xref: /linux/block/blk-map.c (revision 1b1391b9c4bfadcaeb89a87edf6c3520dd349e35)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	bmd->iter = *data;
33 	if (iter_is_iovec(data)) {
34 		memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs);
35 		bmd->iter.__iov = bmd->iov;
36 	}
37 	return bmd;
38 }
39 
40 /**
41  * bio_copy_from_iter - copy all pages from iov_iter to bio
42  * @bio: The &struct bio which describes the I/O as destination
43  * @iter: iov_iter as source
44  *
45  * Copy all pages from iov_iter to bio.
46  * Returns 0 on success, or error on failure.
47  */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)48 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
49 {
50 	struct bio_vec *bvec;
51 	struct bvec_iter_all iter_all;
52 
53 	bio_for_each_segment_all(bvec, bio, iter_all) {
54 		ssize_t ret;
55 
56 		ret = copy_page_from_iter(bvec->bv_page,
57 					  bvec->bv_offset,
58 					  bvec->bv_len,
59 					  iter);
60 
61 		if (!iov_iter_count(iter))
62 			break;
63 
64 		if (ret < bvec->bv_len)
65 			return -EFAULT;
66 	}
67 
68 	return 0;
69 }
70 
71 /**
72  * bio_copy_to_iter - copy all pages from bio to iov_iter
73  * @bio: The &struct bio which describes the I/O as source
74  * @iter: iov_iter as destination
75  *
76  * Copy all pages from bio to iov_iter.
77  * Returns 0 on success, or error on failure.
78  */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)79 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
80 {
81 	struct bio_vec *bvec;
82 	struct bvec_iter_all iter_all;
83 
84 	bio_for_each_segment_all(bvec, bio, iter_all) {
85 		ssize_t ret;
86 
87 		ret = copy_page_to_iter(bvec->bv_page,
88 					bvec->bv_offset,
89 					bvec->bv_len,
90 					&iter);
91 
92 		if (!iov_iter_count(&iter))
93 			break;
94 
95 		if (ret < bvec->bv_len)
96 			return -EFAULT;
97 	}
98 
99 	return 0;
100 }
101 
102 /**
103  *	bio_uncopy_user	-	finish previously mapped bio
104  *	@bio: bio being terminated
105  *
106  *	Free pages allocated from bio_copy_user_iov() and write back data
107  *	to user space in case of a read.
108  */
bio_uncopy_user(struct bio * bio)109 static int bio_uncopy_user(struct bio *bio)
110 {
111 	struct bio_map_data *bmd = bio->bi_private;
112 	int ret = 0;
113 
114 	if (!bmd->is_null_mapped) {
115 		/*
116 		 * if we're in a workqueue, the request is orphaned, so
117 		 * don't copy into a random user address space, just free
118 		 * and return -EINTR so user space doesn't expect any data.
119 		 */
120 		if (!current->mm)
121 			ret = -EINTR;
122 		else if (bio_data_dir(bio) == READ)
123 			ret = bio_copy_to_iter(bio, bmd->iter);
124 		if (bmd->is_our_pages)
125 			bio_free_pages(bio);
126 	}
127 	kfree(bmd);
128 	return ret;
129 }
130 
bio_copy_user_iov(struct request * rq,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)131 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
132 		struct iov_iter *iter, gfp_t gfp_mask)
133 {
134 	struct bio_map_data *bmd;
135 	struct page *page;
136 	struct bio *bio;
137 	int i = 0, ret;
138 	int nr_pages;
139 	unsigned int len = iter->count;
140 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
141 
142 	bmd = bio_alloc_map_data(iter, gfp_mask);
143 	if (!bmd)
144 		return -ENOMEM;
145 
146 	/*
147 	 * We need to do a deep copy of the iov_iter including the iovecs.
148 	 * The caller provided iov might point to an on-stack or otherwise
149 	 * shortlived one.
