xref: /linux/mm/memory-tiers.c (revision a45088376d8a847a5e3b1982fcfceb41644e3b1d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/lockdep.h>
4 #include <linux/sysfs.h>
5 #include <linux/kobject.h>
6 #include <linux/memory.h>
7 #include <linux/memory-tiers.h>
8 #include <linux/notifier.h>
9 #include <linux/sched/sysctl.h>
10 
11 #include "internal.h"
12 
13 struct memory_tier {
14 	/* hierarchy of memory tiers */
15 	struct list_head list;
16 	/* list of all memory types part of this tier */
17 	struct list_head memory_types;
18 	/*
19 	 * start value of abstract distance. memory tier maps
20 	 * an abstract distance  range,
21 	 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
22 	 */
23 	int adistance_start;
24 	struct device dev;
25 	/* All the nodes that are part of all the lower memory tiers. */
26 	nodemask_t lower_tier_mask;
27 };
28 
29 struct demotion_nodes {
30 	nodemask_t preferred;
31 };
32 
33 struct node_memory_type_map {
34 	struct memory_dev_type *memtype;
35 	int map_count;
36 };
37 
38 static DEFINE_MUTEX(memory_tier_lock);
39 static LIST_HEAD(memory_tiers);
40 /*
41  * The list is used to store all memory types that are not created
42  * by a device driver.
43  */
44 static LIST_HEAD(default_memory_types);
45 static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
46 struct memory_dev_type *default_dram_type;
47 nodemask_t default_dram_nodes __initdata = NODE_MASK_NONE;
48 
49 static const struct bus_type memory_tier_subsys = {
50 	.name = "memory_tiering",
51 	.dev_name = "memory_tier",
52 };
53 
54 #ifdef CONFIG_NUMA_BALANCING
55 /**
56  * folio_use_access_time - check if a folio reuses cpupid for page access time
57  * @folio: folio to check
58  *
59  * folio's _last_cpupid field is repurposed by memory tiering. In memory
60  * tiering mode, cpupid of slow memory folio (not toptier memory) is used to
61  * record page access time.
62  *
63  * Return: the folio _last_cpupid is used to record page access time
64  */
65 bool folio_use_access_time(struct folio *folio)
66 {
67 	return (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
68 	       !node_is_toptier(folio_nid(folio));
69 }
70 #endif
71 
72 #ifdef CONFIG_MIGRATION
73 static int top_tier_adistance;
74 /*
75  * node_demotion[] examples:
76  *
77  * Example 1:
78  *
79  * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
80  *
81  * node distances:
82  * node   0    1    2    3
83  *    0  10   20   30   40
84  *    1  20   10   40   30
85  *    2  30   40   10   40
86  *    3  40   30   40   10
87  *
88  * memory_tiers0 = 0-1
89  * memory_tiers1 = 2-3
90  *
91  * node_demotion[0].preferred = 2
92  * node_demotion[1].preferred = 3
93  * node_demotion[2].preferred = <empty>
94  * node_demotion[3].preferred = <empty>
95  *
96  * Example 2:
97  *
98  * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
99  *
100  * node distances:
101  * node   0    1    2
102  *    0  10   20   30
103  *    1  20   10   30
104  *    2  30   30   10
105  *
106  * memory_tiers0 = 0-2
107  *
108  * node_demotion[0].preferred = <empty>
109  * node_demotion[1].preferred = <empty>
110  * node_demotion[2].preferred = <empty>
111  *
112  * Example 3:
113  *
114  * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
115  *
116  * node distances:
117  * node   0    1    2
118  *    0  10   20   30
119  *    1  20   10   40
120  *    2  30   40   10
121  *
122  * memory_tiers0 = 1
123  * memory_tiers1 = 0
124  * memory_tiers2 = 2
125  *
126  * node_demotion[0].preferred = 2
127  * node_demotion[1].preferred = 0
128  * node_demotion[2].preferred = <empty>
129  *
130  */
131 static struct demotion_nodes *node_demotion __read_mostly;
132 #endif /* CONFIG_MIGRATION */
133 
134 static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
135 
136 /* The lock is used to protect `default_dram_perf*` info and nid. */
137 static DEFINE_MUTEX(default_dram_perf_lock);
138 static bool default_dram_perf_error;
139 static struct access_coordinate default_dram_perf;
140 static int default_dram_perf_ref_nid = NUMA_NO_NODE;
141 static const char *default_dram_perf_ref_source;
142 
143 static inline struct memory_tier *to_memory_tier(struct device *device)
144 {
145 	return container_of(device, struct memory_tier, dev);
146 }
147 
148 static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
149 {
150 	nodemask_t nodes = NODE_MASK_NONE;
151 	struct memory_dev_type *memtype;
152 
153 	list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
154 		nodes_or(nodes, nodes, memtype->nodes);
155 
156 	return nodes;
157 }
158 
159 static void memory_tier_device_release(struct device *dev)
160 {
161 	struct memory_tier *tier = to_memory_tier(dev);
162 	/*
163 	 * synchronize_rcu in clear_node_memory_tier makes sure
164 	 * we don't have rcu access to this memory tier.
