1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_VOLUMES_H
7 #define BTRFS_VOLUMES_H
8
9 #include <linux/blk_types.h>
10 #include <linux/sizes.h>
11 #include <linux/atomic.h>
12 #include <linux/sort.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/log2.h>
16 #include <linux/kobject.h>
17 #include <linux/refcount.h>
18 #include <linux/completion.h>
19 #include <linux/rbtree.h>
20 #include <uapi/linux/btrfs.h>
21 #include "messages.h"
22 #include "rcu-string.h"
23
24 struct block_device;
25 struct bdev_handle;
26 struct btrfs_fs_info;
27 struct btrfs_block_group;
28 struct btrfs_trans_handle;
29 struct btrfs_zoned_device_info;
30
31 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
32
33 /*
34 * Arbitratry maximum size of one discard request to limit potentially long time
35 * spent in blkdev_issue_discard().
36 */
37 #define BTRFS_MAX_DISCARD_CHUNK_SIZE (SZ_1G)
38
39 extern struct mutex uuid_mutex;
40
41 #define BTRFS_STRIPE_LEN SZ_64K
42 #define BTRFS_STRIPE_LEN_SHIFT (16)
43 #define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1)
44
45 static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT);
46
47 /* Used by sanity check for btrfs_raid_types. */
48 #define const_ffs(n) (__builtin_ctzll(n) + 1)
49
50 /*
51 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires
52 * RAID0 always to be the lowest profile bit.
53 * Although it's part of on-disk format and should never change, do extra
54 * compile-time sanity checks.
55 */
56 static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) <
57 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0));
58 static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) >
59 ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK));
60
61 /* ilog2() can handle both constants and variables */
62 #define BTRFS_BG_FLAG_TO_INDEX(profile) \
63 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1))
64
65 enum btrfs_raid_types {
66 /* SINGLE is the special one as it doesn't have on-disk bit. */
67 BTRFS_RAID_SINGLE = 0,
68
69 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0),
70 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1),
71 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP),
72 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10),
73 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5),
74 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6),
75 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3),
76 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4),
77
78 BTRFS_NR_RAID_TYPES
79 };
80
81 /*
82 * Use sequence counter to get consistent device stat data on
83 * 32-bit processors.
84 */
85 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
86 #include <linux/seqlock.h>
87 #define __BTRFS_NEED_DEVICE_DATA_ORDERED
88 #define btrfs_device_data_ordered_init(device) \
89 seqcount_init(&device->data_seqcount)
90 #else
91 #define btrfs_device_data_ordered_init(device) do { } while (0)
92 #endif
93
94 #define BTRFS_DEV_STATE_WRITEABLE (0)
95 #define BTRFS_DEV_STATE_IN_FS_METADATA (1)
96 #define BTRFS_DEV_STATE_MISSING (2)
97 #define BTRFS_DEV_STATE_REPLACE_TGT (3)
98 #define BTRFS_DEV_STATE_FLUSH_SENT (4)
99 #define BTRFS_DEV_STATE_NO_READA (5)
100
101 /* Special value encoding failure to write primary super block. */
102 #define BTRFS_SUPER_PRIMARY_WRITE_ERROR (INT_MAX / 2)
103
104 struct btrfs_fs_devices;
105
106 struct btrfs_device {
107 struct list_head dev_list; /* device_list_mutex */
108 struct list_head dev_alloc_list; /* chunk mutex */
109 struct list_head post_commit_list; /* chunk mutex */
110 struct btrfs_fs_devices *fs_devices;
111 struct btrfs_fs_info *fs_info;
112
113 struct rcu_string __rcu *name;
114
115 u64 generation;
116
117 struct file *bdev_file;
118 struct block_device *bdev;
119
120 struct btrfs_zoned_device_info *zone_info;
121
122 /*
123 * Device's major-minor number. Must be set even if the device is not
124 * opened (bdev == NULL), unless the device is missing.
