1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <linux/shmem_fs.h> 42 #include <trace/events/writeback.h> 43 44 #include "internal.h" 45 46 /* 47 * Sleep at most 200ms at a time in balance_dirty_pages(). 48 */ 49 #define MAX_PAUSE max(HZ/5, 1) 50 51 /* 52 * Try to keep balance_dirty_pages() call intervals higher than this many pages 53 * by raising pause time to max_pause when falls below it. 54 */ 55 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 56 57 /* 58 * Estimate write bandwidth or update dirty limit at 200ms intervals. 59 */ 60 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 61 62 #define RATELIMIT_CALC_SHIFT 10 63 64 /* 65 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 66 * will look to see if it needs to force writeback or throttling. 67 */ 68 static long ratelimit_pages = 32; 69 70 /* The following parameters are exported via /proc/sys/vm */ 71 72 /* 73 * Start background writeback (via writeback threads) at this percentage 74 */ 75 static int dirty_background_ratio = 10; 76 77 /* 78 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 79 * dirty_background_ratio * the amount of dirtyable memory 80 */ 81 static unsigned long dirty_background_bytes; 82 83 /* 84 * free highmem will not be subtracted from the total free memory 85 * for calculating free ratios if vm_highmem_is_dirtyable is true 86 */ 87 static int vm_highmem_is_dirtyable; 88 89 /* 90 * The generator of dirty data starts writeback at this percentage 91 */ 92 static int vm_dirty_ratio = 20; 93 94 /* 95 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 96 * vm_dirty_ratio * the amount of dirtyable memory 97 */ 98 static unsigned long vm_dirty_bytes; 99 100 /* 101 * The interval between `kupdate'-style writebacks 102 */ 103 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 104 105 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 106 107 /* 108 * The longest time for which data is allowed to remain dirty 109 */ 110 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 111 112 /* End of sysctl-exported parameters */ 113 114 struct wb_domain global_wb_domain; 115 116 /* 117 * Length of period for aging writeout fractions of bdis. This is an 118 * arbitrarily chosen number. The longer the period, the slower fractions will 119 * reflect changes in current writeout rate. 120 */ 121 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 122 123 #ifdef CONFIG_CGROUP_WRITEBACK 124 125 #define GDTC_INIT(__wb) .wb = (__wb), \ 126 .dom = &global_wb_domain, \ 127 .wb_completions = &(__wb)->completions 128 129 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 130 131 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 132 .dom = mem_cgroup_wb_domain(__wb), \ 133 .wb_completions = &(__wb)->memcg_completions, \ 134 .gdtc = __gdtc 135 136 static bool mdtc_valid(struct dirty_throttle_control *dtc) 137 { 138 return dtc->dom; 139 } 140 141 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 142 { 143 return dtc->dom; 144 } 145 146 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 147 { 148 return mdtc->gdtc; 149 } 150 151 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 152 { 153 return &wb->memcg_completions; 154 } 155 156 static void wb_min_max_ratio(struct bdi_writeback *wb, 157 unsigned long *minp, unsigned long *maxp) 158 { 159 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 160 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 161 unsigned long long min = wb->bdi->min_ratio; 162 unsigned long long max = wb->bdi->max_ratio; 163 164 /* 165 * @wb may already be clean by the time control reaches here and 166 * the total may not include its bw. 167 */ 168 if (this_bw < tot_bw) { 169 if (min) { 170 min *= this_bw; 171 min = div64_ul(min, tot_bw); 172 } 173 if (max < 100 * BDI_RATIO_SCALE) { 174 max *= this_bw; 175 max = div64_ul(max, tot_bw); 176 } 177 } 178 179 *minp = min; 180 *maxp = max; 181 } 182 183 #else /* CONFIG_CGROUP_WRITEBACK */ 184 185 #define GDTC_INIT(__wb) .wb = (__wb), \ 186 .wb_completions = &(__wb)->completions 187 #define GDTC_INIT_NO_WB 188 #define MDTC_INIT(__wb, __gdtc) 189 190 static bool mdtc_valid(struct dirty_throttle_control *dtc) 191 { 192 return false; 193 } 194 195 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 196 { 197 return &global_wb_domain; 198 } 199 200 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 201 { 202 return NULL; 203 } 204 205 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 206 { 207 return NULL; 208 } 209 210 static void wb_min_max_ratio(struct bdi_writeback *wb, 211 unsigned long *minp, unsigned long *maxp) 212 { 213 *minp = wb->bdi->min_ratio; 214 *maxp = wb->bdi->max_ratio; 215 } 216 217 #endif /* CONFIG_CGROUP_WRITEBACK */ 218 219 /* 220 * In a memory zone, there is a certain amount of pages we consider 221 * available for the page cache, which is essentially the number of 222 * free and reclaimable pages, minus some zone reserves to protect 223 * lowmem and the ability to uphold the zone's watermarks without 224 * requiring writeback. 225 * 226 * This number of dirtyable pages is the base value of which the 227 * user-configurable dirty ratio is the effective number of pages that 228 * are allowed to be actually dirtied. Per individual zone, or 229 * globally by using the sum of dirtyable pages over all zones. 230 * 231 * Because the user is allowed to specify the dirty limit globally as 232 * absolute number of bytes, calculating the per-zone dirty limit can 233 * require translating the configured limit into a percentage of 234 * global dirtyable memory first. 235 */ 236 237 /** 238 * node_dirtyable_memory - number of dirtyable pages in a node 239 * @pgdat: the node 240 * 241 * Return: the node's number of pages potentially available for dirty 242 * page cache. This is the base value for the per-node dirty limits. 243 */ 244 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 245 { 246 unsigned long nr_pages = 0; 247 int z; 248 249 for (z = 0; z < MAX_NR_ZONES; z++) { 250 struct zone *zone = pgdat->node_zones + z; 251 252 if (!populated_zone(zone)) 253 continue; 254 255 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 256 } 257 258 /* 259 * Pages reserved for the kernel should not be considered 260 * dirtyable, to prevent a situation where reclaim has to 261 * clean pages in order to balance the zones. 262 */ 263 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 264 265 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 266 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 267 268 return nr_pages; 269 } 270 271 static unsigned long highmem_dirtyable_memory(unsigned long total) 272 { 273 #ifdef CONFIG_HIGHMEM 274 int node; 275 unsigned long x = 0; 276 int i; 277 278 for_each_node_state(node, N_HIGH_MEMORY) { 279 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 280 struct zone *z; 281 unsigned long nr_pages; 282 283 if (!is_highmem_idx(i)) 284 continue; 285 286 z = &NODE_DATA(node)->node_zones[i]; 287 if (!populated_zone(z)) 288 continue; 289 290 nr_pages = zone_page_state(z, NR_FREE_PAGES); 291 /* watch for underflows */ 292 nr_pages -= min(nr_pages, high_wmark_pages(z)); 293 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 294 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 295 x += nr_pages; 296 } 297 } 298 299 /* 300 * Make sure that the number of highmem pages is never larger 301 * than the number of the total dirtyable memory. This can only 302 * occur in very strange VM situations but we want to make sure 303 * that this does not occur. 304 */ 305 return min(x, total); 306 #else 307 return 0; 308 #endif 309 } 310 311 /** 312 * global_dirtyable_memory - number of globally dirtyable pages 313 * 314 * Return: the global number of pages potentially available for dirty 315 * page cache. This is the base value for the global dirty limits. 316 */ 317 static unsigned long global_dirtyable_memory(void) 318 { 319 unsigned long x; 320 321 x = global_zone_page_state(NR_FREE_PAGES); 322 /* 323 * Pages reserved for the kernel should not be considered 324 * dirtyable, to prevent a situation where reclaim has to 325 * clean pages in order to balance the zones. 326 */ 327 x -= min(x, totalreserve_pages); 328 329 x += global_node_page_state(NR_INACTIVE_FILE); 330 x += global_node_page_state(NR_ACTIVE_FILE); 331 332 if (!vm_highmem_is_dirtyable) 333 x -= highmem_dirtyable_memory(x); 334 335 return x + 1; /* Ensure that we never return 0 */ 336 } 337 338 /** 339 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 340 * @dtc: dirty_throttle_control of interest 341 * 342 * Calculate @dtc->thresh and ->bg_thresh considering 343 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 344 * must ensure that @dtc->avail is set before calling this function. The 345 * dirty limits will be lifted by 1/4 for real-time tasks. 346 */ 347 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 348 { 349 const unsigned long available_memory = dtc->avail; 350 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 351 unsigned long bytes = vm_dirty_bytes; 352 unsigned long bg_bytes = dirty_background_bytes; 353 /* convert ratios to per-PAGE_SIZE for higher precision */ 354 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 355 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 356 unsigned long thresh; 357 unsigned long bg_thresh; 358 struct task_struct *tsk; 359 360 /* gdtc is !NULL iff @dtc is for memcg domain */ 361 if (gdtc) { 362 unsigned long global_avail = gdtc->avail; 363 364 /* 365 * The byte settings can't be applied directly to memcg 366 * domains. Convert them to ratios by scaling against 367 * globally available memory. As the ratios are in 368 * per-PAGE_SIZE, they can be obtained by dividing bytes by 369 * number of pages. 370 */ 371 if (bytes) 372 ratio = min(DIV_ROUND_UP(bytes, global_avail), 373 PAGE_SIZE); 374 if (bg_bytes) 375 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 376 PAGE_SIZE); 377 bytes = bg_bytes = 0; 378 } 379 380 if (bytes) 381 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 382 else 383 thresh = (ratio * available_memory) / PAGE_SIZE; 384 385 if (bg_bytes) 386 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 387 else 388 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 389 390 tsk = current; 391 if (rt_or_dl_task(tsk)) { 392 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 393 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 394 } 395 /* 396 * Dirty throttling logic assumes the limits in page units fit into 397 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 398 */ 399 if (thresh > UINT_MAX) 400 thresh = UINT_MAX; 401 /* This makes sure bg_thresh is within 32-bits as well */ 402 if (bg_thresh >= thresh) 403 bg_thresh = thresh / 2; 404 dtc->thresh = thresh; 405 dtc->bg_thresh = bg_thresh; 406 407 /* we should eventually report the domain in the TP */ 408 if (!gdtc) 409 trace_global_dirty_state(bg_thresh, thresh); 410 } 411 412 /** 413 * global_dirty_limits - background-writeback and dirty-throttling thresholds 414 * @pbackground: out parameter for bg_thresh 415 * @pdirty: out parameter for thresh 416 * 417 * Calculate bg_thresh and thresh for global_wb_domain. See 418 * domain_dirty_limits() for details. 419 */ 420 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 421 { 422 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 423 424 gdtc.avail = global_dirtyable_memory(); 425 domain_dirty_limits(&gdtc); 426 427 *pbackground = gdtc.bg_thresh; 428 *pdirty = gdtc.thresh; 429 } 430 431 /** 432 * node_dirty_limit - maximum number of dirty pages allowed in a node 433 * @pgdat: the node 434 * 435 * Return: the maximum number of dirty pages allowed in a node, based 436 * on the node's dirtyable memory. 437 */ 438 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 439 { 440 unsigned long node_memory = node_dirtyable_memory(pgdat); 441 struct task_struct *tsk = current; 442 unsigned long dirty; 443 444 if (vm_dirty_bytes) 445 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 446 node_memory / global_dirtyable_memory(); 447 else 448 dirty = vm_dirty_ratio * node_memory / 100; 449 450 if (rt_or_dl_task(tsk)) 451 dirty += dirty / 4; 452 453 /* 454 * Dirty throttling logic assumes the limits in page units fit into 455 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 456 */ 457 return min_t(unsigned long, dirty, UINT_MAX); 458 } 459 460 /** 461 * node_dirty_ok - tells whether a node is within its dirty limits 462 * @pgdat: the node to check 463 * 464 * Return: %true when the dirty pages in @pgdat are within the node's 465 * dirty limit, %false if the limit is exceeded. 