165 	 */
166 	kfree(tier);
167 }
168 
169 static ssize_t nodelist_show(struct device *dev,
170 			     struct device_attribute *attr, char *buf)
171 {
172 	int ret;
173 	nodemask_t nmask;
174 
175 	mutex_lock(&memory_tier_lock);
176 	nmask = get_memtier_nodemask(to_memory_tier(dev));
177 	ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
178 	mutex_unlock(&memory_tier_lock);
179 	return ret;
180 }
181 static DEVICE_ATTR_RO(nodelist);
182 
183 static struct attribute *memtier_dev_attrs[] = {
184 	&dev_attr_nodelist.attr,
185 	NULL
186 };
187 
188 static const struct attribute_group memtier_dev_group = {
189 	.attrs = memtier_dev_attrs,
190 };
191 
192 static const struct attribute_group *memtier_dev_groups[] = {
193 	&memtier_dev_group,
194 	NULL
195 };
196 
197 static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
198 {
199 	int ret;
200 	bool found_slot = false;
201 	struct memory_tier *memtier, *new_memtier;
202 	int adistance = memtype->adistance;
203 	unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
204 
205 	lockdep_assert_held_once(&memory_tier_lock);
206 
207 	adistance = round_down(adistance, memtier_adistance_chunk_size);
208 	/*
209 	 * If the memtype is already part of a memory tier,
210 	 * just return that.
211 	 */
212 	if (!list_empty(&memtype->tier_sibling)) {
213 		list_for_each_entry(memtier, &memory_tiers, list) {
214 			if (adistance == memtier->adistance_start)
215 				return memtier;
216 		}
217 		WARN_ON(1);
218 		return ERR_PTR(-EINVAL);
219 	}
220 
221 	list_for_each_entry(memtier, &memory_tiers, list) {
222 		if (adistance == memtier->adistance_start) {
223 			goto link_memtype;
224 		} else if (adistance < memtier->adistance_start) {
225 			found_slot = true;
226 			break;
227 		}
228 	}
229 
230 	new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
231 	if (!new_memtier)
232 		return ERR_PTR(-ENOMEM);
233 
234 	new_memtier->adistance_start = adistance;
235 	INIT_LIST_HEAD(&new_memtier->list);
236 	INIT_LIST_HEAD(&new_memtier->memory_types);
237 	if (found_slot)
238 		list_add_tail(&new_memtier->list, &memtier->list);
239 	else
240 		list_add_tail(&new_memtier->list, &memory_tiers);
241 
242 	new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
243 	new_memtier->dev.bus = &memory_tier_subsys;
244 	new_memtier->dev.release = memory_tier_device_release;
245 	new_memtier->dev.groups = memtier_dev_groups;
246 
247 	ret = device_register(&new_memtier->dev);
248 	if (ret) {
249 		list_del(&new_memtier->list);
250 		put_device(&new_memtier->dev);
251 		return ERR_PTR(ret);
252 	}
253 	memtier = new_memtier;
254 
255 link_memtype:
256 	list_add(&memtype->tier_sibling, &memtier->memory_types);
257 	return memtier;
258 }
259 
260 static struct memory_tier *__node_get_memory_tier(int node)
261 {
262 	pg_data_t *pgdat;
263 
264 	pgdat = NODE_DATA(node);
265 	if (!pgdat)
266 		return NULL;
267 	/*
268 	 * Since we hold memory_tier_lock, we can avoid
269 	 * RCU read locks when accessing the details. No
270 	 * parallel updates are possible here.
