xref: /linux/block/blk-map.c (revision 06103dccbbd29408255a409f6f98f7f02387dc93)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	bmd->iter = *data;
33 	if (iter_is_iovec(data)) {
34 		memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs);
35 		bmd->iter.__iov = bmd->iov;
36 	}
37 	return bmd;
38 }
39 
40 /**
41  * bio_copy_from_iter - copy all pages from iov_iter to bio
42  * @bio: The &struct bio which describes the I/O as destination
43  * @iter: iov_iter as source
44  *
45  * Copy all pages from iov_iter to bio.
46  * Returns 0 on success, or error on failure.
47  */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)48 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
49 {
50 	struct bio_vec *bvec;
51 	struct bvec_iter_all iter_all;
52 
53 	bio_for_each_segment_all(bvec, bio, iter_all) {
54 		ssize_t ret;
55 
56 		ret = copy_page_from_iter(bvec->bv_page,
57 					  bvec->bv_offset,
58 					  bvec->bv_len,
59 					  iter);
60 
61 		if (!iov_iter_count(iter))
62 			break;
63 
64 		if (ret < bvec->bv_len)
65 			return -EFAULT;
66 	}
67 
68 	return 0;
69 }
70 
71 /**
72  * bio_copy_to_iter - copy all pages from bio to iov_iter
73  * @bio: The &struct bio which describes the I/O as source
74  * @iter: iov_iter as destination
75  *
76  * Copy all pages from bio to iov_iter.
77  * Returns 0 on success, or error on failure.
78  */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)79 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
80 {
81 	struct bio_vec *bvec;
82 	struct bvec_iter_all iter_all;
83 
84 	bio_for_each_segment_all(bvec, bio, iter_all) {
85 		ssize_t ret;
86 
87 		ret = copy_page_to_iter(bvec->bv_page,
88 					bvec->bv_offset,
89 					bvec->bv_len,
90 					&iter);
91 
92 		if (!iov_iter_count(&iter))
93 			break;
94 
95 		if (ret < bvec->bv_len)
96 			return -EFAULT;
97 	}
98 
99 	return 0;
100 }
101 
102 /**
103  *	bio_uncopy_user	-	finish previously mapped bio
104  *	@bio: bio being terminated
105  *
106  *	Free pages allocated from bio_copy_user_iov() and write back data
107  *	to user space in case of a read.
108  */
bio_uncopy_user(struct bio * bio)109 static int bio_uncopy_user(struct bio *bio)
110 {
111 	struct bio_map_data *bmd = bio->bi_private;
112 	int ret = 0;
113 
114 	if (!bmd->is_null_mapped) {
115 		/*
116 		 * if we're in a workqueue, the request is orphaned, so
117 		 * don't copy into a random user address space, just free
118 		 * and return -EINTR so user space doesn't expect any data.
119 		 */
120 		if (!current->mm)
121 			ret = -EINTR;
122 		else if (bio_data_dir(bio) == READ)
123 			ret = bio_copy_to_iter(bio, bmd->iter);
124 		if (bmd->is_our_pages)
125 			bio_free_pages(bio);
126 	}
127 	kfree(bmd);
128 	return ret;
129 }
130 
bio_copy_user_iov(struct request * rq,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)131 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
132 		struct iov_iter *iter, gfp_t gfp_mask)
133 {
134 	struct bio_map_data *bmd;
135 	struct page *page;
136 	struct bio *bio;
137 	int i = 0, ret;
138 	int nr_pages;
139 	unsigned int len = iter->count;
140 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
141 
142 	bmd = bio_alloc_map_data(iter, gfp_mask);
143 	if (!bmd)
144 		return -ENOMEM;
145 
146 	/*
147 	 * We need to do a deep copy of the iov_iter including the iovecs.
148 	 * The caller provided iov might point to an on-stack or otherwise
149 	 * shortlived one.
