xref: /linux/block/blk-crypto.c (revision bb8e2019ad613dd023a59bf91d1768018d17e09b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto: " fmt
11 
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/blk-crypto-profile.h>
15 #include <linux/module.h>
16 #include <linux/ratelimit.h>
17 #include <linux/slab.h>
18 
19 #include "blk-crypto-internal.h"
20 
21 const struct blk_crypto_mode blk_crypto_modes[] = {
22 	[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
23 		.name = "AES-256-XTS",
24 		.cipher_str = "xts(aes)",
25 		.keysize = 64,
26 		.security_strength = 32,
27 		.ivsize = 16,
28 	},
29 	[BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
30 		.name = "AES-128-CBC-ESSIV",
31 		.cipher_str = "essiv(cbc(aes),sha256)",
32 		.keysize = 16,
33 		.security_strength = 16,
34 		.ivsize = 16,
35 	},
36 	[BLK_ENCRYPTION_MODE_ADIANTUM] = {
37 		.name = "Adiantum",
38 		.cipher_str = "adiantum(xchacha12,aes)",
39 		.keysize = 32,
40 		.security_strength = 32,
41 		.ivsize = 32,
42 	},
43 	[BLK_ENCRYPTION_MODE_SM4_XTS] = {
44 		.name = "SM4-XTS",
45 		.cipher_str = "xts(sm4)",
46 		.keysize = 32,
47 		.security_strength = 16,
48 		.ivsize = 16,
49 	},
50 };
51 
52 /*
53  * This number needs to be at least (the number of threads doing IO
54  * concurrently) * (maximum recursive depth of a bio), so that we don't
55  * deadlock on crypt_ctx allocations. The default is chosen to be the same
56  * as the default number of post read contexts in both EXT4 and F2FS.
57  */
58 static int num_prealloc_crypt_ctxs = 128;
59 
60 module_param(num_prealloc_crypt_ctxs, int, 0444);
61 MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
62 		"Number of bio crypto contexts to preallocate");
63 
64 static struct kmem_cache *bio_crypt_ctx_cache;
65 static mempool_t *bio_crypt_ctx_pool;
66 
67 static int __init bio_crypt_ctx_init(void)
68 {
69 	size_t i;
70 
71 	bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
72 	if (!bio_crypt_ctx_cache)
73 		goto out_no_mem;
74 
75 	bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
76 						      bio_crypt_ctx_cache);
77 	if (!bio_crypt_ctx_pool)
78 		goto out_no_mem;
79 
80 	/* This is assumed in various places. */
81 	BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
82 
83 	/*
84 	 * Validate the crypto mode properties.  This ideally would be done with
85 	 * static assertions, but boot-time checks are the next best thing.
86 	 */
87 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
88 		BUG_ON(blk_crypto_modes[i].keysize >
89 		       BLK_CRYPTO_MAX_RAW_KEY_SIZE);
90 		BUG_ON(blk_crypto_modes[i].security_strength >
91 		       blk_crypto_modes[i].keysize);
92 		BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
93 	}
94 
95 	return 0;
96 out_no_mem:
97 	panic("Failed to allocate mem for bio crypt ctxs\n");
98 }
99 subsys_initcall(bio_crypt_ctx_init);
100 
101 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
102 		       const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
103 {
104 	struct bio_crypt_ctx *bc;
105 
106 	/*
107 	 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
108 	 * that the mempool_alloc() can't fail.
109 	 */
110 	WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
111 
112 	bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
113 
114 	bc->bc_key = key;
115 	memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
116 
117 	bio->bi_crypt_context = bc;
118 }
119 
120 void __bio_crypt_free_ctx(struct bio *bio)
121 {
122 	mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
123 	bio->bi_crypt_context = NULL;
124 }
125 
126 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
127 {
128 	dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
129 	if (!dst->bi_crypt_context)
130 		return -ENOMEM;
131 	*dst->bi_crypt_context = *src->bi_crypt_context;
132 	return 0;
133 }
134 
135 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
136 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
137 			     unsigned int inc)
138 {
139 	int i;
140 
141 	for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
142 		dun[i] += inc;
143 		/*
144 		 * If the addition in this limb overflowed, then we need to
145 		 * carry 1 into the next limb. Else the carry is 0.
