1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44 #include "swap.h"
45
46 /*
47 * Sleep at most 200ms at a time in balance_dirty_pages().
48 */
49 #define MAX_PAUSE max(HZ/5, 1)
50
51 /*
52 * Try to keep balance_dirty_pages() call intervals higher than this many pages
53 * by raising pause time to max_pause when falls below it.
54 */
55 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56
57 /*
58 * Estimate write bandwidth or update dirty limit at 200ms intervals.
59 */
60 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
61
62 #define RATELIMIT_CALC_SHIFT 10
63
64 /*
65 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
66 * will look to see if it needs to force writeback or throttling.
67 */
68 static long ratelimit_pages = 32;
69
70 /* The following parameters are exported via /proc/sys/vm */
71
72 /*
73 * Start background writeback (via writeback threads) at this percentage
74 */
75 static int dirty_background_ratio = 10;
76
77 /*
78 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
79 * dirty_background_ratio * the amount of dirtyable memory
80 */
81 static unsigned long dirty_background_bytes;
82
83 /*
84 * free highmem will not be subtracted from the total free memory
85 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 */
87 static int vm_highmem_is_dirtyable;
88
89 /*
90 * The generator of dirty data starts writeback at this percentage
91 */
92 static int vm_dirty_ratio = 20;
93
94 /*
95 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
96 * vm_dirty_ratio * the amount of dirtyable memory
97 */
98 static unsigned long vm_dirty_bytes;
99
100 /*
101 * The interval between `kupdate'-style writebacks
102 */
103 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
104
105 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
106
107 /*
108 * The longest time for which data is allowed to remain dirty
109 */
110 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
111
112 /*
113 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114 * a full sync is triggered after this time elapses without any disk activity.
115 */
116 int laptop_mode;
117
118 EXPORT_SYMBOL(laptop_mode);
119
120 /* End of sysctl-exported parameters */
121
122 struct wb_domain global_wb_domain;
123
124 /*
125 * Length of period for aging writeout fractions of bdis. This is an
126 * arbitrarily chosen number. The longer the period, the slower fractions will
127 * reflect changes in current writeout rate.
128 */
129 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
130
131 #ifdef CONFIG_CGROUP_WRITEBACK
132
133 #define GDTC_INIT(__wb) .wb = (__wb), \
134 .dom = &global_wb_domain, \
135 .wb_completions = &(__wb)->completions
136
137 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
138
139 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
140 .dom = mem_cgroup_wb_domain(__wb), \
141 .wb_completions = &(__wb)->memcg_completions, \
142 .gdtc = __gdtc
143
mdtc_valid(struct dirty_throttle_control * dtc)144 static bool mdtc_valid(struct dirty_throttle_control *dtc)
145 {
146 return dtc->dom;
147 }
148
dtc_dom(struct dirty_throttle_control * dtc)149 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
150 {
151 return dtc->dom;
152 }
153
mdtc_gdtc(struct dirty_throttle_control * mdtc)154 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
155 {
156 return mdtc->gdtc;
157 }
158
wb_memcg_completions(struct bdi_writeback * wb)159 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
160 {
161 return &wb->memcg_completions;
162 }
163
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)164 static void wb_min_max_ratio(struct bdi_writeback *wb,
165 unsigned long *minp, unsigned long *maxp)
166 {
167 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
168 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
169 unsigned long long min = wb->bdi->min_ratio;
170 unsigned long long max = wb->bdi->max_ratio;
171
172 /*
173 * @wb may already be clean by the time control reaches here and
174 * the total may not include its bw.
175 */
176 if (this_bw < tot_bw) {
177 if (min) {
178 min *= this_bw;
179 min = div64_ul(min, tot_bw);
180 }
181 if (max < 100 * BDI_RATIO_SCALE) {
182 max *= this_bw;
183 max = div64_ul(max, tot_bw);
184 }
185 }
186
187 *minp = min;
188 *maxp = max;
189 }
190
191 #else /* CONFIG_CGROUP_WRITEBACK */
192
193 #define GDTC_INIT(__wb) .wb = (__wb), \
194 .wb_completions = &(__wb)->completions
195 #define GDTC_INIT_NO_WB
196 #define MDTC_INIT(__wb, __gdtc)
197
mdtc_valid(struct dirty_throttle_control * dtc)198 static bool mdtc_valid(struct dirty_throttle_control *dtc)
199 {
200 return false;
201 }
202
dtc_dom(struct dirty_throttle_control * dtc)203 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
204 {
205 return &global_wb_domain;
206 }
207
mdtc_gdtc(struct dirty_throttle_control * mdtc)208 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
209 {
210 return NULL;
211 }
212
wb_memcg_completions(struct bdi_writeback * wb)213 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
214 {
215 return NULL;
216 }
217
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)218 static void wb_min_max_ratio(struct bdi_writeback *wb,
219 unsigned long *minp, unsigned long *maxp)
220 {
221 *minp = wb->bdi->min_ratio;
222 *maxp = wb->bdi->max_ratio;
223 }
224
225 #endif /* CONFIG_CGROUP_WRITEBACK */
226
227 /*
228 * In a memory zone, there is a certain amount of pages we consider
229 * available for the page cache, which is essentially the number of
230 * free and reclaimable pages, minus some zone reserves to protect
231 * lowmem and the ability to uphold the zone's watermarks without
232 * requiring writeback.
233 *
234 * This number of dirtyable pages is the base value of which the
235 * user-configurable dirty ratio is the effective number of pages that
236 * are allowed to be actually dirtied. Per individual zone, or
237 * globally by using the sum of dirtyable pages over all zones.
238 *
239 * Because the user is allowed to specify the dirty limit globally as
240 * absolute number of bytes, calculating the per-zone dirty limit can
241 * require translating the configured limit into a percentage of
242 * global dirtyable memory first.
243 */
244
245 /**
246 * node_dirtyable_memory - number of dirtyable pages in a node
247 * @pgdat: the node
248 *
249 * Return: the node's number of pages potentially available for dirty
250 * page cache. This is the base value for the per-node dirty limits.
251 */
node_dirtyable_memory(struct pglist_data * pgdat)252 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
253 {
254 unsigned long nr_pages = 0;
255 int z;
256
257 for (z = 0; z < MAX_NR_ZONES; z++) {
258 struct zone *zone = pgdat->node_zones + z;
259
260 if (!populated_zone(zone))
261 continue;
262
263 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
264 }
265
266 /*
267 * Pages reserved for the kernel should not be considered
268 * dirtyable, to prevent a situation where reclaim has to
269 * clean pages in order to balance the zones.
270 */
271 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
272
273 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
274 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
275
276 return nr_pages;
277 }
278
highmem_dirtyable_memory(unsigned long total)279 static unsigned long highmem_dirtyable_memory(unsigned long total)
280 {
281 #ifdef CONFIG_HIGHMEM
282 int node;
283 unsigned long x = 0;
284 int i;
285
286 for_each_node_state(node, N_HIGH_MEMORY) {
287 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
288 struct zone *z;
289 unsigned long nr_pages;
290
291 if (!is_highmem_idx(i))
292 continue;
293
294 z = &NODE_DATA(node)->node_zones[i];
295 if (!populated_zone(z))
296 continue;
297
298 nr_pages = zone_page_state(z, NR_FREE_PAGES);
299 /* watch for underflows */
300 nr_pages -= min(nr_pages, high_wmark_pages(z));
301 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
302 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
303 x += nr_pages;
304 }
305 }
306
307 /*
308 * Make sure that the number of highmem pages is never larger
309 * than the number of the total dirtyable memory. This can only
310 * occur in very strange VM situations but we want to make sure
311 * that this does not occur.
312 */
313 return min(x, total);
314 #else
315 return 0;
316 #endif
317 }
318
319 /**
320 * global_dirtyable_memory - number of globally dirtyable pages
321 *
322 * Return: the global number of pages potentially available for dirty
323 * page cache. This is the base value for the global dirty limits.
324 */
global_dirtyable_memory(void)325 static unsigned long global_dirtyable_memory(void)
326 {
327 unsigned long x;
328
329 x = global_zone_page_state(NR_FREE_PAGES);
330 /*
331 * Pages reserved for the kernel should not be considered
332 * dirtyable, to prevent a situation where reclaim has to
333 * clean pages in order to balance the zones.
334 */
335 x -= min(x, totalreserve_pages);
336
337 x += global_node_page_state(NR_INACTIVE_FILE);
338 x += global_node_page_state(NR_ACTIVE_FILE);
339
340 if (!vm_highmem_is_dirtyable)
341 x -= highmem_dirtyable_memory(x);
342
343 return x + 1; /* Ensure that we never return 0 */
344 }
345
346 /**
347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348 * @dtc: dirty_throttle_control of interest
349 *
350 * Calculate @dtc->thresh and ->bg_thresh considering
351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
352 * must ensure that @dtc->avail is set before calling this function. The
353 * dirty limits will be lifted by 1/4 for real-time tasks.
354 */
domain_dirty_limits(struct dirty_throttle_control * dtc)355 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
356 {
357 const unsigned long available_memory = dtc->avail;
358 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
359 unsigned long bytes = vm_dirty_bytes;
360 unsigned long bg_bytes = dirty_background_bytes;
361 /* convert ratios to per-PAGE_SIZE for higher precision */
362 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
363 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
364 unsigned long thresh;
365 unsigned long bg_thresh;
366 struct task_struct *tsk;
367
368 /* gdtc is !NULL iff @dtc is for memcg domain */
369 if (gdtc) {
370 unsigned long global_avail = gdtc->avail;
371
372 /*
373 * The byte settings can't be applied directly to memcg
374 * domains. Convert them to ratios by scaling against
375 * globally available memory. As the ratios are in
376 * per-PAGE_SIZE, they can be obtained by dividing bytes by
377 * number of pages.
378 */
379 if (bytes)
380 ratio = min(DIV_ROUND_UP(bytes, global_avail),
381 PAGE_SIZE);
382 if (bg_bytes)
383 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
384 PAGE_SIZE);
385 bytes = bg_bytes = 0;
386 }
387
388 if (bytes)
389 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
390 else
391 thresh = (ratio * available_memory) / PAGE_SIZE;
392
393 if (bg_bytes)
394 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
395 else
396 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
397
398 tsk = current;
399 if (rt_or_dl_task(tsk)) {
400 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
401 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
402 }
403 /*
404 * Dirty throttling logic assumes the limits in page units fit into
405 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
406 */
407 if (thresh > UINT_MAX)
408 thresh = UINT_MAX;
409 /* This makes sure bg_thresh is within 32-bits as well */
410 if (bg_thresh >= thresh)
411 bg_thresh = thresh / 2;
412 dtc->thresh = thresh;
413 dtc->bg_thresh = bg_thresh;
414
415 /* we should eventually report the domain in the TP */
416 if (!gdtc)
417 trace_global_dirty_state(bg_thresh, thresh);
418 }
419
420 /**
421 * global_dirty_limits - background-writeback and dirty-throttling thresholds
422 * @pbackground: out parameter for bg_thresh
423 * @pdirty: out parameter for thresh
424 *
425 * Calculate bg_thresh and thresh for global_wb_domain. See
426 * domain_dirty_limits() for details.
427 */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)428 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
429 {
430 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
431
432 gdtc.avail = global_dirtyable_memory();
433 domain_dirty_limits(&gdtc);
434
435 *pbackground = gdtc.bg_thresh;
436 *pdirty = gdtc.thresh;
437 }
438
439 /**
440 * node_dirty_limit - maximum number of dirty pages allowed in a node
441 * @pgdat: the node
442 *
443 * Return: the maximum number of dirty pages allowed in a node, based
444 * on the node's dirtyable memory.
445 */
node_dirty_limit(struct pglist_data * pgdat)446 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
447 {
448 unsigned long node_memory = node_dirtyable_memory(pgdat);
449 struct task_struct *tsk = current;
450 unsigned long dirty;
451
452 if (vm_dirty_bytes)
453 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
454 node_memory / global_dirtyable_memory();
455 else
456 dirty = vm_dirty_ratio * node_memory / 100;
457
458 if (rt_or_dl_task(tsk))
459 dirty += dirty / 4;
460
461 /*
462 * Dirty throttling logic assumes the limits in page units fit into
463 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
464 */
465 return min_t(unsigned long, dirty, UINT_MAX);
466 }
467
468 /**
469 * node_dirty_ok - tells whether a node is within its dirty limits
470 * @pgdat: the node to check
471 *
472 * Return: %true when the dirty pages in @pgdat are within the node's
473 * dirty limit, %false if the limit is exceeded.