150 	 */
151 	bmd->is_our_pages = !map_data;
152 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
153 
154 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
155 
156 	ret = -ENOMEM;
157 	bio = bio_kmalloc(nr_pages, gfp_mask);
158 	if (!bio)
159 		goto out_bmd;
160 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
161 
162 	if (map_data) {
163 		nr_pages = 1U << map_data->page_order;
164 		i = map_data->offset / PAGE_SIZE;
165 	}
166 	while (len) {
167 		unsigned int bytes = PAGE_SIZE;
168 
169 		bytes -= offset;
170 
171 		if (bytes > len)
172 			bytes = len;
173 
174 		if (map_data) {
175 			if (i == map_data->nr_entries * nr_pages) {
176 				ret = -ENOMEM;
177 				goto cleanup;
178 			}
179 
180 			page = map_data->pages[i / nr_pages];
181 			page += (i % nr_pages);
182 
183 			i++;
184 		} else {
185 			page = alloc_page(GFP_NOIO | gfp_mask);
186 			if (!page) {
187 				ret = -ENOMEM;
188 				goto cleanup;
189 			}
190 		}
191 
192 		if (bio_add_page(bio, page, bytes, offset) < bytes) {
193 			if (!map_data)
194 				__free_page(page);
195 			break;
196 		}
197 
198 		len -= bytes;
199 		offset = 0;
200 	}
201 
202 	if (map_data)
203 		map_data->offset += bio->bi_iter.bi_size;
204 
205 	/*
206 	 * success
207 	 */
208 	if (iov_iter_rw(iter) == WRITE &&
209 	     (!map_data || !map_data->null_mapped)) {
210 		ret = bio_copy_from_iter(bio, iter);
211 		if (ret)
212 			goto cleanup;
213 	} else if (map_data && map_data->from_user) {
214 		struct iov_iter iter2 = *iter;
215 
216 		/* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */
217 		iter2.data_source = ITER_SOURCE;
218 		ret = bio_copy_from_iter(bio, &iter2);
219 		if (ret)
220 			goto cleanup;
221 	} else {
222 		if (bmd->is_our_pages)
223 			zero_fill_bio(bio);
224 		iov_iter_advance(iter, bio->bi_iter.bi_size);
225 	}
226 
227 	bio->bi_private = bmd;
228 
229 	ret = blk_rq_append_bio(rq, bio);
230 	if (ret)
231 		goto cleanup;
232 	return 0;
233 cleanup:
234 	if (!map_data)
235 		bio_free_pages(bio);
236 	bio_uninit(bio);
237 	kfree(bio);
238 out_bmd:
239 	kfree(bmd);
240 	return ret;
241 }
242 
blk_mq_map_bio_put(struct bio * bio)243 static void blk_mq_map_bio_put(struct bio *bio)
244 {
245 	if (bio->bi_opf & REQ_ALLOC_CACHE) {
246 		bio_put(bio);
247 	} else {
248 		bio_uninit(bio);
249 		kfree(bio);
250 	}
251 }
252 
blk_rq_map_bio_alloc(struct request * rq,unsigned int nr_vecs,gfp_t gfp_mask)253 static struct bio *blk_rq_map_bio_alloc(struct request *rq,
254 		unsigned int nr_vecs, gfp_t gfp_mask)
255 {
256 	struct bio *bio;
257 
258 	if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) {
259 		bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask,
260 					&fs_bio_set);
261 		if (!bio)
262 			return NULL;
263 	} else {
264 		bio = bio_kmalloc(nr_vecs, gfp_mask);
265 		if (!bio)
266 			return NULL;
267 		bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
268 	}
269 	return bio;
270 }
271 
bio_map_user_iov(struct request * rq,struct iov_iter * iter,gfp_t gfp_mask)272 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
273 		gfp_t gfp_mask)
274 {
275 	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
276 	struct bio *bio;
277 	int ret;
278 
279 	if (!iov_iter_count(iter))
280 		return -EINVAL;
281 
282 	bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
283 	if (!bio)
284 		return -ENOMEM;
285 	ret = bio_iov_iter_get_pages(bio, iter);
286 	if (ret)
287 		goto out_put;
288 	ret = blk_rq_append_bio(rq, bio);
289 	if (ret)
290 		goto out_release;
291 	return 0;
292 
293 out_release:
294 	bio_release_pages(bio, false);
295 out_put:
296 	blk_mq_map_bio_put(bio);
297 	return ret;
298 }
299 
bio_invalidate_vmalloc_pages(struct bio * bio)300 static void bio_invalidate_vmalloc_pages(struct bio *bio)
301 {
302 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
303 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
304 		unsigned long i, len = 0;
305 
306 		for (i = 0; i < bio->bi_vcnt; i++)
307 			len += bio->bi_io_vec[i].bv_len;
308 		invalidate_kernel_vmap_range(bio->bi_private, len);
309 	}
310 #endif
311 }
312 
bio_map_kern_endio(struct bio * bio)313 static void bio_map_kern_endio(struct bio *bio)
314 {
315 	bio_invalidate_vmalloc_pages(bio);
316 	bio_uninit(bio);
317 	kfree(bio);
318 }
319 
320 /**
321  *	bio_map_kern	-	map kernel address into bio
322  *	@q: the struct request_queue for the bio
323  *	@data: pointer to buffer to map
324  *	@len: length in bytes
325  *	@gfp_mask: allocation flags for bio allocation
326  *
327  *	Map the kernel address into a bio suitable for io to a block
328  *	device. Returns an error pointer in case of error.