466 */ 467 bool node_dirty_ok(struct pglist_data *pgdat) 468 { 469 unsigned long limit = node_dirty_limit(pgdat); 470 unsigned long nr_pages = 0; 471 472 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 473 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 474 475 return nr_pages <= limit; 476 } 477 478 #ifdef CONFIG_SYSCTL 479 static int dirty_background_ratio_handler(const struct ctl_table *table, int write, 480 void *buffer, size_t *lenp, loff_t *ppos) 481 { 482 int ret; 483 484 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 485 if (ret == 0 && write) 486 dirty_background_bytes = 0; 487 return ret; 488 } 489 490 static int dirty_background_bytes_handler(const struct ctl_table *table, int write, 491 void *buffer, size_t *lenp, loff_t *ppos) 492 { 493 int ret; 494 unsigned long old_bytes = dirty_background_bytes; 495 496 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 497 if (ret == 0 && write) { 498 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > 499 UINT_MAX) { 500 dirty_background_bytes = old_bytes; 501 return -ERANGE; 502 } 503 dirty_background_ratio = 0; 504 } 505 return ret; 506 } 507 508 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer, 509 size_t *lenp, loff_t *ppos) 510 { 511 int old_ratio = vm_dirty_ratio; 512 int ret; 513 514 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 516 vm_dirty_bytes = 0; 517 writeback_set_ratelimit(); 518 } 519 return ret; 520 } 521 522 static int dirty_bytes_handler(const struct ctl_table *table, int write, 523 void *buffer, size_t *lenp, loff_t *ppos) 524 { 525 unsigned long old_bytes = vm_dirty_bytes; 526 int ret; 527 528 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 529 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 530 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { 531 vm_dirty_bytes = old_bytes; 532 return -ERANGE; 533 } 534 writeback_set_ratelimit(); 535 vm_dirty_ratio = 0; 536 } 537 return ret; 538 } 539 #endif 540 541 static unsigned long wp_next_time(unsigned long cur_time) 542 { 543 cur_time += VM_COMPLETIONS_PERIOD_LEN; 544 /* 0 has a special meaning... */ 545 if (!cur_time) 546 return 1; 547 return cur_time; 548 } 549 550 static void wb_domain_writeout_add(struct wb_domain *dom, 551 struct fprop_local_percpu *completions, 552 unsigned int max_prop_frac, long nr) 553 { 554 __fprop_add_percpu_max(&dom->completions, completions, 555 max_prop_frac, nr); 556 /* First event after period switching was turned off? */ 557 if (unlikely(!dom->period_time)) { 558 /* 559 * We can race with other wb_domain_writeout_add calls here but 560 * it does not cause any harm since the resulting time when 561 * timer will fire and what is in writeout_period_time will be 562 * roughly the same. 563 */ 564 dom->period_time = wp_next_time(jiffies); 565 mod_timer(&dom->period_timer, dom->period_time); 566 } 567 } 568 569 /* 570 * Increment @wb's writeout completion count and the global writeout 571 * completion count. Called from __folio_end_writeback(). 572 */ 573 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 574 { 575 struct wb_domain *cgdom; 576 577 wb_stat_mod(wb, WB_WRITTEN, nr); 578 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 579 wb->bdi->max_prop_frac, nr); 580 581 cgdom = mem_cgroup_wb_domain(wb); 582 if (cgdom) 583 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 584 wb->bdi->max_prop_frac, nr); 585 } 586 587 void wb_writeout_inc(struct bdi_writeback *wb) 588 { 589 unsigned long flags; 590 591 local_irq_save(flags); 592 __wb_writeout_add(wb, 1); 593 local_irq_restore(flags); 594 } 595 EXPORT_SYMBOL_GPL(wb_writeout_inc); 596 597 /* 598 * On idle system, we can be called long after we scheduled because we use 599 * deferred timers so count with missed periods. 600 */ 601 static void writeout_period(struct timer_list *t) 602 { 603 struct wb_domain *dom = timer_container_of(dom, t, period_timer); 604 int miss_periods = (jiffies - dom->period_time) / 605 VM_COMPLETIONS_PERIOD_LEN; 606 607 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 608 dom->period_time = wp_next_time(dom->period_time + 609 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 610 mod_timer(&dom->period_timer, dom->period_time); 611 } else { 612 /* 613 * Aging has zeroed all fractions. Stop wasting CPU on period 614 * updates. 615 */ 616 dom->period_time = 0; 617 } 618 } 619 620 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 621 { 622 memset(dom, 0, sizeof(*dom)); 623 624 spin_lock_init(&dom->lock); 625 626 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 627 628 dom->dirty_limit_tstamp = jiffies; 629 630 return fprop_global_init(&dom->completions, gfp); 631 } 632 633 #ifdef CONFIG_CGROUP_WRITEBACK 634 void wb_domain_exit(struct wb_domain *dom) 635 { 636 timer_delete_sync(&dom->period_timer); 637 fprop_global_destroy(&dom->completions); 638 } 639 #endif 640 641 /* 642 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 643 * registered backing devices, which, for obvious reasons, can not 644 * exceed 100%. 645 */ 646 static unsigned int bdi_min_ratio; 647 648 static int bdi_check_pages_limit(unsigned long pages) 649 { 650 unsigned long max_dirty_pages = global_dirtyable_memory(); 651 652 if (pages > max_dirty_pages) 653 return -EINVAL; 654 655 return 0; 656 } 657 658 static unsigned long bdi_ratio_from_pages(unsigned long pages) 659 { 660 unsigned long background_thresh; 661 unsigned long dirty_thresh; 662 unsigned long ratio; 663 664 global_dirty_limits(&background_thresh, &dirty_thresh); 665 if (!dirty_thresh) 666 return -EINVAL; 667 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 668 669 return ratio; 670 } 671 672 static u64 bdi_get_bytes(unsigned int ratio) 673 { 674 unsigned long background_thresh; 675 unsigned long dirty_thresh; 676 u64 bytes; 677 678 global_dirty_limits(&background_thresh, &dirty_thresh); 679 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 680 681 return bytes; 682 } 683 684 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 685 { 686 unsigned int delta; 687 int ret = 0; 688 689 if (min_ratio > 100 * BDI_RATIO_SCALE) 690 return -EINVAL; 691 692 spin_lock_bh(&bdi_lock); 693 if (min_ratio > bdi->max_ratio) { 694 ret = -EINVAL; 695 } else { 696 if (min_ratio < bdi->min_ratio) { 697 delta = bdi->min_ratio - min_ratio; 698 bdi_min_ratio -= delta; 699 bdi->min_ratio = min_ratio; 700 } else { 701 delta = min_ratio - bdi->min_ratio; 702 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 703 bdi_min_ratio += delta; 704 bdi->min_ratio = min_ratio; 705 } else { 706 ret = -EINVAL; 707 } 708 } 709 } 710 spin_unlock_bh(&bdi_lock); 711 712 return ret; 713 } 714 715 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 716 { 717 int ret = 0; 718 719 if (max_ratio > 100 * BDI_RATIO_SCALE) 720 return -EINVAL; 721 722 spin_lock_bh(&bdi_lock); 723 if (bdi->min_ratio > max_ratio) { 724 ret = -EINVAL; 725 } else { 726 bdi->max_ratio = max_ratio; 727 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 728 (100 * BDI_RATIO_SCALE); 729 } 730 spin_unlock_bh(&bdi_lock); 731 732 return ret; 733 } 734 735 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 736 { 737 return __bdi_set_min_ratio(bdi, min_ratio); 738 } 739 740 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 741 { 742 return __bdi_set_max_ratio(bdi, max_ratio); 743 } 744 745 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 746 { 747 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 748 } 749 750 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 751 { 752 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 753 } 754 EXPORT_SYMBOL(bdi_set_max_ratio); 755 756 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 757 { 758 return bdi_get_bytes(bdi->min_ratio); 759 } 760 761 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 762 { 763 int ret; 764 unsigned long pages = min_bytes >> PAGE_SHIFT; 765 long min_ratio; 766 767 ret = bdi_check_pages_limit(pages); 768 if (ret) 769 return ret; 770 771 min_ratio = bdi_ratio_from_pages(pages); 772 if (min_ratio < 0) 773 return min_ratio; 774 return __bdi_set_min_ratio(bdi, min_ratio); 775 } 776 777 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 778 { 779 return bdi_get_bytes(bdi->max_ratio); 780 } 781 782 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 783 { 784 int ret; 785 unsigned long pages = max_bytes >> PAGE_SHIFT; 786 long max_ratio; 787 788 ret = bdi_check_pages_limit(pages); 789 if (ret) 790 return ret; 791 792 max_ratio = bdi_ratio_from_pages(pages); 793 if (max_ratio < 0) 794 return max_ratio; 795 return __bdi_set_max_ratio(bdi, max_ratio); 796 } 797 798 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 799 { 800 if (strict_limit > 1) 801 return -EINVAL; 802 803 spin_lock_bh(&bdi_lock); 804 if (strict_limit) 805 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 806 else 807 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 808 spin_unlock_bh(&bdi_lock); 809 810 return 0; 811 } 812 813 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 814 unsigned long bg_thresh) 815 { 816 return (thresh + bg_thresh) / 2; 817 } 818 819 static unsigned long hard_dirty_limit(struct wb_domain *dom, 820 unsigned long thresh) 821 { 822 return max(thresh, dom->dirty_limit); 823 } 824 825 /* 826 * Memory which can be further allocated to a memcg domain is capped by 827 * system-wide clean memory excluding the amount being used in the domain. 828 */ 829 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 830 unsigned long filepages, unsigned long headroom) 831 { 832 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 833 unsigned long clean = filepages - min(filepages, mdtc->dirty); 834 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 835 unsigned long other_clean = global_clean - min(global_clean, clean); 836 837 mdtc->avail = filepages + min(headroom, other_clean); 838 } 839 840 static inline bool dtc_is_global(struct dirty_throttle_control *dtc) 841 { 842 return mdtc_gdtc(dtc) == NULL; 843 } 844 845 /* 846 * Dirty background will ignore pages being written as we're trying to 847 * decide whether to put more under writeback. 848 */ 849 static void domain_dirty_avail(struct dirty_throttle_control *dtc, 850 bool include_writeback) 851 { 852 if (dtc_is_global(dtc)) { 853 dtc->avail = global_dirtyable_memory(); 854 dtc->dirty = global_node_page_state(NR_FILE_DIRTY); 855 if (include_writeback) 856 dtc->dirty += global_node_page_state(NR_WRITEBACK); 857 } else { 858 unsigned long filepages = 0, headroom = 0, writeback = 0; 859 860 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty, 861 &writeback); 862 if (include_writeback) 863 dtc->dirty += writeback; 864 mdtc_calc_avail(dtc, filepages, headroom); 865 } 866 } 867 868 /** 869 * __wb_calc_thresh - @wb's share of dirty threshold 870 * @dtc: dirty_throttle_context of interest 871 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc 872 * 873 * Note that balance_dirty_pages() will only seriously take dirty throttling 874 * threshold as a hard limit when sleeping max_pause per page is not enough 875 * to keep the dirty pages under control. For example, when the device is 876 * completely stalled due to some error conditions, or when there are 1000 877 * dd tasks writing to a slow 10MB/s USB key. 878 * In the other normal situations, it acts more gently by throttling the tasks 879 * more (rather than completely block them) when the wb dirty pages go high. 880 * 881 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 882 * - starving fast devices 883 * - piling up dirty pages (that will take long time to sync) on slow devices 884 * 885 * The wb's share of dirty limit will be adapting to its throughput and 886 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 887 * 888 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term 889 * "dirty" in the context of dirty balancing includes all PG_dirty and 890 * PG_writeback pages. 891 */ 892 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, 893 unsigned long thresh) 894 { 895 struct wb_domain *dom = dtc_dom(dtc); 896 struct bdi_writeback *wb = dtc->wb; 897 u64 wb_thresh; 898 u64 wb_max_thresh; 899 unsigned long numerator, denominator; 900 unsigned long wb_min_ratio, wb_max_ratio; 901 902 /* 903 * Calculate this wb's share of the thresh ratio. 