xref: /linux/block/blk-crypto.c (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto: " fmt
11 
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/blk-crypto-profile.h>
15 #include <linux/module.h>
16 #include <linux/ratelimit.h>
17 #include <linux/slab.h>
18 
19 #include "blk-crypto-internal.h"
20 
21 const struct blk_crypto_mode blk_crypto_modes[] = {
22 	[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
23 		.name = "AES-256-XTS",
24 		.cipher_str = "xts(aes)",
25 		.keysize = 64,
26 		.security_strength = 32,
27 		.ivsize = 16,
28 	},
29 	[BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
30 		.name = "AES-128-CBC-ESSIV",
31 		.cipher_str = "essiv(cbc(aes),sha256)",
32 		.keysize = 16,
33 		.security_strength = 16,
34 		.ivsize = 16,
35 	},
36 	[BLK_ENCRYPTION_MODE_ADIANTUM] = {
37 		.name = "Adiantum",
38 		.cipher_str = "adiantum(xchacha12,aes)",
39 		.keysize = 32,
40 		.security_strength = 32,
41 		.ivsize = 32,
42 	},
43 	[BLK_ENCRYPTION_MODE_SM4_XTS] = {
44 		.name = "SM4-XTS",
45 		.cipher_str = "xts(sm4)",
46 		.keysize = 32,
47 		.security_strength = 16,
48 		.ivsize = 16,
49 	},
50 };
51 
52 /*
53  * This number needs to be at least (the number of threads doing IO
54  * concurrently) * (maximum recursive depth of a bio), so that we don't
55  * deadlock on crypt_ctx allocations. The default is chosen to be the same
56  * as the default number of post read contexts in both EXT4 and F2FS.
57  */
58 static int num_prealloc_crypt_ctxs = 128;
59 
60 module_param(num_prealloc_crypt_ctxs, int, 0444);
61 MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
62 		"Number of bio crypto contexts to preallocate");
63 
64 static struct kmem_cache *bio_crypt_ctx_cache;
65 static mempool_t *bio_crypt_ctx_pool;
66 
bio_crypt_ctx_init(void)67 static int __init bio_crypt_ctx_init(void)
68 {
69 	size_t i;
70 
71 	bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
72 	if (!bio_crypt_ctx_cache)
73 		goto out_no_mem;
74 
75 	bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
76 						      bio_crypt_ctx_cache);
77 	if (!bio_crypt_ctx_pool)
78 		goto out_no_mem;
79 
80 	/* This is assumed in various places. */
81 	BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
82 
83 	/*
84 	 * Validate the crypto mode properties.  This ideally would be done with
85 	 * static assertions, but boot-time checks are the next best thing.
86 	 */
87 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
88 		BUG_ON(blk_crypto_modes[i].keysize >
89 		       BLK_CRYPTO_MAX_RAW_KEY_SIZE);
90 		BUG_ON(blk_crypto_modes[i].security_strength >
91 		       blk_crypto_modes[i].keysize);
92 		BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
93 	}
94 
95 	return 0;
96 out_no_mem:
97 	panic("Failed to allocate mem for bio crypt ctxs\n");
98 }
99 subsys_initcall(bio_crypt_ctx_init);
100 
bio_crypt_set_ctx(struct bio * bio,const struct blk_crypto_key * key,const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],gfp_t gfp_mask)101 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
102 		       const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
103 {
104 	struct bio_crypt_ctx *bc;
105 
106 	/*
107 	 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
108 	 * that the mempool_alloc() can't fail.