125 */
126 dev_t devt;
127 unsigned long dev_state;
128 blk_status_t last_flush_error;
129
130 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
131 seqcount_t data_seqcount;
132 #endif
133
134 /* the internal btrfs device id */
135 u64 devid;
136
137 /* size of the device in memory */
138 u64 total_bytes;
139
140 /* size of the device on disk */
141 u64 disk_total_bytes;
142
143 /* bytes used */
144 u64 bytes_used;
145
146 /* optimal io alignment for this device */
147 u32 io_align;
148
149 /* optimal io width for this device */
150 u32 io_width;
151 /* type and info about this device */
152 u64 type;
153
154 /*
155 * Counter of super block write errors, values larger than
156 * BTRFS_SUPER_PRIMARY_WRITE_ERROR encode primary super block write failure.
157 */
158 atomic_t sb_write_errors;
159
160 /* minimal io size for this device */
161 u32 sector_size;
162
163 /* physical drive uuid (or lvm uuid) */
164 u8 uuid[BTRFS_UUID_SIZE];
165
166 /*
167 * size of the device on the current transaction
168 *
169 * This variant is update when committing the transaction,
170 * and protected by chunk mutex
171 */
172 u64 commit_total_bytes;
173
174 /* bytes used on the current transaction */
175 u64 commit_bytes_used;
176
177 /* Bio used for flushing device barriers */
178 struct bio flush_bio;
179 struct completion flush_wait;
180
181 /* per-device scrub information */
182 struct scrub_ctx *scrub_ctx;
183
184 /* disk I/O failure stats. For detailed description refer to
185 * enum btrfs_dev_stat_values in ioctl.h */
186 int dev_stats_valid;
187
188 /* Counter to record the change of device stats */
189 atomic_t dev_stats_ccnt;
190 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
191
192 struct extent_io_tree alloc_state;
193
194 struct completion kobj_unregister;
195 /* For sysfs/FSID/devinfo/devid/ */
196 struct kobject devid_kobj;
197
198 /* Bandwidth limit for scrub, in bytes */
199 u64 scrub_speed_max;
200 };
201
202 /*
203 * Block group or device which contains an active swapfile. Used for preventing
204 * unsafe operations while a swapfile is active.
205 *
206 * These are sorted on (ptr, inode) (note that a block group or device can
207 * contain more than one swapfile). We compare the pointer values because we
208 * don't actually care what the object is, we just need a quick check whether
209 * the object exists in the rbtree.
210 */
211 struct btrfs_swapfile_pin {
212 struct rb_node node;
213 void *ptr;
214 struct inode *inode;
215 /*
216 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
217 * points to a struct btrfs_device.
218 */
219 bool is_block_group;
220 /*
221 * Only used when 'is_block_group' is true and it is the number of
222 * extents used by a swapfile for this block group ('ptr' field).
223 */
224 int bg_extent_count;
225 };
226
227 /*
228 * If we read those variants at the context of their own lock, we needn't
229 * use the following helpers, reading them directly is safe.
230 */
231 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
232 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
233 static inline u64 \
234 btrfs_device_get_##name(const struct btrfs_device *dev) \
235 { \
236 u64 size; \
237 unsigned int seq; \
238 \
239 do { \
240 seq = read_seqcount_begin(&dev->data_seqcount); \
241 size = dev->name; \
242 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
243 return size; \
244 } \
245 \
246 static inline void \
247 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
248 { \
249 preempt_disable(); \
250 write_seqcount_begin(&dev->data_seqcount); \
251 dev->name = size; \
252 write_seqcount_end(&dev->data_seqcount); \
253 preempt_enable(); \
254 }
255 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
256 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
257 static inline u64 \
258 btrfs_device_get_##name(const struct btrfs_device *dev) \
259 { \
260 u64 size; \
261 \
262 preempt_disable(); \
263 size = dev->name; \
264 preempt_enable(); \
265 return size; \
266 } \
267 \
268 static inline void \
269 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
270 { \
271 preempt_disable(); \
272 dev->name = size; \
273 preempt_enable(); \
274 }
275 #else
276 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
277 static inline u64 \
278 btrfs_device_get_##name(const struct btrfs_device *dev) \
279 { \
280 return dev->name; \
281 } \
282 \
283 static inline void \
284 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
285 { \
286 dev->name = size; \
287 }
288 #endif
289
290 BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
291 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
292 BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
293
294 enum btrfs_chunk_allocation_policy {
295 BTRFS_CHUNK_ALLOC_REGULAR,
296 BTRFS_CHUNK_ALLOC_ZONED,
297 };
298
299 /*
300 * Read policies for mirrored block group profiles, read picks the stripe based
301 * on these policies.
