xref: /linux/include/linux/blkdev.h (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29 
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44 
45 extern const struct device_type disk_type;
46 extern const struct device_type part_type;
47 extern const struct class block_class;
48 
49 /*
50  * Maximum number of blkcg policies allowed to be registered concurrently.
51  * Defined here to simplify include dependency.
52  */
53 #define BLKCG_MAX_POLS		6
54 
55 #define DISK_MAX_PARTS			256
56 #define DISK_NAME_LEN			32
57 
58 #define PARTITION_META_INFO_VOLNAMELTH	64
59 /*
60  * Enough for the string representation of any kind of UUID plus NULL.
61  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
62  */
63 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
64 
65 struct partition_meta_info {
66 	char uuid[PARTITION_META_INFO_UUIDLTH];
67 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
68 };
69 
70 /**
71  * DOC: genhd capability flags
72  *
73  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
74  * removable media.  When set, the device remains present even when media is not
75  * inserted.  Shall not be set for devices which are removed entirely when the
76  * media is removed.
77  *
78  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
79  * doesn't appear in sysfs, and can't be opened from userspace or using
80  * blkdev_get*. Used for the underlying components of multipath devices.
81  *
82  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
83  * scan for partitions from add_disk, and users can't add partitions manually.
84  *
85  */
86 enum {
87 	GENHD_FL_REMOVABLE			= 1 << 0,
88 	GENHD_FL_HIDDEN				= 1 << 1,
89 	GENHD_FL_NO_PART			= 1 << 2,
90 };
91 
92 enum {
93 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
94 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
95 };
96 
97 enum {
98 	/* Poll even if events_poll_msecs is unset */
99 	DISK_EVENT_FLAG_POLL			= 1 << 0,
100 	/* Forward events to udev */
101 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
102 	/* Block event polling when open for exclusive write */
103 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
104 };
105 
106 struct disk_events;
107 struct badblocks;
108 
109 enum blk_integrity_checksum {
110 	BLK_INTEGRITY_CSUM_NONE		= 0,
111 	BLK_INTEGRITY_CSUM_IP		= 1,
112 	BLK_INTEGRITY_CSUM_CRC		= 2,
113 	BLK_INTEGRITY_CSUM_CRC64	= 3,
114 } __packed ;
115 
116 struct blk_integrity {
117 	unsigned char				flags;
118 	enum blk_integrity_checksum		csum_type;
119 	unsigned char				tuple_size;
120 	unsigned char				pi_offset;
121 	unsigned char				interval_exp;
122 	unsigned char				tag_size;
123 };
124 
125 typedef unsigned int __bitwise blk_mode_t;
126 
127 /* open for reading */
128 #define BLK_OPEN_READ		((__force blk_mode_t)(1 << 0))
129 /* open for writing */
130 #define BLK_OPEN_WRITE		((__force blk_mode_t)(1 << 1))
131 /* open exclusively (vs other exclusive openers */
132 #define BLK_OPEN_EXCL		((__force blk_mode_t)(1 << 2))
133 /* opened with O_NDELAY */
134 #define BLK_OPEN_NDELAY		((__force blk_mode_t)(1 << 3))
135 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
136 #define BLK_OPEN_WRITE_IOCTL	((__force blk_mode_t)(1 << 4))
137 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
138 #define BLK_OPEN_RESTRICT_WRITES	((__force blk_mode_t)(1 << 5))
139 /* return partition scanning errors */
140 #define BLK_OPEN_STRICT_SCAN	((__force blk_mode_t)(1 << 6))
141 
142 struct gendisk {
143 	/*
144 	 * major/first_minor/minors should not be set by any new driver, the
145 	 * block core will take care of allocating them automatically.
