xref: /linux/block/bio.c (revision cc25df3e2e22a956d3a0d427369367b4a901d203)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26 
27 #define ALLOC_CACHE_THRESHOLD	16
28 #define ALLOC_CACHE_MAX		256
29 
30 struct bio_alloc_cache {
31 	struct bio		*free_list;
32 	struct bio		*free_list_irq;
33 	unsigned int		nr;
34 	unsigned int		nr_irq;
35 };
36 
37 static struct biovec_slab {
38 	int nr_vecs;
39 	char *name;
40 	struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 	{ .nr_vecs = 16, .name = "biovec-16" },
43 	{ .nr_vecs = 64, .name = "biovec-64" },
44 	{ .nr_vecs = 128, .name = "biovec-128" },
45 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47 
48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 	switch (nr_vecs) {
51 	/* smaller bios use inline vecs */
52 	case 5 ... 16:
53 		return &bvec_slabs[0];
54 	case 17 ... 64:
55 		return &bvec_slabs[1];
56 	case 65 ... 128:
57 		return &bvec_slabs[2];
58 	case 129 ... BIO_MAX_VECS:
59 		return &bvec_slabs[3];
60 	default:
61 		BUG();
62 		return NULL;
63 	}
64 }
65 
66 /*
67  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68  * IO code that does not need private memory pools.
69  */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72 
73 /*
74  * Our slab pool management
75  */
76 struct bio_slab {
77 	struct kmem_cache *slab;
78 	unsigned int slab_ref;
79 	unsigned int slab_size;
80 	char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84 
85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88 
89 	if (!bslab)
90 		return NULL;
91 
92 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 	bslab->slab = kmem_cache_create(bslab->name, size,
94 			ARCH_KMALLOC_MINALIGN,
95 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 	if (!bslab->slab)
97 		goto fail_alloc_slab;
98 
99 	bslab->slab_ref = 1;
100 	bslab->slab_size = size;
101 
102 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 		return bslab;
104 
105 	kmem_cache_destroy(bslab->slab);
106 
107 fail_alloc_slab:
108 	kfree(bslab);
109 	return NULL;
110 }
111 
112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116 
117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 	unsigned int size = bs_bio_slab_size(bs);
120 	struct bio_slab *bslab;
121 
122 	mutex_lock(&bio_slab_lock);
123 	bslab = xa_load(&bio_slabs, size);
124 	if (bslab)
125 		bslab->slab_ref++;
126 	else
127 		bslab = create_bio_slab(size);
128 	mutex_unlock(&bio_slab_lock);
129 
130 	if (bslab)
131 		return bslab->slab;
132 	return NULL;
133 }
134 
135 static void bio_put_slab(struct bio_set *bs)
136 {
137 	struct bio_slab *bslab = NULL;
138 	unsigned int slab_size = bs_bio_slab_size(bs);
139 
140 	mutex_lock(&bio_slab_lock);
141 
142 	bslab = xa_load(&bio_slabs, slab_size);
143 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 		goto out;
145 
146 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147 
148 	WARN_ON(!bslab->slab_ref);
149 
150 	if (--bslab->slab_ref)
151 		goto out;
152 
153 	xa_erase(&bio_slabs, slab_size);
154 
155 	kmem_cache_destroy(bslab->slab);
156 	kfree(bslab);
157 
158 out:
159 	mutex_unlock(&bio_slab_lock);
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 	BUG_ON(nr_vecs > BIO_MAX_VECS);
165 
166 	if (nr_vecs == BIO_MAX_VECS)
167 		mempool_free(bv, pool);
168 	else if (nr_vecs > BIO_INLINE_VECS)
169 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171 
172 /*
173  * Make the first allocation restricted and don't dump info on allocation
174  * failures, since we'll fall back to the mempool in case of failure.
175  */
176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181 
182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 		gfp_t gfp_mask)
184 {
185 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186 
187 	if (WARN_ON_ONCE(!bvs))
188 		return NULL;
189 
190 	/*
191 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 	 * We also rely on this in the bvec_free path.
193 	 */
194 	*nr_vecs = bvs->nr_vecs;
195 
196 	/*
197 	 * Try a slab allocation first for all smaller allocations.  If that
198 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 	 */
201 	if (*nr_vecs < BIO_MAX_VECS) {
202 		struct bio_vec *bvl;
203 
204 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 			return bvl;
207 		*nr_vecs = BIO_MAX_VECS;
208 	}
209 
210 	return mempool_alloc(pool, gfp_mask);
211 }
212 
213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 	if (bio->bi_blkg) {
217 		blkg_put(bio->bi_blkg);
218 		bio->bi_blkg = NULL;
219 	}
220 #endif
221 	if (bio_integrity(bio))
222 		bio_integrity_free(bio);
223 
224 	bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227 
228 static void bio_free(struct bio *bio)
229 {
230 	struct bio_set *bs = bio->bi_pool;
231 	void *p = bio;
232 
233 	WARN_ON_ONCE(!bs);
234 
235 	bio_uninit(bio);
236 	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 	mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239 
240 /*
241  * Users of this function have their own bio allocation. Subsequently,
242  * they must remember to pair any call to bio_init() with bio_uninit()
243  * when IO has completed, or when the bio is released.
244  */
245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 	      unsigned short max_vecs, blk_opf_t opf)
247 {
248 	bio->bi_next = NULL;
249 	bio->bi_bdev = bdev;
250 	bio->bi_opf = opf;
251 	bio->bi_flags = 0;
252 	bio->bi_ioprio = 0;
253 	bio->bi_write_hint = 0;
254 	bio->bi_write_stream = 0;
255 	bio->bi_status = 0;
256 	bio->bi_bvec_gap_bit = 0;
257 	bio->bi_iter.bi_sector = 0;
258 	bio->bi_iter.bi_size = 0;
259 	bio->bi_iter.bi_idx = 0;
260 	bio->bi_iter.bi_bvec_done = 0;
261 	bio->bi_end_io = NULL;
262 	bio->bi_private = NULL;
263 #ifdef CONFIG_BLK_CGROUP
264 	bio->bi_blkg = NULL;
265 	bio->issue_time_ns = 0;
266 	if (bdev)
267 		bio_associate_blkg(bio);
268 #ifdef CONFIG_BLK_CGROUP_IOCOST
269 	bio->bi_iocost_cost = 0;
270 #endif
271 #endif
272 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
273 	bio->bi_crypt_context = NULL;
274 #endif
275 #ifdef CONFIG_BLK_DEV_INTEGRITY
276 	bio->bi_integrity = NULL;
277 #endif
278 	bio->bi_vcnt = 0;
279 
280 	atomic_set(&bio->__bi_remaining, 1);
281 	atomic_set(&bio->__bi_cnt, 1);
282 	bio->bi_cookie = BLK_QC_T_NONE;
283 
284 	bio->bi_max_vecs = max_vecs;
285 	bio->bi_io_vec = table;
286 	bio->bi_pool = NULL;
287 }
288 EXPORT_SYMBOL(bio_init);
289 
290 /**
291  * bio_reset - reinitialize a bio
292  * @bio:	bio to reset
293  * @bdev:	block device to use the bio for
294  * @opf:	operation and flags for bio
295  *
296  * Description:
297  *   After calling bio_reset(), @bio will be in the same state as a freshly
298  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
299  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
300  *   comment in struct bio.