302 */
303 enum btrfs_read_policy {
304 /* Use process PID to choose the stripe */
305 BTRFS_READ_POLICY_PID,
306 BTRFS_NR_READ_POLICY,
307 };
308
309 #ifdef CONFIG_BTRFS_EXPERIMENTAL
310 /*
311 * Checksum mode - offload it to workqueues or do it synchronously in
312 * btrfs_submit_chunk().
313 */
314 enum btrfs_offload_csum_mode {
315 /*
316 * Choose offloading checksum or do it synchronously automatically.
317 * Do it synchronously if the checksum is fast, or offload to workqueues
318 * otherwise.
319 */
320 BTRFS_OFFLOAD_CSUM_AUTO,
321 /* Always offload checksum to workqueues. */
322 BTRFS_OFFLOAD_CSUM_FORCE_ON,
323 /* Never offload checksum to workqueues. */
324 BTRFS_OFFLOAD_CSUM_FORCE_OFF,
325 };
326 #endif
327
328 struct btrfs_fs_devices {
329 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
330
331 /*
332 * UUID written into the btree blocks:
333 *
334 * - If metadata_uuid != fsid then super block must have
335 * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set.
336 *
337 * - Following shall be true at all times:
338 * - metadata_uuid == btrfs_header::fsid
339 * - metadata_uuid == btrfs_dev_item::fsid
340 *
341 * - Relations between fsid and metadata_uuid in sb and fs_devices:
342 * - Normal:
343 * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid
344 * sb->metadata_uuid == 0
345 *
346 * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set:
347 * fs_devices->fsid == sb->fsid
348 * fs_devices->metadata_uuid == sb->metadata_uuid
349 *
350 * - When in-memory fs_devices->temp_fsid is true
351 * fs_devices->fsid = random
352 * fs_devices->metadata_uuid == sb->fsid
353 */
354 u8 metadata_uuid[BTRFS_FSID_SIZE];
355
356 struct list_head fs_list;
357
358 /*
359 * Number of devices under this fsid including missing and
360 * replace-target device and excludes seed devices.
361 */
362 u64 num_devices;
363
364 /*
365 * The number of devices that successfully opened, including
366 * replace-target, excludes seed devices.
367 */
368 u64 open_devices;
369
370 /* The number of devices that are under the chunk allocation list. */
371 u64 rw_devices;
372
373 /* Count of missing devices under this fsid excluding seed device. */
374 u64 missing_devices;
375 u64 total_rw_bytes;
376
377 /*
378 * Count of devices from btrfs_super_block::num_devices for this fsid,
379 * which includes the seed device, excludes the transient replace-target
380 * device.
381 */
382 u64 total_devices;
383
384 /* Highest generation number of seen devices */
385 u64 latest_generation;
386
387 /*
388 * The mount device or a device with highest generation after removal
389 * or replace.
390 */
391 struct btrfs_device *latest_dev;
392
393 /*
394 * All of the devices in the filesystem, protected by a mutex so we can
395 * safely walk it to write out the super blocks without worrying about
396 * adding/removing by the multi-device code. Scrubbing super block can
397 * kick off supers writing by holding this mutex lock.
398 */
399 struct mutex device_list_mutex;
400
401 /* List of all devices, protected by device_list_mutex */
402 struct list_head devices;
403
404 /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */
405 struct list_head alloc_list;
406
407 struct list_head seed_list;
408
409 /* Count fs-devices opened. */
410 int opened;
411
412 /* Set when we find or add a device that doesn't have the nonrot flag set. */
413 bool rotating;
414 /* Devices support TRIM/discard commands. */
415 bool discardable;
416 /* The filesystem is a seed filesystem. */
417 bool seeding;
418 /* The mount needs to use a randomly generated fsid. */
419 bool temp_fsid;
420
421 struct btrfs_fs_info *fs_info;
422 /* sysfs kobjects */
423 struct kobject fsid_kobj;
424 struct kobject *devices_kobj;
425 struct kobject *devinfo_kobj;
426 struct completion kobj_unregister;
427
428 enum btrfs_chunk_allocation_policy chunk_alloc_policy;
429
430 /* Policy used to read the mirrored stripes. */
431 enum btrfs_read_policy read_policy;
432
433 #ifdef CONFIG_BTRFS_EXPERIMENTAL
434 /* Checksum mode - offload it or do it synchronously. */
435 enum btrfs_offload_csum_mode offload_csum_mode;
436 #endif
437 };
438
439 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
440 - sizeof(struct btrfs_chunk)) \
441 / sizeof(struct btrfs_stripe) + 1)
442
443 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
444 - 2 * sizeof(struct btrfs_disk_key) \
445 - 2 * sizeof(struct btrfs_chunk)) \
446 / sizeof(struct btrfs_stripe) + 1)
447
448 struct btrfs_io_stripe {
449 struct btrfs_device *dev;
450 /* Block mapping. */
451 u64 physical;
452 u64 length;
453 bool rst_search_commit_root;
454 /* For the endio handler. */
455 struct btrfs_io_context *bioc;
456 };
457
458 struct btrfs_discard_stripe {
459 struct btrfs_device *dev;
460 u64 physical;
461 u64 length;
462 };
463
464 /*
465 * Context for IO subsmission for device stripe.
