	gfp mask
335  * @bs:		bio set to allocate from
336  *
337  * Return: a bio representing the next @sectors of @bio - if the bio is smaller
338  * than @sectors, returns the original bio unchanged.
339  */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)340 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
341 					 gfp_t gfp, struct bio_set *bs)
342 {
343 	if (sectors >= bio_sectors(bio))
344 		return bio;
345 
346 	return bio_split(bio, sectors, gfp, bs);
347 }
348 
349 enum {
350 	BIOSET_NEED_BVECS = BIT(0),
351 	BIOSET_NEED_RESCUER = BIT(1),
352 	BIOSET_PERCPU_CACHE = BIT(2),
353 };
354 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
355 extern void bioset_exit(struct bio_set *);
356 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
357 
358 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
359 			     blk_opf_t opf, gfp_t gfp_mask,
360 			     struct bio_set *bs);
361 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
362 extern void bio_put(struct bio *);
363 
364 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
365 		gfp_t gfp, struct bio_set *bs);
366 int bio_init_clone(struct block_device *bdev, struct bio *bio,
367 		struct bio *bio_src, gfp_t gfp);
368 
369 extern struct bio_set fs_bio_set;
370 
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)371 static inline struct bio *bio_alloc(struct block_device *bdev,
372 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
373 {
374 	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
375 }
376 
377 void submit_bio(struct bio *bio);
378 
379 extern void bio_endio(struct bio *);
380 
bio_io_error(struct bio * bio)381 static inline void bio_io_error(struct bio *bio)
382 {
383 	bio->bi_status = BLK_STS_IOERR;
384 	bio_endio(bio);
385 }
386 
bio_wouldblock_error(struct bio * bio)387 static inline void bio_wouldblock_error(struct bio *bio)
388 {
389 	bio_set_flag(bio, BIO_QUIET);
390 	bio->bi_status = BLK_STS_AGAIN;
391 	bio_endio(bio);
392 }
393 
394 /*
395  * Calculate number of bvec segments that should be allocated to fit data
396  * pointed by @iter. If @iter is backed by bvec it's going to be reused
397  * instead of allocating a new one.
398  */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)399 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
400 {
401 	if (iov_iter_is_bvec(iter))
402 		return 0;
403 	return iov_iter_npages(iter, max_segs);
404 }
405 
406 struct request_queue;
407 
408 extern int submit_bio_wait(struct bio *bio);
409 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
410 	      unsigned short max_vecs, blk_opf_t opf);
411 extern void bio_uninit(struct bio *);
412 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
413 void bio_chain(struct bio *, struct bio *);
414 
415 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
416 			      unsigned off);
417 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
418 				size_t len, size_t off);
419 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
420 			   unsigned int, unsigned int);
421 void __bio_add_page(struct bio *bio, struct page *page,
422 		unsigned int len, unsigned int off);
423 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
424 			  size_t off);
425 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
426 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter);
427 void __bio_release_pages(struct bio *bio, bool mark_dirty);
428 extern void bio_set_pages_dirty(struct bio *bio);
429 extern void bio_check_pages_dirty(struct bio *bio);
430 
431 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
432 			       struct bio *src, struct bvec_iter *src_iter);
433 extern void bio_copy_data(struct bio *dst, struct bio *src);
434 extern void bio_free_pages(struct bio *bio);
435 void guard_bio_eod(struct bio *bio);
436 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
437 
zero_fill_bio(struct bio * bio)438 static inline void zero_fill_bio(struct bio *bio)
439 {
440 	zero_fill_bio_iter(bio, bio->bi_iter);
441 }
442 
bio_release_pages(struct bio * bio,bool mark_dirty)443 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
444 {
445 	if (bio_flagged(bio, BIO_PAGE_PINNED))
446 		__bio_release_pages(bio, mark_dirty);
447 }
448 
449 #define bio_dev(bio) \
450 	disk_devt((bio)->bi_bdev->bd_disk)
451 
452 #ifdef CONFIG_BLK_CGROUP
