xref: /linux/include/linux/bio.h (revision f713ffa3639cd57673754a5e83aedebf50dce332)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4  */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7 
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12 
13 #define BIO_MAX_VECS		256U
14 #define BIO_MAX_INLINE_VECS	UIO_MAXIOV
15 
16 struct queue_limits;
17 
bio_max_segs(unsigned int nr_segs)18 static inline unsigned int bio_max_segs(unsigned int nr_segs)
19 {
20 	return min(nr_segs, BIO_MAX_VECS);
21 }
22 
23 #define bio_iter_iovec(bio, iter)				\
24 	bvec_iter_bvec((bio)->bi_io_vec, (iter))
25 
26 #define bio_iter_page(bio, iter)				\
27 	bvec_iter_page((bio)->bi_io_vec, (iter))
28 #define bio_iter_len(bio, iter)					\
29 	bvec_iter_len((bio)->bi_io_vec, (iter))
30 #define bio_iter_offset(bio, iter)				\
31 	bvec_iter_offset((bio)->bi_io_vec, (iter))
32 
33 #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
34 #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
35 #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
36 
37 #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
38 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
39 
40 #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
41 #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
42 
43 /*
44  * Return the data direction, READ or WRITE.
45  */
46 #define bio_data_dir(bio) \
47 	(op_is_write(bio_op(bio)) ? WRITE : READ)
48 
49 /*
50  * Check whether this bio carries any data or not. A NULL bio is allowed.
51  */
bio_has_data(struct bio * bio)52 static inline bool bio_has_data(struct bio *bio)
53 {
54 	if (bio &&
55 	    bio->bi_iter.bi_size &&
56 	    bio_op(bio) != REQ_OP_DISCARD &&
57 	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
58 	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
59 		return true;
60 
61 	return false;
62 }
63 
bio_no_advance_iter(const struct bio * bio)64 static inline bool bio_no_advance_iter(const struct bio *bio)
65 {
66 	return bio_op(bio) == REQ_OP_DISCARD ||
67 	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
68 	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
69 }
70 
bio_data(struct bio * bio)71 static inline void *bio_data(struct bio *bio)
72 {
73 	if (bio_has_data(bio))
74 		return page_address(bio_page(bio)) + bio_offset(bio);
75 
76 	return NULL;
77 }
78 
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)79 static inline bool bio_next_segment(const struct bio *bio,
80 				    struct bvec_iter_all *iter)
81 {
82 	if (iter->idx >= bio->bi_vcnt)
83 		return false;
84 
85 	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
86 	return true;
87 }
88 
89 /*
90  * drivers should _never_ use the all version - the bio may have been split
91  * before it got to the driver and the driver won't own all of it
92  */
93 #define bio_for_each_segment_all(bvl, bio, iter) \
94 	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
95 
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)96 static inline void bio_advance_iter(const struct bio *bio,
97 				    struct bvec_iter *iter, unsigned int bytes)
98 {
99 	iter->bi_sector += bytes >> 9;
100 
101 	if (bio_no_advance_iter(bio))
102 		iter->bi_size -= bytes;
103 	else
104 		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
105 		/* TODO: It is reasonable to complete bio with error here. */
106 }
107 
108 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)109 static inline void bio_advance_iter_single(const struct bio *bio,
110 					   struct bvec_iter *iter,
111 					   unsigned int bytes)
112 {
113 	iter->bi_sector += bytes >> 9;
114 
115 	if (bio_no_advance_iter(bio))
116 		iter->bi_size -= bytes;
117 	else
118 		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
119 }
120 
121 void __bio_advance(struct bio *, unsigned bytes);
122 
123 /**
124  * bio_advance - increment/complete a bio by some number of bytes
125  * @bio:	bio to advance
126  * @nbytes:	number of bytes to complete
127  *
128  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
129  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
130  * be updated on the last bvec as well.
131  *
132  * @bio will then represent the remaining, uncompleted portion of the io.
133  */
bio_advance(struct bio * bio,unsigned int nbytes)134 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
135 {
136 	if (nbytes == bio->bi_iter.bi_size) {
137 		bio->bi_iter.bi_size = 0;
138 		return;
139 	}
140 	__bio_advance(bio, nbytes);
141 }
142 
143 #define __bio_for_each_segment(bvl, bio, iter, start)			\
144 	for (iter = (start);						\
145 	     (iter).bi_size &&						\
146 		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
147 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
148 
149 #define bio_for_each_segment(bvl, bio, iter)				\
150 	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
151 
152 #define __bio_for_each_bvec(bvl, bio, iter, start)		\
153 	for (iter = (start);						\
154 	     (iter).bi_size &&						\
155 		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
156 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
157 
158 /* iterate over multi-page bvec */
159 #define bio_for_each_bvec(bvl, bio, iter)			\
160 	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
161 
162 /*
163  * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
164  * same reasons as bio_for_each_segment_all().