109 	 */
110 	WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
111 
112 	bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
113 
114 	bc->bc_key = key;
115 	memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
116 
117 	bio->bi_crypt_context = bc;
118 }
119 
__bio_crypt_free_ctx(struct bio * bio)120 void __bio_crypt_free_ctx(struct bio *bio)
121 {
122 	mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
123 	bio->bi_crypt_context = NULL;
124 }
125 
__bio_crypt_clone(struct bio * dst,struct bio * src,gfp_t gfp_mask)126 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
127 {
128 	dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
129 	if (!dst->bi_crypt_context)
130 		return -ENOMEM;
131 	*dst->bi_crypt_context = *src->bi_crypt_context;
132 	return 0;
133 }
134 
135 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],unsigned int inc)136 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
137 			     unsigned int inc)
138 {
139 	int i;
140 
141 	for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
142 		dun[i] += inc;
143 		/*
144 		 * If the addition in this limb overflowed, then we need to
145 		 * carry 1 into the next limb. Else the carry is 0.
146 		 */
147 		if (dun[i] < inc)
148 			inc = 1;
149 		else
150 			inc = 0;
151 	}
152 }
153 
__bio_crypt_advance(struct bio * bio,unsigned int bytes)154 void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
155 {
156 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
157 
158 	bio_crypt_dun_increment(bc->bc_dun,
159 				bytes >> bc->bc_key->data_unit_size_bits);
160 }
161 
162 /*
163  * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
164  * @next_dun, treating the DUNs as multi-limb integers.
165  */
bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx * bc,unsigned int bytes,const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])166 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
167 				 unsigned int bytes,
168 				 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
169 {
170 	int i;
171 	unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
172 
173 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
174 		if (bc->bc_dun[i] + carry != next_dun[i])
175 			return false;
176 		/*
177 		 * If the addition in this limb overflowed, then we need to
178 		 * carry 1 into the next limb. Else the carry is 0.
179 		 */
180 		if ((bc->bc_dun[i] + carry) < carry)
181 			carry = 1;
182 		else
183 			carry = 0;
184 	}
185 
186 	/* If the DUN wrapped through 0, don't treat it as contiguous. */
187 	return carry == 0;
188 }
189 
190 /*
191  * Checks that two bio crypt contexts are compatible - i.e. that
192  * they are mergeable except for data_unit_num continuity.
193  */
bio_crypt_ctx_compatible(struct bio_crypt_ctx * bc1,struct bio_crypt_ctx * bc2)194 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
195 				     struct bio_crypt_ctx *bc2)
196 {
197 	if (!bc1)
198 		return !bc2;
199 
200 	return bc2 && bc1->bc_key == bc2->bc_key;
201 }
202 
bio_crypt_rq_ctx_compatible(struct request * rq,struct bio * bio)203 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
204 {
205 	return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
206 }
207 
208 /*
209  * Checks that two bio crypt contexts are compatible, and also
210  * that their data_unit_nums are continuous (and can hence be merged)
211  * in the order @bc1 followed by @bc2.
212  */
bio_crypt_ctx_mergeable(struct bio_crypt_ctx * bc1,unsigned int bc1_bytes,struct bio_crypt_ctx * bc2)213 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
214 			     struct bio_crypt_ctx *bc2)
215 {
216 	if (!bio_crypt_ctx_compatible(bc1, bc2))
217 		return false;
218 
219 	return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
220 }
221 
222 /* Check that all I/O segments are data unit aligned. */
bio_crypt_check_alignment(struct bio * bio)223 static bool bio_crypt_check_alignment(struct bio *bio)
224 {
225 	const unsigned int data_unit_size =
226 		bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
227 	struct bvec_iter iter;
228 	struct bio_vec bv;
229 
230 	bio_for_each_segment(bv, bio, iter) {
231 		if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
232 			return false;
233 	}
234 
235 	return true;
236 }
237 
__blk_crypto_rq_get_keyslot(struct request * rq)238 blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq)
239 {
240 	return blk_crypto_get_keyslot(rq->q->crypto_profile,
241 				      rq->crypt_ctx->bc_key,
242 				      &rq->crypt_keyslot);
243 }
244 
__blk_crypto_rq_put_keyslot(struct request * rq)245 void __blk_crypto_rq_put_keyslot(struct request *rq)
246 {
247 	blk_crypto_put_keyslot(rq->crypt_keyslot);
248 	rq->crypt_keyslot = NULL;
249 }
250 
__blk_crypto_free_request(struct request * rq)251 void __blk_crypto_free_request(struct request *rq)
252 {
253 	/* The keyslot, if one was needed, should have been released earlier. */
254 	if (WARN_ON_ONCE(rq->crypt_keyslot))
255 		__blk_crypto_rq_put_keyslot(rq);
256 
257 	mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
258 	rq->crypt_ctx = NULL;
259 }
260 
261 /**
262  * __blk_crypto_bio_prep - Prepare bio for inline encryption
263  *
264  * @bio_ptr: pointer to original bio pointer
265  *
266  * If the bio crypt context provided for the bio is supported by the underlying
267  * device's inline encryption hardware, do nothing.