453 void bio_associate_blkg(struct bio *bio);
454 void bio_associate_blkg_from_css(struct bio *bio,
455 				 struct cgroup_subsys_state *css);
456 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
457 void blkcg_punt_bio_submit(struct bio *bio);
458 #else	/* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)459 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)460 static inline void bio_associate_blkg_from_css(struct bio *bio,
461 					       struct cgroup_subsys_state *css)
462 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)463 static inline void bio_clone_blkg_association(struct bio *dst,
464 					      struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)465 static inline void blkcg_punt_bio_submit(struct bio *bio)
466 {
467 	submit_bio(bio);
468 }
469 #endif	/* CONFIG_BLK_CGROUP */
470 
bio_set_dev(struct bio * bio,struct block_device * bdev)471 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
472 {
473 	bio_clear_flag(bio, BIO_REMAPPED);
474 	if (bio->bi_bdev != bdev)
475 		bio_clear_flag(bio, BIO_BPS_THROTTLED);
476 	bio->bi_bdev = bdev;
477 	bio_associate_blkg(bio);
478 }
479 
480 /*
481  * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
482  *
483  * A bio_list anchors a singly-linked list of bios chained through the bi_next
484  * member of the bio.  The bio_list also caches the last list member to allow
485  * fast access to the tail.
486  */
487 struct bio_list {
488 	struct bio *head;
489 	struct bio *tail;
490 };
491 
bio_list_empty(const struct bio_list * bl)492 static inline int bio_list_empty(const struct bio_list *bl)
493 {
494 	return bl->head == NULL;
495 }
496 
bio_list_init(struct bio_list * bl)497 static inline void bio_list_init(struct bio_list *bl)
498 {
499 	bl->head = bl->tail = NULL;
500 }
501 
502 #define BIO_EMPTY_LIST	{ NULL, NULL }
503 
504 #define bio_list_for_each(bio, bl) \
505 	for (bio = (bl)->head; bio; bio = bio->bi_next)
506 
bio_list_size(const struct bio_list * bl)507 static inline unsigned bio_list_size(const struct bio_list *bl)
508 {
509 	unsigned sz = 0;
510 	struct bio *bio;
511 
512 	bio_list_for_each(bio, bl)
513 		sz++;
514 
515 	return sz;
516 }
517 
bio_list_add(struct bio_list * bl,struct bio * bio)518 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
519 {
520 	bio->bi_next = NULL;
521 
522 	if (bl->tail)
523 		bl->tail->bi_next = bio;
524 	else
525 		bl->head = bio;
526 
527 	bl->tail = bio;
528 }
529 
bio_list_add_head(struct bio_list * bl,struct bio * bio)530 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
531 {
532 	bio->bi_next = bl->head;
533 
534 	bl->head = bio;
535 
536 	if (!bl->tail)
537 		bl->tail = bio;
538 }
539 
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)540 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
541 {
542 	if (!bl2->head)
543 		return;
544 
545 	if (bl->tail)
546 		bl->tail->bi_next = bl2->head;
547 	else
548 		bl->head = bl2->head;
549 
550 	bl->tail = bl2->tail;
551 }
552 
bio_list_merge_init(struct bio_list * bl,struct bio_list * bl2)553 static inline void bio_list_merge_init(struct bio_list *bl,
554 		struct bio_list *bl2)
555 {
556 	bio_list_merge(bl, bl2);
557 	bio_list_init(bl2);
558 }
559 
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)560 static inline void bio_list_merge_head(struct bio_list *bl,
561 				       struct bio_list *bl2)
562 {
563 	if (!bl2->head)
564 		return;
565 
566 	if (bl->head)
567 		bl2->tail->bi_next = bl->head;
568 	else
569 		bl->tail = bl2->tail;
570 
571 	bl->head = bl2->head;
572 }
573 
bio_list_peek(struct bio_list * bl)574 static inline struct bio *bio_list_peek(struct bio_list *bl)
575 {
576 	return bl->head;
577 }
578 
bio_list_pop(struct bio_list * bl)579 static inline struct bio *bio_list_pop(struct bio_list *bl)
580 {
581 	struct bio *bio = bl->head;
582 
583 	if (bio) {
584 		bl->head = bl->head->bi_next;
585 		if (!bl->head)
586 			bl->tail = NULL;
587 
588 		bio->bi_next = NULL;
589 	}
590 
591 	return bio;
592 }
593 
bio_list_get(struct bio_list * bl)594 static inline struct bio *bio_list_get(struct bio_list *bl)
595 {
596 	struct bio *bio = bl->head;
597 
598 	bl->head = bl->tail = NULL;
599 
600 	return bio;
601 }
602 
603 /*
604  * Increment chain count for the bio. Make sure the CHAIN flag update
605  * is visible before the raised count.