329  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)330 static struct bio *bio_map_kern(struct request_queue *q, void *data,
331 		unsigned int len, gfp_t gfp_mask)
332 {
333 	unsigned long kaddr = (unsigned long)data;
334 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
335 	unsigned long start = kaddr >> PAGE_SHIFT;
336 	const int nr_pages = end - start;
337 	bool is_vmalloc = is_vmalloc_addr(data);
338 	struct page *page;
339 	int offset, i;
340 	struct bio *bio;
341 
342 	bio = bio_kmalloc(nr_pages, gfp_mask);
343 	if (!bio)
344 		return ERR_PTR(-ENOMEM);
345 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
346 
347 	if (is_vmalloc) {
348 		flush_kernel_vmap_range(data, len);
349 		bio->bi_private = data;
350 	}
351 
352 	offset = offset_in_page(kaddr);
353 	for (i = 0; i < nr_pages; i++) {
354 		unsigned int bytes = PAGE_SIZE - offset;
355 
356 		if (len <= 0)
357 			break;
358 
359 		if (bytes > len)
360 			bytes = len;
361 
362 		if (!is_vmalloc)
363 			page = virt_to_page(data);
364 		else
365 			page = vmalloc_to_page(data);
366 		if (bio_add_page(bio, page, bytes, offset) < bytes) {
367 			/* we don't support partial mappings */
368 			bio_uninit(bio);
369 			kfree(bio);
370 			return ERR_PTR(-EINVAL);
371 		}
372 
373 		data += bytes;
374 		len -= bytes;
375 		offset = 0;
376 	}
377 
378 	bio->bi_end_io = bio_map_kern_endio;
379 	return bio;
380 }
381 
bio_copy_kern_endio(struct bio * bio)382 static void bio_copy_kern_endio(struct bio *bio)
383 {
384 	bio_free_pages(bio);
385 	bio_uninit(bio);
386 	kfree(bio);
387 }
388 
bio_copy_kern_endio_read(struct bio * bio)389 static void bio_copy_kern_endio_read(struct bio *bio)
390 {
391 	char *p = bio->bi_private;
392 	struct bio_vec *bvec;
393 	struct bvec_iter_all iter_all;
394 
395 	bio_for_each_segment_all(bvec, bio, iter_all) {
396 		memcpy_from_bvec(p, bvec);
397 		p += bvec->bv_len;
398 	}
399 
400 	bio_copy_kern_endio(bio);
401 }
402 
403 /**
404  *	bio_copy_kern	-	copy kernel address into bio
405  *	@q: the struct request_queue for the bio
406  *	@data: pointer to buffer to copy
407  *	@len: length in bytes
408  *	@gfp_mask: allocation flags for bio and page allocation
409  *	@reading: data direction is READ
410  *
411  *	copy the kernel address into a bio suitable for io to a block
412  *	device. Returns an error pointer in case of error.
413  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)414 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
415 		unsigned int len, gfp_t gfp_mask, int reading)
416 {
417 	unsigned long kaddr = (unsigned long)data;
418 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
419 	unsigned long start = kaddr >> PAGE_SHIFT;
420 	struct bio *bio;
421 	void *p = data;
422 	int nr_pages = 0;
423 
424 	/*
425 	 * Overflow, abort
426 	 */
427 	if (end < start)
428 		return ERR_PTR(-EINVAL);
429 
430 	nr_pages = end - start;
431 	bio = bio_kmalloc(nr_pages, gfp_mask);
432 	if (!bio)
433 		return ERR_PTR(-ENOMEM);
434 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
435 
436 	while (len) {
437 		struct page *page;
438 		unsigned int bytes = PAGE_SIZE;
439 
440 		if (bytes > len)
441 			bytes = len;
442 
443 		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
444 		if (!page)
445 			goto cleanup;
446 
447 		if (!reading)
448 			memcpy(page_address(page), p, bytes);
449 
450 		if (bio_add_page(bio, page, bytes, 0) < bytes)
451 			break;
452 
453 		len -= bytes;
454 		p += bytes;
455 	}
456 
457 	if (reading) {
458 		bio->bi_end_io = bio_copy_kern_endio_read;
459 		bio->bi_private = data;
460 	} else {
461 		bio->bi_end_io = bio_copy_kern_endio;
462 	}
463 
464 	return bio;
465 
466 cleanup:
467 	bio_free_pages(bio);
468 	bio_uninit(bio);
469 	kfree(bio);
470 	return ERR_PTR(-ENOMEM);
471 }
472 
473 /*
474  * Append a bio to a passthrough request.  Only works if the bio can be merged
475  * into the request based on the driver constraints.