268  *
269  * Otherwise, try to perform en/decryption for this bio by falling back to the
270  * kernel crypto API. When the crypto API fallback is used for encryption,
271  * blk-crypto may choose to split the bio into 2 - the first one that will
272  * continue to be processed and the second one that will be resubmitted via
273  * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
274  * of the aforementioned "first one", and *bio_ptr will be updated to this
275  * bounce bio.
276  *
277  * Caller must ensure bio has bio_crypt_ctx.
278  *
279  * Return: true on success; false on error (and bio->bi_status will be set
280  *	   appropriately, and bio_endio() will have been called so bio
281  *	   submission should abort).
282  */
__blk_crypto_bio_prep(struct bio ** bio_ptr)283 bool __blk_crypto_bio_prep(struct bio **bio_ptr)
284 {
285 	struct bio *bio = *bio_ptr;
286 	const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
287 
288 	/* Error if bio has no data. */
289 	if (WARN_ON_ONCE(!bio_has_data(bio))) {
290 		bio->bi_status = BLK_STS_IOERR;
291 		goto fail;
292 	}
293 
294 	if (!bio_crypt_check_alignment(bio)) {
295 		bio->bi_status = BLK_STS_IOERR;
296 		goto fail;
297 	}
298 
299 	/*
300 	 * Success if device supports the encryption context, or if we succeeded
301 	 * in falling back to the crypto API.
302 	 */
303 	if (blk_crypto_config_supported_natively(bio->bi_bdev,
304 						 &bc_key->crypto_cfg))
305 		return true;
306 	if (blk_crypto_fallback_bio_prep(bio_ptr))
307 		return true;
308 fail:
309 	bio_endio(*bio_ptr);
310 	return false;
311 }
312 
__blk_crypto_rq_bio_prep(struct request * rq,struct bio * bio,gfp_t gfp_mask)313 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
314 			     gfp_t gfp_mask)
315 {
316 	if (!rq->crypt_ctx) {
317 		rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
318 		if (!rq->crypt_ctx)
319 			return -ENOMEM;
320 	}
321 	*rq->crypt_ctx = *bio->bi_crypt_context;
322 	return 0;
323 }
324 
325 /**
326  * blk_crypto_init_key() - Prepare a key for use with blk-crypto
327  * @blk_key: Pointer to the blk_crypto_key to initialize.
328  * @key_bytes: the bytes of the key
329  * @key_size: size of the key in bytes
330  * @key_type: type of the key -- either raw or hardware-wrapped
331  * @crypto_mode: identifier for the encryption algorithm to use
332  * @dun_bytes: number of bytes that will be used to specify the DUN when this
333  *	       key is used
334  * @data_unit_size: the data unit size to use for en/decryption
335  *
336  * Return: 0 on success, -errno on failure.  The caller is responsible for
337  *	   zeroizing both blk_key and key_bytes when done with them.