165  */
166 #define bio_for_each_bvec_all(bvl, bio, i)		\
167 	for (i = 0, bvl = bio_first_bvec_all(bio);	\
168 	     i < (bio)->bi_vcnt; i++, bvl++)
169 
170 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
171 
bio_segments(struct bio * bio)172 static inline unsigned bio_segments(struct bio *bio)
173 {
174 	unsigned segs = 0;
175 	struct bio_vec bv;
176 	struct bvec_iter iter;
177 
178 	/*
179 	 * We special case discard/write same/write zeroes, because they
180 	 * interpret bi_size differently:
181 	 */
182 
183 	switch (bio_op(bio)) {
184 	case REQ_OP_DISCARD:
185 	case REQ_OP_SECURE_ERASE:
186 	case REQ_OP_WRITE_ZEROES:
187 		return 0;
188 	default:
189 		break;
190 	}
191 
192 	bio_for_each_segment(bv, bio, iter)
193 		segs++;
194 
195 	return segs;
196 }
197 
198 /*
199  * get a reference to a bio, so it won't disappear. the intended use is
200  * something like:
201  *
202  * bio_get(bio);
203  * submit_bio(rw, bio);
204  * if (bio->bi_flags ...)
205  *	do_something
206  * bio_put(bio);
207  *
208  * without the bio_get(), it could potentially complete I/O before submit_bio
209  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
210  * runs
211  */
bio_get(struct bio * bio)212 static inline void bio_get(struct bio *bio)
213 {
214 	bio->bi_flags |= (1 << BIO_REFFED);
215 	smp_mb__before_atomic();
216 	atomic_inc(&bio->__bi_cnt);
217 }
218 
bio_cnt_set(struct bio * bio,unsigned int count)219 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
220 {
221 	if (count != 1) {
222 		bio->bi_flags |= (1 << BIO_REFFED);
223 		smp_mb();
224 	}
225 	atomic_set(&bio->__bi_cnt, count);
226 }
227 
bio_flagged(struct bio * bio,unsigned int bit)228 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
229 {
230 	return bio->bi_flags & (1U << bit);
231 }
232 
bio_set_flag(struct bio * bio,unsigned int bit)233 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
234 {
235 	bio->bi_flags |= (1U << bit);
236 }
237 
bio_clear_flag(struct bio * bio,unsigned int bit)238 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
239 {
240 	bio->bi_flags &= ~(1U << bit);
241 }
242 
bio_first_bvec_all(struct bio * bio)243 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
244 {
245 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
246 	return bio->bi_io_vec;
247 }
248 
bio_first_page_all(struct bio * bio)249 static inline struct page *bio_first_page_all(struct bio *bio)
250 {
251 	return bio_first_bvec_all(bio)->bv_page;
252 }
253 
bio_first_folio_all(struct bio * bio)254 static inline struct folio *bio_first_folio_all(struct bio *bio)
255 {
256 	return page_folio(bio_first_page_all(bio));
257 }
258 
bio_last_bvec_all(struct bio * bio)259 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
260 {
261 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
262 	return &bio->bi_io_vec[bio->bi_vcnt - 1];
263 }
264 
265 /**
266  * struct folio_iter - State for iterating all folios in a bio.
267  * @folio: The current folio we're iterating.  NULL after the last folio.
268  * @offset: The byte offset within the current folio.
269  * @length: The number of bytes in this iteration (will not cross folio
270  *	boundary).
271  */
272 struct folio_iter {
273 	struct folio *folio;
274 	size_t offset;
275 	size_t length;
276 	/* private: for use by the iterator */
277 	struct folio *_next;
278 	size_t _seg_count;
279 	int _i;
280 };
281 
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)282 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
283 				   int i)
284 {
285 	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
286 
287 	if (unlikely(i >= bio->bi_vcnt)) {
288 		fi->folio = NULL;
289 		return;
290 	}
291 
292 	fi->folio = page_folio(bvec->bv_page);
293 	fi->offset = bvec->bv_offset +
294 			PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page);
295 	fi->_seg_count = bvec->bv_len;
296 	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
297 	fi->_next = folio_next(fi->folio);
298 	fi->_i = i;
299 }
300 
bio_next_folio(struct folio_iter * fi,struct bio * bio)301 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
302 {
303 	fi->_seg_count -= fi->length;
304 	if (fi->_seg_count) {
305 		fi->folio = fi->_next;
306 		fi->offset = 0;
307 		fi->length = min(folio_size(fi->folio), fi->_seg_count);
308 		fi->_next = folio_next(fi->folio);
309 	} else {
310 		bio_first_folio(fi, bio, fi->_i + 1);
311 	}
312 }
313 
314 /**
315  * bio_for_each_folio_all - Iterate over each folio in a bio.