301  */
302 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
303 {
304 	bio_uninit(bio);
305 	memset(bio, 0, BIO_RESET_BYTES);
306 	atomic_set(&bio->__bi_remaining, 1);
307 	bio->bi_bdev = bdev;
308 	if (bio->bi_bdev)
309 		bio_associate_blkg(bio);
310 	bio->bi_opf = opf;
311 }
312 EXPORT_SYMBOL(bio_reset);
313 
314 static struct bio *__bio_chain_endio(struct bio *bio)
315 {
316 	struct bio *parent = bio->bi_private;
317 
318 	if (bio->bi_status && !parent->bi_status)
319 		parent->bi_status = bio->bi_status;
320 	bio_put(bio);
321 	return parent;
322 }
323 
324 static void bio_chain_endio(struct bio *bio)
325 {
326 	bio_endio(__bio_chain_endio(bio));
327 }
328 
329 /**
330  * bio_chain - chain bio completions
331  * @bio: the target bio
332  * @parent: the parent bio of @bio
333  *
334  * The caller won't have a bi_end_io called when @bio completes - instead,
335  * @parent's bi_end_io won't be called until both @parent and @bio have
336  * completed; the chained bio will also be freed when it completes.
337  *
338  * The caller must not set bi_private or bi_end_io in @bio.
339  */
340 void bio_chain(struct bio *bio, struct bio *parent)
341 {
342 	BUG_ON(bio->bi_private || bio->bi_end_io);
343 
344 	bio->bi_private = parent;
345 	bio->bi_end_io	= bio_chain_endio;
346 	bio_inc_remaining(parent);
347 }
348 EXPORT_SYMBOL(bio_chain);
349 
350 /**
351  * bio_chain_and_submit - submit a bio after chaining it to another one
352  * @prev: bio to chain and submit
353  * @new: bio to chain to
354  *
355  * If @prev is non-NULL, chain it to @new and submit it.
356  *
357  * Return: @new.
358  */
359 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
360 {
361 	if (prev) {
362 		bio_chain(prev, new);
363 		submit_bio(prev);
364 	}
365 	return new;
366 }
367 
368 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
369 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
370 {
371 	return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
372 }
373 EXPORT_SYMBOL_GPL(blk_next_bio);
374 
375 static void bio_alloc_rescue(struct work_struct *work)
376 {
377 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
378 	struct bio *bio;
379 
380 	while (1) {
381 		spin_lock(&bs->rescue_lock);
382 		bio = bio_list_pop(&bs->rescue_list);
383 		spin_unlock(&bs->rescue_lock);
384 
385 		if (!bio)
386 			break;
387 
388 		submit_bio_noacct(bio);
389 	}
390 }
391 
392 static void punt_bios_to_rescuer(struct bio_set *bs)
393 {
394 	struct bio_list punt, nopunt;
395 	struct bio *bio;
396 
397 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
398 		return;
399 	/*
400 	 * In order to guarantee forward progress we must punt only bios that
401 	 * were allocated from this bio_set; otherwise, if there was a bio on
402 	 * there for a stacking driver higher up in the stack, processing it
403 	 * could require allocating bios from this bio_set, and doing that from
404 	 * our own rescuer would be bad.
405 	 *
406 	 * Since bio lists are singly linked, pop them all instead of trying to
407 	 * remove from the middle of the list:
408 	 */
409 
410 	bio_list_init(&punt);
411 	bio_list_init(&nopunt);
412 
413 	while ((bio = bio_list_pop(&current->bio_list[0])))
414 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
415 	current->bio_list[0] = nopunt;
416 
417 	bio_list_init(&nopunt);
418 	while ((bio = bio_list_pop(&current->bio_list[1])))
419 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
420 	current->bio_list[1] = nopunt;
421 
422 	spin_lock(&bs->rescue_lock);
423 	bio_list_merge(&bs->rescue_list, &punt);
424 	spin_unlock(&bs->rescue_lock);
425 
426 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
427 }
428 
429 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
430 {
431 	unsigned long flags;
432 
433 	/* cache->free_list must be empty */
434 	if (WARN_ON_ONCE(cache->free_list))
435 		return;
436 
437 	local_irq_save(flags);
438 	cache->free_list = cache->free_list_irq;
439 	cache->free_list_irq = NULL;
440 	cache->nr += cache->nr_irq;
441 	cache->nr_irq = 0;
442 	local_irq_restore(flags);
443 }
444 
445 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
446 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
447 		struct bio_set *bs)
448 {
449 	struct bio_alloc_cache *cache;
450 	struct bio *bio;
451 
452 	cache = per_cpu_ptr(bs->cache, get_cpu());
453 	if (!cache->free_list) {
454 		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
455 			bio_alloc_irq_cache_splice(cache);
456 		if (!cache->free_list) {
457 			put_cpu();
458 			return NULL;
459 		}
460 	}
461 	bio = cache->free_list;
462 	cache->free_list = bio->bi_next;
463 	cache->nr--;
464 	put_cpu();
465 
466 	if (nr_vecs)
467 		bio_init_inline(bio, bdev, nr_vecs, opf);
468 	else
469 		bio_init(bio, bdev, NULL, nr_vecs, opf);
470 	bio->bi_pool = bs;
471 	return bio;
472 }
473 
474 /**
475  * bio_alloc_bioset - allocate a bio for I/O
476  * @bdev:	block device to allocate the bio for (can be %NULL)
477  * @nr_vecs:	number of bvecs to pre-allocate
478  * @opf:	operation and flags for bio
479  * @gfp_mask:   the GFP_* mask given to the slab allocator
480  * @bs:		the bio_set to allocate from.
481  *
482  * Allocate a bio from the mempools in @bs.
483  *
484  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
485  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
486  * callers must never allocate more than 1 bio at a time from the general pool.
487  * Callers that need to allocate more than 1 bio must always submit the
488  * previously allocated bio for IO before attempting to allocate a new one.
489  * Failure to do so can cause deadlocks under memory pressure.
490  *
491  * Note that when running under submit_bio_noacct() (i.e. any block driver),
492  * bios are not submitted until after you return - see the code in
493  * submit_bio_noacct() that converts recursion into iteration, to prevent
494  * stack overflows.
495  *
496  * This would normally mean allocating multiple bios under submit_bio_noacct()
497  * would be susceptible to deadlocks, but we have
498  * deadlock avoidance code that resubmits any blocked bios from a rescuer
499  * thread.
500  *
501  * However, we do not guarantee forward progress for allocations from other
502  * mempools. Doing multiple allocations from the same mempool under
503  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
504  * for per bio allocations.
505  *
506  * Returns: Pointer to new bio on success, NULL on failure.