338  */
blk_crypto_init_key(struct blk_crypto_key * blk_key,const u8 * key_bytes,size_t key_size,enum blk_crypto_key_type key_type,enum blk_crypto_mode_num crypto_mode,unsigned int dun_bytes,unsigned int data_unit_size)339 int blk_crypto_init_key(struct blk_crypto_key *blk_key,
340 			const u8 *key_bytes, size_t key_size,
341 			enum blk_crypto_key_type key_type,
342 			enum blk_crypto_mode_num crypto_mode,
343 			unsigned int dun_bytes,
344 			unsigned int data_unit_size)
345 {
346 	const struct blk_crypto_mode *mode;
347 
348 	memset(blk_key, 0, sizeof(*blk_key));
349 
350 	if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
351 		return -EINVAL;
352 
353 	mode = &blk_crypto_modes[crypto_mode];
354 	switch (key_type) {
355 	case BLK_CRYPTO_KEY_TYPE_RAW:
356 		if (key_size != mode->keysize)
357 			return -EINVAL;
358 		break;
359 	case BLK_CRYPTO_KEY_TYPE_HW_WRAPPED:
360 		if (key_size < mode->security_strength ||
361 		    key_size > BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE)
362 			return -EINVAL;
363 		break;
364 	default:
365 		return -EINVAL;
366 	}
367 
368 	if (dun_bytes == 0 || dun_bytes > mode->ivsize)
369 		return -EINVAL;
370 
371 	if (!is_power_of_2(data_unit_size))
372 		return -EINVAL;
373 
374 	blk_key->crypto_cfg.crypto_mode = crypto_mode;
375 	blk_key->crypto_cfg.dun_bytes = dun_bytes;
376 	blk_key->crypto_cfg.data_unit_size = data_unit_size;
377 	blk_key->crypto_cfg.key_type = key_type;
378 	blk_key->data_unit_size_bits = ilog2(data_unit_size);
379 	blk_key->size = key_size;
380 	memcpy(blk_key->bytes, key_bytes, key_size);
381 
382 	return 0;
383 }
384 
blk_crypto_config_supported_natively(struct block_device * bdev,const struct blk_crypto_config * cfg)385 bool blk_crypto_config_supported_natively(struct block_device *bdev,
386 					  const struct blk_crypto_config *cfg)
387 {
388 	return __blk_crypto_cfg_supported(bdev_get_queue(bdev)->crypto_profile,
389 					  cfg);
390 }
391 
392 /*
393  * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
394  * block_device it's submitted to supports inline crypto, or the
395  * blk-crypto-fallback is enabled and supports the cfg).
396  */
blk_crypto_config_supported(struct block_device * bdev,const struct blk_crypto_config * cfg)397 bool blk_crypto_config_supported(struct block_device *bdev,
398 				 const struct blk_crypto_config *cfg)
399 {
400 	if (IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) &&
401 	    cfg->key_type == BLK_CRYPTO_KEY_TYPE_RAW)
402 		return true;
403 	return blk_crypto_config_supported_natively(bdev, cfg);
404 }
405 
406 /**
407  * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
408  * @bdev: block device to operate on
409  * @key: A key to use on the device
410  *
411  * Upper layers must call this function to ensure that either the hardware
412  * supports the key's crypto settings, or the crypto API fallback has transforms
413  * for the needed mode allocated and ready to go. This function may allocate
414  * an skcipher, and *should not* be called from the data path, since that might
415  * cause a deadlock
416  *
417  * Return: 0 on success; -EOPNOTSUPP if the key is wrapped but the hardware does
418  *	   not support wrapped keys; -ENOPKG if the key is a raw key but the
419  *	   hardware does not support raw keys and blk-crypto-fallback is either
420  *	   disabled or the needed algorithm is disabled in the crypto API; or
421  *	   another -errno code if something else went wrong.