316  * @fi: struct folio_iter which is updated for each folio.
317  * @bio: struct bio to iterate over.
318  */
319 #define bio_for_each_folio_all(fi, bio)				\
320 	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
321 
322 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
323 extern struct bio *bio_split(struct bio *bio, int sectors,
324 			     gfp_t gfp, struct bio_set *bs);
325 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
326 		unsigned *segs, unsigned max_bytes);
327 
328 /**
329  * bio_next_split - get next @sectors from a bio, splitting if necessary
330  * @bio:	bio to split
331  * @sectors:	number of sectors to split from the front of @bio
332  * @gfp:	gfp mask
333  * @bs:		bio set to allocate from
334  *
335  * Return: a bio representing the next @sectors of @bio - if the bio is smaller
336  * than @sectors, returns the original bio unchanged.
337  */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)338 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
339 					 gfp_t gfp, struct bio_set *bs)
340 {
341 	if (sectors >= bio_sectors(bio))
342 		return bio;
343 
344 	return bio_split(bio, sectors, gfp, bs);
345 }
346 
347 enum {
348 	BIOSET_NEED_BVECS = BIT(0),
349 	BIOSET_NEED_RESCUER = BIT(1),
350 	BIOSET_PERCPU_CACHE = BIT(2),
351 };
352 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
353 extern void bioset_exit(struct bio_set *);
354 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
355 
356 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
357 			     blk_opf_t opf, gfp_t gfp_mask,
358 			     struct bio_set *bs);
359 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
360 extern void bio_put(struct bio *);
361 
362 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
363 		gfp_t gfp, struct bio_set *bs);
364 int bio_init_clone(struct block_device *bdev, struct bio *bio,
365 		struct bio *bio_src, gfp_t gfp);
366 
367 extern struct bio_set fs_bio_set;
368 
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)369 static inline struct bio *bio_alloc(struct block_device *bdev,
370 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
371 {
372 	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
373 }
374 
375 void submit_bio(struct bio *bio);
376 
377 extern void bio_endio(struct bio *);
378 
bio_io_error(struct bio * bio)379 static inline void bio_io_error(struct bio *bio)
380 {
381 	bio->bi_status = BLK_STS_IOERR;
382 	bio_endio(bio);
383 }
384 
bio_wouldblock_error(struct bio * bio)385 static inline void bio_wouldblock_error(struct bio *bio)
386 {
387 	bio_set_flag(bio, BIO_QUIET);
388 	bio->bi_status = BLK_STS_AGAIN;
389 	bio_endio(bio);
390 }
391 
392 /*
393  * Calculate number of bvec segments that should be allocated to fit data
394  * pointed by @iter. If @iter is backed by bvec it's going to be reused
395  * instead of allocating a new one.
396  */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)397 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
398 {
399 	if (iov_iter_is_bvec(iter))
400 		return 0;
401 	return iov_iter_npages(iter, max_segs);
402 }
403 
404 struct request_queue;
405 
406 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
407 	      unsigned short max_vecs, blk_opf_t opf);
408 extern void bio_uninit(struct bio *);
409 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
410 void bio_chain(struct bio *, struct bio *);
411 
412 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
413 			      unsigned off);
414 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
415 				size_t len, size_t off);
416 void __bio_add_page(struct bio *bio, struct page *page,
417 		unsigned int len, unsigned int off);
418 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
419 			  size_t off);
420 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len);
421 
422 /**
423  * bio_add_max_vecs - number of bio_vecs needed to add data to a bio
424  * @kaddr: kernel virtual address to add
425  * @len: length in bytes to add
426  *
427  * Calculate how many bio_vecs need to be allocated to add the kernel virtual
428  * address range in [@kaddr:@len] in the worse case.