466 *
467 * - Track the unfinished mirrors for mirror based profiles
468 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10.
469 *
470 * - Contain the logical -> physical mapping info
471 * Used by submit_stripe_bio() for mapping logical bio
472 * into physical device address.
473 *
474 * - Contain device replace info
475 * Used by handle_ops_on_dev_replace() to copy logical bios
476 * into the new device.
477 *
478 * - Contain RAID56 full stripe logical bytenrs
479 */
480 struct btrfs_io_context {
481 refcount_t refs;
482 struct btrfs_fs_info *fs_info;
483 /* Taken from struct btrfs_chunk_map::type. */
484 u64 map_type;
485 struct bio *orig_bio;
486 atomic_t error;
487 u16 max_errors;
488
489 u64 logical;
490 u64 size;
491 /* Raid stripe tree ordered entry. */
492 struct list_head rst_ordered_entry;
493
494 /*
495 * The total number of stripes, including the extra duplicated
496 * stripe for replace.
497 */
498 u16 num_stripes;
499
500 /*
501 * The mirror_num of this bioc.
502 *
503 * This is for reads which use 0 as mirror_num, thus we should return a
504 * valid mirror_num (>0) for the reader.
505 */
506 u16 mirror_num;
507
508 /*
509 * The following two members are for dev-replace case only.
510 *
511 * @replace_nr_stripes: Number of duplicated stripes which need to be
512 * written to replace target.
513 * Should be <= 2 (2 for DUP, otherwise <= 1).
514 * @replace_stripe_src: The array indicates where the duplicated stripes
515 * are from.
516 *
517 * The @replace_stripe_src[] array is mostly for RAID56 cases.
518 * As non-RAID56 stripes share the same contents of the mapped range,
519 * thus no need to bother where the duplicated ones are from.
520 *
521 * But for RAID56 case, all stripes contain different contents, thus
522 * we need a way to know the mapping.
523 *
524 * There is an example for the two members, using a RAID5 write:
525 *
526 * num_stripes: 4 (3 + 1 duplicated write)
527 * stripes[0]: dev = devid 1, physical = X
528 * stripes[1]: dev = devid 2, physical = Y
529 * stripes[2]: dev = devid 3, physical = Z
530 * stripes[3]: dev = devid 0, physical = Y
531 *
532 * replace_nr_stripes = 1
533 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace.
534 * The duplicated stripe index would be
535 * (@num_stripes - 1).
536 *
537 * Note, that we can still have cases replace_nr_stripes = 2 for DUP.
538 * In that case, all stripes share the same content, thus we don't
539 * need to bother @replace_stripe_src value at all.
540 */
541 u16 replace_nr_stripes;
542 s16 replace_stripe_src;
543 /*
544 * Logical bytenr of the full stripe start, only for RAID56 cases.
545 *
546 * When this value is set to other than (u64)-1, the stripes[] should
547 * follow this pattern:
548 *
549 * (real_stripes = num_stripes - replace_nr_stripes)
550 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1))
551 *
552 * stripes[0]: The first data stripe
553 * stripes[1]: The second data stripe
554 * ...
555 * stripes[data_stripes - 1]: The last data stripe
556 * stripes[data_stripes]: The P stripe
557 * stripes[data_stripes + 1]: The Q stripe (only for RAID6).