474 */
node_dirty_ok(struct pglist_data * pgdat)475 bool node_dirty_ok(struct pglist_data *pgdat)
476 {
477 unsigned long limit = node_dirty_limit(pgdat);
478 unsigned long nr_pages = 0;
479
480 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
481 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
482
483 return nr_pages <= limit;
484 }
485
486 #ifdef CONFIG_SYSCTL
dirty_background_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)487 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
488 void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 int ret;
491
492 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
493 if (ret == 0 && write)
494 dirty_background_bytes = 0;
495 return ret;
496 }
497
dirty_background_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)498 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
499 void *buffer, size_t *lenp, loff_t *ppos)
500 {
501 int ret;
502 unsigned long old_bytes = dirty_background_bytes;
503
504 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
505 if (ret == 0 && write) {
506 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
507 UINT_MAX) {
508 dirty_background_bytes = old_bytes;
509 return -ERANGE;
510 }
511 dirty_background_ratio = 0;
512 }
513 return ret;
514 }
515
dirty_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)516 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
517 size_t *lenp, loff_t *ppos)
518 {
519 int old_ratio = vm_dirty_ratio;
520 int ret;
521
522 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
523 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
524 vm_dirty_bytes = 0;
525 writeback_set_ratelimit();
526 }
527 return ret;
528 }
529
dirty_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)530 static int dirty_bytes_handler(const struct ctl_table *table, int write,
531 void *buffer, size_t *lenp, loff_t *ppos)
532 {
533 unsigned long old_bytes = vm_dirty_bytes;
534 int ret;
535
536 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
537 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
538 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
539 vm_dirty_bytes = old_bytes;
540 return -ERANGE;
541 }
542 writeback_set_ratelimit();
543 vm_dirty_ratio = 0;
544 }
545 return ret;
546 }
547 #endif
548
wp_next_time(unsigned long cur_time)549 static unsigned long wp_next_time(unsigned long cur_time)
550 {
551 cur_time += VM_COMPLETIONS_PERIOD_LEN;
552 /* 0 has a special meaning... */
553 if (!cur_time)
554 return 1;
555 return cur_time;
556 }
557
wb_domain_writeout_add(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac,long nr)558 static void wb_domain_writeout_add(struct wb_domain *dom,
559 struct fprop_local_percpu *completions,
560 unsigned int max_prop_frac, long nr)
561 {
562 __fprop_add_percpu_max(&dom->completions, completions,
563 max_prop_frac, nr);
564 /* First event after period switching was turned off? */
565 if (unlikely(!dom->period_time)) {
566 /*
567 * We can race with other wb_domain_writeout_add calls here but
568 * it does not cause any harm since the resulting time when
569 * timer will fire and what is in writeout_period_time will be
570 * roughly the same.
571 */
572 dom->period_time = wp_next_time(jiffies);
573 mod_timer(&dom->period_timer, dom->period_time);
574 }
575 }
576
577 /*
578 * Increment @wb's writeout completion count and the global writeout
579 * completion count. Called from __folio_end_writeback().
580 */
__wb_writeout_add(struct bdi_writeback * wb,long nr)581 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
582 {
583 struct wb_domain *cgdom;
584
585 wb_stat_mod(wb, WB_WRITTEN, nr);
586 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
587 wb->bdi->max_prop_frac, nr);
588
589 cgdom = mem_cgroup_wb_domain(wb);
590 if (cgdom)
591 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
592 wb->bdi->max_prop_frac, nr);
593 }
594
wb_writeout_inc(struct bdi_writeback * wb)595 void wb_writeout_inc(struct bdi_writeback *wb)
596 {
597 unsigned long flags;
598
599 local_irq_save(flags);
600 __wb_writeout_add(wb, 1);
601 local_irq_restore(flags);
602 }
603 EXPORT_SYMBOL_GPL(wb_writeout_inc);
604
605 /*
606 * On idle system, we can be called long after we scheduled because we use
607 * deferred timers so count with missed periods.
608 */
writeout_period(struct timer_list * t)609 static void writeout_period(struct timer_list *t)
610 {
611 struct wb_domain *dom = timer_container_of(dom, t, period_timer);
612 int miss_periods = (jiffies - dom->period_time) /
613 VM_COMPLETIONS_PERIOD_LEN;
614
615 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
616 dom->period_time = wp_next_time(dom->period_time +
617 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
618 mod_timer(&dom->period_timer, dom->period_time);
619 } else {
620 /*
621 * Aging has zeroed all fractions. Stop wasting CPU on period
622 * updates.
623 */
624 dom->period_time = 0;
625 }
626 }
627
wb_domain_init(struct wb_domain * dom,gfp_t gfp)628 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
629 {
630 memset(dom, 0, sizeof(*dom));
631
632 spin_lock_init(&dom->lock);
633
634 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
635
636 dom->dirty_limit_tstamp = jiffies;
637
638 return fprop_global_init(&dom->completions, gfp);
639 }
640
641 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)642 void wb_domain_exit(struct wb_domain *dom)
643 {
644 timer_delete_sync(&dom->period_timer);
645 fprop_global_destroy(&dom->completions);
646 }
647 #endif
648
649 /*
650 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
651 * registered backing devices, which, for obvious reasons, can not
652 * exceed 100%.
653 */
654 static unsigned int bdi_min_ratio;
655
bdi_check_pages_limit(unsigned long pages)656 static int bdi_check_pages_limit(unsigned long pages)
657 {
658 unsigned long max_dirty_pages = global_dirtyable_memory();
659
660 if (pages > max_dirty_pages)
661 return -EINVAL;
662
663 return 0;
664 }
665
bdi_ratio_from_pages(unsigned long pages)666 static unsigned long bdi_ratio_from_pages(unsigned long pages)
667 {
668 unsigned long background_thresh;
669 unsigned long dirty_thresh;
670 unsigned long ratio;
671
672 global_dirty_limits(&background_thresh, &dirty_thresh);
673 if (!dirty_thresh)
674 return -EINVAL;
675 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
676
677 return ratio;
678 }
679
bdi_get_bytes(unsigned int ratio)680 static u64 bdi_get_bytes(unsigned int ratio)
681 {
682 unsigned long background_thresh;
683 unsigned long dirty_thresh;
684 u64 bytes;
685
686 global_dirty_limits(&background_thresh, &dirty_thresh);
687 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
688
689 return bytes;
690 }
691
__bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)692 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
693 {
694 unsigned int delta;
695 int ret = 0;
696
697 if (min_ratio > 100 * BDI_RATIO_SCALE)
698 return -EINVAL;
699
700 spin_lock_bh(&bdi_lock);
701 if (min_ratio > bdi->max_ratio) {
702 ret = -EINVAL;
703 } else {
704 if (min_ratio < bdi->min_ratio) {
705 delta = bdi->min_ratio - min_ratio;
706 bdi_min_ratio -= delta;
707 bdi->min_ratio = min_ratio;
708 } else {
709 delta = min_ratio - bdi->min_ratio;
710 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
711 bdi_min_ratio += delta;
712 bdi->min_ratio = min_ratio;
713 } else {
714 ret = -EINVAL;
715 }
716 }
717 }
718 spin_unlock_bh(&bdi_lock);
719
720 return ret;
721 }
722
__bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)723 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
724 {
725 int ret = 0;
726
727 if (max_ratio > 100 * BDI_RATIO_SCALE)
728 return -EINVAL;
729
730 spin_lock_bh(&bdi_lock);
731 if (bdi->min_ratio > max_ratio) {
732 ret = -EINVAL;
733 } else {
734 bdi->max_ratio = max_ratio;
735 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
736 (100 * BDI_RATIO_SCALE);
737 }
738 spin_unlock_bh(&bdi_lock);
739
740 return ret;
741 }
742
bdi_set_min_ratio_no_scale(struct backing_dev_info * bdi,unsigned int min_ratio)743 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
744 {
745 return __bdi_set_min_ratio(bdi, min_ratio);
746 }
747
bdi_set_max_ratio_no_scale(struct backing_dev_info * bdi,unsigned int max_ratio)748 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
749 {
750 return __bdi_set_max_ratio(bdi, max_ratio);
751 }
752
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)753 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
754 {
755 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
756 }
757
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)758 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
759 {
760 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
761 }
762 EXPORT_SYMBOL(bdi_set_max_ratio);
763
bdi_get_min_bytes(struct backing_dev_info * bdi)764 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
765 {
766 return bdi_get_bytes(bdi->min_ratio);
767 }
768
bdi_set_min_bytes(struct backing_dev_info * bdi,u64 min_bytes)769 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
770 {
771 int ret;
772 unsigned long pages = min_bytes >> PAGE_SHIFT;
773 long min_ratio;
774
775 ret = bdi_check_pages_limit(pages);
776 if (ret)
777 return ret;
778
779 min_ratio = bdi_ratio_from_pages(pages);
780 if (min_ratio < 0)
781 return min_ratio;
782 return __bdi_set_min_ratio(bdi, min_ratio);
783 }
784
bdi_get_max_bytes(struct backing_dev_info * bdi)785 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
786 {
787 return bdi_get_bytes(bdi->max_ratio);
788 }
789
bdi_set_max_bytes(struct backing_dev_info * bdi,u64 max_bytes)790 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
791 {
792 int ret;
793 unsigned long pages = max_bytes >> PAGE_SHIFT;
794 long max_ratio;
795
796 ret = bdi_check_pages_limit(pages);
797 if (ret)
798 return ret;
799
800 max_ratio = bdi_ratio_from_pages(pages);
801 if (max_ratio < 0)
802 return max_ratio;
803 return __bdi_set_max_ratio(bdi, max_ratio);
804 }
805
bdi_set_strict_limit(struct backing_dev_info * bdi,unsigned int strict_limit)806 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
807 {
808 if (strict_limit > 1)
809 return -EINVAL;
810
811 spin_lock_bh(&bdi_lock);
812 if (strict_limit)
813 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
814 else
815 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
816 spin_unlock_bh(&bdi_lock);
817
818 return 0;
819 }
820
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)821 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
822 unsigned long bg_thresh)
823 {
824 return (thresh + bg_thresh) / 2;
825 }
826
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)827 static unsigned long hard_dirty_limit(struct wb_domain *dom,
828 unsigned long thresh)
829 {
830 return max(thresh, dom->dirty_limit);
831 }
832
833 /*
834 * Memory which can be further allocated to a memcg domain is capped by
835 * system-wide clean memory excluding the amount being used in the domain.
836 */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)837 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
838 unsigned long filepages, unsigned long headroom)
839 {
840 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
841 unsigned long clean = filepages - min(filepages, mdtc->dirty);
842 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
843 unsigned long other_clean = global_clean - min(global_clean, clean);
844
845 mdtc->avail = filepages + min(headroom, other_clean);
846 }
847
dtc_is_global(struct dirty_throttle_control * dtc)848 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
849 {
850 return mdtc_gdtc(dtc) == NULL;
851 }
852
853 /*
854 * Dirty background will ignore pages being written as we're trying to
855 * decide whether to put more under writeback.
856 */
domain_dirty_avail(struct dirty_throttle_control * dtc,bool include_writeback)857 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
858 bool include_writeback)
859 {
860 if (dtc_is_global(dtc)) {
861 dtc->avail = global_dirtyable_memory();
862 dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
863 if (include_writeback)
864 dtc->dirty += global_node_page_state(NR_WRITEBACK);
865 } else {
866 unsigned long filepages = 0, headroom = 0, writeback = 0;
867
868 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
869 &writeback);
870 if (include_writeback)
871 dtc->dirty += writeback;
872 mdtc_calc_avail(dtc, filepages, headroom);
873 }
874 }
875
876 /**
877 * __wb_calc_thresh - @wb's share of dirty threshold
878 * @dtc: dirty_throttle_context of interest
879 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
880 *
881 * Note that balance_dirty_pages() will only seriously take dirty throttling
882 * threshold as a hard limit when sleeping max_pause per page is not enough
883 * to keep the dirty pages under control. For example, when the device is
884 * completely stalled due to some error conditions, or when there are 1000
885 * dd tasks writing to a slow 10MB/s USB key.
886 * In the other normal situations, it acts more gently by throttling the tasks
887 * more (rather than completely block them) when the wb dirty pages go high.
888 *
889 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
890 * - starving fast devices
891 * - piling up dirty pages (that will take long time to sync) on slow devices
892 *
893 * The wb's share of dirty limit will be adapting to its throughput and
894 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
895 *
896 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
897 * "dirty" in the context of dirty balancing includes all PG_dirty and
898 * PG_writeback pages.