422  */
blk_crypto_start_using_key(struct block_device * bdev,const struct blk_crypto_key * key)423 int blk_crypto_start_using_key(struct block_device *bdev,
424 			       const struct blk_crypto_key *key)
425 {
426 	if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
427 		return 0;
428 	if (key->crypto_cfg.key_type != BLK_CRYPTO_KEY_TYPE_RAW) {
429 		pr_warn_ratelimited("%pg: no support for wrapped keys\n", bdev);
430 		return -EOPNOTSUPP;
431 	}
432 	return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
433 }
434 
435 /**
436  * blk_crypto_evict_key() - Evict a blk_crypto_key from a block_device
437  * @bdev: a block_device on which I/O using the key may have been done
438  * @key: the key to evict
439  *
440  * For a given block_device, this function removes the given blk_crypto_key from
441  * the keyslot management structures and evicts it from any underlying hardware
442  * keyslot(s) or blk-crypto-fallback keyslot it may have been programmed into.
443  *
444  * Upper layers must call this before freeing the blk_crypto_key.  It must be
445  * called for every block_device the key may have been used on.  The key must no
446  * longer be in use by any I/O when this function is called.
447  *
448  * Context: May sleep.
449  */
blk_crypto_evict_key(struct block_device * bdev,const struct blk_crypto_key * key)450 void blk_crypto_evict_key(struct block_device *bdev,
451 			  const struct blk_crypto_key *key)
452 {
453 	struct request_queue *q = bdev_get_queue(bdev);
454 	int err;
455 
456 	if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
457 		err = __blk_crypto_evict_key(q->crypto_profile, key);
458 	else
459 		err = blk_crypto_fallback_evict_key(key);
460 	/*
461 	 * An error can only occur here if the key failed to be evicted from a
462 	 * keyslot (due to a hardware or driver issue) or is allegedly still in
463 	 * use by I/O (due to a kernel bug).  Even in these cases, the key is
464 	 * still unlinked from the keyslot management structures, and the caller
465 	 * is allowed and expected to free it right away.  There's nothing
466 	 * callers can do to handle errors, so just log them and return void.
467 	 */
468 	if (err)
469 		pr_warn_ratelimited("%pg: error %d evicting key\n", bdev, err);
470 }
471 EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
472 
blk_crypto_ioctl_import_key(struct blk_crypto_profile * profile,void __user * argp)473 static int blk_crypto_ioctl_import_key(struct blk_crypto_profile *profile,
474 				       void __user *argp)
475 {
476 	struct blk_crypto_import_key_arg arg;
477 	u8 raw_key[BLK_CRYPTO_MAX_RAW_KEY_SIZE];
478 	u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
479 	int ret;
480 
481 	if (copy_from_user(&arg, argp, sizeof(arg)))
482 		return -EFAULT;
483 
484 	if (memchr_inv(arg.reserved, 0, sizeof(arg.reserved)))
485 		return -EINVAL;
486 
487 	if (arg.raw_key_size < 16 || arg.raw_key_size > sizeof(raw_key))
488 		return -EINVAL;
489 
490 	if (copy_from_user(raw_key, u64_to_user_ptr(arg.raw_key_ptr),
491 			   arg.raw_key_size)) {
492 		ret = -EFAULT;
493 		goto out;
494 	}
495 	ret = blk_crypto_import_key(profile, raw_key, arg.raw_key_size, lt_key);
496 	if (ret < 0)
497 		goto out;
498 	if (ret > arg.lt_key_size) {
499 		ret = -EOVERFLOW;
500 		goto out;
501 	}
502 	arg.lt_key_size = ret;