558 */
559 u64 full_stripe_logical;
560 struct btrfs_io_stripe stripes[];
561 };
562
563 struct btrfs_device_info {
564 struct btrfs_device *dev;
565 u64 dev_offset;
566 u64 max_avail;
567 u64 total_avail;
568 };
569
570 struct btrfs_raid_attr {
571 u8 sub_stripes; /* sub_stripes info for map */
572 u8 dev_stripes; /* stripes per dev */
573 u8 devs_max; /* max devs to use */
574 u8 devs_min; /* min devs needed */
575 u8 tolerated_failures; /* max tolerated fail devs */
576 u8 devs_increment; /* ndevs has to be a multiple of this */
577 u8 ncopies; /* how many copies to data has */
578 u8 nparity; /* number of stripes worth of bytes to store
579 * parity information */
580 u8 mindev_error; /* error code if min devs requisite is unmet */
581 const char raid_name[8]; /* name of the raid */
582 u64 bg_flag; /* block group flag of the raid */
583 };
584
585 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
586
587 struct btrfs_chunk_map {
588 struct rb_node rb_node;
589 /* For mount time dev extent verification. */
590 int verified_stripes;
591 refcount_t refs;
592 u64 start;
593 u64 chunk_len;
594 u64 stripe_size;
595 u64 type;
596 int io_align;
597 int io_width;
598 int num_stripes;
599 int sub_stripes;
600 struct btrfs_io_stripe stripes[];
601 };
602
603 #define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \
604 (sizeof(struct btrfs_io_stripe) * (n)))
605
btrfs_free_chunk_map(struct btrfs_chunk_map * map)606 static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map)
607 {
608 if (map && refcount_dec_and_test(&map->refs)) {
609 ASSERT(RB_EMPTY_NODE(&map->rb_node));
610 kfree(map);
611 }
612 }
613
614 struct btrfs_balance_control {
615 struct btrfs_balance_args data;
616 struct btrfs_balance_args meta;
617 struct btrfs_balance_args sys;
618
619 u64 flags;
620
621 struct btrfs_balance_progress stat;
622 };
623
624 /*
625 * Search for a given device by the set parameters
626 */
627 struct btrfs_dev_lookup_args {
628 u64 devid;
629 u8 *uuid;
630 u8 *fsid;
631 bool missing;
632 };
633
634 /* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */
635 #define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 }
636
637 #define BTRFS_DEV_LOOKUP_ARGS(name) \
638 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT
639
640 enum btrfs_map_op {
641 BTRFS_MAP_READ,
642 BTRFS_MAP_WRITE,
643 BTRFS_MAP_GET_READ_MIRRORS,
644 };
645
btrfs_op(struct bio * bio)646 static inline enum btrfs_map_op btrfs_op(struct bio *bio)
647 {
648 switch (bio_op(bio)) {
649 case REQ_OP_WRITE:
650 case REQ_OP_ZONE_APPEND:
651 return BTRFS_MAP_WRITE;
652 default:
653 WARN_ON_ONCE(1);
654 fallthrough;
655 case REQ_OP_READ:
656 return BTRFS_MAP_READ;
657 }
658 }
659
btrfs_chunk_item_size(int num_stripes)660 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
661 {
662 ASSERT(num_stripes);
663 return sizeof(struct btrfs_chunk) +
664 sizeof(struct btrfs_stripe) * (num_stripes - 1);
665 }
666
667 /*
668 * Do the type safe conversion from stripe_nr to offset inside the chunk.
669 *
670 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger
671 * than 4G. This does the proper type cast to avoid overflow.