271 	 */
272 	return rcu_dereference_check(pgdat->memtier,
273 				     lockdep_is_held(&memory_tier_lock));
274 }
275 
276 #ifdef CONFIG_MIGRATION
277 bool node_is_toptier(int node)
278 {
279 	bool toptier;
280 	pg_data_t *pgdat;
281 	struct memory_tier *memtier;
282 
283 	pgdat = NODE_DATA(node);
284 	if (!pgdat)
285 		return false;
286 
287 	rcu_read_lock();
288 	memtier = rcu_dereference(pgdat->memtier);
289 	if (!memtier) {
290 		toptier = true;
291 		goto out;
292 	}
293 	if (memtier->adistance_start <= top_tier_adistance)
294 		toptier = true;
295 	else
296 		toptier = false;
297 out:
298 	rcu_read_unlock();
299 	return toptier;
300 }
301 
302 void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
303 {
304 	struct memory_tier *memtier;
305 
306 	/*
307 	 * pg_data_t.memtier updates includes a synchronize_rcu()
308 	 * which ensures that we either find NULL or a valid memtier
309 	 * in NODE_DATA. protect the access via rcu_read_lock();
310 	 */
311 	rcu_read_lock();
312 	memtier = rcu_dereference(pgdat->memtier);
313 	if (memtier)
314 		*targets = memtier->lower_tier_mask;
315 	else
316 		*targets = NODE_MASK_NONE;
317 	rcu_read_unlock();
318 }
319 
320 /**
321  * next_demotion_node() - Get the next node in the demotion path
322  * @node: The starting node to lookup the next node
323  *
324  * Return: node id for next memory node in the demotion path hierarchy
325  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
326  * @node online or guarantee that it *continues* to be the next demotion
327  * target.
328  */
329 int next_demotion_node(int node)
330 {
331 	struct demotion_nodes *nd;
332 	int target;
333 
334 	if (!node_demotion)
335 		return NUMA_NO_NODE;
336 
337 	nd = &node_demotion[node];
338 
339 	/*
340 	 * node_demotion[] is updated without excluding this
341 	 * function from running.
342 	 *
343 	 * Make sure to use RCU over entire code blocks if
344 	 * node_demotion[] reads need to be consistent.
345 	 */
346 	rcu_read_lock();
347 	/*
348 	 * If there are multiple target nodes, just select one
349 	 * target node randomly.
350 	 *
351 	 * In addition, we can also use round-robin to select
352 	 * target node, but we should introduce another variable
353 	 * for node_demotion[] to record last selected target node,
354 	 * that may cause cache ping-pong due to the changing of
355 	 * last target node. Or introducing per-cpu data to avoid
356 	 * caching issue, which seems more complicated. So selecting
357 	 * target node randomly seems better until now.
358 	 */
359 	target = node_random(&nd->preferred);
360 	rcu_read_unlock();
361 
362 	return target;
363 }
364 
365 static void disable_all_demotion_targets(void)
366 {
367 	struct memory_tier *memtier;
368 	int node;
369 
370 	for_each_node_state(node, N_MEMORY) {
371 		node_demotion[node].preferred = NODE_MASK_NONE;
372 		/*
373 		 * We are holding memory_tier_lock, it is safe
374 		 * to access pgda->memtier.
375 		 */
376 		memtier = __node_get_memory_tier(node);
377 		if (memtier)
378 			memtier->lower_tier_mask = NODE_MASK_NONE;
379 	}
380 	/*
381 	 * Ensure that the "disable" is visible across the system.
382 	 * Readers will see either a combination of before+disable
383 	 * state or disable+after.  They will never see before and
384 	 * after state together.