476  */
blk_rq_append_bio(struct request * rq,struct bio * bio)477 int blk_rq_append_bio(struct request *rq, struct bio *bio)
478 {
479 	const struct queue_limits *lim = &rq->q->limits;
480 	unsigned int max_bytes = lim->max_hw_sectors << SECTOR_SHIFT;
481 	unsigned int nr_segs = 0;
482 	int ret;
483 
484 	/* check that the data layout matches the hardware restrictions */
485 	ret = bio_split_rw_at(bio, lim, &nr_segs, max_bytes);
486 	if (ret) {
487 		/* if we would have to split the bio, copy instead */
488 		if (ret > 0)
489 			ret = -EREMOTEIO;
490 		return ret;
491 	}
492 
493 	if (rq->bio) {
494 		if (!ll_back_merge_fn(rq, bio, nr_segs))
495 			return -EINVAL;
496 		rq->biotail->bi_next = bio;
497 		rq->biotail = bio;
498 		rq->__data_len += bio->bi_iter.bi_size;
499 		bio_crypt_free_ctx(bio);
500 		return 0;
501 	}
502 
503 	rq->nr_phys_segments = nr_segs;
504 	rq->bio = rq->biotail = bio;
505 	rq->__data_len = bio->bi_iter.bi_size;
506 	return 0;
507 }
508 EXPORT_SYMBOL(blk_rq_append_bio);
509 
510 /* Prepare bio for passthrough IO given ITER_BVEC iter */
blk_rq_map_user_bvec(struct request * rq,const struct iov_iter * iter)511 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
512 {
513 	unsigned int max_bytes = rq->q->limits.max_hw_sectors << SECTOR_SHIFT;
514 	struct bio *bio;
515 	int ret;
516 
517 	if (!iov_iter_count(iter) || iov_iter_count(iter) > max_bytes)
518 		return -EINVAL;
519 
520 	/* reuse the bvecs from the iterator instead of allocating new ones */
521 	bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
522 	if (!bio)
523 		return -ENOMEM;
524 	bio_iov_bvec_set(bio, iter);
525 
526 	ret = blk_rq_append_bio(rq, bio);
527 	if (ret)
528 		blk_mq_map_bio_put(bio);
529 	return ret;
530 }
531 
532 /**
533  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
534  * @q:		request queue where request should be inserted
535  * @rq:		request to map data to
536  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
537  * @iter:	iovec iterator
538  * @gfp_mask:	memory allocation flags
539  *
540  * Description:
541  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
542  *    a kernel bounce buffer is used.
543  *
544  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
545  *    still in process context.
546  */
blk_rq_map_user_iov(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)547 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
548 			struct rq_map_data *map_data,
549 			const struct iov_iter *iter, gfp_t gfp_mask)
550 {
551 	bool copy = false, map_bvec = false;
552 	unsigned long align = blk_lim_dma_alignment_and_pad(&q->limits);
553 	struct bio *bio = NULL;
554 	struct iov_iter i;
555 	int ret = -EINVAL;
556 
557 	if (map_data)
558 		copy = true;
559 	else if (blk_queue_may_bounce(q))
560 		copy = true;
561 	else if (iov_iter_alignment(iter) & align)
562 		copy = true;
563 	else if (iov_iter_is_bvec(iter))
564 		map_bvec = true;
565 	else if (!user_backed_iter(iter))
566 		copy = true;
567 	else if (queue_virt_boundary(q))
568 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
569 
570 	if (map_bvec) {
571 		ret = blk_rq_map_user_bvec(rq, iter);
572 		if (!ret)
573 			return 0;
574 		if (ret != -EREMOTEIO)
575 			goto fail;
576 		/* fall back to copying the data on limits mismatches */
577 		copy = true;
578 	}
579 
580 	i = *iter;
581 	do {
582 		if (copy)
583 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
584 		else
585 			ret = bio_map_user_iov(rq, &i, gfp_mask);
586 		if (ret) {
587 			if (ret == -EREMOTEIO)
588 				ret = -EINVAL;
589 			goto unmap_rq;
590 		}
591 		if (!bio)
592 			bio = rq->bio;
593 	} while (iov_iter_count(&i));
594 
595 	return 0;
596 
597 unmap_rq:
598 	blk_rq_unmap_user(bio);
599 fail:
600 	rq->bio = NULL;
601 	return ret;
602 }
603 EXPORT_SYMBOL(blk_rq_map_user_iov);
604 
blk_rq_map_user(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,void __user * ubuf,unsigned long len,gfp_t gfp_mask)605 int blk_rq_map_user(struct request_queue *q, struct request *rq,