146 		 */
147 		if (dun[i] < inc)
148 			inc = 1;
149 		else
150 			inc = 0;
151 	}
152 }
153 
154 void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
155 {
156 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
157 
158 	bio_crypt_dun_increment(bc->bc_dun,
159 				bytes >> bc->bc_key->data_unit_size_bits);
160 }
161 
162 /*
163  * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
164  * @next_dun, treating the DUNs as multi-limb integers.
165  */
166 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
167 				 unsigned int bytes,
168 				 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
169 {
170 	int i;
171 	unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
172 
173 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
174 		if (bc->bc_dun[i] + carry != next_dun[i])
175 			return false;
176 		/*
177 		 * If the addition in this limb overflowed, then we need to
178 		 * carry 1 into the next limb. Else the carry is 0.
179 		 */
180 		if ((bc->bc_dun[i] + carry) < carry)
181 			carry = 1;
182 		else
183 			carry = 0;
184 	}
185 
186 	/* If the DUN wrapped through 0, don't treat it as contiguous. */
187 	return carry == 0;
188 }
189 
190 /*
191  * Checks that two bio crypt contexts are compatible - i.e. that
192  * they are mergeable except for data_unit_num continuity.
193  */
194 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
195 				     struct bio_crypt_ctx *bc2)
196 {
197 	if (!bc1)
198 		return !bc2;
199 
200 	return bc2 && bc1->bc_key == bc2->bc_key;
201 }
202 
203 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
204 {
205 	return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
206 }
207 
208 /*
209  * Checks that two bio crypt contexts are compatible, and also
210  * that their data_unit_nums are continuous (and can hence be merged)
211  * in the order @bc1 followed by @bc2.
212  */
213 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
214 			     struct bio_crypt_ctx *bc2)
215 {
216 	if (!bio_crypt_ctx_compatible(bc1, bc2))
217 		return false;
218 
219 	return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
220 }
221 
222 blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq)
223 {
224 	return blk_crypto_get_keyslot(rq->q->crypto_profile,
225 				      rq->crypt_ctx->bc_key,
226 				      &rq->crypt_keyslot);
227 }
228 
229 void __blk_crypto_rq_put_keyslot(struct request *rq)
230 {
231 	blk_crypto_put_keyslot(rq->crypt_keyslot);
232 	rq->crypt_keyslot = NULL;
233 }
234 
235 void __blk_crypto_free_request(struct request *rq)
236 {
237 	/* The keyslot, if one was needed, should have been released earlier. */
238 	if (WARN_ON_ONCE(rq->crypt_keyslot))
239 		__blk_crypto_rq_put_keyslot(rq);
240 
241 	mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
242 	rq->crypt_ctx = NULL;
243 }
244 
245 /*
246  * Process a bio with a crypto context.  Returns true if the caller should
247  * submit the passed in bio, false if the bio is consumed.
248  *
249  * See the kerneldoc comment for blk_crypto_submit_bio for further details.
250  */
251 bool __blk_crypto_submit_bio(struct bio *bio)
252 {
253 	const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
254 	struct block_device *bdev = bio->bi_bdev;
255 
256 	/* Error if bio has no data. */
257 	if (WARN_ON_ONCE(!bio_has_data(bio))) {
258 		bio_io_error(bio);
259 		return false;
260 	}
261 
262 	/*
263 	 * If the device does not natively support the encryption context, try to use
264 	 * the fallback if available.