150 	 */
151 	bmd->is_our_pages = !map_data;
152 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
153 
154 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
155 
156 	ret = -ENOMEM;
157 	bio = bio_kmalloc(nr_pages, gfp_mask);
158 	if (!bio)
159 		goto out_bmd;
160 	bio_init_inline(bio, NULL, nr_pages, req_op(rq));
161 
162 	if (map_data) {
163 		nr_pages = 1U << map_data->page_order;
164 		i = map_data->offset / PAGE_SIZE;
165 	}
166 	while (len) {
167 		unsigned int bytes = PAGE_SIZE;
168 
169 		bytes -= offset;
170 
171 		if (bytes > len)
172 			bytes = len;
173 
174 		if (map_data) {
175 			if (i == map_data->nr_entries * nr_pages) {
176 				ret = -ENOMEM;
177 				goto cleanup;
178 			}
179 
180 			page = map_data->pages[i / nr_pages];
181 			page += (i % nr_pages);
182 
183 			i++;
184 		} else {
185 			page = alloc_page(GFP_NOIO | gfp_mask);
186 			if (!page) {
187 				ret = -ENOMEM;
188 				goto cleanup;
189 			}
190 		}
191 
192 		if (bio_add_page(bio, page, bytes, offset) < bytes) {
193 			if (!map_data)
194 				__free_page(page);
195 			break;
196 		}
197 
198 		len -= bytes;
199 		offset = 0;
200 	}
201 
202 	if (map_data)
203 		map_data->offset += bio->bi_iter.bi_size;
204 
205 	/*
206 	 * success
207 	 */
208 	if (iov_iter_rw(iter) == WRITE &&
209 	     (!map_data || !map_data->null_mapped)) {
210 		ret = bio_copy_from_iter(bio, iter);
211 		if (ret)
212 			goto cleanup;
213 	} else if (map_data && map_data->from_user) {
214 		struct iov_iter iter2 = *iter;
215 
216 		/* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */
217 		iter2.data_source = ITER_SOURCE;
218 		ret = bio_copy_from_iter(bio, &iter2);
219 		if (ret)
220 			goto cleanup;
221 	} else {
222 		if (bmd->is_our_pages)
223 			zero_fill_bio(bio);
224 		iov_iter_advance(iter, bio->bi_iter.bi_size);
225 	}
226 
227 	bio->bi_private = bmd;
228 
229 	ret = blk_rq_append_bio(rq, bio);
230 	if (ret)
231 		goto cleanup;
232 	return 0;
233 cleanup:
234 	if (!map_data)
235 		bio_free_pages(bio);
236 	bio_uninit(bio);
237 	kfree(bio);
238 out_bmd:
239 	kfree(bmd);
240 	return ret;
241 }
242 
blk_mq_map_bio_put(struct bio * bio)243 static void blk_mq_map_bio_put(struct bio *bio)
244 {
245 	if (bio->bi_opf & REQ_ALLOC_CACHE) {
246 		bio_put(bio);
247 	} else {
248 		bio_uninit(bio);
249 		kfree(bio);
250 	}
251 }
252 
blk_rq_map_bio_alloc(struct request * rq,unsigned int nr_vecs,gfp_t gfp_mask)253 static struct bio *blk_rq_map_bio_alloc(struct request *rq,
254 		unsigned int nr_vecs, gfp_t gfp_mask)
255 {
256 	struct block_device *bdev = rq->q->disk ? rq->q->disk->part0 : NULL;
257 	struct bio *bio;
258 
259 	if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) {
260 		bio = bio_alloc_bioset(bdev, nr_vecs, rq->cmd_flags, gfp_mask,
261 					&fs_bio_set);
262 		if (!bio)
263 			return NULL;
264 	} else {
265 		bio = bio_kmalloc(nr_vecs, gfp_mask);
266 		if (!bio)
267 			return NULL;
268 		bio_init_inline(bio, bdev, nr_vecs, req_op(rq));
269 	}
270 	return bio;
271 }
272 
bio_map_user_iov(struct request * rq,struct iov_iter * iter,gfp_t gfp_mask)273 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
274 		gfp_t gfp_mask)
275 {
276 	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
277 	struct bio *bio;
278 	int ret;
279 
280 	if (!iov_iter_count(iter))
281 		return -EINVAL;
282 
283 	bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
284 	if (!bio)
285 		return -ENOMEM;
286 	/*
287 	 * No alignment requirements on our part to support arbitrary
288 	 * passthrough commands.