507  */
508 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
509 			     blk_opf_t opf, gfp_t gfp_mask,
510 			     struct bio_set *bs)
511 {
512 	gfp_t saved_gfp = gfp_mask;
513 	struct bio *bio;
514 	void *p;
515 
516 	/* should not use nobvec bioset for nr_vecs > 0 */
517 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
518 		return NULL;
519 
520 	if (opf & REQ_ALLOC_CACHE) {
521 		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
522 			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
523 						     gfp_mask, bs);
524 			if (bio)
525 				return bio;
526 			/*
527 			 * No cached bio available, bio returned below marked with
528 			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
529 			 */
530 		} else {
531 			opf &= ~REQ_ALLOC_CACHE;
532 		}
533 	}
534 
535 	/*
536 	 * submit_bio_noacct() converts recursion to iteration; this means if
537 	 * we're running beneath it, any bios we allocate and submit will not be
538 	 * submitted (and thus freed) until after we return.
539 	 *
540 	 * This exposes us to a potential deadlock if we allocate multiple bios
541 	 * from the same bio_set() while running underneath submit_bio_noacct().
542 	 * If we were to allocate multiple bios (say a stacking block driver
543 	 * that was splitting bios), we would deadlock if we exhausted the
544 	 * mempool's reserve.
545 	 *
546 	 * We solve this, and guarantee forward progress, with a rescuer
547 	 * workqueue per bio_set. If we go to allocate and there are bios on
548 	 * current->bio_list, we first try the allocation without
549 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
550 	 * blocking to the rescuer workqueue before we retry with the original
551 	 * gfp_flags.
552 	 */
553 	if (current->bio_list &&
554 	    (!bio_list_empty(&current->bio_list[0]) ||
555 	     !bio_list_empty(&current->bio_list[1])) &&
556 	    bs->rescue_workqueue)
557 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
558 
559 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
560 	if (!p && gfp_mask != saved_gfp) {
561 		punt_bios_to_rescuer(bs);
562 		gfp_mask = saved_gfp;
563 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
564 	}
565 	if (unlikely(!p))
566 		return NULL;
567 	if (!mempool_is_saturated(&bs->bio_pool))
568 		opf &= ~REQ_ALLOC_CACHE;
569 
570 	bio = p + bs->front_pad;
571 	if (nr_vecs > BIO_INLINE_VECS) {
572 		struct bio_vec *bvl = NULL;
573 
574 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
575 		if (!bvl && gfp_mask != saved_gfp) {
576 			punt_bios_to_rescuer(bs);
577 			gfp_mask = saved_gfp;
578 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
579 		}
580 		if (unlikely(!bvl))
581 			goto err_free;
582 
583 		bio_init(bio, bdev, bvl, nr_vecs, opf);
584 	} else if (nr_vecs) {
585 		bio_init_inline(bio, bdev, BIO_INLINE_VECS, opf);
586 	} else {
587 		bio_init(bio, bdev, NULL, 0, opf);
588 	}
589 
590 	bio->bi_pool = bs;
591 	return bio;
592 
593 err_free:
594 	mempool_free(p, &bs->bio_pool);
595 	return NULL;
596 }
597 EXPORT_SYMBOL(bio_alloc_bioset);
598 
599 /**
600  * bio_kmalloc - kmalloc a bio
601  * @nr_vecs:	number of bio_vecs to allocate
602  * @gfp_mask:   the GFP_* mask given to the slab allocator
603  *
604  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
605  * using bio_init() before use.  To free a bio returned from this function use
606  * kfree() after calling bio_uninit().  A bio returned from this function can
607  * be reused by calling bio_uninit() before calling bio_init() again.
608  *
609  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
610  * function are not backed by a mempool can fail.  Do not use this function
611  * for allocations in the file system I/O path.
612  *
613  * Returns: Pointer to new bio on success, NULL on failure.
614  */
615 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
616 {
617 	struct bio *bio;
618 
619 	if (nr_vecs > BIO_MAX_INLINE_VECS)
620 		return NULL;
621 	return kmalloc(sizeof(*bio) + nr_vecs * sizeof(struct bio_vec),
622 			gfp_mask);
623 }
624 EXPORT_SYMBOL(bio_kmalloc);
625 
626 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
627 {
628 	struct bio_vec bv;
629 	struct bvec_iter iter;
630 
631 	__bio_for_each_segment(bv, bio, iter, start)
632 		memzero_bvec(&bv);
633 }
634 EXPORT_SYMBOL(zero_fill_bio_iter);
635 
636 /**
637  * bio_truncate - truncate the bio to small size of @new_size
638  * @bio:	the bio to be truncated
639  * @new_size:	new size for truncating the bio
640  *
641  * Description:
642  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
643  *   REQ_OP_READ, zero the truncated part. This function should only
644  *   be used for handling corner cases, such as bio eod.
645  */
646 static void bio_truncate(struct bio *bio, unsigned new_size)
647 {
648 	struct bio_vec bv;
649 	struct bvec_iter iter;
650 	unsigned int done = 0;
651 	bool truncated = false;
652 
653 	if (new_size >= bio->bi_iter.bi_size)
654 		return;
655 
656 	if (bio_op(bio) != REQ_OP_READ)
657 		goto exit;
658 
659 	bio_for_each_segment(bv, bio, iter) {
660 		if (done + bv.bv_len > new_size) {
661 			size_t offset;
662 
663 			if (!truncated)
664 				offset = new_size - done;
665 			else
666 				offset = 0;
667 			memzero_page(bv.bv_page, bv.bv_offset + offset,
668 				  bv.bv_len - offset);
669 			truncated = true;
670 		}
671 		done += bv.bv_len;
672 	}
673 
674  exit:
675 	/*
676 	 * Don't touch bvec table here and make it really immutable, since
677 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
678 	 * in its .end_bio() callback.
679 	 *
680 	 * It is enough to truncate bio by updating .bi_size since we can make
681 	 * correct bvec with the updated .bi_size for drivers.
682 	 */
683 	bio->bi_iter.bi_size = new_size;
684 }
685 
686 /**
687  * guard_bio_eod - truncate a BIO to fit the block device
688  * @bio:	bio to truncate
689  *
690  * This allows us to do IO even on the odd last sectors of a device, even if the
691  * block size is some multiple of the physical sector size.
692  *
693  * We'll just truncate the bio to the size of the device, and clear the end of
694  * the buffer head manually.  Truly out-of-range accesses will turn into actual
695  * I/O errors, this only handles the "we need to be able to do I/O at the final
696  * sector" case.
697  */
698 void guard_bio_eod(struct bio *bio)
699 {
700 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
701 
702 	if (!maxsector)
703 		return;
704 
705 	/*
706 	 * If the *whole* IO is past the end of the device,
707 	 * let it through, and the IO layer will turn it into
708 	 * an EIO.