904 */ 905 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 906 &numerator, &denominator); 907 908 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 909 wb_thresh *= numerator; 910 wb_thresh = div64_ul(wb_thresh, denominator); 911 912 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio); 913 914 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 915 916 /* 917 * It's very possible that wb_thresh is close to 0 not because the 918 * device is slow, but that it has remained inactive for long time. 919 * Honour such devices a reasonable good (hopefully IO efficient) 920 * threshold, so that the occasional writes won't be blocked and active 921 * writes can rampup the threshold quickly. 922 */ 923 if (thresh > dtc->dirty) { 924 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) 925 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100); 926 else 927 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8); 928 } 929 930 wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 931 if (wb_thresh > wb_max_thresh) 932 wb_thresh = wb_max_thresh; 933 934 return wb_thresh; 935 } 936 937 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 938 { 939 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 940 941 domain_dirty_avail(&gdtc, true); 942 return __wb_calc_thresh(&gdtc, thresh); 943 } 944 945 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) 946 { 947 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 948 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 949 950 domain_dirty_avail(&gdtc, true); 951 domain_dirty_avail(&mdtc, true); 952 domain_dirty_limits(&mdtc); 953 954 return __wb_calc_thresh(&mdtc, mdtc.thresh); 955 } 956 957 /* 958 * setpoint - dirty 3 959 * f(dirty) := 1.0 + (----------------) 960 * limit - setpoint 961 * 962 * it's a 3rd order polynomial that subjects to 963 * 964 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 965 * (2) f(setpoint) = 1.0 => the balance point 966 * (3) f(limit) = 0 => the hard limit 967 * (4) df/dx <= 0 => negative feedback control 968 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 969 * => fast response on large errors; small oscillation near setpoint 970 */ 971 static long long pos_ratio_polynom(unsigned long setpoint, 972 unsigned long dirty, 973 unsigned long limit) 974 { 975 long long pos_ratio; 976 long x; 977 978 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 979 (limit - setpoint) | 1); 980 pos_ratio = x; 981 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 982 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 983 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 984 985 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 986 } 987 988 /* 989 * Dirty position control. 990 * 991 * (o) global/bdi setpoints 992 * 993 * We want the dirty pages be balanced around the global/wb setpoints. 994 * When the number of dirty pages is higher/lower than the setpoint, the 995 * dirty position control ratio (and hence task dirty ratelimit) will be 996 * decreased/increased to bring the dirty pages back to the setpoint. 997 * 998 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 999 * 1000 * if (dirty < setpoint) scale up pos_ratio 1001 * if (dirty > setpoint) scale down pos_ratio 1002 * 1003 * if (wb_dirty < wb_setpoint) scale up pos_ratio 1004 * if (wb_dirty > wb_setpoint) scale down pos_ratio 1005 * 1006 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 1007 * 1008 * (o) global control line 1009 * 1010 * ^ pos_ratio 1011 * | 1012 * | |<===== global dirty control scope ======>| 1013 * 2.0 * * * * * * * 1014 * | .* 1015 * | . * 1016 * | . * 1017 * | . * 1018 * | . * 1019 * | . * 1020 * 1.0 ................................* 1021 * | . . * 1022 * | . . * 1023 * | . . * 1024 * | . . * 1025 * | . . * 1026 * 0 +------------.------------------.----------------------*-------------> 1027 * freerun^ setpoint^ limit^ dirty pages 1028 * 1029 * (o) wb control line 1030 * 1031 * ^ pos_ratio 1032 * | 1033 * | * 1034 * | * 1035 * | * 1036 * | * 1037 * | * |<=========== span ============>| 1038 * 1.0 .......................* 1039 * | . * 1040 * | . * 1041 * | . * 1042 * | . * 1043 * | . * 1044 * | . * 1045 * | . * 1046 * | . * 1047 * | . * 1048 * | . * 1049 * | . * 1050 * 1/4 ...............................................* * * * * * * * * * * * 1051 * | . . 1052 * | . . 1053 * | . . 1054 * 0 +----------------------.-------------------------------.-------------> 1055 * wb_setpoint^ x_intercept^ 1056 * 1057 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1058 * be smoothly throttled down to normal if it starts high in situations like 1059 * - start writing to a slow SD card and a fast disk at the same time. The SD 1060 * card's wb_dirty may rush to many times higher than wb_setpoint. 1061 * - the wb dirty thresh drops quickly due to change of JBOD workload 1062 */ 1063 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1064 { 1065 struct bdi_writeback *wb = dtc->wb; 1066 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1067 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1068 unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1069 unsigned long wb_thresh = dtc->wb_thresh; 1070 unsigned long x_intercept; 1071 unsigned long setpoint; /* dirty pages' target balance point */ 1072 unsigned long wb_setpoint; 1073 unsigned long span; 1074 long long pos_ratio; /* for scaling up/down the rate limit */ 1075 long x; 1076 1077 dtc->pos_ratio = 0; 1078 1079 if (unlikely(dtc->dirty >= limit)) 1080 return; 1081 1082 /* 1083 * global setpoint 1084 * 1085 * See comment for pos_ratio_polynom(). 1086 */ 1087 setpoint = (freerun + limit) / 2; 1088 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1089 1090 /* 1091 * The strictlimit feature is a tool preventing mistrusted filesystems 1092 * from growing a large number of dirty pages before throttling. For 1093 * such filesystems balance_dirty_pages always checks wb counters 1094 * against wb limits. Even if global "nr_dirty" is under "freerun". 1095 * This is especially important for fuse which sets bdi->max_ratio to 1096 * 1% by default. 1097 * 1098 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1099 * two values: wb_dirty and wb_thresh. Let's consider an example: 1100 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1101 * limits are set by default to 10% and 20% (background and throttle). 1102 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1103 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1104 * about ~6K pages (as the average of background and throttle wb 1105 * limits). The 3rd order polynomial will provide positive feedback if 1106 * wb_dirty is under wb_setpoint and vice versa. 1107 * 1108 * Note, that we cannot use global counters in these calculations 1109 * because we want to throttle process writing to a strictlimit wb 1110 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1111 * in the example above). 1112 */ 1113 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1114 long long wb_pos_ratio; 1115 1116 if (dtc->wb_dirty >= wb_thresh) 1117 return; 1118 1119 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1120 dtc->wb_bg_thresh); 1121 1122 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1123 return; 1124 1125 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1126 wb_thresh); 1127 1128 /* 1129 * Typically, for strictlimit case, wb_setpoint << setpoint 1130 * and pos_ratio >> wb_pos_ratio. In the other words global 1131 * state ("dirty") is not limiting factor and we have to 1132 * make decision based on wb counters. But there is an 1133 * important case when global pos_ratio should get precedence: 1134 * global limits are exceeded (e.g. due to activities on other 1135 * wb's) while given strictlimit wb is below limit. 1136 * 1137 * "pos_ratio * wb_pos_ratio" would work for the case above, 1138 * but it would look too non-natural for the case of all 1139 * activity in the system coming from a single strictlimit wb 1140 * with bdi->max_ratio == 100%. 1141 * 1142 * Note that min() below somewhat changes the dynamics of the 1143 * control system. Normally, pos_ratio value can be well over 3 1144 * (when globally we are at freerun and wb is well below wb 1145 * setpoint). Now the maximum pos_ratio in the same situation 1146 * is 2. We might want to tweak this if we observe the control 1147 * system is too slow to adapt. 1148 */ 1149 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1150 return; 1151 } 1152 1153 /* 1154 * We have computed basic pos_ratio above based on global situation. If 1155 * the wb is over/under its share of dirty pages, we want to scale 1156 * pos_ratio further down/up. That is done by the following mechanism. 1157 */ 1158 1159 /* 1160 * wb setpoint 1161 * 1162 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1163 * 1164 * x_intercept - wb_dirty 1165 * := -------------------------- 1166 * x_intercept - wb_setpoint 1167 * 1168 * The main wb control line is a linear function that subjects to 1169 * 1170 * (1) f(wb_setpoint) = 1.0 1171 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1172 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1173 * 1174 * For single wb case, the dirty pages are observed to fluctuate 1175 * regularly within range 1176 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1177 * for various filesystems, where (2) can yield in a reasonable 12.5% 1178 * fluctuation range for pos_ratio. 1179 * 1180 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1181 * own size, so move the slope over accordingly and choose a slope that 1182 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1183 */ 1184 if (unlikely(wb_thresh > dtc->thresh)) 1185 wb_thresh = dtc->thresh; 1186 /* 1187 * scale global setpoint to wb's: 1188 * wb_setpoint = setpoint * wb_thresh / thresh 1189 */ 1190 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1191 wb_setpoint = setpoint * (u64)x >> 16; 1192 /* 1193 * Use span=(8*write_bw) in single wb case as indicated by 1194 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1195 * 1196 * wb_thresh thresh - wb_thresh 1197 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1198 * thresh thresh 1199 */ 1200 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1201 x_intercept = wb_setpoint + span; 1202 1203 if (dtc->wb_dirty < x_intercept - span / 4) { 1204 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1205 (x_intercept - wb_setpoint) | 1); 1206 } else 1207 pos_ratio /= 4; 1208 1209 /* 1210 * wb reserve area, safeguard against dirty pool underrun and disk idle 1211 * It may push the desired control point of global dirty pages higher 1212 * than setpoint. 1213 */ 1214 x_intercept = wb_thresh / 2; 1215 if (dtc->wb_dirty < x_intercept) { 1216 if (dtc->wb_dirty > x_intercept / 8) 1217 pos_ratio = div_u64(pos_ratio * x_intercept, 1218 dtc->wb_dirty); 1219 else 1220 pos_ratio *= 8; 1221 } 1222 1223 dtc->pos_ratio = pos_ratio; 1224 } 1225 1226 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1227 unsigned long elapsed, 1228 unsigned long written) 1229 { 1230 const unsigned long period = roundup_pow_of_two(3 * HZ); 1231 unsigned long avg = wb->avg_write_bandwidth; 1232 unsigned long old = wb->write_bandwidth; 1233 u64 bw; 1234 1235 /* 1236 * bw = written * HZ / elapsed 1237 * 1238 * bw * elapsed + write_bandwidth * (period - elapsed) 1239 * write_bandwidth = --------------------------------------------------- 1240 * period 1241 * 1242 * @written may have decreased due to folio_redirty_for_writepage(). 1243 * Avoid underflowing @bw calculation. 