899 */
__wb_calc_thresh(struct dirty_throttle_control * dtc,unsigned long thresh)900 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
901 unsigned long thresh)
902 {
903 struct wb_domain *dom = dtc_dom(dtc);
904 struct bdi_writeback *wb = dtc->wb;
905 u64 wb_thresh;
906 u64 wb_max_thresh;
907 unsigned long numerator, denominator;
908 unsigned long wb_min_ratio, wb_max_ratio;
909
910 /*
911 * Calculate this wb's share of the thresh ratio.
912 */
913 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
914 &numerator, &denominator);
915
916 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
917 wb_thresh *= numerator;
918 wb_thresh = div64_ul(wb_thresh, denominator);
919
920 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
921
922 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
923
924 /*
925 * It's very possible that wb_thresh is close to 0 not because the
926 * device is slow, but that it has remained inactive for long time.
927 * Honour such devices a reasonable good (hopefully IO efficient)
928 * threshold, so that the occasional writes won't be blocked and active
929 * writes can rampup the threshold quickly.
930 */
931 if (thresh > dtc->dirty) {
932 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT))
933 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100);
934 else
935 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8);
936 }
937
938 wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
939 if (wb_thresh > wb_max_thresh)
940 wb_thresh = wb_max_thresh;
941
942 return wb_thresh;
943 }
944
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)945 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
946 {
947 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
948
949 domain_dirty_avail(&gdtc, true);
950 return __wb_calc_thresh(&gdtc, thresh);
951 }
952
cgwb_calc_thresh(struct bdi_writeback * wb)953 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
954 {
955 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
956 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
957
958 domain_dirty_avail(&gdtc, true);
959 domain_dirty_avail(&mdtc, true);
960 domain_dirty_limits(&mdtc);
961
962 return __wb_calc_thresh(&mdtc, mdtc.thresh);
963 }
964
965 /*
966 * setpoint - dirty 3
967 * f(dirty) := 1.0 + (----------------)
968 * limit - setpoint
969 *
970 * it's a 3rd order polynomial that subjects to
971 *
972 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
973 * (2) f(setpoint) = 1.0 => the balance point
974 * (3) f(limit) = 0 => the hard limit
975 * (4) df/dx <= 0 => negative feedback control
976 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
977 * => fast response on large errors; small oscillation near setpoint
978 */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)979 static long long pos_ratio_polynom(unsigned long setpoint,
980 unsigned long dirty,
981 unsigned long limit)
982 {
983 long long pos_ratio;
984 long x;
985
986 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
987 (limit - setpoint) | 1);
988 pos_ratio = x;
989 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
990 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
991 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
992
993 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
994 }
995
996 /*
997 * Dirty position control.
998 *
999 * (o) global/bdi setpoints
1000 *
1001 * We want the dirty pages be balanced around the global/wb setpoints.
1002 * When the number of dirty pages is higher/lower than the setpoint, the
1003 * dirty position control ratio (and hence task dirty ratelimit) will be
1004 * decreased/increased to bring the dirty pages back to the setpoint.
1005 *
1006 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1007 *
1008 * if (dirty < setpoint) scale up pos_ratio
1009 * if (dirty > setpoint) scale down pos_ratio
1010 *
1011 * if (wb_dirty < wb_setpoint) scale up pos_ratio
1012 * if (wb_dirty > wb_setpoint) scale down pos_ratio
1013 *
1014 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1015 *
1016 * (o) global control line
1017 *
1018 * ^ pos_ratio
1019 * |
1020 * | |<===== global dirty control scope ======>|
1021 * 2.0 * * * * * * *
1022 * | .*
1023 * | . *
1024 * | . *
1025 * | . *
1026 * | . *
1027 * | . *
1028 * 1.0 ................................*
1029 * | . . *
1030 * | . . *
1031 * | . . *
1032 * | . . *
1033 * | . . *
1034 * 0 +------------.------------------.----------------------*------------->
1035 * freerun^ setpoint^ limit^ dirty pages
1036 *
1037 * (o) wb control line
1038 *
1039 * ^ pos_ratio
1040 * |
1041 * | *
1042 * | *
1043 * | *
1044 * | *
1045 * | * |<=========== span ============>|
1046 * 1.0 .......................*
1047 * | . *
1048 * | . *
1049 * | . *
1050 * | . *
1051 * | . *
1052 * | . *
1053 * | . *
1054 * | . *
1055 * | . *
1056 * | . *
1057 * | . *
1058 * 1/4 ...............................................* * * * * * * * * * * *
1059 * | . .
1060 * | . .
1061 * | . .
1062 * 0 +----------------------.-------------------------------.------------->
1063 * wb_setpoint^ x_intercept^
1064 *
1065 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1066 * be smoothly throttled down to normal if it starts high in situations like
1067 * - start writing to a slow SD card and a fast disk at the same time. The SD
1068 * card's wb_dirty may rush to many times higher than wb_setpoint.
1069 * - the wb dirty thresh drops quickly due to change of JBOD workload
1070 */
wb_position_ratio(struct dirty_throttle_control * dtc)1071 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1072 {
1073 struct bdi_writeback *wb = dtc->wb;
1074 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1075 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1076 unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1077 unsigned long wb_thresh = dtc->wb_thresh;
1078 unsigned long x_intercept;
1079 unsigned long setpoint; /* dirty pages' target balance point */
1080 unsigned long wb_setpoint;
1081 unsigned long span;
1082 long long pos_ratio; /* for scaling up/down the rate limit */
1083 long x;
1084
1085 dtc->pos_ratio = 0;
1086
1087 if (unlikely(dtc->dirty >= limit))
1088 return;
1089
1090 /*
1091 * global setpoint
1092 *
1093 * See comment for pos_ratio_polynom().
1094 */
1095 setpoint = (freerun + limit) / 2;
1096 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1097
1098 /*
1099 * The strictlimit feature is a tool preventing mistrusted filesystems
1100 * from growing a large number of dirty pages before throttling. For
1101 * such filesystems balance_dirty_pages always checks wb counters
1102 * against wb limits. Even if global "nr_dirty" is under "freerun".
1103 * This is especially important for fuse which sets bdi->max_ratio to
1104 * 1% by default.
1105 *
1106 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1107 * two values: wb_dirty and wb_thresh. Let's consider an example:
1108 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1109 * limits are set by default to 10% and 20% (background and throttle).
1110 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1111 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1112 * about ~6K pages (as the average of background and throttle wb
1113 * limits). The 3rd order polynomial will provide positive feedback if
1114 * wb_dirty is under wb_setpoint and vice versa.
1115 *
1116 * Note, that we cannot use global counters in these calculations
1117 * because we want to throttle process writing to a strictlimit wb
1118 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1119 * in the example above).
1120 */
1121 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1122 long long wb_pos_ratio;
1123
1124 if (dtc->wb_dirty >= wb_thresh)
1125 return;
1126
1127 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1128 dtc->wb_bg_thresh);
1129
1130 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1131 return;
1132
1133 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1134 wb_thresh);
1135
1136 /*
1137 * Typically, for strictlimit case, wb_setpoint << setpoint
1138 * and pos_ratio >> wb_pos_ratio. In the other words global
1139 * state ("dirty") is not limiting factor and we have to
1140 * make decision based on wb counters. But there is an
1141 * important case when global pos_ratio should get precedence:
1142 * global limits are exceeded (e.g. due to activities on other
1143 * wb's) while given strictlimit wb is below limit.
1144 *
1145 * "pos_ratio * wb_pos_ratio" would work for the case above,
1146 * but it would look too non-natural for the case of all
1147 * activity in the system coming from a single strictlimit wb
1148 * with bdi->max_ratio == 100%.
1149 *
1150 * Note that min() below somewhat changes the dynamics of the
1151 * control system. Normally, pos_ratio value can be well over 3
1152 * (when globally we are at freerun and wb is well below wb
1153 * setpoint). Now the maximum pos_ratio in the same situation
1154 * is 2. We might want to tweak this if we observe the control
1155 * system is too slow to adapt.
1156 */
1157 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1158 return;
1159 }
1160
1161 /*
1162 * We have computed basic pos_ratio above based on global situation. If
1163 * the wb is over/under its share of dirty pages, we want to scale
1164 * pos_ratio further down/up. That is done by the following mechanism.
1165 */
1166
1167 /*
1168 * wb setpoint
1169 *
1170 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1171 *
1172 * x_intercept - wb_dirty
1173 * := --------------------------
1174 * x_intercept - wb_setpoint
1175 *
1176 * The main wb control line is a linear function that subjects to
1177 *
1178 * (1) f(wb_setpoint) = 1.0
1179 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1180 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1181 *
1182 * For single wb case, the dirty pages are observed to fluctuate
1183 * regularly within range
1184 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1185 * for various filesystems, where (2) can yield in a reasonable 12.5%
1186 * fluctuation range for pos_ratio.
1187 *
1188 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1189 * own size, so move the slope over accordingly and choose a slope that
1190 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1191 */
1192 if (unlikely(wb_thresh > dtc->thresh))
1193 wb_thresh = dtc->thresh;
1194 /*
1195 * scale global setpoint to wb's:
1196 * wb_setpoint = setpoint * wb_thresh / thresh
1197 */
1198 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1199 wb_setpoint = setpoint * (u64)x >> 16;
1200 /*
1201 * Use span=(8*write_bw) in single wb case as indicated by
1202 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1203 *
1204 * wb_thresh thresh - wb_thresh
1205 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1206 * thresh thresh
1207 */
1208 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1209 x_intercept = wb_setpoint + span;
1210
1211 if (dtc->wb_dirty < x_intercept - span / 4) {
1212 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1213 (x_intercept - wb_setpoint) | 1);
1214 } else
1215 pos_ratio /= 4;
1216
1217 /*
1218 * wb reserve area, safeguard against dirty pool underrun and disk idle
1219 * It may push the desired control point of global dirty pages higher
1220 * than setpoint.
1221 */
1222 x_intercept = wb_thresh / 2;
1223 if (dtc->wb_dirty < x_intercept) {
1224 if (dtc->wb_dirty > x_intercept / 8)
1225 pos_ratio = div_u64(pos_ratio * x_intercept,
1226 dtc->wb_dirty);
1227 else
1228 pos_ratio *= 8;
1229 }
1230
1231 dtc->pos_ratio = pos_ratio;
1232 }
1233
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1234 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1235 unsigned long elapsed,
1236 unsigned long written)
1237 {
1238 const unsigned long period = roundup_pow_of_two(3 * HZ);
1239 unsigned long avg = wb->avg_write_bandwidth;
1240 unsigned long old = wb->write_bandwidth;
1241 u64 bw;
1242
1243 /*
1244 * bw = written * HZ / elapsed
1245 *
1246 * bw * elapsed + write_bandwidth * (period - elapsed)
1247 * write_bandwidth = ---------------------------------------------------
1248 * period
1249 *
1250 * @written may have decreased due to folio_redirty_for_writepage().
1251 * Avoid underflowing @bw calculation.
1252 */
1253 bw = written - min(written, wb->written_stamp);
1254 bw *= HZ;
1255 if (unlikely(elapsed > period)) {
1256 bw = div64_ul(bw, elapsed);
1257 avg = bw;
1258 goto out;
1259 }
1260 bw += (u64)wb->write_bandwidth * (period - elapsed);
1261 bw >>= ilog2(period);
1262
1263 /*
1264 * one more level of smoothing, for filtering out sudden spikes
1265 */
1266 if (avg > old && old >= (unsigned long)bw)
1267 avg -= (avg - old) >> 3;
1268
1269 if (avg < old && old <= (unsigned long)bw)
1270 avg += (old - avg) >> 3;
1271
1272 out:
1273 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1274 avg = max(avg, 1LU);
1275 if (wb_has_dirty_io(wb)) {
1276 long delta = avg - wb->avg_write_bandwidth;
1277 WARN_ON_ONCE(atomic_long_add_return(delta,
1278 &wb->bdi->tot_write_bandwidth) <= 0);
1279 }
1280 wb->write_bandwidth = bw;
1281 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1282 }
1283
update_dirty_limit(struct dirty_throttle_control * dtc)1284 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1285 {
1286 struct wb_domain *dom = dtc_dom(dtc);
1287 unsigned long thresh = dtc->thresh;
1288 unsigned long limit = dom->dirty_limit;
1289
1290 /*
1291 * Follow up in one step.