289 	 */
290 	ret = bio_iov_iter_get_pages(bio, iter, 0);
291 	if (ret)
292 		goto out_put;
293 	ret = blk_rq_append_bio(rq, bio);
294 	if (ret)
295 		goto out_release;
296 	return 0;
297 
298 out_release:
299 	bio_release_pages(bio, false);
300 out_put:
301 	blk_mq_map_bio_put(bio);
302 	return ret;
303 }
304 
bio_invalidate_vmalloc_pages(struct bio * bio)305 static void bio_invalidate_vmalloc_pages(struct bio *bio)
306 {
307 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
308 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
309 		unsigned long i, len = 0;
310 
311 		for (i = 0; i < bio->bi_vcnt; i++)
312 			len += bio->bi_io_vec[i].bv_len;
313 		invalidate_kernel_vmap_range(bio->bi_private, len);
314 	}
315 #endif
316 }
317 
bio_map_kern_endio(struct bio * bio)318 static void bio_map_kern_endio(struct bio *bio)
319 {
320 	bio_invalidate_vmalloc_pages(bio);
321 	bio_uninit(bio);
322 	kfree(bio);
323 }
324 
bio_map_kern(void * data,unsigned int len,enum req_op op,gfp_t gfp_mask)325 static struct bio *bio_map_kern(void *data, unsigned int len, enum req_op op,
326 		gfp_t gfp_mask)
327 {
328 	unsigned int nr_vecs = bio_add_max_vecs(data, len);
329 	struct bio *bio;
330 
331 	bio = bio_kmalloc(nr_vecs, gfp_mask);
332 	if (!bio)
333 		return ERR_PTR(-ENOMEM);
334 	bio_init_inline(bio, NULL, nr_vecs, op);
335 	if (is_vmalloc_addr(data)) {
336 		bio->bi_private = data;
337 		if (!bio_add_vmalloc(bio, data, len)) {
338 			bio_uninit(bio);
339 			kfree(bio);
340 			return ERR_PTR(-EINVAL);
341 		}
342 	} else {
343 		bio_add_virt_nofail(bio, data, len);
344 	}
345 	bio->bi_end_io = bio_map_kern_endio;
346 	return bio;
347 }
348 
bio_copy_kern_endio(struct bio * bio)349 static void bio_copy_kern_endio(struct bio *bio)
350 {
351 	bio_free_pages(bio);
352 	bio_uninit(bio);
353 	kfree(bio);
354 }
355 
bio_copy_kern_endio_read(struct bio * bio)356 static void bio_copy_kern_endio_read(struct bio *bio)
357 {
358 	char *p = bio->bi_private;
359 	struct bio_vec *bvec;
360 	struct bvec_iter_all iter_all;
361 
362 	bio_for_each_segment_all(bvec, bio, iter_all) {
363 		memcpy_from_bvec(p, bvec);
364 		p += bvec->bv_len;
365 	}
366 
367 	bio_copy_kern_endio(bio);
368 }
369 
370 /**
371  *	bio_copy_kern	-	copy kernel address into bio
372  *	@data: pointer to buffer to copy
373  *	@len: length in bytes
374  *	@op: bio/request operation
375  *	@gfp_mask: allocation flags for bio and page allocation
376  *
377  *	copy the kernel address into a bio suitable for io to a block
378  *	device. Returns an error pointer in case of error.
379  */
bio_copy_kern(void * data,unsigned int len,enum req_op op,gfp_t gfp_mask)380 static struct bio *bio_copy_kern(void *data, unsigned int len, enum req_op op,
381 		gfp_t gfp_mask)
382 {
383 	unsigned long kaddr = (unsigned long)data;
384 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
385 	unsigned long start = kaddr >> PAGE_SHIFT;
386 	struct bio *bio;
387 	void *p = data;
388 	int nr_pages = 0;
389 
390 	/*
391 	 * Overflow, abort
392 	 */
393 	if (end < start)
394 		return ERR_PTR(-EINVAL);
395 
396 	nr_pages = end - start;
397 	bio = bio_kmalloc(nr_pages, gfp_mask);
398 	if (!bio)
399 		return ERR_PTR(-ENOMEM);
400 	bio_init_inline(bio, NULL, nr_pages, op);
401 
402 	while (len) {
403 		struct page *page;
404 		unsigned int bytes = PAGE_SIZE;
405 
406 		if (bytes > len)
407 			bytes = len;
408 
409 		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
410 		if (!page)
411 			goto cleanup;
412 
413 		if (op_is_write(op))
414 			memcpy(page_address(page), p, bytes);
415 
416 		if (bio_add_page(bio, page, bytes, 0) < bytes)
417 			break;
418 
419 		len -= bytes;
420 		p += bytes;
421 	}
422 
423 	if (op_is_write(op)) {
424 		bio->bi_end_io = bio_copy_kern_endio;
425 	} else {
426 		bio->bi_end_io = bio_copy_kern_endio_read;
427 		bio->bi_private = data;
428 	}
429 
430 	return bio;
431 
432 cleanup:
433 	bio_free_pages(bio);
434 	bio_uninit(bio);
435 	kfree(bio);
436 	return ERR_PTR(-ENOMEM);
437 }
438 
439 /*
440  * Append a bio to a passthrough request.  Only works if the bio can be merged
441  * into the request based on the driver constraints.