672 */
btrfs_stripe_nr_to_offset(u32 stripe_nr)673 static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr)
674 {
675 return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT;
676 }
677
678 void btrfs_get_bioc(struct btrfs_io_context *bioc);
679 void btrfs_put_bioc(struct btrfs_io_context *bioc);
680 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
681 u64 logical, u64 *length,
682 struct btrfs_io_context **bioc_ret,
683 struct btrfs_io_stripe *smap, int *mirror_num_ret);
684 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
685 struct btrfs_io_stripe *smap, u64 logical,
686 u32 length, int mirror_num);
687 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
688 u64 logical, u64 *length_ret,
689 u32 *num_stripes);
690 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
691 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
692 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
693 u64 type);
694 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info);
695 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
696 blk_mode_t flags, void *holder);
697 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
698 bool mount_arg_dev);
699 int btrfs_forget_devices(dev_t devt);
700 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
701 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices);
702 void btrfs_assign_next_active_device(struct btrfs_device *device,
703 struct btrfs_device *this_dev);
704 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
705 u64 devid,
706 const char *devpath);
707 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
708 struct btrfs_dev_lookup_args *args,
709 const char *path);
710 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
711 const u64 *devid, const u8 *uuid,
712 const char *path);
713 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args);
714 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
715 struct btrfs_dev_lookup_args *args,
716 struct file **bdev_file);
717 void __exit btrfs_cleanup_fs_uuids(void);
718 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
719 int btrfs_grow_device(struct btrfs_trans_handle *trans,
720 struct btrfs_device *device, u64 new_size);
721 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
722 const struct btrfs_dev_lookup_args *args);
723 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
724 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
725 int btrfs_balance(struct btrfs_fs_info *fs_info,
726 struct btrfs_balance_control *bctl,
727 struct btrfs_ioctl_balance_args *bargs);
728 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
729 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
730 int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
731 int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
732 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset);
733 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
734 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset);
735 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
736 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
737 struct btrfs_ioctl_get_dev_stats *stats);
738 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
739 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
740 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
741 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
742 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
743 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
744 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
745 u64 logical);
746 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map);
747 int btrfs_nr_parity_stripes(u64 type);
748 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
749 struct btrfs_block_group *bg);
750 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
751
752 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
753 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp);
754 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map);
755 #endif
756
757 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
758 u64 logical, u64 length);
759 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
760 u64 logical, u64 length);
761 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
762 u64 logical, u64 length);
763 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map);
764 void btrfs_release_disk_super(struct btrfs_super_block *super);
765
btrfs_dev_stat_inc(struct btrfs_device * dev,int index)766 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
767 int index)
768 {
769 atomic_inc(dev->dev_stat_values + index);
770 /*
771 * This memory barrier orders stores updating statistics before stores
772 * updating dev_stats_ccnt.
773 *
774 * It pairs with smp_rmb() in btrfs_run_dev_stats().
775 */
776 smp_mb__before_atomic();
777 atomic_inc(&dev->dev_stats_ccnt);
778 }
779
btrfs_dev_stat_read(struct btrfs_device * dev,int index)780 static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
781 int index)
782 {
783 return atomic_read(dev->dev_stat_values + index);
784 }
785
btrfs_dev_stat_read_and_reset(struct btrfs_device * dev,int index)786 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
787 int index)
788 {
789 int ret;
790
791 ret = atomic_xchg(dev->dev_stat_values + index, 0);
792 /*
793 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
794 * - RMW operations that have a return value are fully ordered;
795 *
796 * This implicit memory barriers is paired with the smp_rmb in
797 * btrfs_run_dev_stats
798 */
799 atomic_inc(&dev->dev_stats_ccnt);
800 return ret;
801 }
802
btrfs_dev_stat_set(struct btrfs_device * dev,int index,unsigned long val)803 static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
804 int index, unsigned long val)
805 {
806 atomic_set(dev->dev_stat_values + index, val);
807 /*
808 * This memory barrier orders stores updating statistics before stores
809 * updating dev_stats_ccnt.
810 *
811 * It pairs with smp_rmb() in btrfs_run_dev_stats().
812 */
813 smp_mb__before_atomic();
814 atomic_inc(&dev->dev_stats_ccnt);
815 }
816
btrfs_dev_name(const struct btrfs_device * device)817 static inline const char *btrfs_dev_name(const struct btrfs_device *device)
818 {
819 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
820 return "<missing disk>";
821 else
822 return rcu_str_deref(device->name);
823 }
824
825 void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
826
827 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
828 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
829 struct btrfs_device *failing_dev);
830 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device);
831
832 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags);
833 int btrfs_bg_type_to_factor(u64 flags);
834 const char *btrfs_bg_type_to_raid_name(u64 flags);
835 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
836 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical);
837
838 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
839 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb);
840
841 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
842 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
843 u64 logical, u16 total_stripes);
844 #endif
845
846 #endif
847