385 	 */
386 	synchronize_rcu();
387 }
388 
389 static void dump_demotion_targets(void)
390 {
391 	int node;
392 
393 	for_each_node_state(node, N_MEMORY) {
394 		struct memory_tier *memtier = __node_get_memory_tier(node);
395 		nodemask_t preferred = node_demotion[node].preferred;
396 
397 		if (!memtier)
398 			continue;
399 
400 		if (nodes_empty(preferred))
401 			pr_info("Demotion targets for Node %d: null\n", node);
402 		else
403 			pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
404 				node, nodemask_pr_args(&preferred),
405 				nodemask_pr_args(&memtier->lower_tier_mask));
406 	}
407 }
408 
409 /*
410  * Find an automatic demotion target for all memory
411  * nodes. Failing here is OK.  It might just indicate
412  * being at the end of a chain.
413  */
414 static void establish_demotion_targets(void)
415 {
416 	struct memory_tier *memtier;
417 	struct demotion_nodes *nd;
418 	int target = NUMA_NO_NODE, node;
419 	int distance, best_distance;
420 	nodemask_t tier_nodes, lower_tier;
421 
422 	lockdep_assert_held_once(&memory_tier_lock);
423 
424 	if (!node_demotion)
425 		return;
426 
427 	disable_all_demotion_targets();
428 
429 	for_each_node_state(node, N_MEMORY) {
430 		best_distance = -1;
431 		nd = &node_demotion[node];
432 
433 		memtier = __node_get_memory_tier(node);
434 		if (!memtier || list_is_last(&memtier->list, &memory_tiers))
435 			continue;
436 		/*
437 		 * Get the lower memtier to find the  demotion node list.
438 		 */
439 		memtier = list_next_entry(memtier, list);
440 		tier_nodes = get_memtier_nodemask(memtier);
441 		/*
442 		 * find_next_best_node, use 'used' nodemask as a skip list.
443 		 * Add all memory nodes except the selected memory tier
444 		 * nodelist to skip list so that we find the best node from the
445 		 * memtier nodelist.
446 		 */
447 		nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
448 
449 		/*
450 		 * Find all the nodes in the memory tier node list of same best distance.
451 		 * add them to the preferred mask. We randomly select between nodes
452 		 * in the preferred mask when allocating pages during demotion.
453 		 */
454 		do {
455 			target = find_next_best_node(node, &tier_nodes);
456 			if (target == NUMA_NO_NODE)
457 				break;
458 
459 			distance = node_distance(node, target);
460 			if (distance == best_distance || best_distance == -1) {
461 				best_distance = distance;
462 				node_set(target, nd->preferred);
463 			} else {
464 				break;
465 			}
466 		} while (1);
467 	}
468 	/*
469 	 * Promotion is allowed from a memory tier to higher
470 	 * memory tier only if the memory tier doesn't include
471 	 * compute. We want to skip promotion from a memory tier,
472 	 * if any node that is part of the memory tier have CPUs.
473 	 * Once we detect such a memory tier, we consider that tier
474 	 * as top tiper from which promotion is not allowed.
475 	 */
476 	list_for_each_entry_reverse(memtier, &memory_tiers, list) {
477 		tier_nodes = get_memtier_nodemask(memtier);
478 		if (nodes_and(tier_nodes, node_states[N_CPU], tier_nodes)) {
479 			/*
480 			 * abstract distance below the max value of this memtier
481 			 * is considered toptier.
482 			 */
483 			top_tier_adistance = memtier->adistance_start +
484 						MEMTIER_CHUNK_SIZE - 1;
485 			break;
486 		}
487 	}
488 	/*
489 	 * Now build the lower_tier mask for each node collecting node mask from
490 	 * all memory tier below it. This allows us to fallback demotion page
491 	 * allocation to a set of nodes that is closer the above selected
492 	 * preferred node.
493 	 */
494 	lower_tier = node_states[N_MEMORY];
495 	list_for_each_entry(memtier, &memory_tiers, list) {
496 		/*
497 		 * Keep removing current tier from lower_tier nodes,
498 		 * This will remove all nodes in current and above
499 		 * memory tier from the lower_tier mask.
500 		 */
501 		tier_nodes = get_memtier_nodemask(memtier);
502 		nodes_andnot(lower_tier, lower_tier, tier_nodes);
503 		memtier->lower_tier_mask = lower_tier;
504 	}
505 
506 	dump_demotion_targets();
507 }
508 
509 #else
510 static inline void establish_demotion_targets(void) {}
511 #endif /* CONFIG_MIGRATION */
512 
513 static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
514 {
515 	if (!node_memory_types[node].memtype)
516 		node_memory_types[node].memtype = memtype;
517 	/*
518 	 * for each device getting added in the same NUMA node
519 	 * with this specific memtype, bump the map count. We
520 	 * Only take memtype device reference once, so that
521 	 * changing a node memtype can be done by dropping the
522 	 * only reference count taken here.