709 	 */
710 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
711 		return;
712 
713 	maxsector -= bio->bi_iter.bi_sector;
714 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
715 		return;
716 
717 	bio_truncate(bio, maxsector << 9);
718 }
719 
720 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
721 				   unsigned int nr)
722 {
723 	unsigned int i = 0;
724 	struct bio *bio;
725 
726 	while ((bio = cache->free_list) != NULL) {
727 		cache->free_list = bio->bi_next;
728 		cache->nr--;
729 		bio_free(bio);
730 		if (++i == nr)
731 			break;
732 	}
733 	return i;
734 }
735 
736 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
737 				  unsigned int nr)
738 {
739 	nr -= __bio_alloc_cache_prune(cache, nr);
740 	if (!READ_ONCE(cache->free_list)) {
741 		bio_alloc_irq_cache_splice(cache);
742 		__bio_alloc_cache_prune(cache, nr);
743 	}
744 }
745 
746 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
747 {
748 	struct bio_set *bs;
749 
750 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
751 	if (bs->cache) {
752 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
753 
754 		bio_alloc_cache_prune(cache, -1U);
755 	}
756 	return 0;
757 }
758 
759 static void bio_alloc_cache_destroy(struct bio_set *bs)
760 {
761 	int cpu;
762 
763 	if (!bs->cache)
764 		return;
765 
766 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
767 	for_each_possible_cpu(cpu) {
768 		struct bio_alloc_cache *cache;
769 
770 		cache = per_cpu_ptr(bs->cache, cpu);
771 		bio_alloc_cache_prune(cache, -1U);
772 	}
773 	free_percpu(bs->cache);
774 	bs->cache = NULL;
775 }
776 
777 static inline void bio_put_percpu_cache(struct bio *bio)
778 {
779 	struct bio_alloc_cache *cache;
780 
781 	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
782 	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
783 		goto out_free;
784 
785 	if (in_task()) {
786 		bio_uninit(bio);
787 		bio->bi_next = cache->free_list;
788 		/* Not necessary but helps not to iopoll already freed bios */
789 		bio->bi_bdev = NULL;
790 		cache->free_list = bio;
791 		cache->nr++;
792 	} else if (in_hardirq()) {
793 		lockdep_assert_irqs_disabled();
794 
795 		bio_uninit(bio);
796 		bio->bi_next = cache->free_list_irq;
797 		cache->free_list_irq = bio;
798 		cache->nr_irq++;
799 	} else {
800 		goto out_free;
801 	}
802 	put_cpu();
803 	return;
804 out_free:
805 	put_cpu();
806 	bio_free(bio);
807 }
808 
809 /**
810  * bio_put - release a reference to a bio
811  * @bio:   bio to release reference to
812  *
813  * Description:
814  *   Put a reference to a &struct bio, either one you have gotten with
815  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
816  **/
817 void bio_put(struct bio *bio)
818 {
819 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
820 		BUG_ON(!atomic_read(&bio->__bi_cnt));
821 		if (!atomic_dec_and_test(&bio->__bi_cnt))
822 			return;
823 	}
824 	if (bio->bi_opf & REQ_ALLOC_CACHE)
825 		bio_put_percpu_cache(bio);
826 	else
827 		bio_free(bio);
828 }
829 EXPORT_SYMBOL(bio_put);
830 
831 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
832 {
833 	bio_set_flag(bio, BIO_CLONED);
834 	bio->bi_ioprio = bio_src->bi_ioprio;
835 	bio->bi_write_hint = bio_src->bi_write_hint;
836 	bio->bi_write_stream = bio_src->bi_write_stream;
837 	bio->bi_iter = bio_src->bi_iter;
838 
839 	if (bio->bi_bdev) {
840 		if (bio->bi_bdev == bio_src->bi_bdev &&
841 		    bio_flagged(bio_src, BIO_REMAPPED))
842 			bio_set_flag(bio, BIO_REMAPPED);
843 		bio_clone_blkg_association(bio, bio_src);
844 	}
845 
846 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
847 		return -ENOMEM;
848 	if (bio_integrity(bio_src) &&
849 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
850 		return -ENOMEM;
851 	return 0;
852 }
853 
854 /**
855  * bio_alloc_clone - clone a bio that shares the original bio's biovec
856  * @bdev: block_device to clone onto
857  * @bio_src: bio to clone from
858  * @gfp: allocation priority
859  * @bs: bio_set to allocate from
860  *
861  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
862  * bio, but not the actual data it points to.
863  *
864  * The caller must ensure that the return bio is not freed before @bio_src.
865  */
866 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
867 		gfp_t gfp, struct bio_set *bs)
868 {
869 	struct bio *bio;
870 
871 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
872 	if (!bio)
873 		return NULL;
874 
875 	if (__bio_clone(bio, bio_src, gfp) < 0) {
876 		bio_put(bio);
877 		return NULL;
878 	}
879 	bio->bi_io_vec = bio_src->bi_io_vec;
880 
881 	return bio;
882 }
883 EXPORT_SYMBOL(bio_alloc_clone);
884 
885 /**
886  * bio_init_clone - clone a bio that shares the original bio's biovec
887  * @bdev: block_device to clone onto
888  * @bio: bio to clone into
889  * @bio_src: bio to clone from
890  * @gfp: allocation priority
891  *
892  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
893  * The caller owns the returned bio, but not the actual data it points to.
894  *
895  * The caller must ensure that @bio_src is not freed before @bio.
896  */
897 int bio_init_clone(struct block_device *bdev, struct bio *bio,
898 		struct bio *bio_src, gfp_t gfp)
899 {
900 	int ret;
901 
902 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
903 	ret = __bio_clone(bio, bio_src, gfp);
904 	if (ret)
905 		bio_uninit(bio);
906 	return ret;
907 }
908 EXPORT_SYMBOL(bio_init_clone);
909 
910 /**
911  * bio_full - check if the bio is full
912  * @bio:	bio to check
913  * @len:	length of one segment to be added
914  *
915  * Return true if @bio is full and one segment with @len bytes can't be
916  * added to the bio, otherwise return false
917  */
918 static inline bool bio_full(struct bio *bio, unsigned len)
919 {
920 	if (bio->bi_vcnt >= bio->bi_max_vecs)
921 		return true;
922 	if (bio->bi_iter.bi_size > UINT_MAX - len)
923 		return true;
924 	return false;
925 }
926 
927 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
928 		unsigned int len, unsigned int off)
929 {
930 	size_t bv_end = bv->bv_offset + bv->bv_len;
931 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
932 	phys_addr_t page_addr = page_to_phys(page);
933 
934 	if (vec_end_addr + 1 != page_addr + off)
935 		return false;
936 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
937 		return false;
938 
939 	if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
940 		if (IS_ENABLED(CONFIG_KMSAN))
941 			return false;
942 		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
943 			return false;
944 	}
945 
946 	bv->bv_len += len;
947 	return true;
948 }
949 
950 /*
951  * Try to merge a page into a segment, while obeying the hardware segment
952  * size limit.
953  *
954  * This is kept around for the integrity metadata, which is still tries
955  * to build the initial bio to the hardware limit and doesn't have proper
956  * helpers to split.  Hopefully this will go away soon.
957  */
958 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
959 		struct page *page, unsigned len, unsigned offset)
960 {
961 	unsigned long mask = queue_segment_boundary(q);
962 	phys_addr_t addr1 = bvec_phys(bv);
963 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
964 
965 	if ((addr1 | mask) != (addr2 | mask))
966 		return false;
967 	if (len > queue_max_segment_size(q) - bv->bv_len)
968 		return false;
969 	return bvec_try_merge_page(bv, page, len, offset);
970 }
971 
972 /**
973  * __bio_add_page - add page(s) to a bio in a new segment
974  * @bio: destination bio
975  * @page: start page to add
976  * @len: length of the data to add, may cross pages
977  * @off: offset of the data relative to @page, may cross pages
978  *
979  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
980  * that @bio has space for another bvec.
