xref: /linux/include/linux/bio.h (revision cc25df3e2e22a956d3a0d427369367b4a901d203)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4  */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7 
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12 
13 #define BIO_MAX_VECS		256U
14 #define BIO_MAX_INLINE_VECS	UIO_MAXIOV
15 
16 struct queue_limits;
17 
18 static inline unsigned int bio_max_segs(unsigned int nr_segs)
19 {
20 	return min(nr_segs, BIO_MAX_VECS);
21 }
22 
23 #define bio_iter_iovec(bio, iter)				\
24 	bvec_iter_bvec((bio)->bi_io_vec, (iter))
25 
26 #define bio_iter_page(bio, iter)				\
27 	bvec_iter_page((bio)->bi_io_vec, (iter))
28 #define bio_iter_len(bio, iter)					\
29 	bvec_iter_len((bio)->bi_io_vec, (iter))
30 #define bio_iter_offset(bio, iter)				\
31 	bvec_iter_offset((bio)->bi_io_vec, (iter))
32 
33 #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
34 #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
35 #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
36 
37 #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
38 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
39 
40 #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
41 #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
42 
43 /*
44  * Return the data direction, READ or WRITE.
45  */
46 #define bio_data_dir(bio) \
47 	(op_is_write(bio_op(bio)) ? WRITE : READ)
48 
49 /*
50  * Check whether this bio carries any data or not. A NULL bio is allowed.
51  */
52 static inline bool bio_has_data(struct bio *bio)
53 {
54 	if (bio &&
55 	    bio->bi_iter.bi_size &&
56 	    bio_op(bio) != REQ_OP_DISCARD &&
57 	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
58 	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
59 		return true;
60 
61 	return false;
62 }
63 
64 static inline bool bio_no_advance_iter(const struct bio *bio)
65 {
66 	return bio_op(bio) == REQ_OP_DISCARD ||
67 	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
68 	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
69 }
70 
71 static inline void *bio_data(struct bio *bio)
72 {
73 	if (bio_has_data(bio))
74 		return page_address(bio_page(bio)) + bio_offset(bio);
75 
76 	return NULL;
77 }
78 
79 static inline bool bio_next_segment(const struct bio *bio,
80 				    struct bvec_iter_all *iter)
81 {
82 	if (iter->idx >= bio->bi_vcnt)
83 		return false;
84 
85 	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
86 	return true;
87 }
88 
89 /*
90  * drivers should _never_ use the all version - the bio may have been split
91  * before it got to the driver and the driver won't own all of it
92  */
93 #define bio_for_each_segment_all(bvl, bio, iter) \
94 	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
95 
96 static inline void bio_advance_iter(const struct bio *bio,
97 				    struct bvec_iter *iter, unsigned int bytes)
98 {
99 	iter->bi_sector += bytes >> 9;
100 
101 	if (bio_no_advance_iter(bio))
102 		iter->bi_size -= bytes;
103 	else
104 		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
105 		/* TODO: It is reasonable to complete bio with error here. */
106 }
107 
108 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
109 static inline void bio_advance_iter_single(const struct bio *bio,
110 					   struct bvec_iter *iter,
111 					   unsigned int bytes)
112 {
113 	iter->bi_sector += bytes >> 9;
114 
115 	if (bio_no_advance_iter(bio))
116 		iter->bi_size -= bytes;
117 	else
118 		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
119 }
120 
121 void __bio_advance(struct bio *, unsigned bytes);
122 
123 /**
124  * bio_advance - increment/complete a bio by some number of bytes
125  * @bio:	bio to advance
126  * @nbytes:	number of bytes to complete
127  *
128  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
129  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
130  * be updated on the last bvec as well.
131  *
132  * @bio will then represent the remaining, uncompleted portion of the io.
133  */
134 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
135 {
136 	if (nbytes == bio->bi_iter.bi_size) {
137 		bio->bi_iter.bi_size = 0;
138 		return;
139 	}
140 	__bio_advance(bio, nbytes);
141 }
142 
143 #define __bio_for_each_segment(bvl, bio, iter, start)			\
144 	for (iter = (start);						\
145 	     (iter).bi_size &&						\
146 		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
147 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
148 
149 #define bio_for_each_segment(bvl, bio, iter)				\
150 	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
151 
152 #define __bio_for_each_bvec(bvl, bio, iter, start)		\
153 	for (iter = (start);						\
154 	     (iter).bi_size &&						\
155 		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
156 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
157 
158 /* iterate over multi-page bvec */
159 #define bio_for_each_bvec(bvl, bio, iter)			\
160 	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
161 
162 /*
163  * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
164  * same reasons as bio_for_each_segment_all().