523 	 */
524 
525 	if (node_memory_types[node].memtype == memtype) {
526 		if (!node_memory_types[node].map_count++)
527 			kref_get(&memtype->kref);
528 	}
529 }
530 
531 static struct memory_tier *set_node_memory_tier(int node)
532 {
533 	struct memory_tier *memtier;
534 	struct memory_dev_type *memtype = default_dram_type;
535 	int adist = MEMTIER_ADISTANCE_DRAM;
536 	pg_data_t *pgdat = NODE_DATA(node);
537 
538 
539 	lockdep_assert_held_once(&memory_tier_lock);
540 
541 	if (!node_state(node, N_MEMORY))
542 		return ERR_PTR(-EINVAL);
543 
544 	mt_calc_adistance(node, &adist);
545 	if (!node_memory_types[node].memtype) {
546 		memtype = mt_find_alloc_memory_type(adist, &default_memory_types);
547 		if (IS_ERR(memtype)) {
548 			memtype = default_dram_type;
549 			pr_info("Failed to allocate a memory type. Fall back.\n");
550 		}
551 	}
552 
553 	__init_node_memory_type(node, memtype);
554 
555 	memtype = node_memory_types[node].memtype;
556 	node_set(node, memtype->nodes);
557 	memtier = find_create_memory_tier(memtype);
558 	if (!IS_ERR(memtier))
559 		rcu_assign_pointer(pgdat->memtier, memtier);
560 	return memtier;
561 }
562 
563 static void destroy_memory_tier(struct memory_tier *memtier)
564 {
565 	list_del(&memtier->list);
566 	device_unregister(&memtier->dev);
567 }
568 
569 static bool clear_node_memory_tier(int node)
570 {
571 	bool cleared = false;
572 	pg_data_t *pgdat;
573 	struct memory_tier *memtier;
574 
575 	pgdat = NODE_DATA(node);
576 	if (!pgdat)
577 		return false;
578 
579 	/*
580 	 * Make sure that anybody looking at NODE_DATA who finds
581 	 * a valid memtier finds memory_dev_types with nodes still
582 	 * linked to the memtier. We achieve this by waiting for
583 	 * rcu read section to finish using synchronize_rcu.
584 	 * This also enables us to free the destroyed memory tier
585 	 * with kfree instead of kfree_rcu
586 	 */
587 	memtier = __node_get_memory_tier(node);
588 	if (memtier) {
589 		struct memory_dev_type *memtype;
590 
591 		rcu_assign_pointer(pgdat->memtier, NULL);
592 		synchronize_rcu();
593 		memtype = node_memory_types[node].memtype;
594 		node_clear(node, memtype->nodes);
595 		if (nodes_empty(memtype->nodes)) {
596 			list_del_init(&memtype->tier_sibling);
597 			if (list_empty(&memtier->memory_types))
598 				destroy_memory_tier(memtier);
599 		}
600 		cleared = true;
601 	}
602 	return cleared;
603 }
604 
605 static void release_memtype(struct kref *kref)
606 {
607 	struct memory_dev_type *memtype;
608 
609 	memtype = container_of(kref, struct memory_dev_type, kref);
610 	kfree(memtype);
611 }
612 
613 struct memory_dev_type *alloc_memory_type(int adistance)
614 {
615 	struct memory_dev_type *memtype;
616 
617 	memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
618 	if (!memtype)
619 		return ERR_PTR(-ENOMEM);
620 
621 	memtype->adistance = adistance;
622 	INIT_LIST_HEAD(&memtype->tier_sibling);
623 	memtype->nodes  = NODE_MASK_NONE;
624 	kref_init(&memtype->kref);
625 	return memtype;
626 }
627 EXPORT_SYMBOL_GPL(alloc_memory_type);
628 
629 void put_memory_type(struct memory_dev_type *memtype)
630 {
631 	kref_put(&memtype->kref, release_memtype);
632 }
633 EXPORT_SYMBOL_GPL(put_memory_type);
634 
635 void init_node_memory_type(int node, struct memory_dev_type *memtype)
636 {
637 
638 	mutex_lock(&memory_tier_lock);
639 	__init_node_memory_type(node, memtype);
640 	mutex_unlock(&memory_tier_lock);
641 }
642 EXPORT_SYMBOL_GPL(init_node_memory_type);
643 
644 void clear_node_memory_type(int node, struct memory_dev_type *memtype)
645 {
646 	mutex_lock(&memory_tier_lock);
647 	if (node_memory_types[node].memtype == memtype || !memtype)
648 		node_memory_types[node].map_count--;
649 	/*
650 	 * If we unmapped all the attached devices to this node,
651 	 * clear the node memory type.