1292 */
1293 if (limit < thresh) {
1294 limit = thresh;
1295 goto update;
1296 }
1297
1298 /*
1299 * Follow down slowly. Use the higher one as the target, because thresh
1300 * may drop below dirty. This is exactly the reason to introduce
1301 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1302 */
1303 thresh = max(thresh, dtc->dirty);
1304 if (limit > thresh) {
1305 limit -= (limit - thresh) >> 5;
1306 goto update;
1307 }
1308 return;
1309 update:
1310 dom->dirty_limit = limit;
1311 }
1312
domain_update_dirty_limit(struct dirty_throttle_control * dtc,unsigned long now)1313 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1314 unsigned long now)
1315 {
1316 struct wb_domain *dom = dtc_dom(dtc);
1317
1318 /*
1319 * check locklessly first to optimize away locking for the most time
1320 */
1321 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1322 return;
1323
1324 spin_lock(&dom->lock);
1325 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1326 update_dirty_limit(dtc);
1327 dom->dirty_limit_tstamp = now;
1328 }
1329 spin_unlock(&dom->lock);
1330 }
1331
1332 /*
1333 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1334 *
1335 * Normal wb tasks will be curbed at or below it in long term.
1336 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1337 */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1338 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1339 unsigned long dirtied,
1340 unsigned long elapsed)
1341 {
1342 struct bdi_writeback *wb = dtc->wb;
1343 unsigned long dirty = dtc->dirty;
1344 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1345 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1346 unsigned long setpoint = (freerun + limit) / 2;
1347 unsigned long write_bw = wb->avg_write_bandwidth;
1348 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1349 unsigned long dirty_rate;
1350 unsigned long task_ratelimit;
1351 unsigned long balanced_dirty_ratelimit;
1352 unsigned long step;
1353 unsigned long x;
1354 unsigned long shift;
1355
1356 /*
1357 * The dirty rate will match the writeout rate in long term, except
1358 * when dirty pages are truncated by userspace or re-dirtied by FS.
1359 */
1360 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1361
1362 /*
1363 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1364 */
1365 task_ratelimit = (u64)dirty_ratelimit *
1366 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1367 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1368
1369 /*
1370 * A linear estimation of the "balanced" throttle rate. The theory is,
1371 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1372 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1373 * formula will yield the balanced rate limit (write_bw / N).
1374 *
1375 * Note that the expanded form is not a pure rate feedback:
1376 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1377 * but also takes pos_ratio into account:
1378 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1379 *
1380 * (1) is not realistic because pos_ratio also takes part in balancing
1381 * the dirty rate. Consider the state
1382 * pos_ratio = 0.5 (3)
1383 * rate = 2 * (write_bw / N) (4)
1384 * If (1) is used, it will stuck in that state! Because each dd will
1385 * be throttled at
1386 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1387 * yielding
1388 * dirty_rate = N * task_ratelimit = write_bw (6)
1389 * put (6) into (1) we get
1390 * rate_(i+1) = rate_(i) (7)
1391 *
1392 * So we end up using (2) to always keep
1393 * rate_(i+1) ~= (write_bw / N) (8)
1394 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1395 * pos_ratio is able to drive itself to 1.0, which is not only where
1396 * the dirty count meet the setpoint, but also where the slope of
1397 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1398 */
1399 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1400 dirty_rate | 1);
1401 /*
1402 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1403 */
1404 if (unlikely(balanced_dirty_ratelimit > write_bw))
1405 balanced_dirty_ratelimit = write_bw;
1406
1407 /*
1408 * We could safely do this and return immediately:
1409 *
1410 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1411 *
1412 * However to get a more stable dirty_ratelimit, the below elaborated
1413 * code makes use of task_ratelimit to filter out singular points and
1414 * limit the step size.
1415 *
1416 * The below code essentially only uses the relative value of
1417 *
1418 * task_ratelimit - dirty_ratelimit
1419 * = (pos_ratio - 1) * dirty_ratelimit
1420 *
1421 * which reflects the direction and size of dirty position error.
1422 */
1423
1424 /*
1425 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1426 * task_ratelimit is on the same side of dirty_ratelimit, too.
1427 * For example, when
1428 * - dirty_ratelimit > balanced_dirty_ratelimit
1429 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1430 * lowering dirty_ratelimit will help meet both the position and rate
1431 * control targets. Otherwise, don't update dirty_ratelimit if it will
1432 * only help meet the rate target. After all, what the users ultimately
1433 * feel and care are stable dirty rate and small position error.
1434 *
1435 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1436 * and filter out the singular points of balanced_dirty_ratelimit. Which
1437 * keeps jumping around randomly and can even leap far away at times
1438 * due to the small 200ms estimation period of dirty_rate (we want to
1439 * keep that period small to reduce time lags).
1440 */
1441 step = 0;
1442
1443 /*
1444 * For strictlimit case, calculations above were based on wb counters
1445 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1446 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1447 * Hence, to calculate "step" properly, we have to use wb_dirty as
1448 * "dirty" and wb_setpoint as "setpoint".
1449 */
1450 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1451 dirty = dtc->wb_dirty;
1452 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1453 }
1454
1455 if (dirty < setpoint) {
1456 x = min3(wb->balanced_dirty_ratelimit,
1457 balanced_dirty_ratelimit, task_ratelimit);
1458 if (dirty_ratelimit < x)
1459 step = x - dirty_ratelimit;
1460 } else {
1461 x = max3(wb->balanced_dirty_ratelimit,
1462 balanced_dirty_ratelimit, task_ratelimit);
1463 if (dirty_ratelimit > x)
1464 step = dirty_ratelimit - x;
1465 }
1466
1467 /*
1468 * Don't pursue 100% rate matching. It's impossible since the balanced
1469 * rate itself is constantly fluctuating. So decrease the track speed
1470 * when it gets close to the target. Helps eliminate pointless tremors.
1471 */
1472 shift = dirty_ratelimit / (2 * step + 1);
1473 if (shift < BITS_PER_LONG)
1474 step = DIV_ROUND_UP(step >> shift, 8);
1475 else
1476 step = 0;
1477
1478 if (dirty_ratelimit < balanced_dirty_ratelimit)
1479 dirty_ratelimit += step;
1480 else
1481 dirty_ratelimit -= step;
1482
1483 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1484 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1485
1486 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1487 }
1488
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,bool update_ratelimit)1489 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1490 struct dirty_throttle_control *mdtc,
1491 bool update_ratelimit)
1492 {
1493 struct bdi_writeback *wb = gdtc->wb;
1494 unsigned long now = jiffies;
1495 unsigned long elapsed;
1496 unsigned long dirtied;
1497 unsigned long written;
1498
1499 spin_lock(&wb->list_lock);
1500
1501 /*
1502 * Lockless checks for elapsed time are racy and delayed update after
1503 * IO completion doesn't do it at all (to make sure written pages are
1504 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1505 * division errors.
1506 */
1507 elapsed = max(now - wb->bw_time_stamp, 1UL);
1508 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1509 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1510
1511 if (update_ratelimit) {
1512 domain_update_dirty_limit(gdtc, now);
1513 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1514
1515 /*
1516 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1517 * compiler has no way to figure that out. Help it.
1518 */
1519 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1520 domain_update_dirty_limit(mdtc, now);
1521 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1522 }
1523 }
1524 wb_update_write_bandwidth(wb, elapsed, written);
1525
1526 wb->dirtied_stamp = dirtied;
1527 wb->written_stamp = written;
1528 WRITE_ONCE(wb->bw_time_stamp, now);
1529 spin_unlock(&wb->list_lock);
1530 }
1531
wb_update_bandwidth(struct bdi_writeback * wb)1532 void wb_update_bandwidth(struct bdi_writeback *wb)
1533 {
1534 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1535
1536 __wb_update_bandwidth(&gdtc, NULL, false);
1537 }
1538
1539 /* Interval after which we consider wb idle and don't estimate bandwidth */
1540 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1541
wb_bandwidth_estimate_start(struct bdi_writeback * wb)1542 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1543 {
1544 unsigned long now = jiffies;
1545 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1546
1547 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1548 !atomic_read(&wb->writeback_inodes)) {
1549 spin_lock(&wb->list_lock);
1550 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1551 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1552 WRITE_ONCE(wb->bw_time_stamp, now);
1553 spin_unlock(&wb->list_lock);
1554 }
1555 }
1556
1557 /*
1558 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1559 * will look to see if it needs to start dirty throttling.
1560 *
1561 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1562 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1563 * (the number of pages we may dirty without exceeding the dirty limits).
1564 */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1565 static unsigned long dirty_poll_interval(unsigned long dirty,
1566 unsigned long thresh)
1567 {
1568 if (thresh > dirty)
1569 return 1UL << (ilog2(thresh - dirty) >> 1);
1570
1571 return 1;
1572 }
1573
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1574 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1575 unsigned long wb_dirty)
1576 {
1577 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1578 unsigned long t;
1579
1580 /*
1581 * Limit pause time for small memory systems. If sleeping for too long
1582 * time, a small pool of dirty/writeback pages may go empty and disk go
1583 * idle.
1584 *
1585 * 8 serves as the safety ratio.
1586 */
1587 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1588 t++;
1589
1590 return min_t(unsigned long, t, MAX_PAUSE);
1591 }
1592
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1593 static long wb_min_pause(struct bdi_writeback *wb,
1594 long max_pause,
1595 unsigned long task_ratelimit,
1596 unsigned long dirty_ratelimit,
1597 int *nr_dirtied_pause)
1598 {
1599 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1600 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1601 long t; /* target pause */
1602 long pause; /* estimated next pause */
1603 int pages; /* target nr_dirtied_pause */
1604
1605 /* target for 10ms pause on 1-dd case */
1606 t = max(1, HZ / 100);
1607
1608 /*
1609 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1610 * overheads.
1611 *
1612 * (N * 10ms) on 2^N concurrent tasks.
1613 */
1614 if (hi > lo)
1615 t += (hi - lo) * (10 * HZ) / 1024;
1616
1617 /*
1618 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1619 * on the much more stable dirty_ratelimit. However the next pause time
1620 * will be computed based on task_ratelimit and the two rate limits may
1621 * depart considerably at some time. Especially if task_ratelimit goes
1622 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1623 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1624 * result task_ratelimit won't be executed faithfully, which could
1625 * eventually bring down dirty_ratelimit.
1626 *
1627 * We apply two rules to fix it up:
1628 * 1) try to estimate the next pause time and if necessary, use a lower
1629 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1630 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1631 * 2) limit the target pause time to max_pause/2, so that the normal
1632 * small fluctuations of task_ratelimit won't trigger rule (1) and
1633 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1634 */
1635 t = min(t, 1 + max_pause / 2);
1636 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1637
1638 /*
1639 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1640 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1641 * When the 16 consecutive reads are often interrupted by some dirty
1642 * throttling pause during the async writes, cfq will go into idles
1643 * (deadline is fine). So push nr_dirtied_pause as high as possible
1644 * until reaches DIRTY_POLL_THRESH=32 pages.
1645 */
1646 if (pages < DIRTY_POLL_THRESH) {
1647 t = max_pause;
1648 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1649 if (pages > DIRTY_POLL_THRESH) {
1650 pages = DIRTY_POLL_THRESH;
1651 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1652 }
1653 }
1654
1655 pause = HZ * pages / (task_ratelimit + 1);
1656 if (pause > max_pause) {
1657 t = max_pause;
1658 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1659 }
1660
1661 *nr_dirtied_pause = pages;
1662 /*
1663 * The minimal pause time will normally be half the target pause time.
1664 */
1665 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1666 }
1667
wb_dirty_limits(struct dirty_throttle_control * dtc)1668 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1669 {
1670 struct bdi_writeback *wb = dtc->wb;
1671 unsigned long wb_reclaimable;
1672
1673 /*
1674 * wb_thresh is not treated as some limiting factor as
1675 * dirty_thresh, due to reasons
1676 * - in JBOD setup, wb_thresh can fluctuate a lot
1677 * - in a system with HDD and USB key, the USB key may somehow
1678 * go into state (wb_dirty >> wb_thresh) either because
1679 * wb_dirty starts high, or because wb_thresh drops low.
1680 * In this case we don't want to hard throttle the USB key
1681 * dirtiers for 100 seconds until wb_dirty drops under
1682 * wb_thresh. Instead the auxiliary wb control line in
1683 * wb_position_ratio() will let the dirtier task progress
1684 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1685 */
1686 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1687 dtc->wb_bg_thresh = dtc->thresh ?
1688 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1689
1690 /*
1691 * In order to avoid the stacked BDI deadlock we need
1692 * to ensure we accurately count the 'dirty' pages when
1693 * the threshold is low.
1694 *
1695 * Otherwise it would be possible to get thresh+n pages
1696 * reported dirty, even though there are thresh-m pages
1697 * actually dirty; with m+n sitting in the percpu
1698 * deltas.