265 	 */
266 	if (!blk_crypto_config_supported_natively(bdev, &bc_key->crypto_cfg)) {
267 		if (!IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK)) {
268 			pr_warn_once("%pg: crypto API fallback disabled; failing request.\n",
269 				bdev);
270 			bio->bi_status = BLK_STS_NOTSUPP;
271 			bio_endio(bio);
272 			return false;
273 		}
274 		return blk_crypto_fallback_bio_prep(bio);
275 	}
276 
277 	return true;
278 }
279 EXPORT_SYMBOL_GPL(__blk_crypto_submit_bio);
280 
281 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
282 			     gfp_t gfp_mask)
283 {
284 	if (!rq->crypt_ctx) {
285 		rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
286 		if (!rq->crypt_ctx)
287 			return -ENOMEM;
288 	}
289 	*rq->crypt_ctx = *bio->bi_crypt_context;
290 	return 0;
291 }
292 
293 /**
294  * blk_crypto_init_key() - Prepare a key for use with blk-crypto
295  * @blk_key: Pointer to the blk_crypto_key to initialize.
296  * @key_bytes: the bytes of the key
297  * @key_size: size of the key in bytes
298  * @key_type: type of the key -- either raw or hardware-wrapped
299  * @crypto_mode: identifier for the encryption algorithm to use
300  * @dun_bytes: number of bytes that will be used to specify the DUN when this
301  *	       key is used
302  * @data_unit_size: the data unit size to use for en/decryption
303  *
304  * Return: 0 on success, -errno on failure.  The caller is responsible for
305  *	   zeroizing both blk_key and key_bytes when done with them.
306  */
307 int blk_crypto_init_key(struct blk_crypto_key *blk_key,
308 			const u8 *key_bytes, size_t key_size,
309 			enum blk_crypto_key_type key_type,
310 			enum blk_crypto_mode_num crypto_mode,
311 			unsigned int dun_bytes,
312 			unsigned int data_unit_size)
313 {
314 	const struct blk_crypto_mode *mode;
315 
316 	memset(blk_key, 0, sizeof(*blk_key));
317 
318 	if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
319 		return -EINVAL;
320 
321 	mode = &blk_crypto_modes[crypto_mode];
322 	switch (key_type) {
323 	case BLK_CRYPTO_KEY_TYPE_RAW:
324 		if (key_size != mode->keysize)
325 			return -EINVAL;
326 		break;
327 	case BLK_CRYPTO_KEY_TYPE_HW_WRAPPED:
328 		if (key_size < mode->security_strength ||
329 		    key_size > BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE)
330 			return -EINVAL;
331 		break;
332 	default:
333 		return -EINVAL;
334 	}
335 
336 	if (dun_bytes == 0 || dun_bytes > mode->ivsize)
337 		return -EINVAL;
338 
339 	if (!is_power_of_2(data_unit_size))
340 		return -EINVAL;
341 
342 	blk_key->crypto_cfg.crypto_mode = crypto_mode;
343 	blk_key->crypto_cfg.dun_bytes = dun_bytes;
344 	blk_key->crypto_cfg.data_unit_size = data_unit_size;
345 	blk_key->crypto_cfg.key_type = key_type;
346 	blk_key->data_unit_size_bits = ilog2(data_unit_size);
347 	blk_key->size = key_size;
348 	memcpy(blk_key->bytes, key_bytes, key_size);
349 
350 	return 0;
351 }
352 
353 bool blk_crypto_config_supported_natively(struct block_device *bdev,
354 					  const struct blk_crypto_config *cfg)
355 {
356 	return __blk_crypto_cfg_supported(bdev_get_queue(bdev)->crypto_profile,
357 					  cfg);
358 }
359 
360 /*
361  * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
362  * block_device it's submitted to supports inline crypto, or the
363  * blk-crypto-fallback is enabled and supports the cfg).