442  */
blk_rq_append_bio(struct request * rq,struct bio * bio)443 int blk_rq_append_bio(struct request *rq, struct bio *bio)
444 {
445 	const struct queue_limits *lim = &rq->q->limits;
446 	unsigned int max_bytes = lim->max_hw_sectors << SECTOR_SHIFT;
447 	unsigned int nr_segs = 0;
448 	int ret;
449 
450 	/* check that the data layout matches the hardware restrictions */
451 	ret = bio_split_io_at(bio, lim, &nr_segs, max_bytes, 0);
452 	if (ret) {
453 		/* if we would have to split the bio, copy instead */
454 		if (ret > 0)
455 			ret = -EREMOTEIO;
456 		return ret;
457 	}
458 
459 	if (rq->bio) {
460 		if (!ll_back_merge_fn(rq, bio, nr_segs))
461 			return -EINVAL;
462 		rq->biotail->bi_next = bio;
463 		rq->biotail = bio;
464 		rq->__data_len += bio->bi_iter.bi_size;
465 		bio_crypt_free_ctx(bio);
466 		return 0;
467 	}
468 
469 	rq->nr_phys_segments = nr_segs;
470 	rq->bio = rq->biotail = bio;
471 	rq->__data_len = bio->bi_iter.bi_size;
472 	return 0;
473 }
474 EXPORT_SYMBOL(blk_rq_append_bio);
475 
476 /* Prepare bio for passthrough IO given ITER_BVEC iter */
blk_rq_map_user_bvec(struct request * rq,const struct iov_iter * iter)477 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
478 {
479 	unsigned int max_bytes = rq->q->limits.max_hw_sectors << SECTOR_SHIFT;
480 	struct bio *bio;
481 	int ret;
482 
483 	if (!iov_iter_count(iter) || iov_iter_count(iter) > max_bytes)
484 		return -EINVAL;
485 
486 	/* reuse the bvecs from the iterator instead of allocating new ones */
487 	bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
488 	if (!bio)
489 		return -ENOMEM;
490 	bio_iov_bvec_set(bio, iter);
491 
492 	ret = blk_rq_append_bio(rq, bio);
493 	if (ret)
494 		blk_mq_map_bio_put(bio);
495 	return ret;
496 }
497 
498 /**
499  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
500  * @q:		request queue where request should be inserted
501  * @rq:		request to map data to
502  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
503  * @iter:	iovec iterator
504  * @gfp_mask:	memory allocation flags
505  *
506  * Description:
507  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
508  *    a kernel bounce buffer is used.
509  *
510  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
511  *    still in process context.
512  */
blk_rq_map_user_iov(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)513 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
514 			struct rq_map_data *map_data,
515 			const struct iov_iter *iter, gfp_t gfp_mask)
516 {
517 	bool copy = false, map_bvec = false;
518 	unsigned long align = blk_lim_dma_alignment_and_pad(&q->limits);
519 	struct bio *bio = NULL;
520 	struct iov_iter i;
521 	int ret = -EINVAL;
522 
523 	if (map_data)
524 		copy = true;
525 	else if (iov_iter_alignment(iter) & align)
526 		copy = true;
527 	else if (iov_iter_is_bvec(iter))
528 		map_bvec = true;
529 	else if (!user_backed_iter(iter))
530 		copy = true;
531 	else if (queue_virt_boundary(q))
532 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
533 
534 	if (map_bvec) {
535 		ret = blk_rq_map_user_bvec(rq, iter);
536 		if (!ret)
537 			return 0;
538 		if (ret != -EREMOTEIO)
539 			goto fail;
540 		/* fall back to copying the data on limits mismatches */
541 		copy = true;
542 	}
543 
544 	i = *iter;
545 	do {
546 		if (copy)
547 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
548 		else
549 			ret = bio_map_user_iov(rq, &i, gfp_mask);
550 		if (ret) {
551 			if (ret == -EREMOTEIO)
552 				ret = -EINVAL;
553 			goto unmap_rq;
554 		}
555 		if (!bio)
556 			bio = rq->bio;
557 	} while (iov_iter_count(&i));
558 
559 	return 0;
560 
561 unmap_rq:
562 	blk_rq_unmap_user(bio);
563 fail:
564 	rq->bio = NULL;
565 	return ret;
566 }
567 EXPORT_SYMBOL(blk_rq_map_user_iov);
568 