981  */
982 void __bio_add_page(struct bio *bio, struct page *page,
983 		unsigned int len, unsigned int off)
984 {
985 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
986 	WARN_ON_ONCE(bio_full(bio, len));
987 
988 	if (is_pci_p2pdma_page(page))
989 		bio->bi_opf |= REQ_NOMERGE;
990 
991 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
992 	bio->bi_iter.bi_size += len;
993 	bio->bi_vcnt++;
994 }
995 EXPORT_SYMBOL_GPL(__bio_add_page);
996 
997 /**
998  * bio_add_virt_nofail - add data in the direct kernel mapping to a bio
999  * @bio: destination bio
1000  * @vaddr: data to add
1001  * @len: length of the data to add, may cross pages
1002  *
1003  * Add the data at @vaddr to @bio.  The caller must have ensure a segment
1004  * is available for the added data.  No merging into an existing segment
1005  * will be performed.
1006  */
1007 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1008 {
1009 	__bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1010 }
1011 EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1012 
1013 /**
1014  *	bio_add_page	-	attempt to add page(s) to bio
1015  *	@bio: destination bio
1016  *	@page: start page to add
1017  *	@len: vec entry length, may cross pages
1018  *	@offset: vec entry offset relative to @page, may cross pages
1019  *
1020  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1021  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1022  */
1023 int bio_add_page(struct bio *bio, struct page *page,
1024 		 unsigned int len, unsigned int offset)
1025 {
1026 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1027 		return 0;
1028 	if (bio->bi_iter.bi_size > UINT_MAX - len)
1029 		return 0;
1030 
1031 	if (bio->bi_vcnt > 0) {
1032 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1033 
1034 		if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
1035 			return 0;
1036 
1037 		if (bvec_try_merge_page(bv, page, len, offset)) {
1038 			bio->bi_iter.bi_size += len;
1039 			return len;
1040 		}
1041 	}
1042 
1043 	if (bio->bi_vcnt >= bio->bi_max_vecs)
1044 		return 0;
1045 	__bio_add_page(bio, page, len, offset);
1046 	return len;
1047 }
1048 EXPORT_SYMBOL(bio_add_page);
1049 
1050 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1051 			  size_t off)
1052 {
1053 	unsigned long nr = off / PAGE_SIZE;
1054 
1055 	WARN_ON_ONCE(len > UINT_MAX);
1056 	__bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1057 }
1058 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1059 
1060 /**
1061  * bio_add_folio - Attempt to add part of a folio to a bio.
1062  * @bio: BIO to add to.
1063  * @folio: Folio to add.
1064  * @len: How many bytes from the folio to add.
1065  * @off: First byte in this folio to add.
1066  *
1067  * Filesystems that use folios can call this function instead of calling
1068  * bio_add_page() for each page in the folio.  If @off is bigger than
1069  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1070  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1071  *
1072  * Return: Whether the addition was successful.
1073  */
1074 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1075 		   size_t off)
1076 {
1077 	unsigned long nr = off / PAGE_SIZE;
1078 
1079 	if (len > UINT_MAX)
1080 		return false;
1081 	return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1082 }
1083 EXPORT_SYMBOL(bio_add_folio);
1084 
1085 /**
1086  * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1087  * @bio: destination bio
1088  * @vaddr: vmalloc address to add
1089  * @len: total length in bytes of the data to add
1090  *
1091  * Add data starting at @vaddr to @bio and return how many bytes were added.
1092  * This may be less than the amount originally asked.  Returns 0 if no data
1093  * could be added to @bio.
1094  *
1095  * This helper calls flush_kernel_vmap_range() for the range added.  For reads
1096  * the caller still needs to manually call invalidate_kernel_vmap_range() in
1097  * the completion handler.
1098  */
1099 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1100 {
1101 	unsigned int offset = offset_in_page(vaddr);
1102 
1103 	len = min(len, PAGE_SIZE - offset);
1104 	if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1105 		return 0;
1106 	if (op_is_write(bio_op(bio)))
1107 		flush_kernel_vmap_range(vaddr, len);
1108 	return len;
1109 }
1110 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1111 
1112 /**
1113  * bio_add_vmalloc - add a vmalloc region to a bio
1114  * @bio: destination bio
1115  * @vaddr: vmalloc address to add
1116  * @len: total length in bytes of the data to add
1117  *
1118  * Add data starting at @vaddr to @bio.  Return %true on success or %false if
1119  * @bio does not have enough space for the payload.
1120  *
1121  * This helper calls flush_kernel_vmap_range() for the range added.  For reads
1122  * the caller still needs to manually call invalidate_kernel_vmap_range() in
1123  * the completion handler.
1124  */
1125 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1126 {
1127 	do {
1128 		unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1129 
1130 		if (!added)
1131 			return false;
1132 		vaddr += added;
1133 		len -= added;
1134 	} while (len);
1135 
1136 	return true;
1137 }
1138 EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1139 
1140 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1141 {
1142 	struct folio_iter fi;
1143 
1144 	bio_for_each_folio_all(fi, bio) {
1145 		size_t nr_pages;
1146 
1147 		if (mark_dirty) {
1148 			folio_lock(fi.folio);
1149 			folio_mark_dirty(fi.folio);
1150 			folio_unlock(fi.folio);
1151 		}
1152 		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1153 			   fi.offset / PAGE_SIZE + 1;
1154 		unpin_user_folio(fi.folio, nr_pages);
1155 	}
1156 }
1157 EXPORT_SYMBOL_GPL(__bio_release_pages);
1158 
1159 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1160 {
1161 	WARN_ON_ONCE(bio->bi_max_vecs);
1162 
1163 	bio->bi_vcnt = iter->nr_segs;
1164 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1165 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1166 	bio->bi_iter.bi_size = iov_iter_count(iter);
1167 	bio_set_flag(bio, BIO_CLONED);
1168 }
1169 
1170 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1171 					 struct page **pages, unsigned int i,
1172 					 struct folio *folio, size_t left,
1173 					 size_t offset)
1174 {
1175 	size_t bytes = left;
1176 	size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1177 	unsigned int j;
1178 
1179 	/*
1180 	 * We might COW a single page in the middle of
1181 	 * a large folio, so we have to check that all
1182 	 * pages belong to the same folio.
1183 	 */
1184 	bytes -= contig_sz;
1185 	for (j = i + 1; j < i + *num_pages; j++) {
1186 		size_t next = min_t(size_t, PAGE_SIZE, bytes);
1187 
1188 		if (page_folio(pages[j]) != folio ||
1189 		    pages[j] != pages[j - 1] + 1) {
1190 			break;
1191 		}
1192 		contig_sz += next;
1193 		bytes -= next;
1194 	}
1195 	*num_pages = j - i;
1196 
1197 	return contig_sz;
1198 }
1199 
1200 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1201 
1202 /**
1203  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1204  * @bio: bio to add pages to
1205  * @iter: iov iterator describing the region to be mapped
1206  *
1207  * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1208  * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1209  * For a multi-segment *iter, this function only adds pages from the next
1210  * non-empty segment of the iov iterator.