1244 */ 1245 bw = written - min(written, wb->written_stamp); 1246 bw *= HZ; 1247 if (unlikely(elapsed > period)) { 1248 bw = div64_ul(bw, elapsed); 1249 avg = bw; 1250 goto out; 1251 } 1252 bw += (u64)wb->write_bandwidth * (period - elapsed); 1253 bw >>= ilog2(period); 1254 1255 /* 1256 * one more level of smoothing, for filtering out sudden spikes 1257 */ 1258 if (avg > old && old >= (unsigned long)bw) 1259 avg -= (avg - old) >> 3; 1260 1261 if (avg < old && old <= (unsigned long)bw) 1262 avg += (old - avg) >> 3; 1263 1264 out: 1265 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1266 avg = max(avg, 1LU); 1267 if (wb_has_dirty_io(wb)) { 1268 long delta = avg - wb->avg_write_bandwidth; 1269 WARN_ON_ONCE(atomic_long_add_return(delta, 1270 &wb->bdi->tot_write_bandwidth) <= 0); 1271 } 1272 wb->write_bandwidth = bw; 1273 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1274 } 1275 1276 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1277 { 1278 struct wb_domain *dom = dtc_dom(dtc); 1279 unsigned long thresh = dtc->thresh; 1280 unsigned long limit = dom->dirty_limit; 1281 1282 /* 1283 * Follow up in one step. 1284 */ 1285 if (limit < thresh) { 1286 limit = thresh; 1287 goto update; 1288 } 1289 1290 /* 1291 * Follow down slowly. Use the higher one as the target, because thresh 1292 * may drop below dirty. This is exactly the reason to introduce 1293 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1294 */ 1295 thresh = max(thresh, dtc->dirty); 1296 if (limit > thresh) { 1297 limit -= (limit - thresh) >> 5; 1298 goto update; 1299 } 1300 return; 1301 update: 1302 dom->dirty_limit = limit; 1303 } 1304 1305 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1306 unsigned long now) 1307 { 1308 struct wb_domain *dom = dtc_dom(dtc); 1309 1310 /* 1311 * check locklessly first to optimize away locking for the most time 1312 */ 1313 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1314 return; 1315 1316 spin_lock(&dom->lock); 1317 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1318 update_dirty_limit(dtc); 1319 dom->dirty_limit_tstamp = now; 1320 } 1321 spin_unlock(&dom->lock); 1322 } 1323 1324 /* 1325 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1326 * 1327 * Normal wb tasks will be curbed at or below it in long term. 1328 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1329 */ 1330 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1331 unsigned long dirtied, 1332 unsigned long elapsed) 1333 { 1334 struct bdi_writeback *wb = dtc->wb; 1335 unsigned long dirty = dtc->dirty; 1336 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1337 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1338 unsigned long setpoint = (freerun + limit) / 2; 1339 unsigned long write_bw = wb->avg_write_bandwidth; 1340 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1341 unsigned long dirty_rate; 1342 unsigned long task_ratelimit; 1343 unsigned long balanced_dirty_ratelimit; 1344 unsigned long step; 1345 unsigned long x; 1346 unsigned long shift; 1347 1348 /* 1349 * The dirty rate will match the writeout rate in long term, except 1350 * when dirty pages are truncated by userspace or re-dirtied by FS. 1351 */ 1352 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1353 1354 /* 1355 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1356 */ 1357 task_ratelimit = (u64)dirty_ratelimit * 1358 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1359 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1360 1361 /* 1362 * A linear estimation of the "balanced" throttle rate. The theory is, 1363 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1364 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1365 * formula will yield the balanced rate limit (write_bw / N). 1366 * 1367 * Note that the expanded form is not a pure rate feedback: 1368 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1369 * but also takes pos_ratio into account: 1370 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1371 * 1372 * (1) is not realistic because pos_ratio also takes part in balancing 1373 * the dirty rate. Consider the state 1374 * pos_ratio = 0.5 (3) 1375 * rate = 2 * (write_bw / N) (4) 1376 * If (1) is used, it will stuck in that state! Because each dd will 1377 * be throttled at 1378 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1379 * yielding 1380 * dirty_rate = N * task_ratelimit = write_bw (6) 1381 * put (6) into (1) we get 1382 * rate_(i+1) = rate_(i) (7) 1383 * 1384 * So we end up using (2) to always keep 1385 * rate_(i+1) ~= (write_bw / N) (8) 1386 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1387 * pos_ratio is able to drive itself to 1.0, which is not only where 1388 * the dirty count meet the setpoint, but also where the slope of 1389 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1390 */ 1391 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1392 dirty_rate | 1); 1393 /* 1394 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1395 */ 1396 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1397 balanced_dirty_ratelimit = write_bw; 1398 1399 /* 1400 * We could safely do this and return immediately: 1401 * 1402 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1403 * 1404 * However to get a more stable dirty_ratelimit, the below elaborated 1405 * code makes use of task_ratelimit to filter out singular points and 1406 * limit the step size. 1407 * 1408 * The below code essentially only uses the relative value of 1409 * 1410 * task_ratelimit - dirty_ratelimit 1411 * = (pos_ratio - 1) * dirty_ratelimit 1412 * 1413 * which reflects the direction and size of dirty position error. 1414 */ 1415 1416 /* 1417 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1418 * task_ratelimit is on the same side of dirty_ratelimit, too. 1419 * For example, when 1420 * - dirty_ratelimit > balanced_dirty_ratelimit 1421 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1422 * lowering dirty_ratelimit will help meet both the position and rate 1423 * control targets. Otherwise, don't update dirty_ratelimit if it will 1424 * only help meet the rate target. After all, what the users ultimately 1425 * feel and care are stable dirty rate and small position error. 1426 * 1427 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1428 * and filter out the singular points of balanced_dirty_ratelimit. Which 1429 * keeps jumping around randomly and can even leap far away at times 1430 * due to the small 200ms estimation period of dirty_rate (we want to 1431 * keep that period small to reduce time lags). 1432 */ 1433 step = 0; 1434 1435 /* 1436 * For strictlimit case, calculations above were based on wb counters 1437 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1438 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1439 * Hence, to calculate "step" properly, we have to use wb_dirty as 1440 * "dirty" and wb_setpoint as "setpoint". 1441 */ 1442 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1443 dirty = dtc->wb_dirty; 1444 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1445 } 1446 1447 if (dirty < setpoint) { 1448 x = min3(wb->balanced_dirty_ratelimit, 1449 balanced_dirty_ratelimit, task_ratelimit); 1450 if (dirty_ratelimit < x) 1451 step = x - dirty_ratelimit; 1452 } else { 1453 x = max3(wb->balanced_dirty_ratelimit, 1454 balanced_dirty_ratelimit, task_ratelimit); 1455 if (dirty_ratelimit > x) 1456 step = dirty_ratelimit - x; 1457 } 1458 1459 /* 1460 * Don't pursue 100% rate matching. It's impossible since the balanced 1461 * rate itself is constantly fluctuating. So decrease the track speed 1462 * when it gets close to the target. Helps eliminate pointless tremors. 1463 */ 1464 shift = dirty_ratelimit / (2 * step + 1); 1465 if (shift < BITS_PER_LONG) 1466 step = DIV_ROUND_UP(step >> shift, 8); 1467 else 1468 step = 0; 1469 1470 if (dirty_ratelimit < balanced_dirty_ratelimit) 1471 dirty_ratelimit += step; 1472 else 1473 dirty_ratelimit -= step; 1474 1475 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1476 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1477 1478 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1479 } 1480 1481 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1482 struct dirty_throttle_control *mdtc, 1483 bool update_ratelimit) 1484 { 1485 struct bdi_writeback *wb = gdtc->wb; 1486 unsigned long now = jiffies; 1487 unsigned long elapsed; 1488 unsigned long dirtied; 1489 unsigned long written; 1490 1491 spin_lock(&wb->list_lock); 1492 1493 /* 1494 * Lockless checks for elapsed time are racy and delayed update after 1495 * IO completion doesn't do it at all (to make sure written pages are 1496 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1497 * division errors. 1498 */ 1499 elapsed = max(now - wb->bw_time_stamp, 1UL); 1500 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1501 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1502 1503 if (update_ratelimit) { 1504 domain_update_dirty_limit(gdtc, now); 1505 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1506 1507 /* 1508 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1509 * compiler has no way to figure that out. Help it. 1510 */ 1511 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1512 domain_update_dirty_limit(mdtc, now); 1513 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1514 } 1515 } 1516 wb_update_write_bandwidth(wb, elapsed, written); 1517 1518 wb->dirtied_stamp = dirtied; 1519 wb->written_stamp = written; 1520 WRITE_ONCE(wb->bw_time_stamp, now); 1521 spin_unlock(&wb->list_lock); 1522 } 1523 1524 void wb_update_bandwidth(struct bdi_writeback *wb) 1525 { 1526 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1527 1528 __wb_update_bandwidth(&gdtc, NULL, false); 1529 } 1530 1531 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1532 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1533 1534 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1535 { 1536 unsigned long now = jiffies; 1537 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1538 1539 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1540 !atomic_read(&wb->writeback_inodes)) { 1541 spin_lock(&wb->list_lock); 1542 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1543 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1544 WRITE_ONCE(wb->bw_time_stamp, now); 1545 spin_unlock(&wb->list_lock); 1546 } 1547 } 1548 1549 /* 1550 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1551 * will look to see if it needs to start dirty throttling. 1552 * 1553 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1554 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1555 * (the number of pages we may dirty without exceeding the dirty limits). 1556 */ 1557 static unsigned long dirty_poll_interval(unsigned long dirty, 1558 unsigned long thresh) 1559 { 1560 if (thresh > dirty) 1561 return 1UL << (ilog2(thresh - dirty) >> 1); 1562 1563 return 1; 1564 } 1565 1566 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1567 unsigned long wb_dirty) 1568 { 1569 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1570 unsigned long t; 1571 1572 /* 1573 * Limit pause time for small memory systems. If sleeping for too long 1574 * time, a small pool of dirty/writeback pages may go empty and disk go 1575 * idle. 1576 * 1577 * 8 serves as the safety ratio. 1578 */ 1579 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1580 t++; 1581 1582 return min_t(unsigned long, t, MAX_PAUSE); 1583 } 1584 1585 static long wb_min_pause(struct bdi_writeback *wb, 1586 long max_pause, 1587 unsigned long task_ratelimit, 1588 unsigned long dirty_ratelimit, 1589 int *nr_dirtied_pause) 1590 { 1591 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1592 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1593 long t; /* target pause */ 1594 long pause; /* estimated next pause */ 1595 int pages; /* target nr_dirtied_pause */ 1596 1597 /* target for 10ms pause on 1-dd case */ 1598 t = max(1, HZ / 100); 1599 1600 /* 1601 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1602 * overheads. 1603 * 1604 * (N * 10ms) on 2^N concurrent tasks. 1605 */ 1606 if (hi > lo) 1607 t += (hi - lo) * (10 * HZ) / 1024; 1608 1609 /* 1610 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1611 * on the much more stable dirty_ratelimit. However the next pause time 1612 * will be computed based on task_ratelimit and the two rate limits may 1613 * depart considerably at some time. Especially if task_ratelimit goes 1614 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1615 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1616 * result task_ratelimit won't be executed faithfully, which could 1617 * eventually bring down dirty_ratelimit. 