503 	if (copy_to_user(u64_to_user_ptr(arg.lt_key_ptr), lt_key,
504 			 arg.lt_key_size) ||
505 	    copy_to_user(argp, &arg, sizeof(arg))) {
506 		ret = -EFAULT;
507 		goto out;
508 	}
509 	ret = 0;
510 
511 out:
512 	memzero_explicit(raw_key, sizeof(raw_key));
513 	memzero_explicit(lt_key, sizeof(lt_key));
514 	return ret;
515 }
516 
blk_crypto_ioctl_generate_key(struct blk_crypto_profile * profile,void __user * argp)517 static int blk_crypto_ioctl_generate_key(struct blk_crypto_profile *profile,
518 					 void __user *argp)
519 {
520 	struct blk_crypto_generate_key_arg arg;
521 	u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
522 	int ret;
523 
524 	if (copy_from_user(&arg, argp, sizeof(arg)))
525 		return -EFAULT;
526 
527 	if (memchr_inv(arg.reserved, 0, sizeof(arg.reserved)))
528 		return -EINVAL;
529 
530 	ret = blk_crypto_generate_key(profile, lt_key);
531 	if (ret < 0)
532 		goto out;
533 	if (ret > arg.lt_key_size) {
534 		ret = -EOVERFLOW;
535 		goto out;
536 	}
537 	arg.lt_key_size = ret;
538 	if (copy_to_user(u64_to_user_ptr(arg.lt_key_ptr), lt_key,
539 			 arg.lt_key_size) ||
540 	    copy_to_user(argp, &arg, sizeof(arg))) {
541 		ret = -EFAULT;
542 		goto out;
543 	}
544 	ret = 0;
545 
546 out:
547 	memzero_explicit(lt_key, sizeof(lt_key));
548 	return ret;
549 }
550 
blk_crypto_ioctl_prepare_key(struct blk_crypto_profile * profile,void __user * argp)551 static int blk_crypto_ioctl_prepare_key(struct blk_crypto_profile *profile,
552 					void __user *argp)
553 {
554 	struct blk_crypto_prepare_key_arg arg;
555 	u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
556 	u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
557 	int ret;
558 
559 	if (copy_from_user(&arg, argp, sizeof(arg)))
560 		return -EFAULT;
561 
562 	if (memchr_inv(arg.reserved, 0, sizeof(arg.reserved)))
563 		return -EINVAL;
564 
565 	if (arg.lt_key_size > sizeof(lt_key))
566 		return -EINVAL;
567 
568 	if (copy_from_user(lt_key, u64_to_user_ptr(arg.lt_key_ptr),
569 			   arg.lt_key_size)) {
570 		ret = -EFAULT;
571 		goto out;
572 	}
573 	ret = blk_crypto_prepare_key(profile, lt_key, arg.lt_key_size, eph_key);
574 	if (ret < 0)
575 		goto out;
576 	if (ret > arg.eph_key_size) {
577 		ret = -EOVERFLOW;
578 		goto out;
579 	}
580 	arg.eph_key_size = ret;
581 	if (copy_to_user(u64_to_user_ptr(arg.eph_key_ptr), eph_key,
582 			 arg.eph_key_size) ||
583 	    copy_to_user(argp, &arg, sizeof(arg))) {
584 		ret = -EFAULT;
585 		goto out;
586 	}
587 	ret = 0;
588 
589 out:
590 	memzero_explicit(lt_key, sizeof(lt_key));
591 	memzero_explicit(eph_key, sizeof(eph_key));
592 	return ret;
593 }
594 
blk_crypto_ioctl(struct block_device * bdev,unsigned int cmd,void __user * argp)595 int blk_crypto_ioctl(struct block_device *bdev, unsigned int cmd,
596 		     void __user *argp)
597 {
598 	struct blk_crypto_profile *profile =
599 		bdev_get_queue(bdev)->crypto_profile;
600 
601 	if (!profile)
602 		return -EOPNOTSUPP;
603 
604 	switch (cmd) {
605 	case BLKCRYPTOIMPORTKEY:
606 		return blk_crypto_ioctl_import_key(profile, argp);
607 	case BLKCRYPTOGENERATEKEY:
608 		return blk_crypto_ioctl_generate_key(profile, argp);
609 	case BLKCRYPTOPREPAREKEY:
610 		return blk_crypto_ioctl_prepare_key(profile, argp);
611 	default:
612 		return -ENOTTY;
613 	}
614 }
615