429  */
bio_add_max_vecs(void * kaddr,unsigned int len)430 static inline unsigned int bio_add_max_vecs(void *kaddr, unsigned int len)
431 {
432 	if (is_vmalloc_addr(kaddr))
433 		return DIV_ROUND_UP(offset_in_page(kaddr) + len, PAGE_SIZE);
434 	return 1;
435 }
436 
437 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len);
438 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len);
439 
440 int submit_bio_wait(struct bio *bio);
441 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
442 		size_t len, enum req_op op);
443 
444 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
445 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter);
446 void __bio_release_pages(struct bio *bio, bool mark_dirty);
447 extern void bio_set_pages_dirty(struct bio *bio);
448 extern void bio_check_pages_dirty(struct bio *bio);
449 
450 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
451 			       struct bio *src, struct bvec_iter *src_iter);
452 extern void bio_copy_data(struct bio *dst, struct bio *src);
453 extern void bio_free_pages(struct bio *bio);
454 void guard_bio_eod(struct bio *bio);
455 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
456 
zero_fill_bio(struct bio * bio)457 static inline void zero_fill_bio(struct bio *bio)
458 {
459 	zero_fill_bio_iter(bio, bio->bi_iter);
460 }
461 
bio_release_pages(struct bio * bio,bool mark_dirty)462 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
463 {
464 	if (bio_flagged(bio, BIO_PAGE_PINNED))
465 		__bio_release_pages(bio, mark_dirty);
466 }
467 
468 #define bio_dev(bio) \
469 	disk_devt((bio)->bi_bdev->bd_disk)
470 
471 #ifdef CONFIG_BLK_CGROUP
472 void bio_associate_blkg(struct bio *bio);
473 void bio_associate_blkg_from_css(struct bio *bio,
474 				 struct cgroup_subsys_state *css);
475 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
476 void blkcg_punt_bio_submit(struct bio *bio);
477 #else	/* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)478 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)479 static inline void bio_associate_blkg_from_css(struct bio *bio,
480 					       struct cgroup_subsys_state *css)
481 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)482 static inline void bio_clone_blkg_association(struct bio *dst,
483 					      struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)484 static inline void blkcg_punt_bio_submit(struct bio *bio)
485 {
486 	submit_bio(bio);
487 }
488 #endif	/* CONFIG_BLK_CGROUP */
489 
bio_set_dev(struct bio * bio,struct block_device * bdev)490 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
491 {
492 	bio_clear_flag(bio, BIO_REMAPPED);
493 	if (bio->bi_bdev != bdev)
494 		bio_clear_flag(bio, BIO_BPS_THROTTLED);
495 	bio->bi_bdev = bdev;
496 	bio_associate_blkg(bio);
497 }
498 
499 /*
500  * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
501  *
502  * A bio_list anchors a singly-linked list of bios chained through the bi_next
503  * member of the bio.  The bio_list also caches the last list member to allow
504  * fast access to the tail.
505  */
506 struct bio_list {
507 	struct bio *head;
508 	struct bio *tail;
509 };
510 
bio_list_empty(const struct bio_list * bl)511 static inline int bio_list_empty(const struct bio_list *bl)
512 {
513 	return bl->head == NULL;
514 }
515 
bio_list_init(struct bio_list * bl)516 static inline void bio_list_init(struct bio_list *bl)
517 {
518 	bl->head = bl->tail = NULL;
519 }
520 
521 #define BIO_EMPTY_LIST	{ NULL, NULL }
522 
523 #define bio_list_for_each(bio, bl) \
524 	for (bio = (bl)->head; bio; bio = bio->bi_next)
525 
bio_list_size(const struct bio_list * bl)526 static inline unsigned bio_list_size(const struct bio_list *bl)
527 {
528 	unsigned sz = 0;
529 	struct bio *bio;
530 
531 	bio_list_for_each(bio, bl)
532 		sz++;
533 
534 	return sz;
535 }
536 
bio_list_add(struct bio_list * bl,struct bio * bio)537 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
538 {
539 	bio->bi_next = NULL;
540 
541 	if (bl->tail)
542 		bl->tail->bi_next = bio;
543 	else
544 		bl->head = bio;
545 
546 	bl->tail = bio;
547 }
548 
bio_list_add_head(struct bio_list * bl,struct bio * bio)549 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
550 {
551 	bio->bi_next = bl->head;
552 
553 	bl->head = bio;
554 
555 	if (!bl->tail)
556 		bl->tail = bio;
557 }
558 
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)559 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
560 {
561 	if (!bl2->head)
562 		return;
563 
564 	if (bl->tail)