1618 * 1619 * We apply two rules to fix it up: 1620 * 1) try to estimate the next pause time and if necessary, use a lower 1621 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1622 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1623 * 2) limit the target pause time to max_pause/2, so that the normal 1624 * small fluctuations of task_ratelimit won't trigger rule (1) and 1625 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1626 */ 1627 t = min(t, 1 + max_pause / 2); 1628 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1629 1630 /* 1631 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1632 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1633 * When the 16 consecutive reads are often interrupted by some dirty 1634 * throttling pause during the async writes, cfq will go into idles 1635 * (deadline is fine). So push nr_dirtied_pause as high as possible 1636 * until reaches DIRTY_POLL_THRESH=32 pages. 1637 */ 1638 if (pages < DIRTY_POLL_THRESH) { 1639 t = max_pause; 1640 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1641 if (pages > DIRTY_POLL_THRESH) { 1642 pages = DIRTY_POLL_THRESH; 1643 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1644 } 1645 } 1646 1647 pause = HZ * pages / (task_ratelimit + 1); 1648 if (pause > max_pause) { 1649 t = max_pause; 1650 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1651 } 1652 1653 *nr_dirtied_pause = pages; 1654 /* 1655 * The minimal pause time will normally be half the target pause time. 1656 */ 1657 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1658 } 1659 1660 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1661 { 1662 struct bdi_writeback *wb = dtc->wb; 1663 unsigned long wb_reclaimable; 1664 1665 /* 1666 * wb_thresh is not treated as some limiting factor as 1667 * dirty_thresh, due to reasons 1668 * - in JBOD setup, wb_thresh can fluctuate a lot 1669 * - in a system with HDD and USB key, the USB key may somehow 1670 * go into state (wb_dirty >> wb_thresh) either because 1671 * wb_dirty starts high, or because wb_thresh drops low. 1672 * In this case we don't want to hard throttle the USB key 1673 * dirtiers for 100 seconds until wb_dirty drops under 1674 * wb_thresh. Instead the auxiliary wb control line in 1675 * wb_position_ratio() will let the dirtier task progress 1676 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1677 */ 1678 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); 1679 dtc->wb_bg_thresh = dtc->thresh ? 1680 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1681 1682 /* 1683 * In order to avoid the stacked BDI deadlock we need 1684 * to ensure we accurately count the 'dirty' pages when 1685 * the threshold is low. 1686 * 1687 * Otherwise it would be possible to get thresh+n pages 1688 * reported dirty, even though there are thresh-m pages 1689 * actually dirty; with m+n sitting in the percpu 1690 * deltas. 1691 */ 1692 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1693 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1694 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1695 } else { 1696 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1697 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1698 } 1699 } 1700 1701 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc, 1702 bool strictlimit) 1703 { 1704 unsigned long dirty, thresh; 1705 1706 if (strictlimit) { 1707 dirty = dtc->wb_dirty; 1708 thresh = dtc->wb_thresh; 1709 } else { 1710 dirty = dtc->dirty; 1711 thresh = dtc->thresh; 1712 } 1713 1714 return dirty_poll_interval(dirty, thresh); 1715 } 1716 1717 /* 1718 * Throttle it only when the background writeback cannot catch-up. This avoids 1719 * (excessively) small writeouts when the wb limits are ramping up in case of 1720 * !strictlimit. 1721 * 1722 * In strictlimit case make decision based on the wb counters and limits. Small 1723 * writeouts when the wb limits are ramping up are the price we consciously pay 1724 * for strictlimit-ing. 1725 */ 1726 static void domain_dirty_freerun(struct dirty_throttle_control *dtc, 1727 bool strictlimit) 1728 { 1729 unsigned long dirty, thresh, bg_thresh; 1730 1731 if (unlikely(strictlimit)) { 1732 wb_dirty_limits(dtc); 1733 dirty = dtc->wb_dirty; 1734 thresh = dtc->wb_thresh; 1735 bg_thresh = dtc->wb_bg_thresh; 1736 } else { 1737 dirty = dtc->dirty; 1738 thresh = dtc->thresh; 1739 bg_thresh = dtc->bg_thresh; 1740 } 1741 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh); 1742 } 1743 1744 static void balance_domain_limits(struct dirty_throttle_control *dtc, 1745 bool strictlimit) 1746 { 1747 domain_dirty_avail(dtc, true); 1748 domain_dirty_limits(dtc); 1749 domain_dirty_freerun(dtc, strictlimit); 1750 } 1751 1752 static void wb_dirty_freerun(struct dirty_throttle_control *dtc, 1753 bool strictlimit) 1754 { 1755 dtc->freerun = false; 1756 1757 /* was already handled in domain_dirty_freerun */ 1758 if (strictlimit) 1759 return; 1760 1761 wb_dirty_limits(dtc); 1762 /* 1763 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb 1764 * freerun ceiling. 1765 */ 1766 if (!(current->flags & PF_LOCAL_THROTTLE)) 1767 return; 1768 1769 dtc->freerun = dtc->wb_dirty < 1770 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh); 1771 } 1772 1773 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc, 1774 bool strictlimit) 1775 { 1776 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) && 1777 ((dtc->dirty > dtc->thresh) || strictlimit); 1778 } 1779 1780 /* 1781 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is 1782 * in freerun state. Please don't use these invalid fields in freerun case. 1783 */ 1784 static void balance_wb_limits(struct dirty_throttle_control *dtc, 1785 bool strictlimit) 1786 { 1787 wb_dirty_freerun(dtc, strictlimit); 1788 if (dtc->freerun) 1789 return; 1790 1791 wb_dirty_exceeded(dtc, strictlimit); 1792 wb_position_ratio(dtc); 1793 } 1794 1795 /* 1796 * balance_dirty_pages() must be called by processes which are generating dirty 1797 * data. It looks at the number of dirty pages in the machine and will force 1798 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1799 * If we're over `background_thresh' then the writeback threads are woken to 1800 * perform some writeout. 1801 */ 1802 static int balance_dirty_pages(struct bdi_writeback *wb, 1803 unsigned long pages_dirtied, unsigned int flags) 1804 { 1805 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1806 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1807 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1808 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1809 &mdtc_stor : NULL; 1810 struct dirty_throttle_control *sdtc; 1811 unsigned long nr_dirty; 1812 long period; 1813 long pause; 1814 long max_pause; 1815 long min_pause; 1816 int nr_dirtied_pause; 1817 unsigned long task_ratelimit; 1818 unsigned long dirty_ratelimit; 1819 struct backing_dev_info *bdi = wb->bdi; 1820 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1821 unsigned long start_time = jiffies; 1822 int ret = 0; 1823 1824 for (;;) { 1825 unsigned long now = jiffies; 1826 1827 nr_dirty = global_node_page_state(NR_FILE_DIRTY); 1828 1829 balance_domain_limits(gdtc, strictlimit); 1830 if (mdtc) { 1831 /* 1832 * If @wb belongs to !root memcg, repeat the same 1833 * basic calculations for the memcg domain. 1834 */ 1835 balance_domain_limits(mdtc, strictlimit); 1836 } 1837 1838 if (nr_dirty > gdtc->bg_thresh && !writeback_in_progress(wb)) 1839 wb_start_background_writeback(wb); 1840 1841 /* 1842 * If memcg domain is in effect, @dirty should be under 1843 * both global and memcg freerun ceilings. 1844 */ 1845 if (gdtc->freerun && (!mdtc || mdtc->freerun)) { 1846 unsigned long intv; 1847 unsigned long m_intv; 1848 1849 free_running: 1850 intv = domain_poll_intv(gdtc, strictlimit); 1851 m_intv = ULONG_MAX; 1852 1853 current->dirty_paused_when = now; 1854 current->nr_dirtied = 0; 1855 if (mdtc) 1856 m_intv = domain_poll_intv(mdtc, strictlimit); 1857 current->nr_dirtied_pause = min(intv, m_intv); 1858 break; 1859 } 1860 1861 mem_cgroup_flush_foreign(wb); 1862 1863 /* 1864 * Calculate global domain's pos_ratio and select the 1865 * global dtc by default. 1866 */ 1867 balance_wb_limits(gdtc, strictlimit); 1868 if (gdtc->freerun) 1869 goto free_running; 1870 sdtc = gdtc; 1871 1872 if (mdtc) { 1873 /* 1874 * If memcg domain is in effect, calculate its 1875 * pos_ratio. @wb should satisfy constraints from 1876 * both global and memcg domains. Choose the one 1877 * w/ lower pos_ratio. 1878 */ 1879 balance_wb_limits(mdtc, strictlimit); 1880 if (mdtc->freerun) 1881 goto free_running; 1882 if (mdtc->pos_ratio < gdtc->pos_ratio) 1883 sdtc = mdtc; 1884 } 1885 1886 wb->dirty_exceeded = gdtc->dirty_exceeded || 1887 (mdtc && mdtc->dirty_exceeded); 1888 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1889 BANDWIDTH_INTERVAL)) 1890 __wb_update_bandwidth(gdtc, mdtc, true); 1891 1892 /* throttle according to the chosen dtc */ 1893 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1894 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1895 RATELIMIT_CALC_SHIFT; 1896 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1897 min_pause = wb_min_pause(wb, max_pause, 1898 task_ratelimit, dirty_ratelimit, 1899 &nr_dirtied_pause); 1900 1901 if (unlikely(task_ratelimit == 0)) { 1902 period = max_pause; 1903 pause = max_pause; 1904 goto pause; 1905 } 1906 period = HZ * pages_dirtied / task_ratelimit; 1907 pause = period; 1908 if (current->dirty_paused_when) 1909 pause -= now - current->dirty_paused_when; 1910 /* 1911 * For less than 1s think time (ext3/4 may block the dirtier 1912 * for up to 800ms from time to time on 1-HDD; so does xfs, 1913 * however at much less frequency), try to compensate it in 1914 * future periods by updating the virtual time; otherwise just 1915 * do a reset, as it may be a light dirtier. 1916 */ 1917 if (pause < min_pause) { 1918 trace_balance_dirty_pages(wb, 1919 sdtc, 1920 dirty_ratelimit, 1921 task_ratelimit, 1922 pages_dirtied, 1923 period, 1924 min(pause, 0L), 1925 start_time); 1926 if (pause < -HZ) { 1927 current->dirty_paused_when = now; 1928 current->nr_dirtied = 0; 1929 } else if (period) { 1930 current->dirty_paused_when += period; 1931 current->nr_dirtied = 0; 1932 } else if (current->nr_dirtied_pause <= pages_dirtied) 1933 current->nr_dirtied_pause += pages_dirtied; 1934 break; 1935 } 1936 if (unlikely(pause > max_pause)) { 1937 /* for occasional dropped task_ratelimit */ 1938 now += min(pause - max_pause, max_pause); 1939 pause = max_pause; 1940 } 1941 1942 pause: 1943 trace_balance_dirty_pages(wb, 1944 sdtc, 1945 dirty_ratelimit, 1946 task_ratelimit, 1947 pages_dirtied, 1948 period, 1949 pause, 1950 start_time); 1951 if (flags & BDP_ASYNC) { 1952 ret = -EAGAIN; 1953 break; 1954 } 1955 __set_current_state(TASK_KILLABLE); 1956 bdi->last_bdp_sleep = jiffies; 1957 io_schedule_timeout(pause); 1958 1959 current->dirty_paused_when = now + pause; 1960 current->nr_dirtied = 0; 1961 current->nr_dirtied_pause = nr_dirtied_pause; 1962 1963 /* 1964 * This is typically equal to (dirty < thresh) and can also 1965 * keep "1000+ dd on a slow USB stick" under control. 1966 */ 1967 if (task_ratelimit) 1968 break; 1969 1970 /* 1971 * In the case of an unresponsive NFS server and the NFS dirty 1972 * pages exceeds dirty_thresh, give the other good wb's a pipe 1973 * to go through, so that tasks on them still remain responsive. 1974 * 1975 * In theory 1 page is enough to keep the consumer-producer 1976 * pipe going: the flusher cleans 1 page => the task dirties 1 1977 * more page. However wb_dirty has accounting errors. So use 1978 * the larger and more IO friendly wb_stat_error. 1979 */ 1980 if (sdtc->wb_dirty <= wb_stat_error()) 1981 break; 1982 1983 if (fatal_signal_pending(current)) 1984 break; 1985 } 1986 return ret; 1987 } 1988 1989 static DEFINE_PER_CPU(int, bdp_ratelimits); 1990 1991 /* 1992 * Normal tasks are throttled by 1993 * loop { 1994 * dirty tsk->nr_dirtied_pause pages; 1995 * take a snap in balance_dirty_pages(); 1996 * } 1997 * However there is a worst case. If every task exit immediately when dirtied 1998 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1999 * called to throttle the page dirties. The solution is to save the not yet 2000 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 2001 * randomly into the running tasks. This works well for the above worst case, 2002 * as the new task will pick up and accumulate the old task's leaked dirty 2003 * count and eventually get throttled. 2004 */ 2005 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 2006 2007 /** 2008 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 2009 * @mapping: address_space which was dirtied. 