652 	 */
653 	if (!node_memory_types[node].map_count) {
654 		memtype = node_memory_types[node].memtype;
655 		node_memory_types[node].memtype = NULL;
656 		put_memory_type(memtype);
657 	}
658 	mutex_unlock(&memory_tier_lock);
659 }
660 EXPORT_SYMBOL_GPL(clear_node_memory_type);
661 
662 struct memory_dev_type *mt_find_alloc_memory_type(int adist, struct list_head *memory_types)
663 {
664 	struct memory_dev_type *mtype;
665 
666 	list_for_each_entry(mtype, memory_types, list)
667 		if (mtype->adistance == adist)
668 			return mtype;
669 
670 	mtype = alloc_memory_type(adist);
671 	if (IS_ERR(mtype))
672 		return mtype;
673 
674 	list_add(&mtype->list, memory_types);
675 
676 	return mtype;
677 }
678 EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type);
679 
680 void mt_put_memory_types(struct list_head *memory_types)
681 {
682 	struct memory_dev_type *mtype, *mtn;
683 
684 	list_for_each_entry_safe(mtype, mtn, memory_types, list) {
685 		list_del(&mtype->list);
686 		put_memory_type(mtype);
687 	}
688 }
689 EXPORT_SYMBOL_GPL(mt_put_memory_types);
690 
691 /*
692  * This is invoked via `late_initcall()` to initialize memory tiers for
693  * memory nodes, both with and without CPUs. After the initialization of
694  * firmware and devices, adistance algorithms are expected to be provided.
695  */
696 static int __init memory_tier_late_init(void)
697 {
698 	int nid;
699 	struct memory_tier *memtier;
700 
701 	get_online_mems();
702 	guard(mutex)(&memory_tier_lock);
703 
704 	/* Assign each uninitialized N_MEMORY node to a memory tier. */
705 	for_each_node_state(nid, N_MEMORY) {
706 		/*
707 		 * Some device drivers may have initialized
708 		 * memory tiers, potentially bringing memory nodes
709 		 * online and configuring memory tiers.
710 		 * Exclude them here.
711 		 */
712 		if (node_memory_types[nid].memtype)
713 			continue;
714 
715 		memtier = set_node_memory_tier(nid);
716 		if (IS_ERR(memtier))
717 			continue;
718 	}
719 
720 	establish_demotion_targets();
721 	put_online_mems();
722 
723 	return 0;
724 }
725 late_initcall(memory_tier_late_init);
726 
727 static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
728 {
729 	pr_info(
730 "%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
731 		prefix, coord->read_latency, coord->write_latency,
732 		coord->read_bandwidth, coord->write_bandwidth);
733 }
734 
735 int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
736 			     const char *source)
737 {
738 	guard(mutex)(&default_dram_perf_lock);
739 	if (default_dram_perf_error)
740 		return -EIO;
741 
742 	if (perf->read_latency + perf->write_latency == 0 ||
743 	    perf->read_bandwidth + perf->write_bandwidth == 0)
744 		return -EINVAL;
745 
746 	if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
747 		default_dram_perf = *perf;
748 		default_dram_perf_ref_nid = nid;
749 		default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
750 		return 0;
751 	}
752 
753 	/*
754 	 * The performance of all default DRAM nodes is expected to be
755 	 * same (that is, the variation is less than 10%).  And it
756 	 * will be used as base to calculate the abstract distance of
757 	 * other memory nodes.