364  */
365 bool blk_crypto_config_supported(struct block_device *bdev,
366 				 const struct blk_crypto_config *cfg)
367 {
368 	if (IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) &&
369 	    cfg->key_type == BLK_CRYPTO_KEY_TYPE_RAW)
370 		return true;
371 	return blk_crypto_config_supported_natively(bdev, cfg);
372 }
373 
374 /**
375  * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
376  * @bdev: block device to operate on
377  * @key: A key to use on the device
378  *
379  * Upper layers must call this function to ensure that either the hardware
380  * supports the key's crypto settings, or the crypto API fallback has transforms
381  * for the needed mode allocated and ready to go. This function may allocate
382  * an skcipher, and *should not* be called from the data path, since that might
383  * cause a deadlock
384  *
385  * Return: 0 on success; -EOPNOTSUPP if the key is wrapped but the hardware does
386  *	   not support wrapped keys; -ENOPKG if the key is a raw key but the
387  *	   hardware does not support raw keys and blk-crypto-fallback is either
388  *	   disabled or the needed algorithm is disabled in the crypto API; or
389  *	   another -errno code if something else went wrong.
390  */
391 int blk_crypto_start_using_key(struct block_device *bdev,
392 			       const struct blk_crypto_key *key)
393 {
394 	if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
395 		return 0;
396 	if (key->crypto_cfg.key_type != BLK_CRYPTO_KEY_TYPE_RAW) {
397 		pr_warn_ratelimited("%pg: no support for wrapped keys\n", bdev);
398 		return -EOPNOTSUPP;
399 	}
400 	return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
401 }
402 
403 /**
404  * blk_crypto_evict_key() - Evict a blk_crypto_key from a block_device
405  * @bdev: a block_device on which I/O using the key may have been done
406  * @key: the key to evict
407  *
408  * For a given block_device, this function removes the given blk_crypto_key from
409  * the keyslot management structures and evicts it from any underlying hardware
410  * keyslot(s) or blk-crypto-fallback keyslot it may have been programmed into.
411  *
412  * Upper layers must call this before freeing the blk_crypto_key.  It must be
413  * called for every block_device the key may have been used on.  The key must no
414  * longer be in use by any I/O when this function is called.
415  *
416  * Context: May sleep.
417  */
418 void blk_crypto_evict_key(struct block_device *bdev,
419 			  const struct blk_crypto_key *key)
420 {
421 	struct request_queue *q = bdev_get_queue(bdev);
422 	int err;
423 
424 	if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
425 		err = __blk_crypto_evict_key(q->crypto_profile, key);
426 	else
427 		err = blk_crypto_fallback_evict_key(key);
428 	/*
429 	 * An error can only occur here if the key failed to be evicted from a
430 	 * keyslot (due to a hardware or driver issue) or is allegedly still in
431 	 * use by I/O (due to a kernel bug).  Even in these cases, the key is
432 	 * still unlinked from the keyslot management structures, and the caller
433 	 * is allowed and expected to free it right away.  There's nothing
434 	 * callers can do to handle errors, so just log them and return void.
435 	 */
436 	if (err)
437 		pr_warn_ratelimited("%pg: error %d evicting key\n", bdev, err);
438 }
439 EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
440 
441 static int blk_crypto_ioctl_import_key(struct blk_crypto_profile *profile,
442 				       void __user *argp)
443 {
444 	struct blk_crypto_import_key_arg arg;
445 	u8 raw_key[BLK_CRYPTO_MAX_RAW_KEY_SIZE];
446 	u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
447 	int ret;
448 