606  */
bio_inc_remaining(struct bio * bio)607 static inline void bio_inc_remaining(struct bio *bio)
608 {
609 	bio_set_flag(bio, BIO_CHAIN);
610 	smp_mb__before_atomic();
611 	atomic_inc(&bio->__bi_remaining);
612 }
613 
614 /*
615  * bio_set is used to allow other portions of the IO system to
616  * allocate their own private memory pools for bio and iovec structures.
617  * These memory pools in turn all allocate from the bio_slab
618  * and the bvec_slabs[].
619  */
620 #define BIO_POOL_SIZE 2
621 
622 struct bio_set {
623 	struct kmem_cache *bio_slab;
624 	unsigned int front_pad;
625 
626 	/*
627 	 * per-cpu bio alloc cache
628 	 */
629 	struct bio_alloc_cache __percpu *cache;
630 
631 	mempool_t bio_pool;
632 	mempool_t bvec_pool;
633 #if defined(CONFIG_BLK_DEV_INTEGRITY)
634 	mempool_t bio_integrity_pool;
635 	mempool_t bvec_integrity_pool;
636 #endif
637 
638 	unsigned int back_pad;
639 	/*
640 	 * Deadlock avoidance for stacking block drivers: see comments in
641 	 * bio_alloc_bioset() for details
642 	 */
643 	spinlock_t		rescue_lock;
644 	struct bio_list		rescue_list;
645 	struct work_struct	rescue_work;
646 	struct workqueue_struct	*rescue_workqueue;
647 
648 	/*
649 	 * Hot un-plug notifier for the per-cpu cache, if used
650 	 */
651 	struct hlist_node cpuhp_dead;
652 };
653 
bioset_initialized(struct bio_set * bs)654 static inline bool bioset_initialized(struct bio_set *bs)
655 {
656 	return bs->bio_slab != NULL;
657 }
658 
659 /*
660  * Mark a bio as polled. Note that for async polled IO, the caller must
661  * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
662  * We cannot block waiting for requests on polled IO, as those completions
663  * must be found by the caller. This is different than IRQ driven IO, where
664  * it's safe to wait for IO to complete.
665  */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)666 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
667 {
668 	bio->bi_opf |= REQ_POLLED;
669 	if (kiocb->ki_flags & IOCB_NOWAIT)
670 		bio->bi_opf |= REQ_NOWAIT;
671 }
672 
bio_clear_polled(struct bio * bio)673 static inline void bio_clear_polled(struct bio *bio)
674 {
675 	bio->bi_opf &= ~REQ_POLLED;
676 }
677 
678 /**
679  * bio_is_zone_append - is this a zone append bio?
680  * @bio:	bio to check
681  *
682  * Check if @bio is a zone append operation.  Core block layer code and end_io
683  * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
684  * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
685  * it is not natively supported.
686  */
bio_is_zone_append(struct bio * bio)687 static inline bool bio_is_zone_append(struct bio *bio)
688 {
689 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
690 		return false;
691 	return bio_op(bio) == REQ_OP_ZONE_APPEND ||
692 		bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
693 }
694 
695 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
696 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
697 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
698 
699 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
700 		sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
701 
702 #endif /* __LINUX_BIO_H */
703