1211  */
1212 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1213 {
1214 	iov_iter_extraction_t extraction_flags = 0;
1215 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1216 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1217 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1218 	struct page **pages = (struct page **)bv;
1219 	ssize_t size;
1220 	unsigned int num_pages, i = 0;
1221 	size_t offset, folio_offset, left, len;
1222 	int ret = 0;
1223 
1224 	/*
1225 	 * Move page array up in the allocated memory for the bio vecs as far as
1226 	 * possible so that we can start filling biovecs from the beginning
1227 	 * without overwriting the temporary page array.
1228 	 */
1229 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1230 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1231 
1232 	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1233 		extraction_flags |= ITER_ALLOW_P2PDMA;
1234 
1235 	size = iov_iter_extract_pages(iter, &pages,
1236 				      UINT_MAX - bio->bi_iter.bi_size,
1237 				      nr_pages, extraction_flags, &offset);
1238 	if (unlikely(size <= 0))
1239 		return size ? size : -EFAULT;
1240 
1241 	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1242 	for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1243 		struct page *page = pages[i];
1244 		struct folio *folio = page_folio(page);
1245 		unsigned int old_vcnt = bio->bi_vcnt;
1246 
1247 		folio_offset = ((size_t)folio_page_idx(folio, page) <<
1248 			       PAGE_SHIFT) + offset;
1249 
1250 		len = min(folio_size(folio) - folio_offset, left);
1251 
1252 		num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1253 
1254 		if (num_pages > 1)
1255 			len = get_contig_folio_len(&num_pages, pages, i,
1256 						   folio, left, offset);
1257 
1258 		if (!bio_add_folio(bio, folio, len, folio_offset)) {
1259 			WARN_ON_ONCE(1);
1260 			ret = -EINVAL;
1261 			goto out;
1262 		}
1263 
1264 		if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1265 			/*
1266 			 * We're adding another fragment of a page that already
1267 			 * was part of the last segment.  Undo our pin as the
1268 			 * page was pinned when an earlier fragment of it was
1269 			 * added to the bio and __bio_release_pages expects a
1270 			 * single pin per page.
1271 			 */
1272 			if (offset && bio->bi_vcnt == old_vcnt)
1273 				unpin_user_folio(folio, 1);
1274 		}
1275 		offset = 0;
1276 	}
1277 
1278 	iov_iter_revert(iter, left);
1279 out:
1280 	while (i < nr_pages)
1281 		bio_release_page(bio, pages[i++]);
1282 
1283 	return ret;
1284 }
1285 
1286 /*
1287  * Aligns the bio size to the len_align_mask, releasing excessive bio vecs that
1288  * __bio_iov_iter_get_pages may have inserted, and reverts the trimmed length
1289  * for the next iteration.
1290  */
1291 static int bio_iov_iter_align_down(struct bio *bio, struct iov_iter *iter,
1292 			    unsigned len_align_mask)
1293 {
1294 	size_t nbytes = bio->bi_iter.bi_size & len_align_mask;
1295 
1296 	if (!nbytes)
1297 		return 0;
1298 
1299 	iov_iter_revert(iter, nbytes);
1300 	bio->bi_iter.bi_size -= nbytes;
1301 	do {
1302 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1303 
1304 		if (nbytes < bv->bv_len) {
1305 			bv->bv_len -= nbytes;
1306 			break;
1307 		}
1308 
1309 		bio_release_page(bio, bv->bv_page);
1310 		bio->bi_vcnt--;
1311 		nbytes -= bv->bv_len;
1312 	} while (nbytes);
1313 
1314 	if (!bio->bi_vcnt)
1315 		return -EFAULT;
1316 	return 0;
1317 }
1318 
1319 /**
1320  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1321  * @bio: bio to add pages to
1322  * @iter: iov iterator describing the region to be added
1323  * @len_align_mask: the mask to align the total size to, 0 for any length
1324  *
1325  * This takes either an iterator pointing to user memory, or one pointing to
1326  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1327  * map them into the kernel. On IO completion, the caller should put those
1328  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1329  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1330  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1331  * completed by a call to ->ki_complete() or returns with an error other than
1332  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1333  * on IO completion. If it isn't, then pages should be released.
1334  *
1335  * The function tries, but does not guarantee, to pin as many pages as
1336  * fit into the bio, or are requested in @iter, whatever is smaller. If
1337  * MM encounters an error pinning the requested pages, it stops. Error
1338  * is returned only if 0 pages could be pinned.
1339  */
1340 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter,
1341 			   unsigned len_align_mask)
1342 {
1343 	int ret = 0;
1344 
1345 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1346 		return -EIO;
1347 
1348 	if (iov_iter_is_bvec(iter)) {
1349 		bio_iov_bvec_set(bio, iter);
1350 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1351 		return 0;
1352 	}
1353 
1354 	if (iov_iter_extract_will_pin(iter))
1355 		bio_set_flag(bio, BIO_PAGE_PINNED);
1356 	do {
1357 		ret = __bio_iov_iter_get_pages(bio, iter);
1358 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1359 
1360 	if (bio->bi_vcnt)
1361 		return bio_iov_iter_align_down(bio, iter, len_align_mask);
1362 	return ret;
1363 }
1364 
1365 static void submit_bio_wait_endio(struct bio *bio)
1366 {
1367 	complete(bio->bi_private);
1368 }
1369 
1370 /**
1371  * submit_bio_wait - submit a bio, and wait until it completes
1372  * @bio: The &struct bio which describes the I/O
1373  *
1374  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1375  * bio_endio() on failure.
1376  *
1377  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1378  * result in bio reference to be consumed. The caller must drop the reference
1379  * on his own.
1380  */
1381 int submit_bio_wait(struct bio *bio)
1382 {
1383 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1384 			bio->bi_bdev->bd_disk->lockdep_map);
1385 
1386 	bio->bi_private = &done;
1387 	bio->bi_end_io = submit_bio_wait_endio;
1388 	bio->bi_opf |= REQ_SYNC;
1389 	submit_bio(bio);
1390 	blk_wait_io(&done);
1391 
1392 	return blk_status_to_errno(bio->bi_status);
1393 }
1394 EXPORT_SYMBOL(submit_bio_wait);
1395 
1396 /**
1397  * bdev_rw_virt - synchronously read into / write from kernel mapping
1398  * @bdev:	block device to access
1399  * @sector:	sector to access
1400  * @data:	data to read/write
1401  * @len:	length in byte to read/write
1402  * @op:		operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1403  *
1404  * Performs synchronous I/O to @bdev for @data/@len.  @data must be in
1405  * the kernel direct mapping and not a vmalloc address.