2010 * @flags: BDP flags. 2011 * 2012 * Processes which are dirtying memory should call in here once for each page 2013 * which was newly dirtied. The function will periodically check the system's 2014 * dirty state and will initiate writeback if needed. 2015 * 2016 * See balance_dirty_pages_ratelimited() for details. 2017 * 2018 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2019 * indicate that memory is out of balance and the caller must wait 2020 * for I/O to complete. Otherwise, it will return 0 to indicate 2021 * that either memory was already in balance, or it was able to sleep 2022 * until the amount of dirty memory returned to balance. 2023 */ 2024 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2025 unsigned int flags) 2026 { 2027 struct inode *inode = mapping->host; 2028 struct backing_dev_info *bdi = inode_to_bdi(inode); 2029 struct bdi_writeback *wb = NULL; 2030 int ratelimit; 2031 int ret = 0; 2032 int *p; 2033 2034 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2035 return ret; 2036 2037 if (inode_cgwb_enabled(inode)) 2038 wb = wb_get_create_current(bdi, GFP_KERNEL); 2039 if (!wb) 2040 wb = &bdi->wb; 2041 2042 ratelimit = current->nr_dirtied_pause; 2043 if (wb->dirty_exceeded) 2044 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2045 2046 preempt_disable(); 2047 /* 2048 * This prevents one CPU to accumulate too many dirtied pages without 2049 * calling into balance_dirty_pages(), which can happen when there are 2050 * 1000+ tasks, all of them start dirtying pages at exactly the same 2051 * time, hence all honoured too large initial task->nr_dirtied_pause. 2052 */ 2053 p = this_cpu_ptr(&bdp_ratelimits); 2054 if (unlikely(current->nr_dirtied >= ratelimit)) 2055 *p = 0; 2056 else if (unlikely(*p >= ratelimit_pages)) { 2057 *p = 0; 2058 ratelimit = 0; 2059 } 2060 /* 2061 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2062 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2063 * the dirty throttling and livelock other long-run dirtiers. 2064 */ 2065 p = this_cpu_ptr(&dirty_throttle_leaks); 2066 if (*p > 0 && current->nr_dirtied < ratelimit) { 2067 unsigned long nr_pages_dirtied; 2068 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2069 *p -= nr_pages_dirtied; 2070 current->nr_dirtied += nr_pages_dirtied; 2071 } 2072 preempt_enable(); 2073 2074 if (unlikely(current->nr_dirtied >= ratelimit)) 2075 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2076 2077 wb_put(wb); 2078 return ret; 2079 } 2080 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2081 2082 /** 2083 * balance_dirty_pages_ratelimited - balance dirty memory state. 2084 * @mapping: address_space which was dirtied. 2085 * 2086 * Processes which are dirtying memory should call in here once for each page 2087 * which was newly dirtied. The function will periodically check the system's 2088 * dirty state and will initiate writeback if needed. 2089 * 2090 * Once we're over the dirty memory limit we decrease the ratelimiting 2091 * by a lot, to prevent individual processes from overshooting the limit 2092 * by (ratelimit_pages) each. 2093 */ 2094 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2095 { 2096 balance_dirty_pages_ratelimited_flags(mapping, 0); 2097 } 2098 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2099 2100 /* 2101 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty 2102 * and thresh, but it's for background writeback. 2103 */ 2104 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc) 2105 { 2106 struct bdi_writeback *wb = dtc->wb; 2107 2108 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh); 2109 if (dtc->wb_bg_thresh < 2 * wb_stat_error()) 2110 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE); 2111 else 2112 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE); 2113 } 2114 2115 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc) 2116 { 2117 domain_dirty_avail(dtc, false); 2118 domain_dirty_limits(dtc); 2119 if (dtc->dirty > dtc->bg_thresh) 2120 return true; 2121 2122 wb_bg_dirty_limits(dtc); 2123 if (dtc->wb_dirty > dtc->wb_bg_thresh) 2124 return true; 2125 2126 return false; 2127 } 2128 2129 /** 2130 * wb_over_bg_thresh - does @wb need to be written back? 2131 * @wb: bdi_writeback of interest 2132 * 2133 * Determines whether background writeback should keep writing @wb or it's 2134 * clean enough. 2135 * 2136 * Return: %true if writeback should continue. 2137 */ 2138 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2139 { 2140 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 2141 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 2142 2143 if (domain_over_bg_thresh(&gdtc)) 2144 return true; 2145 2146 if (mdtc_valid(&mdtc)) 2147 return domain_over_bg_thresh(&mdtc); 2148 2149 return false; 2150 } 2151 2152 #ifdef CONFIG_SYSCTL 2153 /* 2154 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2155 */ 2156 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write, 2157 void *buffer, size_t *length, loff_t *ppos) 2158 { 2159 unsigned int old_interval = dirty_writeback_interval; 2160 int ret; 2161 2162 ret = proc_dointvec(table, write, buffer, length, ppos); 2163 2164 /* 2165 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2166 * and a different non-zero value will wakeup the writeback threads. 2167 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2168 * iterate over all bdis and wbs. 2169 * The reason we do this is to make the change take effect immediately. 2170 */ 2171 if (!ret && write && dirty_writeback_interval && 2172 dirty_writeback_interval != old_interval) 2173 wakeup_flusher_threads(WB_REASON_PERIODIC); 2174 2175 return ret; 2176 } 2177 #endif 2178 2179 /* 2180 * If ratelimit_pages is too high then we can get into dirty-data overload 2181 * if a large number of processes all perform writes at the same time. 2182 * 2183 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2184 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2185 * thresholds. 2186 */ 2187 2188 void writeback_set_ratelimit(void) 2189 { 2190 struct wb_domain *dom = &global_wb_domain; 2191 unsigned long background_thresh; 2192 unsigned long dirty_thresh; 2193 2194 global_dirty_limits(&background_thresh, &dirty_thresh); 2195 dom->dirty_limit = dirty_thresh; 2196 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2197 if (ratelimit_pages < 16) 2198 ratelimit_pages = 16; 2199 } 2200 2201 static int page_writeback_cpu_online(unsigned int cpu) 2202 { 2203 writeback_set_ratelimit(); 2204 return 0; 2205 } 2206 2207 #ifdef CONFIG_SYSCTL 2208 2209 static int laptop_mode; 2210 static int laptop_mode_handler(const struct ctl_table *table, int write, 2211 void *buffer, size_t *lenp, loff_t *ppos) 2212 { 2213 int ret = proc_dointvec_jiffies(table, write, buffer, lenp, ppos); 2214 2215 if (!ret && write) 2216 pr_warn("%s: vm.laptop_mode is deprecated. Ignoring setting.\n", 2217 current->comm); 2218 2219 return ret; 2220 } 2221 2222 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2223 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2224 2225 static const struct ctl_table vm_page_writeback_sysctls[] = { 2226 { 2227 .procname = "dirty_background_ratio", 2228 .data = &dirty_background_ratio, 2229 .maxlen = sizeof(dirty_background_ratio), 2230 .mode = 0644, 2231 .proc_handler = dirty_background_ratio_handler, 2232 .extra1 = SYSCTL_ZERO, 2233 .extra2 = SYSCTL_ONE_HUNDRED, 2234 }, 2235 { 2236 .procname = "dirty_background_bytes", 2237 .data = &dirty_background_bytes, 2238 .maxlen = sizeof(dirty_background_bytes), 2239 .mode = 0644, 2240 .proc_handler = dirty_background_bytes_handler, 2241 .extra1 = SYSCTL_LONG_ONE, 2242 }, 2243 { 2244 .procname = "dirty_ratio", 2245 .data = &vm_dirty_ratio, 2246 .maxlen = sizeof(vm_dirty_ratio), 2247 .mode = 0644, 2248 .proc_handler = dirty_ratio_handler, 2249 .extra1 = SYSCTL_ZERO, 2250 .extra2 = SYSCTL_ONE_HUNDRED, 2251 }, 2252 { 2253 .procname = "dirty_bytes", 2254 .data = &vm_dirty_bytes, 2255 .maxlen = sizeof(vm_dirty_bytes), 2256 .mode = 0644, 2257 .proc_handler = dirty_bytes_handler, 2258 .extra1 = (void *)&dirty_bytes_min, 2259 }, 2260 { 2261 .procname = "dirty_writeback_centisecs", 2262 .data = &dirty_writeback_interval, 2263 .maxlen = sizeof(dirty_writeback_interval), 2264 .mode = 0644, 2265 .proc_handler = dirty_writeback_centisecs_handler, 2266 }, 2267 { 2268 .procname = "dirty_expire_centisecs", 2269 .data = &dirty_expire_interval, 2270 .maxlen = sizeof(dirty_expire_interval), 2271 .mode = 0644, 2272 .proc_handler = proc_dointvec_minmax, 2273 .extra1 = SYSCTL_ZERO, 2274 }, 2275 #ifdef CONFIG_HIGHMEM 2276 { 2277 .procname = "highmem_is_dirtyable", 2278 .data = &vm_highmem_is_dirtyable, 2279 .maxlen = sizeof(vm_highmem_is_dirtyable), 2280 .mode = 0644, 2281 .proc_handler = proc_dointvec_minmax, 2282 .extra1 = SYSCTL_ZERO, 2283 .extra2 = SYSCTL_ONE, 2284 }, 2285 #endif 2286 { 2287 .procname = "laptop_mode", 2288 .data = &laptop_mode, 2289 .maxlen = sizeof(laptop_mode), 2290 .mode = 0644, 2291 .proc_handler = laptop_mode_handler, 2292 }, 2293 }; 2294 #endif 2295 2296 /* 2297 * Called early on to tune the page writeback dirty limits. 2298 * 2299 * We used to scale dirty pages according to how total memory 2300 * related to pages that could be allocated for buffers. 2301 * 2302 * However, that was when we used "dirty_ratio" to scale with 2303 * all memory, and we don't do that any more. "dirty_ratio" 2304 * is now applied to total non-HIGHPAGE memory, and as such we can't 2305 * get into the old insane situation any more where we had 2306 * large amounts of dirty pages compared to a small amount of 2307 * non-HIGHMEM memory. 2308 * 2309 * But we might still want to scale the dirty_ratio by how 2310 * much memory the box has.. 2311 */ 2312 void __init page_writeback_init(void) 2313 { 2314 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2315 2316 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2317 page_writeback_cpu_online, NULL); 2318 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2319 page_writeback_cpu_online); 2320 #ifdef CONFIG_SYSCTL 2321 register_sysctl_init("vm", vm_page_writeback_sysctls); 2322 #endif 2323 } 2324 2325 /** 2326 * tag_pages_for_writeback - tag pages to be written by writeback 2327 * @mapping: address space structure to write 2328 * @start: starting page index 2329 * @end: ending page index (inclusive) 2330 * 2331 * This function scans the page range from @start to @end (inclusive) and tags 2332 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller 2333 * can then use the TOWRITE tag to identify pages eligible for writeback. 2334 * This mechanism is used to avoid livelocking of writeback by a process 2335 * steadily creating new dirty pages in the file (thus it is important for this 2336 * function to be quick so that it can tag pages faster than a dirtying process 2337 * can create them). 2338 */ 2339 void tag_pages_for_writeback(struct address_space *mapping, 2340 pgoff_t start, pgoff_t end) 2341 { 2342 XA_STATE(xas, &mapping->i_pages, start); 2343 unsigned int tagged = 0; 2344 void *page; 2345 2346 xas_lock_irq(&xas); 2347 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2348 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2349 if (++tagged % XA_CHECK_SCHED) 2350 continue; 2351 2352 xas_pause(&xas); 2353 xas_unlock_irq(&xas); 2354 cond_resched(); 2355 xas_lock_irq(&xas); 2356 } 2357 xas_unlock_irq(&xas); 2358 } 2359 EXPORT_SYMBOL(tag_pages_for_writeback); 2360 2361 static bool folio_prepare_writeback(struct address_space *mapping, 2362 struct writeback_control *wbc, struct folio *folio) 2363 { 2364 /* 2365 * Folio truncated or invalidated. We can freely skip it then, 2366 * even for data integrity operations: the folio has disappeared 2367 * concurrently, so there could be no real expectation of this 2368 * data integrity operation even if there is now a new, dirty 2369 * folio at the same pagecache index. 