blk_rq_map_user(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,void __user * ubuf,unsigned long len,gfp_t gfp_mask)569 int blk_rq_map_user(struct request_queue *q, struct request *rq,
570 		    struct rq_map_data *map_data, void __user *ubuf,
571 		    unsigned long len, gfp_t gfp_mask)
572 {
573 	struct iov_iter i;
574 	int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i);
575 
576 	if (unlikely(ret < 0))
577 		return ret;
578 
579 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
580 }
581 EXPORT_SYMBOL(blk_rq_map_user);
582 
blk_rq_map_user_io(struct request * req,struct rq_map_data * map_data,void __user * ubuf,unsigned long buf_len,gfp_t gfp_mask,bool vec,int iov_count,bool check_iter_count,int rw)583 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
584 		void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
585 		bool vec, int iov_count, bool check_iter_count, int rw)
586 {
587 	int ret = 0;
588 
589 	if (vec) {
590 		struct iovec fast_iov[UIO_FASTIOV];
591 		struct iovec *iov = fast_iov;
592 		struct iov_iter iter;
593 
594 		ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
595 				UIO_FASTIOV, &iov, &iter);
596 		if (ret < 0)
597 			return ret;
598 
599 		if (iov_count) {
600 			/* SG_IO howto says that the shorter of the two wins */
601 			iov_iter_truncate(&iter, buf_len);
602 			if (check_iter_count && !iov_iter_count(&iter)) {
603 				kfree(iov);
604 				return -EINVAL;
605 			}
606 		}
607 
608 		ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
609 				gfp_mask);
610 		kfree(iov);
611 	} else if (buf_len) {
612 		ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
613 				gfp_mask);
614 	}
615 	return ret;
616 }
617 EXPORT_SYMBOL(blk_rq_map_user_io);
618 
619 /**
620  * blk_rq_unmap_user - unmap a request with user data
621  * @bio:	       start of bio list
622  *
623  * Description:
624  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
625  *    supply the original rq->bio from the blk_rq_map_user() return, since
626  *    the I/O completion may have changed rq->bio.
627  */
blk_rq_unmap_user(struct bio * bio)628 int blk_rq_unmap_user(struct bio *bio)
629 {
630 	struct bio *next_bio;
631 	int ret = 0, ret2;
632 
633 	while (bio) {
634 		if (bio->bi_private) {
635 			ret2 = bio_uncopy_user(bio);
636 			if (ret2 && !ret)
637 				ret = ret2;
638 		} else {
639 			bio_release_pages(bio, bio_data_dir(bio) == READ);
640 		}
641 
642 		if (bio_integrity(bio))
643 			bio_integrity_unmap_user(bio);
644 
645 		next_bio = bio;
646 		bio = bio->bi_next;
647 		blk_mq_map_bio_put(next_bio);
648 	}
649 
650 	return ret;
651 }
652 EXPORT_SYMBOL(blk_rq_unmap_user);
653 
654 /**
655  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
656  * @rq:		request to fill
657  * @kbuf:	the kernel buffer
658  * @len:	length of user data
659  * @gfp_mask:	memory allocation flags
660  *
661  * Description:
662  *    Data will be mapped directly if possible. Otherwise a bounce
663  *    buffer is used. Can be called multiple times to append multiple
664  *    buffers.
665  */
blk_rq_map_kern(struct request * rq,void * kbuf,unsigned int len,gfp_t gfp_mask)666 int blk_rq_map_kern(struct request *rq, void *kbuf, unsigned int len,
667 		gfp_t gfp_mask)
668 {
669 	unsigned long addr = (unsigned long) kbuf;
670 	struct bio *bio;
671 	int ret;
672 
673 	if (len > (queue_max_hw_sectors(rq->q) << SECTOR_SHIFT))
674 		return -EINVAL;
675 	if (!len || !kbuf)
676 		return -EINVAL;
677 
678 	if (!blk_rq_aligned(rq->q, addr, len) || object_is_on_stack(kbuf))
679 		bio = bio_copy_kern(kbuf, len, req_op(rq), gfp_mask);
680 	else
681 		bio = bio_map_kern(kbuf, len, req_op(rq), gfp_mask);
682 
683 	if (IS_ERR(bio))
684 		return PTR_ERR(bio);
685 
686 	ret = blk_rq_append_bio(rq, bio);
687 	if (unlikely(ret)) {
688 		bio_uninit(bio);
689 		kfree(bio);
690 	}
691 	return ret;
692 }
693 EXPORT_SYMBOL(blk_rq_map_kern);
694