1406  */
1407 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1408 		size_t len, enum req_op op)
1409 {
1410 	struct bio_vec bv;
1411 	struct bio bio;
1412 	int error;
1413 
1414 	if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1415 		return -EIO;
1416 
1417 	bio_init(&bio, bdev, &bv, 1, op);
1418 	bio.bi_iter.bi_sector = sector;
1419 	bio_add_virt_nofail(&bio, data, len);
1420 	error = submit_bio_wait(&bio);
1421 	bio_uninit(&bio);
1422 	return error;
1423 }
1424 EXPORT_SYMBOL_GPL(bdev_rw_virt);
1425 
1426 static void bio_wait_end_io(struct bio *bio)
1427 {
1428 	complete(bio->bi_private);
1429 	bio_put(bio);
1430 }
1431 
1432 /*
1433  * bio_await_chain - ends @bio and waits for every chained bio to complete
1434  */
1435 void bio_await_chain(struct bio *bio)
1436 {
1437 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1438 			bio->bi_bdev->bd_disk->lockdep_map);
1439 
1440 	bio->bi_private = &done;
1441 	bio->bi_end_io = bio_wait_end_io;
1442 	bio_endio(bio);
1443 	blk_wait_io(&done);
1444 }
1445 
1446 void __bio_advance(struct bio *bio, unsigned bytes)
1447 {
1448 	if (bio_integrity(bio))
1449 		bio_integrity_advance(bio, bytes);
1450 
1451 	bio_crypt_advance(bio, bytes);
1452 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1453 }
1454 EXPORT_SYMBOL(__bio_advance);
1455 
1456 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1457 			struct bio *src, struct bvec_iter *src_iter)
1458 {
1459 	while (src_iter->bi_size && dst_iter->bi_size) {
1460 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1461 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1462 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1463 		void *src_buf = bvec_kmap_local(&src_bv);
1464 		void *dst_buf = bvec_kmap_local(&dst_bv);
1465 
1466 		memcpy(dst_buf, src_buf, bytes);
1467 
1468 		kunmap_local(dst_buf);
1469 		kunmap_local(src_buf);
1470 
1471 		bio_advance_iter_single(src, src_iter, bytes);
1472 		bio_advance_iter_single(dst, dst_iter, bytes);
1473 	}
1474 }
1475 EXPORT_SYMBOL(bio_copy_data_iter);
1476 
1477 /**
1478  * bio_copy_data - copy contents of data buffers from one bio to another
1479  * @src: source bio
1480  * @dst: destination bio
1481  *
1482  * Stops when it reaches the end of either @src or @dst - that is, copies
1483  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1484  */
1485 void bio_copy_data(struct bio *dst, struct bio *src)
1486 {
1487 	struct bvec_iter src_iter = src->bi_iter;
1488 	struct bvec_iter dst_iter = dst->bi_iter;
1489 
1490 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1491 }
1492 EXPORT_SYMBOL(bio_copy_data);
1493 
1494 void bio_free_pages(struct bio *bio)
1495 {
1496 	struct bio_vec *bvec;
1497 	struct bvec_iter_all iter_all;
1498 
1499 	bio_for_each_segment_all(bvec, bio, iter_all)
1500 		__free_page(bvec->bv_page);
1501 }
1502 EXPORT_SYMBOL(bio_free_pages);
1503 
1504 /*
1505  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1506  * for performing direct-IO in BIOs.
1507  *
1508  * The problem is that we cannot run folio_mark_dirty() from interrupt context
1509  * because the required locks are not interrupt-safe.  So what we can do is to
1510  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1511  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1512  * in process context.
1513  *
1514  * Note that this code is very hard to test under normal circumstances because
1515  * direct-io pins the pages with get_user_pages().  This makes
1516  * is_page_cache_freeable return false, and the VM will not clean the pages.
1517  * But other code (eg, flusher threads) could clean the pages if they are mapped
1518  * pagecache.
1519  *
1520  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1521  * deferred bio dirtying paths.
1522  */
1523 
1524 /*
1525  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1526  */
1527 void bio_set_pages_dirty(struct bio *bio)
1528 {
1529 	struct folio_iter fi;
1530 
1531 	bio_for_each_folio_all(fi, bio) {
1532 		folio_lock(fi.folio);
1533 		folio_mark_dirty(fi.folio);
1534 		folio_unlock(fi.folio);
1535 	}
1536 }
1537 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1538 
1539 /*
1540  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1541  * If they are, then fine.  If, however, some pages are clean then they must
1542  * have been written out during the direct-IO read.  So we take another ref on
1543  * the BIO and re-dirty the pages in process context.
1544  *
1545  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1546  * here on.  It will unpin each page and will run one bio_put() against the
1547  * BIO.
1548  */
1549 
1550 static void bio_dirty_fn(struct work_struct *work);
1551 
1552 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1553 static DEFINE_SPINLOCK(bio_dirty_lock);
1554 static struct bio *bio_dirty_list;
1555 
1556 /*
1557  * This runs in process context
1558  */
1559 static void bio_dirty_fn(struct work_struct *work)
1560 {
1561 	struct bio *bio, *next;
1562 
1563 	spin_lock_irq(&bio_dirty_lock);
1564 	next = bio_dirty_list;
1565 	bio_dirty_list = NULL;
1566 	spin_unlock_irq(&bio_dirty_lock);
1567 
1568 	while ((bio = next) != NULL) {
1569 		next = bio->bi_private;
1570 
1571 		bio_release_pages(bio, true);
1572 		bio_put(bio);
1573 	}
1574 }
1575 
1576 void bio_check_pages_dirty(struct bio *bio)
1577 {
1578 	struct folio_iter fi;
1579 	unsigned long flags;
1580 
1581 	bio_for_each_folio_all(fi, bio) {
1582 		if (!folio_test_dirty(fi.folio))
1583 			goto defer;
1584 	}
1585 
1586 	bio_release_pages(bio, false);
1587 	bio_put(bio);
1588 	return;
1589 defer:
1590 	spin_lock_irqsave(&bio_dirty_lock, flags);
1591 	bio->bi_private = bio_dirty_list;
1592 	bio_dirty_list = bio;
1593 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1594 	schedule_work(&bio_dirty_work);
1595 }
1596 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1597 
1598 static inline bool bio_remaining_done(struct bio *bio)
1599 {
1600 	/*
1601 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1602 	 * we always end io on the first invocation.
1603 	 */
1604 	if (!bio_flagged(bio, BIO_CHAIN))
1605 		return true;
1606 
1607 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1608 
1609 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1610 		bio_clear_flag(bio, BIO_CHAIN);
1611 		return true;
1612 	}
1613 
1614 	return false;
1615 }
1616 
1617 /**
1618  * bio_endio - end I/O on a bio
1619  * @bio:	bio
1620  *
1621  * Description:
1622  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1623  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1624  *   bio unless they own it and thus know that it has an end_io function.
1625  *
1626  *   bio_endio() can be called several times on a bio that has been chained
1627  *   using bio_chain().  The ->bi_end_io() function will only be called the
1628  *   last time.
1629  **/
1630 void bio_endio(struct bio *bio)
1631 {
1632 again:
1633 	if (!bio_remaining_done(bio))
1634 		return;
1635 	if (!bio_integrity_endio(bio))
1636 		return;
1637 
1638 	blk_zone_bio_endio(bio);
1639 
1640 	rq_qos_done_bio(bio);
1641 
1642 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1643 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1644 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1645 	}
1646 
1647 	/*
1648 	 * Need to have a real endio function for chained bios, otherwise
1649 	 * various corner cases will break (like stacking block devices that
1650 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1651 	 * recursion and blowing the stack. Tail call optimization would
1652 	 * handle this, but compiling with frame pointers also disables
1653 	 * gcc's sibling call optimization.