2370 */ 2371 if (unlikely(folio->mapping != mapping)) 2372 return false; 2373 2374 /* 2375 * Did somebody else write it for us? 2376 */ 2377 if (!folio_test_dirty(folio)) 2378 return false; 2379 2380 if (folio_test_writeback(folio)) { 2381 if (wbc->sync_mode == WB_SYNC_NONE) 2382 return false; 2383 folio_wait_writeback(folio); 2384 } 2385 BUG_ON(folio_test_writeback(folio)); 2386 2387 if (!folio_clear_dirty_for_io(folio)) 2388 return false; 2389 2390 return true; 2391 } 2392 2393 2394 static pgoff_t wbc_end(struct writeback_control *wbc) 2395 { 2396 if (wbc->range_cyclic) 2397 return -1; 2398 return wbc->range_end >> PAGE_SHIFT; 2399 } 2400 2401 static struct folio *writeback_get_folio(struct address_space *mapping, 2402 struct writeback_control *wbc) 2403 { 2404 struct folio *folio; 2405 2406 retry: 2407 folio = folio_batch_next(&wbc->fbatch); 2408 if (!folio) { 2409 folio_batch_release(&wbc->fbatch); 2410 cond_resched(); 2411 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), 2412 wbc_to_tag(wbc), &wbc->fbatch); 2413 folio = folio_batch_next(&wbc->fbatch); 2414 if (!folio) 2415 return NULL; 2416 } 2417 2418 folio_lock(folio); 2419 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { 2420 folio_unlock(folio); 2421 goto retry; 2422 } 2423 2424 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2425 return folio; 2426 } 2427 2428 /** 2429 * writeback_iter - iterate folio of a mapping for writeback 2430 * @mapping: address space structure to write 2431 * @wbc: writeback context 2432 * @folio: previously iterated folio (%NULL to start) 2433 * @error: in-out pointer for writeback errors (see below) 2434 * 2435 * This function returns the next folio for the writeback operation described by 2436 * @wbc on @mapping and should be called in a while loop in the ->writepages 2437 * implementation. 2438 * 2439 * To start the writeback operation, %NULL is passed in the @folio argument, and 2440 * for every subsequent iteration the folio returned previously should be passed 2441 * back in. 2442 * 2443 * If there was an error in the per-folio writeback inside the writeback_iter() 2444 * loop, @error should be set to the error value. 2445 * 2446 * Once the writeback described in @wbc has finished, this function will return 2447 * %NULL and if there was an error in any iteration restore it to @error. 2448 * 2449 * Note: callers should not manually break out of the loop using break or goto 2450 * but must keep calling writeback_iter() until it returns %NULL. 2451 * 2452 * Return: the folio to write or %NULL if the loop is done. 2453 */ 2454 struct folio *writeback_iter(struct address_space *mapping, 2455 struct writeback_control *wbc, struct folio *folio, int *error) 2456 { 2457 if (!folio) { 2458 folio_batch_init(&wbc->fbatch); 2459 wbc->saved_err = *error = 0; 2460 2461 /* 2462 * For range cyclic writeback we remember where we stopped so 2463 * that we can continue where we stopped. 2464 * 2465 * For non-cyclic writeback we always start at the beginning of 2466 * the passed in range. 2467 */ 2468 if (wbc->range_cyclic) 2469 wbc->index = mapping->writeback_index; 2470 else 2471 wbc->index = wbc->range_start >> PAGE_SHIFT; 2472 2473 /* 2474 * To avoid livelocks when other processes dirty new pages, we 2475 * first tag pages which should be written back and only then 2476 * start writing them. 2477 * 2478 * For data-integrity writeback we have to be careful so that we 2479 * do not miss some pages (e.g., because some other process has 2480 * cleared the TOWRITE tag we set). The rule we follow is that 2481 * TOWRITE tag can be cleared only by the process clearing the 2482 * DIRTY tag (and submitting the page for I/O). 2483 */ 2484 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2485 tag_pages_for_writeback(mapping, wbc->index, 2486 wbc_end(wbc)); 2487 } else { 2488 wbc->nr_to_write -= folio_nr_pages(folio); 2489 2490 WARN_ON_ONCE(*error > 0); 2491 2492 /* 2493 * For integrity writeback we have to keep going until we have 2494 * written all the folios we tagged for writeback above, even if 2495 * we run past wbc->nr_to_write or encounter errors. 2496 * We stash away the first error we encounter in wbc->saved_err 2497 * so that it can be retrieved when we're done. This is because 2498 * the file system may still have state to clear for each folio. 2499 * 2500 * For background writeback we exit as soon as we run past 2501 * wbc->nr_to_write or encounter the first error. 2502 */ 2503 if (wbc->sync_mode == WB_SYNC_ALL) { 2504 if (*error && !wbc->saved_err) 2505 wbc->saved_err = *error; 2506 } else { 2507 if (*error || wbc->nr_to_write <= 0) 2508 goto done; 2509 } 2510 } 2511 2512 folio = writeback_get_folio(mapping, wbc); 2513 if (!folio) { 2514 /* 2515 * To avoid deadlocks between range_cyclic writeback and callers 2516 * that hold folios in writeback to aggregate I/O until 2517 * the writeback iteration finishes, we do not loop back to the 2518 * start of the file. Doing so causes a folio lock/folio 2519 * writeback access order inversion - we should only ever lock 2520 * multiple folios in ascending folio->index order, and looping 2521 * back to the start of the file violates that rule and causes 2522 * deadlocks. 2523 */ 2524 if (wbc->range_cyclic) 2525 mapping->writeback_index = 0; 2526 2527 /* 2528 * Return the first error we encountered (if there was any) to 2529 * the caller. 2530 */ 2531 *error = wbc->saved_err; 2532 } 2533 return folio; 2534 2535 done: 2536 if (wbc->range_cyclic) 2537 mapping->writeback_index = folio_next_index(folio); 2538 folio_batch_release(&wbc->fbatch); 2539 return NULL; 2540 } 2541 EXPORT_SYMBOL_GPL(writeback_iter); 2542 2543 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2544 { 2545 int ret; 2546 struct bdi_writeback *wb; 2547 2548 if (wbc->nr_to_write <= 0) 2549 return 0; 2550 wb = inode_to_wb_wbc(mapping->host, wbc); 2551 wb_bandwidth_estimate_start(wb); 2552 while (1) { 2553 if (mapping->a_ops->writepages) 2554 ret = mapping->a_ops->writepages(mapping, wbc); 2555 else 2556 /* deal with chardevs and other special files */ 2557 ret = 0; 2558 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2559 break; 2560 2561 /* 2562 * Lacking an allocation context or the locality or writeback 2563 * state of any of the inode's pages, throttle based on 2564 * writeback activity on the local node. It's as good a 2565 * guess as any. 2566 */ 2567 reclaim_throttle(NODE_DATA(numa_node_id()), 2568 VMSCAN_THROTTLE_WRITEBACK); 2569 } 2570 /* 2571 * Usually few pages are written by now from those we've just submitted 2572 * but if there's constant writeback being submitted, this makes sure 2573 * writeback bandwidth is updated once in a while. 2574 */ 2575 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2576 BANDWIDTH_INTERVAL)) 2577 wb_update_bandwidth(wb); 2578 return ret; 2579 } 2580 2581 /* 2582 * For address_spaces which do not use buffers nor write back. 2583 */ 2584 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2585 { 2586 if (!folio_test_dirty(folio)) 2587 return !folio_test_set_dirty(folio); 2588 return false; 2589 } 2590 EXPORT_SYMBOL(noop_dirty_folio); 2591 2592 /* 2593 * Helper function for set_page_dirty family. 2594 * 2595 * NOTE: This relies on being atomic wrt interrupts. 2596 */ 2597 static void folio_account_dirtied(struct folio *folio, 2598 struct address_space *mapping) 2599 { 2600 struct inode *inode = mapping->host; 2601 2602 trace_writeback_dirty_folio(folio, mapping); 2603 2604 if (mapping_can_writeback(mapping)) { 2605 struct bdi_writeback *wb; 2606 long nr = folio_nr_pages(folio); 2607 2608 inode_attach_wb(inode, folio); 2609 wb = inode_to_wb(inode); 2610 2611 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2612 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2613 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2614 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2615 wb_stat_mod(wb, WB_DIRTIED, nr); 2616 task_io_account_write(nr * PAGE_SIZE); 2617 current->nr_dirtied += nr; 2618 __this_cpu_add(bdp_ratelimits, nr); 2619 2620 mem_cgroup_track_foreign_dirty(folio, wb); 2621 } 2622 } 2623 2624 /* 2625 * Helper function for deaccounting dirty page without writeback. 2626 * 2627 */ 2628 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2629 { 2630 long nr = folio_nr_pages(folio); 2631 2632 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2633 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2634 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2635 task_io_account_cancelled_write(nr * PAGE_SIZE); 2636 } 2637 2638 /* 2639 * Mark the folio dirty, and set it dirty in the page cache. 2640 * 2641 * If warn is true, then emit a warning if the folio is not uptodate and has 2642 * not been truncated. 2643 * 2644 * It is the caller's responsibility to prevent the folio from being truncated 2645 * while this function is in progress, although it may have been truncated 2646 * before this function is called. Most callers have the folio locked. 2647 * A few have the folio blocked from truncation through other means (e.g. 2648 * zap_vma_pages() has it mapped and is holding the page table lock). 2649 * When called from mark_buffer_dirty(), the filesystem should hold a 2650 * reference to the buffer_head that is being marked dirty, which causes 2651 * try_to_free_buffers() to fail. 2652 */ 2653 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2654 int warn) 2655 { 2656 unsigned long flags; 2657 2658 /* 2659 * Shmem writeback relies on swap, and swap writeback is LRU based, 2660 * not using the dirty mark. 2661 */ 2662 VM_WARN_ON_ONCE(folio_test_swapcache(folio) || shmem_mapping(mapping)); 2663 2664 xa_lock_irqsave(&mapping->i_pages, flags); 2665 if (folio->mapping) { /* Race with truncate? */ 2666 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2667 folio_account_dirtied(folio, mapping); 2668 __xa_set_mark(&mapping->i_pages, folio->index, 2669 PAGECACHE_TAG_DIRTY); 2670 } 2671 xa_unlock_irqrestore(&mapping->i_pages, flags); 2672 } 2673 2674 /** 2675 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2676 * @mapping: Address space this folio belongs to. 2677 * @folio: Folio to be marked as dirty. 2678 * 2679 * Filesystems which do not use buffer heads should call this function 2680 * from their dirty_folio address space operation. It ignores the 2681 * contents of folio_get_private(), so if the filesystem marks individual 2682 * blocks as dirty, the filesystem should handle that itself. 2683 * 2684 * This is also sometimes used by filesystems which use buffer_heads when 2685 * a single buffer is being dirtied: we want to set the folio dirty in 2686 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2687 * whereas block_dirty_folio() is a "top-down" dirtying. 2688 * 2689 * The caller must ensure this doesn't race with truncation. Most will 2690 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2691 * folio mapped and the pte lock held, which also locks out truncation. 2692 */ 2693 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2694 { 2695 if (folio_test_set_dirty(folio)) 2696 return false; 2697 2698 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2699 2700 if (mapping->host) { 2701 /* !PageAnon && !swapper_space */ 2702 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2703 } 2704 return true; 2705 } 2706 EXPORT_SYMBOL(filemap_dirty_folio); 2707 2708 /** 2709 * folio_redirty_for_writepage - Decline to write a dirty folio. 2710 * @wbc: The writeback control. 2711 * @folio: The folio. 2712 * 2713 * When a writepage implementation decides that it doesn't want to write 2714 * @folio for some reason, it should call this function, unlock @folio and 2715 * return 0. 2716 * 2717 * Return: True if we redirtied the folio. False if someone else dirtied 2718 * it first. 2719 */ 2720 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2721 struct folio *folio) 2722 { 2723 struct address_space *mapping = folio->mapping; 2724 long nr = folio_nr_pages(folio); 2725 bool ret; 2726 2727 wbc->pages_skipped += nr; 2728 ret = filemap_dirty_folio(mapping, folio); 2729 if (mapping && mapping_can_writeback(mapping)) { 2730 struct inode *inode = mapping->host; 2731 struct bdi_writeback *wb; 2732 struct wb_lock_cookie cookie = {}; 2733 2734 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2735 current->nr_dirtied -= nr; 2736 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2737 wb_stat_mod(wb, WB_DIRTIED, -nr); 2738 unlocked_inode_to_wb_end(inode, &cookie); 2739 } 2740 return ret; 2741 } 2742 EXPORT_SYMBOL(folio_redirty_for_writepage); 2743 2744 /** 2745 * folio_mark_dirty - Mark a folio as being modified. 2746 * @folio: The folio. 2747 * 2748 * The folio may not be truncated while this function is running. 