1699 */
1700 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1701 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1702 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1703 } else {
1704 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1705 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1706 }
1707 }
1708
domain_poll_intv(struct dirty_throttle_control * dtc,bool strictlimit)1709 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1710 bool strictlimit)
1711 {
1712 unsigned long dirty, thresh;
1713
1714 if (strictlimit) {
1715 dirty = dtc->wb_dirty;
1716 thresh = dtc->wb_thresh;
1717 } else {
1718 dirty = dtc->dirty;
1719 thresh = dtc->thresh;
1720 }
1721
1722 return dirty_poll_interval(dirty, thresh);
1723 }
1724
1725 /*
1726 * Throttle it only when the background writeback cannot catch-up. This avoids
1727 * (excessively) small writeouts when the wb limits are ramping up in case of
1728 * !strictlimit.
1729 *
1730 * In strictlimit case make decision based on the wb counters and limits. Small
1731 * writeouts when the wb limits are ramping up are the price we consciously pay
1732 * for strictlimit-ing.
1733 */
domain_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1734 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1735 bool strictlimit)
1736 {
1737 unsigned long dirty, thresh, bg_thresh;
1738
1739 if (unlikely(strictlimit)) {
1740 wb_dirty_limits(dtc);
1741 dirty = dtc->wb_dirty;
1742 thresh = dtc->wb_thresh;
1743 bg_thresh = dtc->wb_bg_thresh;
1744 } else {
1745 dirty = dtc->dirty;
1746 thresh = dtc->thresh;
1747 bg_thresh = dtc->bg_thresh;
1748 }
1749 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1750 }
1751
balance_domain_limits(struct dirty_throttle_control * dtc,bool strictlimit)1752 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1753 bool strictlimit)
1754 {
1755 domain_dirty_avail(dtc, true);
1756 domain_dirty_limits(dtc);
1757 domain_dirty_freerun(dtc, strictlimit);
1758 }
1759
wb_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1760 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1761 bool strictlimit)
1762 {
1763 dtc->freerun = false;
1764
1765 /* was already handled in domain_dirty_freerun */
1766 if (strictlimit)
1767 return;
1768
1769 wb_dirty_limits(dtc);
1770 /*
1771 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1772 * freerun ceiling.
1773 */
1774 if (!(current->flags & PF_LOCAL_THROTTLE))
1775 return;
1776
1777 dtc->freerun = dtc->wb_dirty <
1778 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1779 }
1780
wb_dirty_exceeded(struct dirty_throttle_control * dtc,bool strictlimit)1781 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1782 bool strictlimit)
1783 {
1784 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1785 ((dtc->dirty > dtc->thresh) || strictlimit);
1786 }
1787
1788 /*
1789 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1790 * in freerun state. Please don't use these invalid fields in freerun case.
1791 */
balance_wb_limits(struct dirty_throttle_control * dtc,bool strictlimit)1792 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1793 bool strictlimit)
1794 {
1795 wb_dirty_freerun(dtc, strictlimit);
1796 if (dtc->freerun)
1797 return;
1798
1799 wb_dirty_exceeded(dtc, strictlimit);
1800 wb_position_ratio(dtc);
1801 }
1802
1803 /*
1804 * balance_dirty_pages() must be called by processes which are generating dirty
1805 * data. It looks at the number of dirty pages in the machine and will force
1806 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1807 * If we're over `background_thresh' then the writeback threads are woken to
1808 * perform some writeout.
1809 */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied,unsigned int flags)1810 static int balance_dirty_pages(struct bdi_writeback *wb,
1811 unsigned long pages_dirtied, unsigned int flags)
1812 {
1813 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1814 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1815 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1816 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1817 &mdtc_stor : NULL;
1818 struct dirty_throttle_control *sdtc;
1819 unsigned long nr_dirty;
1820 long period;
1821 long pause;
1822 long max_pause;
1823 long min_pause;
1824 int nr_dirtied_pause;
1825 unsigned long task_ratelimit;
1826 unsigned long dirty_ratelimit;
1827 struct backing_dev_info *bdi = wb->bdi;
1828 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1829 unsigned long start_time = jiffies;
1830 int ret = 0;
1831
1832 for (;;) {
1833 unsigned long now = jiffies;
1834
1835 nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1836
1837 balance_domain_limits(gdtc, strictlimit);
1838 if (mdtc) {
1839 /*
1840 * If @wb belongs to !root memcg, repeat the same
1841 * basic calculations for the memcg domain.
1842 */
1843 balance_domain_limits(mdtc, strictlimit);
1844 }
1845
1846 /*
1847 * In laptop mode, we wait until hitting the higher threshold
1848 * before starting background writeout, and then write out all
1849 * the way down to the lower threshold. So slow writers cause
1850 * minimal disk activity.
1851 *
1852 * In normal mode, we start background writeout at the lower
1853 * background_thresh, to keep the amount of dirty memory low.
1854 */
1855 if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1856 !writeback_in_progress(wb))
1857 wb_start_background_writeback(wb);
1858
1859 /*
1860 * If memcg domain is in effect, @dirty should be under
1861 * both global and memcg freerun ceilings.
1862 */
1863 if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1864 unsigned long intv;
1865 unsigned long m_intv;
1866
1867 free_running:
1868 intv = domain_poll_intv(gdtc, strictlimit);
1869 m_intv = ULONG_MAX;
1870
1871 current->dirty_paused_when = now;
1872 current->nr_dirtied = 0;
1873 if (mdtc)
1874 m_intv = domain_poll_intv(mdtc, strictlimit);
1875 current->nr_dirtied_pause = min(intv, m_intv);
1876 break;
1877 }
1878
1879 /* Start writeback even when in laptop mode */
1880 if (unlikely(!writeback_in_progress(wb)))
1881 wb_start_background_writeback(wb);
1882
1883 mem_cgroup_flush_foreign(wb);
1884
1885 /*
1886 * Calculate global domain's pos_ratio and select the
1887 * global dtc by default.
1888 */
1889 balance_wb_limits(gdtc, strictlimit);
1890 if (gdtc->freerun)
1891 goto free_running;
1892 sdtc = gdtc;
1893
1894 if (mdtc) {
1895 /*
1896 * If memcg domain is in effect, calculate its
1897 * pos_ratio. @wb should satisfy constraints from
1898 * both global and memcg domains. Choose the one
1899 * w/ lower pos_ratio.
1900 */
1901 balance_wb_limits(mdtc, strictlimit);
1902 if (mdtc->freerun)
1903 goto free_running;
1904 if (mdtc->pos_ratio < gdtc->pos_ratio)
1905 sdtc = mdtc;
1906 }
1907
1908 wb->dirty_exceeded = gdtc->dirty_exceeded ||
1909 (mdtc && mdtc->dirty_exceeded);
1910 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1911 BANDWIDTH_INTERVAL))
1912 __wb_update_bandwidth(gdtc, mdtc, true);
1913
1914 /* throttle according to the chosen dtc */
1915 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1916 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1917 RATELIMIT_CALC_SHIFT;
1918 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1919 min_pause = wb_min_pause(wb, max_pause,
1920 task_ratelimit, dirty_ratelimit,
1921 &nr_dirtied_pause);
1922
1923 if (unlikely(task_ratelimit == 0)) {
1924 period = max_pause;
1925 pause = max_pause;
1926 goto pause;
1927 }
1928 period = HZ * pages_dirtied / task_ratelimit;
1929 pause = period;
1930 if (current->dirty_paused_when)
1931 pause -= now - current->dirty_paused_when;
1932 /*
1933 * For less than 1s think time (ext3/4 may block the dirtier
1934 * for up to 800ms from time to time on 1-HDD; so does xfs,
1935 * however at much less frequency), try to compensate it in
1936 * future periods by updating the virtual time; otherwise just
1937 * do a reset, as it may be a light dirtier.
1938 */
1939 if (pause < min_pause) {
1940 trace_balance_dirty_pages(wb,
1941 sdtc,
1942 dirty_ratelimit,
1943 task_ratelimit,
1944 pages_dirtied,
1945 period,
1946 min(pause, 0L),
1947 start_time);
1948 if (pause < -HZ) {
1949 current->dirty_paused_when = now;
1950 current->nr_dirtied = 0;
1951 } else if (period) {
1952 current->dirty_paused_when += period;
1953 current->nr_dirtied = 0;
1954 } else if (current->nr_dirtied_pause <= pages_dirtied)
1955 current->nr_dirtied_pause += pages_dirtied;
1956 break;
1957 }
1958 if (unlikely(pause > max_pause)) {
1959 /* for occasional dropped task_ratelimit */
1960 now += min(pause - max_pause, max_pause);
1961 pause = max_pause;
1962 }
1963
1964 pause:
1965 trace_balance_dirty_pages(wb,
1966 sdtc,
1967 dirty_ratelimit,
1968 task_ratelimit,
1969 pages_dirtied,
1970 period,
1971 pause,
1972 start_time);
1973 if (flags & BDP_ASYNC) {
1974 ret = -EAGAIN;
1975 break;
1976 }
1977 __set_current_state(TASK_KILLABLE);
1978 bdi->last_bdp_sleep = jiffies;
1979 io_schedule_timeout(pause);
1980
1981 current->dirty_paused_when = now + pause;
1982 current->nr_dirtied = 0;
1983 current->nr_dirtied_pause = nr_dirtied_pause;
1984
1985 /*
1986 * This is typically equal to (dirty < thresh) and can also
1987 * keep "1000+ dd on a slow USB stick" under control.
1988 */
1989 if (task_ratelimit)
1990 break;
1991
1992 /*
1993 * In the case of an unresponsive NFS server and the NFS dirty
1994 * pages exceeds dirty_thresh, give the other good wb's a pipe
1995 * to go through, so that tasks on them still remain responsive.
1996 *
1997 * In theory 1 page is enough to keep the consumer-producer
1998 * pipe going: the flusher cleans 1 page => the task dirties 1
1999 * more page. However wb_dirty has accounting errors. So use
2000 * the larger and more IO friendly wb_stat_error.
2001 */
2002 if (sdtc->wb_dirty <= wb_stat_error())
2003 break;
2004
2005 if (fatal_signal_pending(current))
2006 break;
2007 }
2008 return ret;
2009 }
2010
2011 static DEFINE_PER_CPU(int, bdp_ratelimits);
2012
2013 /*
2014 * Normal tasks are throttled by
2015 * loop {
2016 * dirty tsk->nr_dirtied_pause pages;
2017 * take a snap in balance_dirty_pages();
2018 * }
2019 * However there is a worst case. If every task exit immediately when dirtied
2020 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2021 * called to throttle the page dirties. The solution is to save the not yet
2022 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2023 * randomly into the running tasks. This works well for the above worst case,
2024 * as the new task will pick up and accumulate the old task's leaked dirty
2025 * count and eventually get throttled.
2026 */
2027 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2028
2029 /**
2030 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2031 * @mapping: address_space which was dirtied.
2032 * @flags: BDP flags.
2033 *
2034 * Processes which are dirtying memory should call in here once for each page
2035 * which was newly dirtied. The function will periodically check the system's
2036 * dirty state and will initiate writeback if needed.
2037 *
2038 * See balance_dirty_pages_ratelimited() for details.
2039 *
2040 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2041 * indicate that memory is out of balance and the caller must wait
2042 * for I/O to complete. Otherwise, it will return 0 to indicate
2043 * that either memory was already in balance, or it was able to sleep
2044 * until the amount of dirty memory returned to balance.
2045 */
balance_dirty_pages_ratelimited_flags(struct address_space * mapping,unsigned int flags)2046 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2047 unsigned int flags)
2048 {
2049 struct inode *inode = mapping->host;
2050 struct backing_dev_info *bdi = inode_to_bdi(inode);
2051 struct bdi_writeback *wb = NULL;
2052 int ratelimit;
2053 int ret = 0;
2054 int *p;
2055
2056 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2057 return ret;
2058
2059 if (inode_cgwb_enabled(inode))
2060 wb = wb_get_create_current(bdi, GFP_KERNEL);
2061 if (!wb)
2062 wb = &bdi->wb;
2063
2064 ratelimit = current->nr_dirtied_pause;
2065 if (wb->dirty_exceeded)
2066 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2067
2068 preempt_disable();
2069 /*
2070 * This prevents one CPU to accumulate too many dirtied pages without
2071 * calling into balance_dirty_pages(), which can happen when there are
2072 * 1000+ tasks, all of them start dirtying pages at exactly the same
2073 * time, hence all honoured too large initial task->nr_dirtied_pause.
2074 */
2075 p = this_cpu_ptr(&bdp_ratelimits);
2076 if (unlikely(current->nr_dirtied >= ratelimit))
2077 *p = 0;
2078 else if (unlikely(*p >= ratelimit_pages)) {
2079 *p = 0;
2080 ratelimit = 0;
2081 }
2082 /*
2083 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2084 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2085 * the dirty throttling and livelock other long-run dirtiers.