165  */
166 #define bio_for_each_bvec_all(bvl, bio, i)		\
167 	for (i = 0, bvl = bio_first_bvec_all(bio);	\
168 	     i < (bio)->bi_vcnt; i++, bvl++)
169 
170 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
171 
172 static inline unsigned bio_segments(struct bio *bio)
173 {
174 	unsigned segs = 0;
175 	struct bio_vec bv;
176 	struct bvec_iter iter;
177 
178 	/*
179 	 * We special case discard/write same/write zeroes, because they
180 	 * interpret bi_size differently:
181 	 */
182 
183 	switch (bio_op(bio)) {
184 	case REQ_OP_DISCARD:
185 	case REQ_OP_SECURE_ERASE:
186 	case REQ_OP_WRITE_ZEROES:
187 		return 0;
188 	default:
189 		break;
190 	}
191 
192 	bio_for_each_segment(bv, bio, iter)
193 		segs++;
194 
195 	return segs;
196 }
197 
198 /*
199  * get a reference to a bio, so it won't disappear. the intended use is
200  * something like:
201  *
202  * bio_get(bio);
203  * submit_bio(rw, bio);
204  * if (bio->bi_flags ...)
205  *	do_something
206  * bio_put(bio);
207  *
208  * without the bio_get(), it could potentially complete I/O before submit_bio
209  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
210  * runs
211  */
212 static inline void bio_get(struct bio *bio)
213 {
214 	bio->bi_flags |= (1 << BIO_REFFED);
215 	smp_mb__before_atomic();
216 	atomic_inc(&bio->__bi_cnt);
217 }
218 
219 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
220 {
221 	if (count != 1) {
222 		bio->bi_flags |= (1 << BIO_REFFED);
223 		smp_mb();
224 	}
225 	atomic_set(&bio->__bi_cnt, count);
226 }
227 
228 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
229 {
230 	return bio->bi_flags & (1U << bit);
231 }
232 
233 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
234 {
235 	bio->bi_flags |= (1U << bit);
236 }
237 
238 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
239 {
240 	bio->bi_flags &= ~(1U << bit);
241 }
242 
243 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
244 {
245 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
246 	return bio->bi_io_vec;
247 }
248 
249 static inline struct page *bio_first_page_all(struct bio *bio)
250 {
251 	return bio_first_bvec_all(bio)->bv_page;
252 }
253 
254 static inline struct folio *bio_first_folio_all(struct bio *bio)
255 {
256 	return page_folio(bio_first_page_all(bio));
257 }
258 
259 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
260 {
261 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
262 	return &bio->bi_io_vec[bio->bi_vcnt - 1];
263 }
264 
265 /**
266  * struct folio_iter - State for iterating all folios in a bio.
267  * @folio: The current folio we're iterating.  NULL after the last folio.
268  * @offset: The byte offset within the current folio.
269  * @length: The number of bytes in this iteration (will not cross folio
270  *	boundary).
271  */
272 struct folio_iter {
273 	struct folio *folio;
274 	size_t offset;
275 	size_t length;
276 	/* private: for use by the iterator */
277 	struct folio *_next;
278 	size_t _seg_count;
279 	int _i;
280 };
281 
282 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
283 				   int i)
284 {
285 	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
286 
287 	if (unlikely(i >= bio->bi_vcnt)) {
288 		fi->folio = NULL;
289 		return;
290 	}
291 
292 	fi->folio = page_folio(bvec->bv_page);
293 	fi->offset = bvec->bv_offset +
294 			PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page);
295 	fi->_seg_count = bvec->bv_len;
296 	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
297 	fi->_next = folio_next(fi->folio);
298 	fi->_i = i;
299 }
300 
301 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
302 {
303 	fi->_seg_count -= fi->length;
304 	if (fi->_seg_count) {
305 		fi->folio = fi->_next;
306 		fi->offset = 0;
307 		fi->length = min(folio_size(fi->folio), fi->_seg_count);
308 		fi->_next = folio_next(fi->folio);
309 	} else {
310 		bio_first_folio(fi, bio, fi->_i + 1);
311 	}
312 }
313 
314 /**
315  * bio_for_each_folio_all - Iterate over each folio in a bio.