758 	 */
759 	if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
760 	    default_dram_perf.read_latency ||
761 	    abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
762 	    default_dram_perf.write_latency ||
763 	    abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
764 	    default_dram_perf.read_bandwidth ||
765 	    abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
766 	    default_dram_perf.write_bandwidth) {
767 		pr_info(
768 "memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
769 "DRAM node %d.\n", nid, default_dram_perf_ref_nid);
770 		pr_info("  performance of reference DRAM node %d from %s:\n",
771 			default_dram_perf_ref_nid, default_dram_perf_ref_source);
772 		dump_hmem_attrs(&default_dram_perf, "    ");
773 		pr_info("  performance of DRAM node %d from %s:\n", nid, source);
774 		dump_hmem_attrs(perf, "    ");
775 		pr_info(
776 "  disable default DRAM node performance based abstract distance algorithm.\n");
777 		default_dram_perf_error = true;
778 		return -EINVAL;
779 	}
780 
781 	return 0;
782 }
783 
784 int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
785 {
786 	guard(mutex)(&default_dram_perf_lock);
787 	if (default_dram_perf_error)
788 		return -EIO;
789 
790 	if (perf->read_latency + perf->write_latency == 0 ||
791 	    perf->read_bandwidth + perf->write_bandwidth == 0)
792 		return -EINVAL;
793 
794 	if (default_dram_perf_ref_nid == NUMA_NO_NODE)
795 		return -ENOENT;
796 
797 	/*
798 	 * The abstract distance of a memory node is in direct proportion to
799 	 * its memory latency (read + write) and inversely proportional to its
800 	 * memory bandwidth (read + write).  The abstract distance, memory
801 	 * latency, and memory bandwidth of the default DRAM nodes are used as
802 	 * the base.
803 	 */
804 	*adist = MEMTIER_ADISTANCE_DRAM *
805 		(perf->read_latency + perf->write_latency) /
806 		(default_dram_perf.read_latency + default_dram_perf.write_latency) *
807 		(default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
808 		(perf->read_bandwidth + perf->write_bandwidth);
809 
810 	return 0;
811 }
812 EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
813 
814 /**
815  * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
816  * @nb: The notifier block which describe the algorithm
817  *
818  * Return: 0 on success, errno on error.
819  *
820  * Every memory tiering abstract distance algorithm provider needs to
821  * register the algorithm with register_mt_adistance_algorithm().  To
822  * calculate the abstract distance for a specified memory node, the
823  * notifier function will be called unless some high priority
824  * algorithm has provided result.  The prototype of the notifier
825  * function is as follows,
826  *
827  *   int (*algorithm_notifier)(struct notifier_block *nb,
828  *                             unsigned long nid, void *data);
829  *
830  * Where "nid" specifies the memory node, "data" is the pointer to the
831  * returned abstract distance (that is, "int *adist").  If the
832  * algorithm provides the result, NOTIFY_STOP should be returned.
833  * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
834  * algorithm in the chain to provide the result.
835  */
836 int register_mt_adistance_algorithm(struct notifier_block *nb)
837 {
838 	return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
839 }
840 EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
841 
842 /**
843  * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
844  * @nb: the notifier block which describe the algorithm
845  *
846  * Return: 0 on success, errno on error.
847  */
848 int unregister_mt_adistance_algorithm(struct notifier_block *nb)
849 {
850 	return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
851 }
852 EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
853 
854 /**
855  * mt_calc_adistance() - Calculate abstract distance with registered algorithms
856  * @node: the node to calculate abstract distance for
857  * @adist: the returned abstract distance
858  *
859  * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
860  * abstract distance algorithm provides the result, and return it via
861  * @adist.  Otherwise, no algorithm can provide the result and @adist
862  * will be kept as it is.