606 		    struct rq_map_data *map_data, void __user *ubuf,
607 		    unsigned long len, gfp_t gfp_mask)
608 {
609 	struct iov_iter i;
610 	int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i);
611 
612 	if (unlikely(ret < 0))
613 		return ret;
614 
615 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
616 }
617 EXPORT_SYMBOL(blk_rq_map_user);
618 
blk_rq_map_user_io(struct request * req,struct rq_map_data * map_data,void __user * ubuf,unsigned long buf_len,gfp_t gfp_mask,bool vec,int iov_count,bool check_iter_count,int rw)619 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
620 		void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
621 		bool vec, int iov_count, bool check_iter_count, int rw)
622 {
623 	int ret = 0;
624 
625 	if (vec) {
626 		struct iovec fast_iov[UIO_FASTIOV];
627 		struct iovec *iov = fast_iov;
628 		struct iov_iter iter;
629 
630 		ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
631 				UIO_FASTIOV, &iov, &iter);
632 		if (ret < 0)
633 			return ret;
634 
635 		if (iov_count) {
636 			/* SG_IO howto says that the shorter of the two wins */
637 			iov_iter_truncate(&iter, buf_len);
638 			if (check_iter_count && !iov_iter_count(&iter)) {
639 				kfree(iov);
640 				return -EINVAL;
641 			}
642 		}
643 
644 		ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
645 				gfp_mask);
646 		kfree(iov);
647 	} else if (buf_len) {
648 		ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
649 				gfp_mask);
650 	}
651 	return ret;
652 }
653 EXPORT_SYMBOL(blk_rq_map_user_io);
654 
655 /**
656  * blk_rq_unmap_user - unmap a request with user data
657  * @bio:	       start of bio list
658  *
659  * Description:
660  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
661  *    supply the original rq->bio from the blk_rq_map_user() return, since
662  *    the I/O completion may have changed rq->bio.
663  */
blk_rq_unmap_user(struct bio * bio)664 int blk_rq_unmap_user(struct bio *bio)
665 {
666 	struct bio *next_bio;
667 	int ret = 0, ret2;
668 
669 	while (bio) {
670 		if (bio->bi_private) {
671 			ret2 = bio_uncopy_user(bio);
672 			if (ret2 && !ret)
673 				ret = ret2;
674 		} else {
675 			bio_release_pages(bio, bio_data_dir(bio) == READ);
676 		}
677 
678 		if (bio_integrity(bio))
679 			bio_integrity_unmap_user(bio);
680 
681 		next_bio = bio;
682 		bio = bio->bi_next;
683 		blk_mq_map_bio_put(next_bio);
684 	}
685 
686 	return ret;
687 }
688 EXPORT_SYMBOL(blk_rq_unmap_user);
689 
690 /**
691  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
692  * @q:		request queue where request should be inserted
693  * @rq:		request to fill
694  * @kbuf:	the kernel buffer
695  * @len:	length of user data
696  * @gfp_mask:	memory allocation flags
697  *
698  * Description:
699  *    Data will be mapped directly if possible. Otherwise a bounce
700  *    buffer is used. Can be called multiple times to append multiple
701  *    buffers.
702  */
blk_rq_map_kern(struct request_queue * q,struct request * rq,void * kbuf,unsigned int len,gfp_t gfp_mask)703 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
704 		    unsigned int len, gfp_t gfp_mask)
705 {
706 	int reading = rq_data_dir(rq) == READ;
707 	unsigned long addr = (unsigned long) kbuf;
708 	struct bio *bio;
709 	int ret;
710 
711 	if (len > (queue_max_hw_sectors(q) << 9))
712 		return -EINVAL;
713 	if (!len || !kbuf)
714 		return -EINVAL;
715 
716 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
717 	    blk_queue_may_bounce(q))
718 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
719 	else
720 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
721 
722 	if (IS_ERR(bio))
723 		return PTR_ERR(bio);
724 
725 	bio->bi_opf &= ~REQ_OP_MASK;
726 	bio->bi_opf |= req_op(rq);
727 
728 	ret = blk_rq_append_bio(rq, bio);
729 	if (unlikely(ret)) {
730 		bio_uninit(bio);
731 		kfree(bio);
732 	}
733 	return ret;
734 }
735 EXPORT_SYMBOL(blk_rq_map_kern);
736