1654 	 */
1655 	if (bio->bi_end_io == bio_chain_endio) {
1656 		bio = __bio_chain_endio(bio);
1657 		goto again;
1658 	}
1659 
1660 #ifdef CONFIG_BLK_CGROUP
1661 	/*
1662 	 * Release cgroup info.  We shouldn't have to do this here, but quite
1663 	 * a few callers of bio_init fail to call bio_uninit, so we cover up
1664 	 * for that here at least for now.
1665 	 */
1666 	if (bio->bi_blkg) {
1667 		blkg_put(bio->bi_blkg);
1668 		bio->bi_blkg = NULL;
1669 	}
1670 #endif
1671 
1672 	if (bio->bi_end_io)
1673 		bio->bi_end_io(bio);
1674 }
1675 EXPORT_SYMBOL(bio_endio);
1676 
1677 /**
1678  * bio_split - split a bio
1679  * @bio:	bio to split
1680  * @sectors:	number of sectors to split from the front of @bio
1681  * @gfp:	gfp mask
1682  * @bs:		bio set to allocate from
1683  *
1684  * Allocates and returns a new bio which represents @sectors from the start of
1685  * @bio, and updates @bio to represent the remaining sectors.
1686  *
1687  * Unless this is a discard request the newly allocated bio will point
1688  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1689  * neither @bio nor @bs are freed before the split bio.
1690  */
1691 struct bio *bio_split(struct bio *bio, int sectors,
1692 		      gfp_t gfp, struct bio_set *bs)
1693 {
1694 	struct bio *split;
1695 
1696 	if (WARN_ON_ONCE(sectors <= 0))
1697 		return ERR_PTR(-EINVAL);
1698 	if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1699 		return ERR_PTR(-EINVAL);
1700 
1701 	/* Zone append commands cannot be split */
1702 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1703 		return ERR_PTR(-EINVAL);
1704 
1705 	/* atomic writes cannot be split */
1706 	if (bio->bi_opf & REQ_ATOMIC)
1707 		return ERR_PTR(-EINVAL);
1708 
1709 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1710 	if (!split)
1711 		return ERR_PTR(-ENOMEM);
1712 
1713 	split->bi_iter.bi_size = sectors << 9;
1714 
1715 	if (bio_integrity(split))
1716 		bio_integrity_trim(split);
1717 
1718 	bio_advance(bio, split->bi_iter.bi_size);
1719 
1720 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1721 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1722 
1723 	return split;
1724 }
1725 EXPORT_SYMBOL(bio_split);
1726 
1727 /**
1728  * bio_trim - trim a bio
1729  * @bio:	bio to trim
1730  * @offset:	number of sectors to trim from the front of @bio
1731  * @size:	size we want to trim @bio to, in sectors
1732  *
1733  * This function is typically used for bios that are cloned and submitted
1734  * to the underlying device in parts.
1735  */
1736 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1737 {
1738 	/* We should never trim an atomic write */
1739 	if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1740 		return;
1741 
1742 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1743 			 offset + size > bio_sectors(bio)))
1744 		return;
1745 
1746 	size <<= 9;
1747 	if (offset == 0 && size == bio->bi_iter.bi_size)
1748 		return;
1749 
1750 	bio_advance(bio, offset << 9);
1751 	bio->bi_iter.bi_size = size;
1752 
1753 	if (bio_integrity(bio))
1754 		bio_integrity_trim(bio);
1755 }
1756 EXPORT_SYMBOL_GPL(bio_trim);
1757 
1758 /*
1759  * create memory pools for biovec's in a bio_set.
1760  * use the global biovec slabs created for general use.
1761  */
1762 int biovec_init_pool(mempool_t *pool, int pool_entries)
1763 {
1764 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1765 
1766 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1767 }
1768 
1769 /*
1770  * bioset_exit - exit a bioset initialized with bioset_init()
1771  *
1772  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1773  * kzalloc()).
1774  */
1775 void bioset_exit(struct bio_set *bs)
1776 {
1777 	bio_alloc_cache_destroy(bs);
1778 	if (bs->rescue_workqueue)
1779 		destroy_workqueue(bs->rescue_workqueue);
1780 	bs->rescue_workqueue = NULL;
1781 
1782 	mempool_exit(&bs->bio_pool);
1783 	mempool_exit(&bs->bvec_pool);
1784 
1785 	if (bs->bio_slab)
1786 		bio_put_slab(bs);
1787 	bs->bio_slab = NULL;
1788 }
1789 EXPORT_SYMBOL(bioset_exit);
1790 
1791 /**
1792  * bioset_init - Initialize a bio_set
1793  * @bs:		pool to initialize
1794  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1795  * @front_pad:	Number of bytes to allocate in front of the returned bio
1796  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1797  *              and %BIOSET_NEED_RESCUER
1798  *
1799  * Description:
1800  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1801  *    to ask for a number of bytes to be allocated in front of the bio.
1802  *    Front pad allocation is useful for embedding the bio inside
1803  *    another structure, to avoid allocating extra data to go with the bio.
1804  *    Note that the bio must be embedded at the END of that structure always,
1805  *    or things will break badly.
1806  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1807  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1808  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1809  *    to dispatch queued requests when the mempool runs out of space.
1810  *
1811  */
1812 int bioset_init(struct bio_set *bs,
1813 		unsigned int pool_size,
1814 		unsigned int front_pad,
1815 		int flags)
1816 {
1817 	bs->front_pad = front_pad;
1818 	if (flags & BIOSET_NEED_BVECS)
1819 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1820 	else
1821 		bs->back_pad = 0;
1822 
1823 	spin_lock_init(&bs->rescue_lock);
1824 	bio_list_init(&bs->rescue_list);
1825 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1826 
1827 	bs->bio_slab = bio_find_or_create_slab(bs);
1828 	if (!bs->bio_slab)
1829 		return -ENOMEM;
1830 
1831 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1832 		goto bad;
1833 
1834 	if ((flags & BIOSET_NEED_BVECS) &&
1835 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1836 		goto bad;
1837 
1838 	if (flags & BIOSET_NEED_RESCUER) {
1839 		bs->rescue_workqueue = alloc_workqueue("bioset",
1840 							WQ_MEM_RECLAIM, 0);
1841 		if (!bs->rescue_workqueue)
1842 			goto bad;
1843 	}
1844 	if (flags & BIOSET_PERCPU_CACHE) {
1845 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1846 		if (!bs->cache)
1847 			goto bad;
1848 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1849 	}
1850 
1851 	return 0;
1852 bad:
1853 	bioset_exit(bs);
1854 	return -ENOMEM;
1855 }
1856 EXPORT_SYMBOL(bioset_init);
1857 
1858 static int __init init_bio(void)
1859 {
1860 	int i;
1861 
1862 	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1863 
1864 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1865 		struct biovec_slab *bvs = bvec_slabs + i;
1866 
1867 		bvs->slab = kmem_cache_create(bvs->name,
1868 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1869 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1870 	}
1871 
1872 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1873 					bio_cpu_dead);
1874 
1875 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1876 			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1877 		panic("bio: can't allocate bios\n");
1878 
1879 	return 0;
1880 }
1881 subsys_initcall(init_bio);
1882