449 	if (copy_from_user(&arg, argp, sizeof(arg)))
450 		return -EFAULT;
451 
452 	if (memchr_inv(arg.reserved, 0, sizeof(arg.reserved)))
453 		return -EINVAL;
454 
455 	if (arg.raw_key_size < 16 || arg.raw_key_size > sizeof(raw_key))
456 		return -EINVAL;
457 
458 	if (copy_from_user(raw_key, u64_to_user_ptr(arg.raw_key_ptr),
459 			   arg.raw_key_size)) {
460 		ret = -EFAULT;
461 		goto out;
462 	}
463 	ret = blk_crypto_import_key(profile, raw_key, arg.raw_key_size, lt_key);
464 	if (ret < 0)
465 		goto out;
466 	if (ret > arg.lt_key_size) {
467 		ret = -EOVERFLOW;
468 		goto out;
469 	}
470 	arg.lt_key_size = ret;
471 	if (copy_to_user(u64_to_user_ptr(arg.lt_key_ptr), lt_key,
472 			 arg.lt_key_size) ||
473 	    copy_to_user(argp, &arg, sizeof(arg))) {
474 		ret = -EFAULT;
475 		goto out;
476 	}
477 	ret = 0;
478 
479 out:
480 	memzero_explicit(raw_key, sizeof(raw_key));
481 	memzero_explicit(lt_key, sizeof(lt_key));
482 	return ret;
483 }
484 
485 static int blk_crypto_ioctl_generate_key(struct blk_crypto_profile *profile,
486 					 void __user *argp)
487 {
488 	struct blk_crypto_generate_key_arg arg;
489 	u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
490 	int ret;
491 
492 	if (copy_from_user(&arg, argp, sizeof(arg)))
493 		return -EFAULT;
494 
495 	if (memchr_inv(arg.reserved, 0, sizeof(arg.reserved)))
496 		return -EINVAL;
497 
498 	ret = blk_crypto_generate_key(profile, lt_key);
499 	if (ret < 0)
500 		goto out;
501 	if (ret > arg.lt_key_size) {
502 		ret = -EOVERFLOW;
503 		goto out;
504 	}
505 	arg.lt_key_size = ret;
506 	if (copy_to_user(u64_to_user_ptr(arg.lt_key_ptr), lt_key,
507 			 arg.lt_key_size) ||
508 	    copy_to_user(argp, &arg, sizeof(arg))) {
509 		ret = -EFAULT;
510 		goto out;
511 	}
512 	ret = 0;
513 
514 out:
515 	memzero_explicit(lt_key, sizeof(lt_key));
516 	return ret;
517 }
518 
519 static int blk_crypto_ioctl_prepare_key(struct blk_crypto_profile *profile,
520 					void __user *argp)
521 {
522 	struct blk_crypto_prepare_key_arg arg;
523 	u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
524 	u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
525 	int ret;
526 
527 	if (copy_from_user(&arg, argp, sizeof(arg)))
528 		return -EFAULT;
529 
530 	if (memchr_inv(arg.reserved, 0, sizeof(arg.reserved)))
531 		return -EINVAL;
532 
533 	if (arg.lt_key_size > sizeof(lt_key))
534 		return -EINVAL;
535 
536 	if (copy_from_user(lt_key, u64_to_user_ptr(arg.lt_key_ptr),
537 			   arg.lt_key_size)) {
538 		ret = -EFAULT;
539 		goto out;
540 	}
541 	ret = blk_crypto_prepare_key(profile, lt_key, arg.lt_key_size, eph_key);
542 	if (ret < 0)
543 		goto out;
544 	if (ret > arg.eph_key_size) {
545 		ret = -EOVERFLOW;
546 		goto out;
547 	}
548 	arg.eph_key_size = ret;
549 	if (copy_to_user(u64_to_user_ptr(arg.eph_key_ptr), eph_key,
550 			 arg.eph_key_size) ||
551 	    copy_to_user(argp, &arg, sizeof(arg))) {
552 		ret = -EFAULT;
553 		goto out;
554 	}
555 	ret = 0;
556 
557 out:
558 	memzero_explicit(lt_key, sizeof(lt_key));
559 	memzero_explicit(eph_key, sizeof(eph_key));
560 	return ret;
561 }
562 
563 int blk_crypto_ioctl(struct block_device *bdev, unsigned int cmd,
564 		     void __user *argp)
565 {
566 	struct blk_crypto_profile *profile =
567 		bdev_get_queue(bdev)->crypto_profile;
568 
569 	if (!profile)
570 		return -EOPNOTSUPP;
571 
572 	switch (cmd) {
573 	case BLKCRYPTOIMPORTKEY:
574 		return blk_crypto_ioctl_import_key(profile, argp);
575 	case BLKCRYPTOGENERATEKEY:
576 		return blk_crypto_ioctl_generate_key(profile, argp);
577 	case BLKCRYPTOPREPAREKEY:
578 		return blk_crypto_ioctl_prepare_key(profile, argp);
579 	default:
580 		return -ENOTTY;
581 	}
582 }
583