565 		bl->tail->bi_next = bl2->head;
566 	else
567 		bl->head = bl2->head;
568 
569 	bl->tail = bl2->tail;
570 }
571 
bio_list_merge_init(struct bio_list * bl,struct bio_list * bl2)572 static inline void bio_list_merge_init(struct bio_list *bl,
573 		struct bio_list *bl2)
574 {
575 	bio_list_merge(bl, bl2);
576 	bio_list_init(bl2);
577 }
578 
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)579 static inline void bio_list_merge_head(struct bio_list *bl,
580 				       struct bio_list *bl2)
581 {
582 	if (!bl2->head)
583 		return;
584 
585 	if (bl->head)
586 		bl2->tail->bi_next = bl->head;
587 	else
588 		bl->tail = bl2->tail;
589 
590 	bl->head = bl2->head;
591 }
592 
bio_list_peek(struct bio_list * bl)593 static inline struct bio *bio_list_peek(struct bio_list *bl)
594 {
595 	return bl->head;
596 }
597 
bio_list_pop(struct bio_list * bl)598 static inline struct bio *bio_list_pop(struct bio_list *bl)
599 {
600 	struct bio *bio = bl->head;
601 
602 	if (bio) {
603 		bl->head = bl->head->bi_next;
604 		if (!bl->head)
605 			bl->tail = NULL;
606 
607 		bio->bi_next = NULL;
608 	}
609 
610 	return bio;
611 }
612 
bio_list_get(struct bio_list * bl)613 static inline struct bio *bio_list_get(struct bio_list *bl)
614 {
615 	struct bio *bio = bl->head;
616 
617 	bl->head = bl->tail = NULL;
618 
619 	return bio;
620 }
621 
622 /*
623  * Increment chain count for the bio. Make sure the CHAIN flag update
624  * is visible before the raised count.
625  */
bio_inc_remaining(struct bio * bio)626 static inline void bio_inc_remaining(struct bio *bio)
627 {
628 	bio_set_flag(bio, BIO_CHAIN);
629 	smp_mb__before_atomic();
630 	atomic_inc(&bio->__bi_remaining);
631 }
632 
633 /*
634  * bio_set is used to allow other portions of the IO system to
635  * allocate their own private memory pools for bio and iovec structures.
636  * These memory pools in turn all allocate from the bio_slab
637  * and the bvec_slabs[].
638  */
639 #define BIO_POOL_SIZE 2
640 
641 struct bio_set {
642 	struct kmem_cache *bio_slab;
643 	unsigned int front_pad;
644 
645 	/*
646 	 * per-cpu bio alloc cache
647 	 */
648 	struct bio_alloc_cache __percpu *cache;
649 
650 	mempool_t bio_pool;
651 	mempool_t bvec_pool;
652 
653 	unsigned int back_pad;
654 	/*
655 	 * Deadlock avoidance for stacking block drivers: see comments in
656 	 * bio_alloc_bioset() for details
657 	 */
658 	spinlock_t		rescue_lock;
659 	struct bio_list		rescue_list;
660 	struct work_struct	rescue_work;
661 	struct workqueue_struct	*rescue_workqueue;
662 
663 	/*
664 	 * Hot un-plug notifier for the per-cpu cache, if used
665 	 */
666 	struct hlist_node cpuhp_dead;
667 };
668 
bioset_initialized(struct bio_set * bs)669 static inline bool bioset_initialized(struct bio_set *bs)
670 {
671 	return bs->bio_slab != NULL;
672 }
673 
674 /*
675  * Mark a bio as polled. Note that for async polled IO, the caller must
676  * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
677  * We cannot block waiting for requests on polled IO, as those completions
678  * must be found by the caller. This is different than IRQ driven IO, where
679  * it's safe to wait for IO to complete.
680  */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)681 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
682 {
683 	bio->bi_opf |= REQ_POLLED;
684 	if (kiocb->ki_flags & IOCB_NOWAIT)
685 		bio->bi_opf |= REQ_NOWAIT;
686 }
687 
bio_clear_polled(struct bio * bio)688 static inline void bio_clear_polled(struct bio *bio)
689 {
690 	bio->bi_opf &= ~REQ_POLLED;
691 }
692 
693 /**
694  * bio_is_zone_append - is this a zone append bio?
695  * @bio:	bio to check
696  *
697  * Check if @bio is a zone append operation.  Core block layer code and end_io
698  * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
699  * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
700  * it is not natively supported.
701  */
bio_is_zone_append(struct bio * bio)702 static inline bool bio_is_zone_append(struct bio *bio)
703 {
704 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
705 		return false;
706 	return bio_op(bio) == REQ_OP_ZONE_APPEND ||
707 		bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
708 }
709 
710 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
711 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
712 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
713 
714 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
715 		sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
716 
717 #endif /* __LINUX_BIO_H */
718