2086 */
2087 p = this_cpu_ptr(&dirty_throttle_leaks);
2088 if (*p > 0 && current->nr_dirtied < ratelimit) {
2089 unsigned long nr_pages_dirtied;
2090 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2091 *p -= nr_pages_dirtied;
2092 current->nr_dirtied += nr_pages_dirtied;
2093 }
2094 preempt_enable();
2095
2096 if (unlikely(current->nr_dirtied >= ratelimit))
2097 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2098
2099 wb_put(wb);
2100 return ret;
2101 }
2102 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2103
2104 /**
2105 * balance_dirty_pages_ratelimited - balance dirty memory state.
2106 * @mapping: address_space which was dirtied.
2107 *
2108 * Processes which are dirtying memory should call in here once for each page
2109 * which was newly dirtied. The function will periodically check the system's
2110 * dirty state and will initiate writeback if needed.
2111 *
2112 * Once we're over the dirty memory limit we decrease the ratelimiting
2113 * by a lot, to prevent individual processes from overshooting the limit
2114 * by (ratelimit_pages) each.
2115 */
balance_dirty_pages_ratelimited(struct address_space * mapping)2116 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2117 {
2118 balance_dirty_pages_ratelimited_flags(mapping, 0);
2119 }
2120 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2121
2122 /*
2123 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2124 * and thresh, but it's for background writeback.
2125 */
wb_bg_dirty_limits(struct dirty_throttle_control * dtc)2126 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2127 {
2128 struct bdi_writeback *wb = dtc->wb;
2129
2130 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2131 if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2132 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2133 else
2134 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2135 }
2136
domain_over_bg_thresh(struct dirty_throttle_control * dtc)2137 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2138 {
2139 domain_dirty_avail(dtc, false);
2140 domain_dirty_limits(dtc);
2141 if (dtc->dirty > dtc->bg_thresh)
2142 return true;
2143
2144 wb_bg_dirty_limits(dtc);
2145 if (dtc->wb_dirty > dtc->wb_bg_thresh)
2146 return true;
2147
2148 return false;
2149 }
2150
2151 /**
2152 * wb_over_bg_thresh - does @wb need to be written back?
2153 * @wb: bdi_writeback of interest
2154 *
2155 * Determines whether background writeback should keep writing @wb or it's
2156 * clean enough.
2157 *
2158 * Return: %true if writeback should continue.
2159 */
wb_over_bg_thresh(struct bdi_writeback * wb)2160 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2161 {
2162 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2163 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2164
2165 if (domain_over_bg_thresh(&gdtc))
2166 return true;
2167
2168 if (mdtc_valid(&mdtc))
2169 return domain_over_bg_thresh(&mdtc);
2170
2171 return false;
2172 }
2173
2174 #ifdef CONFIG_SYSCTL
2175 /*
2176 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2177 */
dirty_writeback_centisecs_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2178 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2179 void *buffer, size_t *length, loff_t *ppos)
2180 {
2181 unsigned int old_interval = dirty_writeback_interval;
2182 int ret;
2183
2184 ret = proc_dointvec(table, write, buffer, length, ppos);
2185
2186 /*
2187 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2188 * and a different non-zero value will wakeup the writeback threads.
2189 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2190 * iterate over all bdis and wbs.
2191 * The reason we do this is to make the change take effect immediately.
2192 */
2193 if (!ret && write && dirty_writeback_interval &&
2194 dirty_writeback_interval != old_interval)
2195 wakeup_flusher_threads(WB_REASON_PERIODIC);
2196
2197 return ret;
2198 }
2199 #endif
2200
laptop_mode_timer_fn(struct timer_list * t)2201 void laptop_mode_timer_fn(struct timer_list *t)
2202 {
2203 struct backing_dev_info *backing_dev_info =
2204 timer_container_of(backing_dev_info, t, laptop_mode_wb_timer);
2205
2206 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2207 }
2208
2209 /*
2210 * We've spun up the disk and we're in laptop mode: schedule writeback
2211 * of all dirty data a few seconds from now. If the flush is already scheduled
2212 * then push it back - the user is still using the disk.
2213 */
laptop_io_completion(struct backing_dev_info * info)2214 void laptop_io_completion(struct backing_dev_info *info)
2215 {
2216 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2217 }
2218
2219 /*
2220 * We're in laptop mode and we've just synced. The sync's writes will have
2221 * caused another writeback to be scheduled by laptop_io_completion.
2222 * Nothing needs to be written back anymore, so we unschedule the writeback.
2223 */
laptop_sync_completion(void)2224 void laptop_sync_completion(void)
2225 {
2226 struct backing_dev_info *bdi;
2227
2228 rcu_read_lock();
2229
2230 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2231 timer_delete(&bdi->laptop_mode_wb_timer);
2232
2233 rcu_read_unlock();
2234 }
2235
2236 /*
2237 * If ratelimit_pages is too high then we can get into dirty-data overload
2238 * if a large number of processes all perform writes at the same time.
2239 *
2240 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2241 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2242 * thresholds.
2243 */
2244
writeback_set_ratelimit(void)2245 void writeback_set_ratelimit(void)
2246 {
2247 struct wb_domain *dom = &global_wb_domain;
2248 unsigned long background_thresh;
2249 unsigned long dirty_thresh;
2250
2251 global_dirty_limits(&background_thresh, &dirty_thresh);
2252 dom->dirty_limit = dirty_thresh;
2253 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2254 if (ratelimit_pages < 16)
2255 ratelimit_pages = 16;
2256 }
2257
page_writeback_cpu_online(unsigned int cpu)2258 static int page_writeback_cpu_online(unsigned int cpu)
2259 {
2260 writeback_set_ratelimit();
2261 return 0;
2262 }
2263
2264 #ifdef CONFIG_SYSCTL
2265
2266 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2267 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2268
2269 static const struct ctl_table vm_page_writeback_sysctls[] = {
2270 {
2271 .procname = "dirty_background_ratio",
2272 .data = &dirty_background_ratio,
2273 .maxlen = sizeof(dirty_background_ratio),
2274 .mode = 0644,
2275 .proc_handler = dirty_background_ratio_handler,
2276 .extra1 = SYSCTL_ZERO,
2277 .extra2 = SYSCTL_ONE_HUNDRED,
2278 },
2279 {
2280 .procname = "dirty_background_bytes",
2281 .data = &dirty_background_bytes,
2282 .maxlen = sizeof(dirty_background_bytes),
2283 .mode = 0644,
2284 .proc_handler = dirty_background_bytes_handler,
2285 .extra1 = SYSCTL_LONG_ONE,
2286 },
2287 {
2288 .procname = "dirty_ratio",
2289 .data = &vm_dirty_ratio,
2290 .maxlen = sizeof(vm_dirty_ratio),
2291 .mode = 0644,
2292 .proc_handler = dirty_ratio_handler,
2293 .extra1 = SYSCTL_ZERO,
2294 .extra2 = SYSCTL_ONE_HUNDRED,
2295 },
2296 {
2297 .procname = "dirty_bytes",
2298 .data = &vm_dirty_bytes,
2299 .maxlen = sizeof(vm_dirty_bytes),
2300 .mode = 0644,
2301 .proc_handler = dirty_bytes_handler,
2302 .extra1 = (void *)&dirty_bytes_min,
2303 },
2304 {
2305 .procname = "dirty_writeback_centisecs",
2306 .data = &dirty_writeback_interval,
2307 .maxlen = sizeof(dirty_writeback_interval),
2308 .mode = 0644,
2309 .proc_handler = dirty_writeback_centisecs_handler,
2310 },
2311 {
2312 .procname = "dirty_expire_centisecs",
2313 .data = &dirty_expire_interval,
2314 .maxlen = sizeof(dirty_expire_interval),
2315 .mode = 0644,
2316 .proc_handler = proc_dointvec_minmax,
2317 .extra1 = SYSCTL_ZERO,
2318 },
2319 #ifdef CONFIG_HIGHMEM
2320 {
2321 .procname = "highmem_is_dirtyable",
2322 .data = &vm_highmem_is_dirtyable,
2323 .maxlen = sizeof(vm_highmem_is_dirtyable),
2324 .mode = 0644,
2325 .proc_handler = proc_dointvec_minmax,
2326 .extra1 = SYSCTL_ZERO,
2327 .extra2 = SYSCTL_ONE,
2328 },
2329 #endif
2330 {
2331 .procname = "laptop_mode",
2332 .data = &laptop_mode,
2333 .maxlen = sizeof(laptop_mode),
2334 .mode = 0644,
2335 .proc_handler = proc_dointvec_jiffies,
2336 },
2337 };
2338 #endif
2339
2340 /*
2341 * Called early on to tune the page writeback dirty limits.
2342 *
2343 * We used to scale dirty pages according to how total memory
2344 * related to pages that could be allocated for buffers.
2345 *
2346 * However, that was when we used "dirty_ratio" to scale with
2347 * all memory, and we don't do that any more. "dirty_ratio"
2348 * is now applied to total non-HIGHPAGE memory, and as such we can't
2349 * get into the old insane situation any more where we had
2350 * large amounts of dirty pages compared to a small amount of
2351 * non-HIGHMEM memory.
2352 *
2353 * But we might still want to scale the dirty_ratio by how
2354 * much memory the box has..
2355 */
page_writeback_init(void)2356 void __init page_writeback_init(void)
2357 {
2358 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2359
2360 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2361 page_writeback_cpu_online, NULL);
2362 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2363 page_writeback_cpu_online);
2364 #ifdef CONFIG_SYSCTL
2365 register_sysctl_init("vm", vm_page_writeback_sysctls);
2366 #endif
2367 }
2368
2369 /**
2370 * tag_pages_for_writeback - tag pages to be written by writeback
2371 * @mapping: address space structure to write
2372 * @start: starting page index
2373 * @end: ending page index (inclusive)
2374 *
2375 * This function scans the page range from @start to @end (inclusive) and tags
2376 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
2377 * can then use the TOWRITE tag to identify pages eligible for writeback.
2378 * This mechanism is used to avoid livelocking of writeback by a process
2379 * steadily creating new dirty pages in the file (thus it is important for this
2380 * function to be quick so that it can tag pages faster than a dirtying process
2381 * can create them).
2382 */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2383 void tag_pages_for_writeback(struct address_space *mapping,
2384 pgoff_t start, pgoff_t end)
2385 {
2386 XA_STATE(xas, &mapping->i_pages, start);
2387 unsigned int tagged = 0;
2388 void *page;
2389
2390 xas_lock_irq(&xas);
2391 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2392 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2393 if (++tagged % XA_CHECK_SCHED)
2394 continue;
2395
2396 xas_pause(&xas);
2397 xas_unlock_irq(&xas);
2398 cond_resched();
2399 xas_lock_irq(&xas);
2400 }
2401 xas_unlock_irq(&xas);
2402 }
2403 EXPORT_SYMBOL(tag_pages_for_writeback);
2404
folio_prepare_writeback(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio)2405 static bool folio_prepare_writeback(struct address_space *mapping,
2406 struct writeback_control *wbc, struct folio *folio)
2407 {
2408 /*
2409 * Folio truncated or invalidated. We can freely skip it then,
2410 * even for data integrity operations: the folio has disappeared
2411 * concurrently, so there could be no real expectation of this
2412 * data integrity operation even if there is now a new, dirty
2413 * folio at the same pagecache index.
2414 */
2415 if (unlikely(folio->mapping != mapping))
2416 return false;
2417
2418 /*
2419 * Did somebody else write it for us?