316  * @fi: struct folio_iter which is updated for each folio.
317  * @bio: struct bio to iterate over.
318  */
319 #define bio_for_each_folio_all(fi, bio)				\
320 	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
321 
322 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
323 extern struct bio *bio_split(struct bio *bio, int sectors,
324 			     gfp_t gfp, struct bio_set *bs);
325 int bio_split_io_at(struct bio *bio, const struct queue_limits *lim,
326 		unsigned *segs, unsigned max_bytes, unsigned len_align);
327 u8 bio_seg_gap(struct request_queue *q, struct bio *prev, struct bio *next,
328 		u8 gaps_bit);
329 
330 /**
331  * bio_next_split - get next @sectors from a bio, splitting if necessary
332  * @bio:	bio to split
333  * @sectors:	number of sectors to split from the front of @bio
334  * @gfp:	gfp mask
335  * @bs:		bio set to allocate from
336  *
337  * Return: a bio representing the next @sectors of @bio - if the bio is smaller
338  * than @sectors, returns the original bio unchanged.
339  */
340 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
341 					 gfp_t gfp, struct bio_set *bs)
342 {
343 	if (sectors >= bio_sectors(bio))
344 		return bio;
345 
346 	return bio_split(bio, sectors, gfp, bs);
347 }
348 
349 enum {
350 	BIOSET_NEED_BVECS = BIT(0),
351 	BIOSET_NEED_RESCUER = BIT(1),
352 	BIOSET_PERCPU_CACHE = BIT(2),
353 };
354 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
355 extern void bioset_exit(struct bio_set *);
356 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
357 
358 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
359 			     blk_opf_t opf, gfp_t gfp_mask,
360 			     struct bio_set *bs);
361 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
362 extern void bio_put(struct bio *);
363 
364 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
365 		gfp_t gfp, struct bio_set *bs);
366 int bio_init_clone(struct block_device *bdev, struct bio *bio,
367 		struct bio *bio_src, gfp_t gfp);
368 
369 extern struct bio_set fs_bio_set;
370 
371 static inline struct bio *bio_alloc(struct block_device *bdev,
372 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
373 {
374 	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
375 }
376 
377 void submit_bio(struct bio *bio);
378 
379 extern void bio_endio(struct bio *);
380 
381 static inline void bio_io_error(struct bio *bio)
382 {
383 	bio->bi_status = BLK_STS_IOERR;
384 	bio_endio(bio);
385 }
386 
387 static inline void bio_wouldblock_error(struct bio *bio)
388 {
389 	bio_set_flag(bio, BIO_QUIET);
390 	bio->bi_status = BLK_STS_AGAIN;
391 	bio_endio(bio);
392 }
393 
394 /*
395  * Calculate number of bvec segments that should be allocated to fit data
396  * pointed by @iter. If @iter is backed by bvec it's going to be reused
397  * instead of allocating a new one.
398  */
399 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
400 {
401 	if (iov_iter_is_bvec(iter))
402 		return 0;
403 	return iov_iter_npages(iter, max_segs);
404 }
405 
406 struct request_queue;
407 
408 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
409 	      unsigned short max_vecs, blk_opf_t opf);
410 static inline void bio_init_inline(struct bio *bio, struct block_device *bdev,
411 	      unsigned short max_vecs, blk_opf_t opf)
412 {
413 	bio_init(bio, bdev, bio_inline_vecs(bio), max_vecs, opf);
414 }
415 extern void bio_uninit(struct bio *);
416 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
417 void bio_chain(struct bio *, struct bio *);
418 
419 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
420 			      unsigned off);
421 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
422 				size_t len, size_t off);
423 void __bio_add_page(struct bio *bio, struct page *page,
424 		unsigned int len, unsigned int off);
425 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
426 			  size_t off);
427 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len);
428 
429 /**
430  * bio_add_max_vecs - number of bio_vecs needed to add data to a bio
431  * @kaddr: kernel virtual address to add
432  * @len: length in bytes to add
433  *
434  * Calculate how many bio_vecs need to be allocated to add the kernel virtual
435  * address range in [@kaddr:@len] in the worse case.