2749 * Holding the folio lock is sufficient to prevent truncation, but some 2750 * callers cannot acquire a sleeping lock. These callers instead hold 2751 * the page table lock for a page table which contains at least one page 2752 * in this folio. Truncation will block on the page table lock as it 2753 * unmaps pages before removing the folio from its mapping. 2754 * 2755 * Return: True if the folio was newly dirtied, false if it was already dirty. 2756 */ 2757 bool folio_mark_dirty(struct folio *folio) 2758 { 2759 struct address_space *mapping = folio_mapping(folio); 2760 2761 if (likely(mapping)) { 2762 /* 2763 * readahead/folio_deactivate could remain 2764 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2765 * About readahead, if the folio is written, the flags would be 2766 * reset. So no problem. 2767 * About folio_deactivate, if the folio is redirtied, 2768 * the flag will be reset. So no problem. but if the 2769 * folio is used by readahead it will confuse readahead 2770 * and make it restart the size rampup process. But it's 2771 * a trivial problem. 2772 */ 2773 if (folio_test_reclaim(folio)) 2774 folio_clear_reclaim(folio); 2775 return mapping->a_ops->dirty_folio(mapping, folio); 2776 } 2777 2778 return noop_dirty_folio(mapping, folio); 2779 } 2780 EXPORT_SYMBOL(folio_mark_dirty); 2781 2782 /* 2783 * folio_mark_dirty() is racy if the caller has no reference against 2784 * folio->mapping->host, and if the folio is unlocked. This is because another 2785 * CPU could truncate the folio off the mapping and then free the mapping. 2786 * 2787 * Usually, the folio _is_ locked, or the caller is a user-space process which 2788 * holds a reference on the inode by having an open file. 2789 * 2790 * In other cases, the folio should be locked before running folio_mark_dirty(). 2791 */ 2792 bool folio_mark_dirty_lock(struct folio *folio) 2793 { 2794 bool ret; 2795 2796 folio_lock(folio); 2797 ret = folio_mark_dirty(folio); 2798 folio_unlock(folio); 2799 return ret; 2800 } 2801 EXPORT_SYMBOL(folio_mark_dirty_lock); 2802 2803 /* 2804 * This cancels just the dirty bit on the kernel page itself, it does NOT 2805 * actually remove dirty bits on any mmap's that may be around. It also 2806 * leaves the page tagged dirty, so any sync activity will still find it on 2807 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2808 * look at the dirty bits in the VM. 2809 * 2810 * Doing this should *normally* only ever be done when a page is truncated, 2811 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2812 * this when it notices that somebody has cleaned out all the buffers on a 2813 * page without actually doing it through the VM. Can you say "ext3 is 2814 * horribly ugly"? Thought you could. 2815 */ 2816 void __folio_cancel_dirty(struct folio *folio) 2817 { 2818 struct address_space *mapping = folio_mapping(folio); 2819 2820 if (mapping_can_writeback(mapping)) { 2821 struct inode *inode = mapping->host; 2822 struct bdi_writeback *wb; 2823 struct wb_lock_cookie cookie = {}; 2824 2825 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2826 2827 if (folio_test_clear_dirty(folio)) 2828 folio_account_cleaned(folio, wb); 2829 2830 unlocked_inode_to_wb_end(inode, &cookie); 2831 } else { 2832 folio_clear_dirty(folio); 2833 } 2834 } 2835 EXPORT_SYMBOL(__folio_cancel_dirty); 2836 2837 /* 2838 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2839 * Returns true if the folio was previously dirty. 2840 * 2841 * This is for preparing to put the folio under writeout. We leave 2842 * the folio tagged as dirty in the xarray so that a concurrent 2843 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2844 * The ->writepage implementation will run either folio_start_writeback() 2845 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2846 * and xarray dirty tag back into sync. 2847 * 2848 * This incoherency between the folio's dirty flag and xarray tag is 2849 * unfortunate, but it only exists while the folio is locked. 2850 */ 2851 bool folio_clear_dirty_for_io(struct folio *folio) 2852 { 2853 struct address_space *mapping = folio_mapping(folio); 2854 bool ret = false; 2855 2856 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2857 2858 if (mapping && mapping_can_writeback(mapping)) { 2859 struct inode *inode = mapping->host; 2860 struct bdi_writeback *wb; 2861 struct wb_lock_cookie cookie = {}; 2862 2863 /* 2864 * Yes, Virginia, this is indeed insane. 2865 * 2866 * We use this sequence to make sure that 2867 * (a) we account for dirty stats properly 2868 * (b) we tell the low-level filesystem to 2869 * mark the whole folio dirty if it was 2870 * dirty in a pagetable. Only to then 2871 * (c) clean the folio again and return 1 to 2872 * cause the writeback. 2873 * 2874 * This way we avoid all nasty races with the 2875 * dirty bit in multiple places and clearing 2876 * them concurrently from different threads. 2877 * 2878 * Note! Normally the "folio_mark_dirty(folio)" 2879 * has no effect on the actual dirty bit - since 2880 * that will already usually be set. But we 2881 * need the side effects, and it can help us 2882 * avoid races. 2883 * 2884 * We basically use the folio "master dirty bit" 2885 * as a serialization point for all the different 2886 * threads doing their things. 2887 */ 2888 if (folio_mkclean(folio)) 2889 folio_mark_dirty(folio); 2890 /* 2891 * We carefully synchronise fault handlers against 2892 * installing a dirty pte and marking the folio dirty 2893 * at this point. We do this by having them hold the 2894 * page lock while dirtying the folio, and folios are 2895 * always locked coming in here, so we get the desired 2896 * exclusion. 2897 */ 2898 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2899 if (folio_test_clear_dirty(folio)) { 2900 long nr = folio_nr_pages(folio); 2901 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2902 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2903 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2904 ret = true; 2905 } 2906 unlocked_inode_to_wb_end(inode, &cookie); 2907 return ret; 2908 } 2909 return folio_test_clear_dirty(folio); 2910 } 2911 EXPORT_SYMBOL(folio_clear_dirty_for_io); 2912 2913 static void wb_inode_writeback_start(struct bdi_writeback *wb) 2914 { 2915 atomic_inc(&wb->writeback_inodes); 2916 } 2917 2918 static void wb_inode_writeback_end(struct bdi_writeback *wb) 2919 { 2920 unsigned long flags; 2921 atomic_dec(&wb->writeback_inodes); 2922 /* 2923 * Make sure estimate of writeback throughput gets updated after 2924 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 2925 * (which is the interval other bandwidth updates use for batching) so 2926 * that if multiple inodes end writeback at a similar time, they get 2927 * batched into one bandwidth update. 2928 */ 2929 spin_lock_irqsave(&wb->work_lock, flags); 2930 if (test_bit(WB_registered, &wb->state)) 2931 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 2932 spin_unlock_irqrestore(&wb->work_lock, flags); 2933 } 2934 2935 bool __folio_end_writeback(struct folio *folio) 2936 { 2937 long nr = folio_nr_pages(folio); 2938 struct address_space *mapping = folio_mapping(folio); 2939 bool ret; 2940 2941 if (mapping && mapping_use_writeback_tags(mapping)) { 2942 struct inode *inode = mapping->host; 2943 struct bdi_writeback *wb; 2944 unsigned long flags; 2945 2946 xa_lock_irqsave(&mapping->i_pages, flags); 2947 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 2948 __xa_clear_mark(&mapping->i_pages, folio->index, 2949 PAGECACHE_TAG_WRITEBACK); 2950 2951 wb = inode_to_wb(inode); 2952 wb_stat_mod(wb, WB_WRITEBACK, -nr); 2953 __wb_writeout_add(wb, nr); 2954 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 2955 wb_inode_writeback_end(wb); 2956 if (mapping->host) 2957 sb_clear_inode_writeback(mapping->host); 2958 } 2959 2960 xa_unlock_irqrestore(&mapping->i_pages, flags); 2961 } else { 2962 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 2963 } 2964 2965 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 2966 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2967 node_stat_mod_folio(folio, NR_WRITTEN, nr); 2968 2969 return ret; 2970 } 2971 2972 void __folio_start_writeback(struct folio *folio, bool keep_write) 2973 { 2974 long nr = folio_nr_pages(folio); 2975 struct address_space *mapping = folio_mapping(folio); 2976 int access_ret; 2977 2978 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2979 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2980 2981 if (mapping && mapping_use_writeback_tags(mapping)) { 2982 XA_STATE(xas, &mapping->i_pages, folio->index); 2983 struct inode *inode = mapping->host; 2984 struct bdi_writeback *wb; 2985 unsigned long flags; 2986 bool on_wblist; 2987 2988 xas_lock_irqsave(&xas, flags); 2989 xas_load(&xas); 2990 folio_test_set_writeback(folio); 2991 2992 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); 2993 2994 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 2995 wb = inode_to_wb(inode); 2996 wb_stat_mod(wb, WB_WRITEBACK, nr); 2997 if (!on_wblist) { 2998 wb_inode_writeback_start(wb); 2999 /* 3000 * We can come through here when swapping anonymous 3001 * folios, so we don't necessarily have an inode to 3002 * track for sync. 3003 */ 3004 if (mapping->host) 3005 sb_mark_inode_writeback(mapping->host); 3006 } 3007 3008 if (!folio_test_dirty(folio)) 3009 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3010 if (!keep_write) 3011 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3012 xas_unlock_irqrestore(&xas, flags); 3013 } else { 3014 folio_test_set_writeback(folio); 3015 } 3016 3017 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3018 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3019 3020 access_ret = arch_make_folio_accessible(folio); 3021 /* 3022 * If writeback has been triggered on a page that cannot be made 3023 * accessible, it is too late to recover here. 3024 */ 3025 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3026 } 3027 EXPORT_SYMBOL(__folio_start_writeback); 3028 3029 /** 3030 * folio_wait_writeback - Wait for a folio to finish writeback. 3031 * @folio: The folio to wait for. 3032 * 3033 * If the folio is currently being written back to storage, wait for the 3034 * I/O to complete. 3035 * 3036 * Context: Sleeps. Must be called in process context and with 3037 * no spinlocks held. Caller should hold a reference on the folio. 3038 * If the folio is not locked, writeback may start again after writeback 3039 * has finished. 3040 */ 3041 void folio_wait_writeback(struct folio *folio) 3042 { 3043 while (folio_test_writeback(folio)) { 3044 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3045 folio_wait_bit(folio, PG_writeback); 3046 } 3047 } 3048 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3049 3050 /** 3051 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3052 * @folio: The folio to wait for. 3053 * 3054 * If the folio is currently being written back to storage, wait for the 3055 * I/O to complete or a fatal signal to arrive. 3056 * 3057 * Context: Sleeps. Must be called in process context and with 3058 * no spinlocks held. Caller should hold a reference on the folio. 3059 * If the folio is not locked, writeback may start again after writeback 3060 * has finished. 3061 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3062 */ 3063 int folio_wait_writeback_killable(struct folio *folio) 3064 { 3065 while (folio_test_writeback(folio)) { 3066 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3067 if (folio_wait_bit_killable(folio, PG_writeback)) 3068 return -EINTR; 3069 } 3070 3071 return 0; 3072 } 3073 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3074 3075 /** 3076 * folio_wait_stable() - wait for writeback to finish, if necessary. 3077 * @folio: The folio to wait on. 3078 * 3079 * This function determines if the given folio is related to a backing 3080 * device that requires folio contents to be held stable during writeback. 3081 * If so, then it will wait for any pending writeback to complete. 3082 * 3083 * Context: Sleeps. Must be called in process context and with 3084 * no spinlocks held. Caller should hold a reference on the folio. 3085 * If the folio is not locked, writeback may start again after writeback 3086 * has finished. 3087 */ 3088 void folio_wait_stable(struct folio *folio) 3089 { 3090 if (mapping_stable_writes(folio_mapping(folio))) 3091 folio_wait_writeback(folio); 3092 } 3093 EXPORT_SYMBOL_GPL(folio_wait_stable); 3094