2420 */
2421 if (!folio_test_dirty(folio))
2422 return false;
2423
2424 if (folio_test_writeback(folio)) {
2425 if (wbc->sync_mode == WB_SYNC_NONE)
2426 return false;
2427 folio_wait_writeback(folio);
2428 }
2429 BUG_ON(folio_test_writeback(folio));
2430
2431 if (!folio_clear_dirty_for_io(folio))
2432 return false;
2433
2434 return true;
2435 }
2436
wbc_to_tag(struct writeback_control * wbc)2437 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2438 {
2439 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2440 return PAGECACHE_TAG_TOWRITE;
2441 return PAGECACHE_TAG_DIRTY;
2442 }
2443
wbc_end(struct writeback_control * wbc)2444 static pgoff_t wbc_end(struct writeback_control *wbc)
2445 {
2446 if (wbc->range_cyclic)
2447 return -1;
2448 return wbc->range_end >> PAGE_SHIFT;
2449 }
2450
writeback_get_folio(struct address_space * mapping,struct writeback_control * wbc)2451 static struct folio *writeback_get_folio(struct address_space *mapping,
2452 struct writeback_control *wbc)
2453 {
2454 struct folio *folio;
2455
2456 retry:
2457 folio = folio_batch_next(&wbc->fbatch);
2458 if (!folio) {
2459 folio_batch_release(&wbc->fbatch);
2460 cond_resched();
2461 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2462 wbc_to_tag(wbc), &wbc->fbatch);
2463 folio = folio_batch_next(&wbc->fbatch);
2464 if (!folio)
2465 return NULL;
2466 }
2467
2468 folio_lock(folio);
2469 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2470 folio_unlock(folio);
2471 goto retry;
2472 }
2473
2474 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2475 return folio;
2476 }
2477
2478 /**
2479 * writeback_iter - iterate folio of a mapping for writeback
2480 * @mapping: address space structure to write
2481 * @wbc: writeback context
2482 * @folio: previously iterated folio (%NULL to start)
2483 * @error: in-out pointer for writeback errors (see below)
2484 *
2485 * This function returns the next folio for the writeback operation described by
2486 * @wbc on @mapping and should be called in a while loop in the ->writepages
2487 * implementation.
2488 *
2489 * To start the writeback operation, %NULL is passed in the @folio argument, and
2490 * for every subsequent iteration the folio returned previously should be passed
2491 * back in.
2492 *
2493 * If there was an error in the per-folio writeback inside the writeback_iter()
2494 * loop, @error should be set to the error value.
2495 *
2496 * Once the writeback described in @wbc has finished, this function will return
2497 * %NULL and if there was an error in any iteration restore it to @error.
2498 *
2499 * Note: callers should not manually break out of the loop using break or goto
2500 * but must keep calling writeback_iter() until it returns %NULL.
2501 *
2502 * Return: the folio to write or %NULL if the loop is done.
2503 */
writeback_iter(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio,int * error)2504 struct folio *writeback_iter(struct address_space *mapping,
2505 struct writeback_control *wbc, struct folio *folio, int *error)
2506 {
2507 if (!folio) {
2508 folio_batch_init(&wbc->fbatch);
2509 wbc->saved_err = *error = 0;
2510
2511 /*
2512 * For range cyclic writeback we remember where we stopped so
2513 * that we can continue where we stopped.
2514 *
2515 * For non-cyclic writeback we always start at the beginning of
2516 * the passed in range.
2517 */
2518 if (wbc->range_cyclic)
2519 wbc->index = mapping->writeback_index;
2520 else
2521 wbc->index = wbc->range_start >> PAGE_SHIFT;
2522
2523 /*
2524 * To avoid livelocks when other processes dirty new pages, we
2525 * first tag pages which should be written back and only then
2526 * start writing them.
2527 *
2528 * For data-integrity writeback we have to be careful so that we
2529 * do not miss some pages (e.g., because some other process has
2530 * cleared the TOWRITE tag we set). The rule we follow is that
2531 * TOWRITE tag can be cleared only by the process clearing the
2532 * DIRTY tag (and submitting the page for I/O).
2533 */
2534 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2535 tag_pages_for_writeback(mapping, wbc->index,
2536 wbc_end(wbc));
2537 } else {
2538 wbc->nr_to_write -= folio_nr_pages(folio);
2539
2540 WARN_ON_ONCE(*error > 0);
2541
2542 /*
2543 * For integrity writeback we have to keep going until we have
2544 * written all the folios we tagged for writeback above, even if
2545 * we run past wbc->nr_to_write or encounter errors.
2546 * We stash away the first error we encounter in wbc->saved_err
2547 * so that it can be retrieved when we're done. This is because
2548 * the file system may still have state to clear for each folio.
2549 *
2550 * For background writeback we exit as soon as we run past
2551 * wbc->nr_to_write or encounter the first error.
2552 */
2553 if (wbc->sync_mode == WB_SYNC_ALL) {
2554 if (*error && !wbc->saved_err)
2555 wbc->saved_err = *error;
2556 } else {
2557 if (*error || wbc->nr_to_write <= 0)
2558 goto done;
2559 }
2560 }
2561
2562 folio = writeback_get_folio(mapping, wbc);
2563 if (!folio) {
2564 /*
2565 * To avoid deadlocks between range_cyclic writeback and callers
2566 * that hold folios in writeback to aggregate I/O until
2567 * the writeback iteration finishes, we do not loop back to the
2568 * start of the file. Doing so causes a folio lock/folio
2569 * writeback access order inversion - we should only ever lock
2570 * multiple folios in ascending folio->index order, and looping
2571 * back to the start of the file violates that rule and causes
2572 * deadlocks.
2573 */
2574 if (wbc->range_cyclic)
2575 mapping->writeback_index = 0;
2576
2577 /*
2578 * Return the first error we encountered (if there was any) to
2579 * the caller.
2580 */
2581 *error = wbc->saved_err;
2582 }
2583 return folio;
2584
2585 done:
2586 if (wbc->range_cyclic)
2587 mapping->writeback_index = folio_next_index(folio);
2588 folio_batch_release(&wbc->fbatch);
2589 return NULL;
2590 }
2591 EXPORT_SYMBOL_GPL(writeback_iter);
2592
2593 /**
2594 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2595 * @mapping: address space structure to write
2596 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2597 * @writepage: function called for each page
2598 * @data: data passed to writepage function
2599 *
2600 * Return: %0 on success, negative error code otherwise
2601 *
2602 * Note: please use writeback_iter() instead.
2603 */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2604 int write_cache_pages(struct address_space *mapping,
2605 struct writeback_control *wbc, writepage_t writepage,
2606 void *data)
2607 {
2608 struct folio *folio = NULL;
2609 int error;
2610
2611 while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2612 error = writepage(folio, wbc, data);
2613 if (error == AOP_WRITEPAGE_ACTIVATE) {
2614 folio_unlock(folio);
2615 error = 0;
2616 }
2617 }
2618
2619 return error;
2620 }
2621 EXPORT_SYMBOL(write_cache_pages);
2622
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2623 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2624 {
2625 int ret;
2626 struct bdi_writeback *wb;
2627
2628 if (wbc->nr_to_write <= 0)
2629 return 0;
2630 wb = inode_to_wb_wbc(mapping->host, wbc);
2631 wb_bandwidth_estimate_start(wb);
2632 while (1) {
2633 if (mapping->a_ops->writepages)
2634 ret = mapping->a_ops->writepages(mapping, wbc);
2635 else
2636 /* deal with chardevs and other special files */
2637 ret = 0;
2638 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2639 break;
2640
2641 /*
2642 * Lacking an allocation context or the locality or writeback
2643 * state of any of the inode's pages, throttle based on
2644 * writeback activity on the local node. It's as good a
2645 * guess as any.
2646 */
2647 reclaim_throttle(NODE_DATA(numa_node_id()),
2648 VMSCAN_THROTTLE_WRITEBACK);
2649 }
2650 /*
2651 * Usually few pages are written by now from those we've just submitted
2652 * but if there's constant writeback being submitted, this makes sure
2653 * writeback bandwidth is updated once in a while.
2654 */
2655 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2656 BANDWIDTH_INTERVAL))
2657 wb_update_bandwidth(wb);
2658 return ret;
2659 }
2660
2661 /*
2662 * For address_spaces which do not use buffers nor write back.
2663 */
noop_dirty_folio(struct address_space * mapping,struct folio * folio)2664 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2665 {
2666 if (!folio_test_dirty(folio))
2667 return !folio_test_set_dirty(folio);
2668 return false;
2669 }
2670 EXPORT_SYMBOL(noop_dirty_folio);
2671
2672 /*
2673 * Helper function for set_page_dirty family.
2674 *
2675 * NOTE: This relies on being atomic wrt interrupts.
2676 */
folio_account_dirtied(struct folio * folio,struct address_space * mapping)2677 static void folio_account_dirtied(struct folio *folio,
2678 struct address_space *mapping)
2679 {
2680 struct inode *inode = mapping->host;
2681
2682 trace_writeback_dirty_folio(folio, mapping);
2683
2684 if (mapping_can_writeback(mapping)) {
2685 struct bdi_writeback *wb;
2686 long nr = folio_nr_pages(folio);
2687
2688 inode_attach_wb(inode, folio);
2689 wb = inode_to_wb(inode);
2690
2691 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2692 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2693 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2694 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2695 wb_stat_mod(wb, WB_DIRTIED, nr);
2696 task_io_account_write(nr * PAGE_SIZE);
2697 current->nr_dirtied += nr;
2698 __this_cpu_add(bdp_ratelimits, nr);
2699
2700 mem_cgroup_track_foreign_dirty(folio, wb);
2701 }
2702 }
2703
2704 /*
2705 * Helper function for deaccounting dirty page without writeback.
2706 *
2707 */
folio_account_cleaned(struct folio * folio,struct bdi_writeback * wb)2708 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2709 {
2710 long nr = folio_nr_pages(folio);
2711
2712 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2713 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2714 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2715 task_io_account_cancelled_write(nr * PAGE_SIZE);
2716 }
2717
2718 /*
2719 * Mark the folio dirty, and set it dirty in the page cache.
2720 *
2721 * If warn is true, then emit a warning if the folio is not uptodate and has
2722 * not been truncated.
2723 *
2724 * It is the caller's responsibility to prevent the folio from being truncated
2725 * while this function is in progress, although it may have been truncated
2726 * before this function is called. Most callers have the folio locked.
2727 * A few have the folio blocked from truncation through other means (e.g.
2728 * zap_vma_pages() has it mapped and is holding the page table lock).
2729 * When called from mark_buffer_dirty(), the filesystem should hold a
2730 * reference to the buffer_head that is being marked dirty, which causes
2731 * try_to_free_buffers() to fail.
2732 */
__folio_mark_dirty(struct folio * folio,struct address_space * mapping,int warn)2733 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2734 int warn)
2735 {
2736 unsigned long flags;
2737
2738 xa_lock_irqsave(&mapping->i_pages, flags);
2739 if (folio->mapping) { /* Race with truncate? */
2740 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2741 folio_account_dirtied(folio, mapping);
2742 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2743 PAGECACHE_TAG_DIRTY);
2744 }
2745 xa_unlock_irqrestore(&mapping->i_pages, flags);
2746 }
2747
2748 /**
2749 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2750 * @mapping: Address space this folio belongs to.
2751 * @folio: Folio to be marked as dirty.
2752 *
2753 * Filesystems which do not use buffer heads should call this function
2754 * from their dirty_folio address space operation. It ignores the
2755 * contents of folio_get_private(), so if the filesystem marks individual
2756 * blocks as dirty, the filesystem should handle that itself.
2757 *
2758 * This is also sometimes used by filesystems which use buffer_heads when
2759 * a single buffer is being dirtied: we want to set the folio dirty in
2760 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2761 * whereas block_dirty_folio() is a "top-down" dirtying.
2762 *
2763 * The caller must ensure this doesn't race with truncation. Most will
2764 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2765 * folio mapped and the pte lock held, which also locks out truncation.
2766 */
filemap_dirty_folio(struct address_space * mapping,struct folio * folio)2767 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2768 {
2769 if (folio_test_set_dirty(folio))
2770 return false;
2771
2772 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2773
2774 if (mapping->host) {
2775 /* !PageAnon && !swapper_space */
2776 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2777 }
2778 return true;
2779 }
2780 EXPORT_SYMBOL(filemap_dirty_folio);
2781
2782 /**
2783 * folio_redirty_for_writepage - Decline to write a dirty folio.
2784 * @wbc: The writeback control.
2785 * @folio: The folio.
2786 *
2787 * When a writepage implementation decides that it doesn't want to write
2788 * @folio for some reason, it should call this function, unlock @folio and
2789 * return 0.
2790 *
2791 * Return: True if we redirtied the folio. False if someone else dirtied
2792 * it first.
2793 */
folio_redirty_for_writepage(struct writeback_control * wbc,struct folio * folio)2794 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2795 struct folio *folio)
2796 {
2797 struct address_space *mapping = folio->mapping;
2798 long nr = folio_nr_pages(folio);
2799 bool ret;
2800
2801 wbc->pages_skipped += nr;
2802 ret = filemap_dirty_folio(mapping, folio);
2803 if (mapping && mapping_can_writeback(mapping)) {
2804 struct inode *inode = mapping->host;
2805 struct bdi_writeback *wb;
2806 struct wb_lock_cookie cookie = {};
2807
2808 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2809 current->nr_dirtied -= nr;
2810 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2811 wb_stat_mod(wb, WB_DIRTIED, -nr);
2812 unlocked_inode_to_wb_end(inode, &cookie);
2813 }
2814 return ret;
2815 }
2816 EXPORT_SYMBOL(folio_redirty_for_writepage);
2817
2818 /**
2819 * folio_mark_dirty - Mark a folio as being modified.