436  */
437 static inline unsigned int bio_add_max_vecs(void *kaddr, unsigned int len)
438 {
439 	if (is_vmalloc_addr(kaddr))
440 		return DIV_ROUND_UP(offset_in_page(kaddr) + len, PAGE_SIZE);
441 	return 1;
442 }
443 
444 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len);
445 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len);
446 
447 int submit_bio_wait(struct bio *bio);
448 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
449 		size_t len, enum req_op op);
450 
451 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter,
452 		unsigned len_align_mask);
453 
454 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter);
455 void __bio_release_pages(struct bio *bio, bool mark_dirty);
456 extern void bio_set_pages_dirty(struct bio *bio);
457 extern void bio_check_pages_dirty(struct bio *bio);
458 
459 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
460 			       struct bio *src, struct bvec_iter *src_iter);
461 extern void bio_copy_data(struct bio *dst, struct bio *src);
462 extern void bio_free_pages(struct bio *bio);
463 void guard_bio_eod(struct bio *bio);
464 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
465 
466 static inline void zero_fill_bio(struct bio *bio)
467 {
468 	zero_fill_bio_iter(bio, bio->bi_iter);
469 }
470 
471 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
472 {
473 	if (bio_flagged(bio, BIO_PAGE_PINNED))
474 		__bio_release_pages(bio, mark_dirty);
475 }
476 
477 #define bio_dev(bio) \
478 	disk_devt((bio)->bi_bdev->bd_disk)
479 
480 #ifdef CONFIG_BLK_CGROUP
481 void bio_associate_blkg(struct bio *bio);
482 void bio_associate_blkg_from_css(struct bio *bio,
483 				 struct cgroup_subsys_state *css);
484 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
485 void blkcg_punt_bio_submit(struct bio *bio);
486 #else	/* CONFIG_BLK_CGROUP */
487 static inline void bio_associate_blkg(struct bio *bio) { }
488 static inline void bio_associate_blkg_from_css(struct bio *bio,
489 					       struct cgroup_subsys_state *css)
490 { }
491 static inline void bio_clone_blkg_association(struct bio *dst,
492 					      struct bio *src) { }
493 static inline void blkcg_punt_bio_submit(struct bio *bio)
494 {
495 	submit_bio(bio);
496 }
497 #endif	/* CONFIG_BLK_CGROUP */
498 
499 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
500 {
501 	bio_clear_flag(bio, BIO_REMAPPED);
502 	if (bio->bi_bdev != bdev)
503 		bio_clear_flag(bio, BIO_BPS_THROTTLED);
504 	bio->bi_bdev = bdev;
505 	bio_associate_blkg(bio);
506 }
507 
508 /*
509  * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
510  *
511  * A bio_list anchors a singly-linked list of bios chained through the bi_next
512  * member of the bio.  The bio_list also caches the last list member to allow
513  * fast access to the tail.
514  */
515 struct bio_list {
516 	struct bio *head;
517 	struct bio *tail;
518 };
519 
520 static inline int bio_list_empty(const struct bio_list *bl)
521 {
522 	return bl->head == NULL;
523 }
524 
525 static inline void bio_list_init(struct bio_list *bl)
526 {
527 	bl->head = bl->tail = NULL;
528 }
529 
530 #define BIO_EMPTY_LIST	{ NULL, NULL }
531 
532 #define bio_list_for_each(bio, bl) \
533 	for (bio = (bl)->head; bio; bio = bio->bi_next)
534 
535 static inline unsigned bio_list_size(const struct bio_list *bl)
536 {
537 	unsigned sz = 0;
538 	struct bio *bio;
539 
540 	bio_list_for_each(bio, bl)
541 		sz++;
542 
543 	return sz;
544 }
545 
546 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
547 {
548 	bio->bi_next = NULL;
549 
550 	if (bl->tail)
551 		bl->tail->bi_next = bio;
552 	else
553 		bl->head = bio;
554 
555 	bl->tail = bio;
556 }
557 
558 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
559 {
560 	bio->bi_next = bl->head;
561 
562 	bl->head = bio;
563 
564 	if (!bl->tail)
565 		bl->tail = bio;
566 }
567 
568 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
569 {
570 	if (!bl2->head)
571 		return;
572 
573 	if (bl->tail)
574 		bl->tail->bi_next = bl2->head;
575 	else
576 		bl->head = bl2->head;