863  */
864 int mt_calc_adistance(int node, int *adist)
865 {
866 	return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
867 }
868 EXPORT_SYMBOL_GPL(mt_calc_adistance);
869 
870 static int __meminit memtier_hotplug_callback(struct notifier_block *self,
871 					      unsigned long action, void *_arg)
872 {
873 	struct memory_tier *memtier;
874 	struct node_notify *nn = _arg;
875 
876 	switch (action) {
877 	case NODE_REMOVED_LAST_MEMORY:
878 		mutex_lock(&memory_tier_lock);
879 		if (clear_node_memory_tier(nn->nid))
880 			establish_demotion_targets();
881 		mutex_unlock(&memory_tier_lock);
882 		break;
883 	case NODE_ADDED_FIRST_MEMORY:
884 		mutex_lock(&memory_tier_lock);
885 		memtier = set_node_memory_tier(nn->nid);
886 		if (!IS_ERR(memtier))
887 			establish_demotion_targets();
888 		mutex_unlock(&memory_tier_lock);
889 		break;
890 	}
891 
892 	return notifier_from_errno(0);
893 }
894 
895 static int __init memory_tier_init(void)
896 {
897 	int ret;
898 
899 	ret = subsys_virtual_register(&memory_tier_subsys, NULL);
900 	if (ret)
901 		panic("%s() failed to register memory tier subsystem\n", __func__);
902 
903 #ifdef CONFIG_MIGRATION
904 	node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
905 				GFP_KERNEL);
906 	WARN_ON(!node_demotion);
907 #endif
908 
909 	mutex_lock(&memory_tier_lock);
910 	/*
911 	 * For now we can have 4 faster memory tiers with smaller adistance
912 	 * than default DRAM tier.
913 	 */
914 	default_dram_type = mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM,
915 						      &default_memory_types);
916 	mutex_unlock(&memory_tier_lock);
917 	if (IS_ERR(default_dram_type))
918 		panic("%s() failed to allocate default DRAM tier\n", __func__);
919 
920 	/* Record nodes with memory and CPU to set default DRAM performance. */
921 	nodes_and(default_dram_nodes, node_states[N_MEMORY],
922 		  node_states[N_CPU]);
923 
924 	hotplug_node_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
925 	return 0;
926 }
927 subsys_initcall(memory_tier_init);
928 
929 bool numa_demotion_enabled = false;
930 
931 #ifdef CONFIG_MIGRATION
932 #ifdef CONFIG_SYSFS
933 static ssize_t demotion_enabled_show(struct kobject *kobj,
934 				     struct kobj_attribute *attr, char *buf)
935 {
936 	return sysfs_emit(buf, "%s\n", str_true_false(numa_demotion_enabled));
937 }
938 
939 static ssize_t demotion_enabled_store(struct kobject *kobj,
940 				      struct kobj_attribute *attr,
941 				      const char *buf, size_t count)
942 {
943 	ssize_t ret;
944 	bool before = numa_demotion_enabled;
945 
946 	ret = kstrtobool(buf, &numa_demotion_enabled);
947 	if (ret)
948 		return ret;
949 
950 	/*
951 	 * Reset kswapd_failures statistics. They may no longer be
952 	 * valid since the policy for kswapd has changed.
953 	 */
954 	if (before == false && numa_demotion_enabled == true) {
955 		struct pglist_data *pgdat;
956 
957 		for_each_online_pgdat(pgdat)
958 			kswapd_clear_hopeless(pgdat, KSWAPD_CLEAR_HOPELESS_OTHER);
959 	}
960 
961 	return count;
962 }
963 
964 static struct kobj_attribute numa_demotion_enabled_attr =
965 	__ATTR_RW(demotion_enabled);
966 
967 static struct attribute *numa_attrs[] = {
968 	&numa_demotion_enabled_attr.attr,
969 	NULL,
970 };
971 
972 static const struct attribute_group numa_attr_group = {
973 	.attrs = numa_attrs,
974 };
975 
976 static int __init numa_init_sysfs(void)
977 {
978 	int err;
979 	struct kobject *numa_kobj;
980 
981 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
982 	if (!numa_kobj) {
983 		pr_err("failed to create numa kobject\n");
984 		return -ENOMEM;
985 	}
986 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
987 	if (err) {
988 		pr_err("failed to register numa group\n");
989 		goto delete_obj;
990 	}
991 	return 0;
992 
993 delete_obj:
994 	kobject_put(numa_kobj);
995 	return err;
996 }
997 subsys_initcall(numa_init_sysfs);
998 #endif /* CONFIG_SYSFS */
999 #endif
1000