2820 * @folio: The folio.
2821 *
2822 * The folio may not be truncated while this function is running.
2823 * Holding the folio lock is sufficient to prevent truncation, but some
2824 * callers cannot acquire a sleeping lock. These callers instead hold
2825 * the page table lock for a page table which contains at least one page
2826 * in this folio. Truncation will block on the page table lock as it
2827 * unmaps pages before removing the folio from its mapping.
2828 *
2829 * Return: True if the folio was newly dirtied, false if it was already dirty.
2830 */
folio_mark_dirty(struct folio * folio)2831 bool folio_mark_dirty(struct folio *folio)
2832 {
2833 struct address_space *mapping = folio_mapping(folio);
2834
2835 if (likely(mapping)) {
2836 /*
2837 * readahead/folio_deactivate could remain
2838 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2839 * About readahead, if the folio is written, the flags would be
2840 * reset. So no problem.
2841 * About folio_deactivate, if the folio is redirtied,
2842 * the flag will be reset. So no problem. but if the
2843 * folio is used by readahead it will confuse readahead
2844 * and make it restart the size rampup process. But it's
2845 * a trivial problem.
2846 */
2847 if (folio_test_reclaim(folio))
2848 folio_clear_reclaim(folio);
2849 return mapping->a_ops->dirty_folio(mapping, folio);
2850 }
2851
2852 return noop_dirty_folio(mapping, folio);
2853 }
2854 EXPORT_SYMBOL(folio_mark_dirty);
2855
2856 /*
2857 * folio_mark_dirty() is racy if the caller has no reference against
2858 * folio->mapping->host, and if the folio is unlocked. This is because another
2859 * CPU could truncate the folio off the mapping and then free the mapping.
2860 *
2861 * Usually, the folio _is_ locked, or the caller is a user-space process which
2862 * holds a reference on the inode by having an open file.
2863 *
2864 * In other cases, the folio should be locked before running folio_mark_dirty().
2865 */
folio_mark_dirty_lock(struct folio * folio)2866 bool folio_mark_dirty_lock(struct folio *folio)
2867 {
2868 bool ret;
2869
2870 folio_lock(folio);
2871 ret = folio_mark_dirty(folio);
2872 folio_unlock(folio);
2873 return ret;
2874 }
2875 EXPORT_SYMBOL(folio_mark_dirty_lock);
2876
2877 /*
2878 * This cancels just the dirty bit on the kernel page itself, it does NOT
2879 * actually remove dirty bits on any mmap's that may be around. It also
2880 * leaves the page tagged dirty, so any sync activity will still find it on
2881 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2882 * look at the dirty bits in the VM.
2883 *
2884 * Doing this should *normally* only ever be done when a page is truncated,
2885 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2886 * this when it notices that somebody has cleaned out all the buffers on a
2887 * page without actually doing it through the VM. Can you say "ext3 is
2888 * horribly ugly"? Thought you could.
2889 */
__folio_cancel_dirty(struct folio * folio)2890 void __folio_cancel_dirty(struct folio *folio)
2891 {
2892 struct address_space *mapping = folio_mapping(folio);
2893
2894 if (mapping_can_writeback(mapping)) {
2895 struct inode *inode = mapping->host;
2896 struct bdi_writeback *wb;
2897 struct wb_lock_cookie cookie = {};
2898
2899 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2900
2901 if (folio_test_clear_dirty(folio))
2902 folio_account_cleaned(folio, wb);
2903
2904 unlocked_inode_to_wb_end(inode, &cookie);
2905 } else {
2906 folio_clear_dirty(folio);
2907 }
2908 }
2909 EXPORT_SYMBOL(__folio_cancel_dirty);
2910
2911 /*
2912 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2913 * Returns true if the folio was previously dirty.
2914 *
2915 * This is for preparing to put the folio under writeout. We leave
2916 * the folio tagged as dirty in the xarray so that a concurrent
2917 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2918 * The ->writepage implementation will run either folio_start_writeback()
2919 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2920 * and xarray dirty tag back into sync.
2921 *
2922 * This incoherency between the folio's dirty flag and xarray tag is
2923 * unfortunate, but it only exists while the folio is locked.
2924 */
folio_clear_dirty_for_io(struct folio * folio)2925 bool folio_clear_dirty_for_io(struct folio *folio)
2926 {
2927 struct address_space *mapping = folio_mapping(folio);
2928 bool ret = false;
2929
2930 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2931
2932 if (mapping && mapping_can_writeback(mapping)) {
2933 struct inode *inode = mapping->host;
2934 struct bdi_writeback *wb;
2935 struct wb_lock_cookie cookie = {};
2936
2937 /*
2938 * Yes, Virginia, this is indeed insane.
2939 *
2940 * We use this sequence to make sure that
2941 * (a) we account for dirty stats properly
2942 * (b) we tell the low-level filesystem to
2943 * mark the whole folio dirty if it was
2944 * dirty in a pagetable. Only to then
2945 * (c) clean the folio again and return 1 to
2946 * cause the writeback.
2947 *
2948 * This way we avoid all nasty races with the
2949 * dirty bit in multiple places and clearing
2950 * them concurrently from different threads.
2951 *
2952 * Note! Normally the "folio_mark_dirty(folio)"
2953 * has no effect on the actual dirty bit - since
2954 * that will already usually be set. But we
2955 * need the side effects, and it can help us
2956 * avoid races.
2957 *
2958 * We basically use the folio "master dirty bit"
2959 * as a serialization point for all the different
2960 * threads doing their things.
2961 */
2962 if (folio_mkclean(folio))
2963 folio_mark_dirty(folio);
2964 /*
2965 * We carefully synchronise fault handlers against
2966 * installing a dirty pte and marking the folio dirty
2967 * at this point. We do this by having them hold the
2968 * page lock while dirtying the folio, and folios are
2969 * always locked coming in here, so we get the desired
2970 * exclusion.
2971 */
2972 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2973 if (folio_test_clear_dirty(folio)) {
2974 long nr = folio_nr_pages(folio);
2975 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2976 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2977 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2978 ret = true;
2979 }
2980 unlocked_inode_to_wb_end(inode, &cookie);
2981 return ret;
2982 }
2983 return folio_test_clear_dirty(folio);
2984 }
2985 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2986
wb_inode_writeback_start(struct bdi_writeback * wb)2987 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2988 {
2989 atomic_inc(&wb->writeback_inodes);
2990 }
2991
wb_inode_writeback_end(struct bdi_writeback * wb)2992 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2993 {
2994 unsigned long flags;
2995 atomic_dec(&wb->writeback_inodes);
2996 /*
2997 * Make sure estimate of writeback throughput gets updated after
2998 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2999 * (which is the interval other bandwidth updates use for batching) so
3000 * that if multiple inodes end writeback at a similar time, they get
3001 * batched into one bandwidth update.
3002 */
3003 spin_lock_irqsave(&wb->work_lock, flags);
3004 if (test_bit(WB_registered, &wb->state))
3005 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3006 spin_unlock_irqrestore(&wb->work_lock, flags);
3007 }
3008
__folio_end_writeback(struct folio * folio)3009 bool __folio_end_writeback(struct folio *folio)
3010 {
3011 long nr = folio_nr_pages(folio);
3012 struct address_space *mapping = folio_mapping(folio);
3013 bool ret;
3014
3015 if (mapping && mapping_use_writeback_tags(mapping)) {
3016 struct inode *inode = mapping->host;
3017 struct backing_dev_info *bdi = inode_to_bdi(inode);
3018 unsigned long flags;
3019
3020 xa_lock_irqsave(&mapping->i_pages, flags);
3021 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3022 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3023 PAGECACHE_TAG_WRITEBACK);
3024 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3025 struct bdi_writeback *wb = inode_to_wb(inode);
3026
3027 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3028 __wb_writeout_add(wb, nr);
3029 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3030 wb_inode_writeback_end(wb);
3031 }
3032
3033 if (mapping->host && !mapping_tagged(mapping,
3034 PAGECACHE_TAG_WRITEBACK))
3035 sb_clear_inode_writeback(mapping->host);
3036
3037 xa_unlock_irqrestore(&mapping->i_pages, flags);
3038 } else {
3039 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3040 }
3041
3042 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3043 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3044 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3045
3046 return ret;
3047 }
3048
__folio_start_writeback(struct folio * folio,bool keep_write)3049 void __folio_start_writeback(struct folio *folio, bool keep_write)
3050 {
3051 long nr = folio_nr_pages(folio);
3052 struct address_space *mapping = folio_mapping(folio);
3053 int access_ret;
3054
3055 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3056 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3057
3058 if (mapping && mapping_use_writeback_tags(mapping)) {
3059 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3060 struct inode *inode = mapping->host;
3061 struct backing_dev_info *bdi = inode_to_bdi(inode);
3062 unsigned long flags;
3063 bool on_wblist;
3064
3065 xas_lock_irqsave(&xas, flags);
3066 xas_load(&xas);
3067 folio_test_set_writeback(folio);
3068
3069 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3070
3071 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3072 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3073 struct bdi_writeback *wb = inode_to_wb(inode);
3074
3075 wb_stat_mod(wb, WB_WRITEBACK, nr);
3076 if (!on_wblist)
3077 wb_inode_writeback_start(wb);
3078 }
3079
3080 /*
3081 * We can come through here when swapping anonymous
3082 * folios, so we don't necessarily have an inode to
3083 * track for sync.
3084 */
3085 if (mapping->host && !on_wblist)
3086 sb_mark_inode_writeback(mapping->host);
3087 if (!folio_test_dirty(folio))
3088 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3089 if (!keep_write)
3090 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3091 xas_unlock_irqrestore(&xas, flags);
3092 } else {
3093 folio_test_set_writeback(folio);
3094 }
3095
3096 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3097 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3098
3099 access_ret = arch_make_folio_accessible(folio);
3100 /*
3101 * If writeback has been triggered on a page that cannot be made
3102 * accessible, it is too late to recover here.
3103 */
3104 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3105 }
3106 EXPORT_SYMBOL(__folio_start_writeback);
3107
3108 /**
3109 * folio_wait_writeback - Wait for a folio to finish writeback.
3110 * @folio: The folio to wait for.
3111 *
3112 * If the folio is currently being written back to storage, wait for the
3113 * I/O to complete.
3114 *
3115 * Context: Sleeps. Must be called in process context and with
3116 * no spinlocks held. Caller should hold a reference on the folio.
3117 * If the folio is not locked, writeback may start again after writeback
3118 * has finished.
3119 */
folio_wait_writeback(struct folio * folio)3120 void folio_wait_writeback(struct folio *folio)
3121 {
3122 while (folio_test_writeback(folio)) {
3123 trace_folio_wait_writeback(folio, folio_mapping(folio));
3124 folio_wait_bit(folio, PG_writeback);
3125 }
3126 }
3127 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3128
3129 /**
3130 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3131 * @folio: The folio to wait for.
3132 *
3133 * If the folio is currently being written back to storage, wait for the
3134 * I/O to complete or a fatal signal to arrive.
3135 *
3136 * Context: Sleeps. Must be called in process context and with
3137 * no spinlocks held. Caller should hold a reference on the folio.
3138 * If the folio is not locked, writeback may start again after writeback
3139 * has finished.
3140 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3141 */
folio_wait_writeback_killable(struct folio * folio)3142 int folio_wait_writeback_killable(struct folio *folio)
3143 {
3144 while (folio_test_writeback(folio)) {
3145 trace_folio_wait_writeback(folio, folio_mapping(folio));
3146 if (folio_wait_bit_killable(folio, PG_writeback))
3147 return -EINTR;
3148 }
3149
3150 return 0;
3151 }
3152 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3153
3154 /**
3155 * folio_wait_stable() - wait for writeback to finish, if necessary.
3156 * @folio: The folio to wait on.
3157 *
3158 * This function determines if the given folio is related to a backing
3159 * device that requires folio contents to be held stable during writeback.
3160 * If so, then it will wait for any pending writeback to complete.
3161 *
3162 * Context: Sleeps. Must be called in process context and with
3163 * no spinlocks held. Caller should hold a reference on the folio.
3164 * If the folio is not locked, writeback may start again after writeback
3165 * has finished.
3166 */
folio_wait_stable(struct folio * folio)3167 void folio_wait_stable(struct folio *folio)
3168 {
3169 if (mapping_stable_writes(folio_mapping(folio)))
3170 folio_wait_writeback(folio);
3171 }
3172 EXPORT_SYMBOL_GPL(folio_wait_stable);
3173