577 
578 	bl->tail = bl2->tail;
579 }
580 
581 static inline void bio_list_merge_init(struct bio_list *bl,
582 		struct bio_list *bl2)
583 {
584 	bio_list_merge(bl, bl2);
585 	bio_list_init(bl2);
586 }
587 
588 static inline void bio_list_merge_head(struct bio_list *bl,
589 				       struct bio_list *bl2)
590 {
591 	if (!bl2->head)
592 		return;
593 
594 	if (bl->head)
595 		bl2->tail->bi_next = bl->head;
596 	else
597 		bl->tail = bl2->tail;
598 
599 	bl->head = bl2->head;
600 }
601 
602 static inline struct bio *bio_list_peek(struct bio_list *bl)
603 {
604 	return bl->head;
605 }
606 
607 static inline struct bio *bio_list_pop(struct bio_list *bl)
608 {
609 	struct bio *bio = bl->head;
610 
611 	if (bio) {
612 		bl->head = bl->head->bi_next;
613 		if (!bl->head)
614 			bl->tail = NULL;
615 
616 		bio->bi_next = NULL;
617 	}
618 
619 	return bio;
620 }
621 
622 static inline struct bio *bio_list_get(struct bio_list *bl)
623 {
624 	struct bio *bio = bl->head;
625 
626 	bl->head = bl->tail = NULL;
627 
628 	return bio;
629 }
630 
631 /*
632  * Increment chain count for the bio. Make sure the CHAIN flag update
633  * is visible before the raised count.
634  */
635 static inline void bio_inc_remaining(struct bio *bio)
636 {
637 	bio_set_flag(bio, BIO_CHAIN);
638 	smp_mb__before_atomic();
639 	atomic_inc(&bio->__bi_remaining);
640 }
641 
642 /*
643  * bio_set is used to allow other portions of the IO system to
644  * allocate their own private memory pools for bio and iovec structures.
645  * These memory pools in turn all allocate from the bio_slab
646  * and the bvec_slabs[].
647  */
648 #define BIO_POOL_SIZE 2
649 
650 struct bio_set {
651 	struct kmem_cache *bio_slab;
652 	unsigned int front_pad;
653 
654 	/*
655 	 * per-cpu bio alloc cache
656 	 */
657 	struct bio_alloc_cache __percpu *cache;
658 
659 	mempool_t bio_pool;
660 	mempool_t bvec_pool;
661 
662 	unsigned int back_pad;
663 	/*
664 	 * Deadlock avoidance for stacking block drivers: see comments in
665 	 * bio_alloc_bioset() for details
666 	 */
667 	spinlock_t		rescue_lock;
668 	struct bio_list		rescue_list;
669 	struct work_struct	rescue_work;
670 	struct workqueue_struct	*rescue_workqueue;
671 
672 	/*
673 	 * Hot un-plug notifier for the per-cpu cache, if used
674 	 */
675 	struct hlist_node cpuhp_dead;
676 };
677 
678 static inline bool bioset_initialized(struct bio_set *bs)
679 {
680 	return bs->bio_slab != NULL;
681 }
682 
683 /*
684  * Mark a bio as polled. Note that for async polled IO, the caller must
685  * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
686  * We cannot block waiting for requests on polled IO, as those completions
687  * must be found by the caller. This is different than IRQ driven IO, where
688  * it's safe to wait for IO to complete.
689  */
690 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
691 {
692 	bio->bi_opf |= REQ_POLLED;
693 	if (kiocb->ki_flags & IOCB_NOWAIT)
694 		bio->bi_opf |= REQ_NOWAIT;
695 }
696 
697 static inline void bio_clear_polled(struct bio *bio)
698 {
699 	bio->bi_opf &= ~REQ_POLLED;
700 }
701 
702 /**
703  * bio_is_zone_append - is this a zone append bio?
704  * @bio:	bio to check
705  *
706  * Check if @bio is a zone append operation.  Core block layer code and end_io
707  * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
708  * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
709  * it is not natively supported.
710  */
711 static inline bool bio_is_zone_append(struct bio *bio)
712 {
713 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
714 		return false;
715 	return bio_op(bio) == REQ_OP_ZONE_APPEND ||
716 		bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
717 }
718 
719 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
720 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
721 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
722 
723 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
724 		sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
725 
726 #endif /* __LINUX_BIO_H */
727