146 	 */
147 	int major;
148 	int first_minor;
149 	int minors;
150 
151 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
152 
153 	unsigned short events;		/* supported events */
154 	unsigned short event_flags;	/* flags related to event processing */
155 
156 	struct xarray part_tbl;
157 	struct block_device *part0;
158 
159 	const struct block_device_operations *fops;
160 	struct request_queue *queue;
161 	void *private_data;
162 
163 	struct bio_set bio_split;
164 
165 	int flags;
166 	unsigned long state;
167 #define GD_NEED_PART_SCAN		0
168 #define GD_READ_ONLY			1
169 #define GD_DEAD				2
170 #define GD_NATIVE_CAPACITY		3
171 #define GD_ADDED			4
172 #define GD_SUPPRESS_PART_SCAN		5
173 #define GD_OWNS_QUEUE			6
174 
175 	struct mutex open_mutex;	/* open/close mutex */
176 	unsigned open_partitions;	/* number of open partitions */
177 
178 	struct backing_dev_info	*bdi;
179 	struct kobject queue_kobj;	/* the queue/ directory */
180 	struct kobject *slave_dir;
181 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
182 	struct list_head slave_bdevs;
183 #endif
184 	struct timer_rand_state *random;
185 	struct disk_events *ev;
186 
187 #ifdef CONFIG_BLK_DEV_ZONED
188 	/*
189 	 * Zoned block device information. Reads of this information must be
190 	 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
191 	 * information is only allowed while no requests are being processed.
192 	 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
193 	 */
194 	unsigned int		nr_zones;
195 	unsigned int		zone_capacity;
196 	unsigned int		last_zone_capacity;
197 	unsigned long __rcu	*conv_zones_bitmap;
198 	unsigned int		zone_wplugs_hash_bits;
199 	atomic_t		nr_zone_wplugs;
200 	spinlock_t		zone_wplugs_lock;
201 	struct mempool_s	*zone_wplugs_pool;
202 	struct hlist_head	*zone_wplugs_hash;
203 	struct workqueue_struct *zone_wplugs_wq;
204 #endif /* CONFIG_BLK_DEV_ZONED */
205 
206 #if IS_ENABLED(CONFIG_CDROM)
207 	struct cdrom_device_info *cdi;
208 #endif
209 	int node_id;
210 	struct badblocks *bb;
211 	struct lockdep_map lockdep_map;
212 	u64 diskseq;
213 	blk_mode_t open_mode;
214 
215 	/*
216 	 * Independent sector access ranges. This is always NULL for
217 	 * devices that do not have multiple independent access ranges.
218 	 */
219 	struct blk_independent_access_ranges *ia_ranges;
220 
221 	struct mutex rqos_state_mutex;	/* rqos state change mutex */
222 };
223 
224 /**
225  * disk_openers - returns how many openers are there for a disk
226  * @disk: disk to check
227  *
228  * This returns the number of openers for a disk.  Note that this value is only
229  * stable if disk->open_mutex is held.
230  *
231  * Note: Due to a quirk in the block layer open code, each open partition is
232  * only counted once even if there are multiple openers.
233  */
disk_openers(struct gendisk * disk)234 static inline unsigned int disk_openers(struct gendisk *disk)
235 {
236 	return atomic_read(&disk->part0->bd_openers);
237 }
238 
239 /**
240  * disk_has_partscan - return %true if partition scanning is enabled on a disk
241  * @disk: disk to check
242  *
243  * Returns %true if partitions scanning is enabled for @disk, or %false if
244  * partition scanning is disabled either permanently or temporarily.
245  */
disk_has_partscan(struct gendisk * disk)246 static inline bool disk_has_partscan(struct gendisk *disk)
247 {
248 	return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
249 		!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
250 }
251 
252 /*
253  * The gendisk is refcounted by the part0 block_device, and the bd_device
254  * therein is also used for device model presentation in sysfs.
255  */
256 #define dev_to_disk(device) \
257 	(dev_to_bdev(device)->bd_disk)
258 #define disk_to_dev(disk) \
259 	(&((disk)->part0->bd_device))
260 
261 #if IS_REACHABLE(CONFIG_CDROM)
262 #define disk_to_cdi(disk)	((disk)->cdi)
263 #else
264 #define disk_to_cdi(disk)	NULL
265 #endif
266 
disk_devt(struct gendisk * disk)267 static inline dev_t disk_devt(struct gendisk *disk)
268 {
269 	return MKDEV(disk->major, disk->first_minor);
270 }
271 
272 /*
273  * We should strive for 1 << (PAGE_SHIFT + MAX_PAGECACHE_ORDER)
274  * however we constrain this to what we can validate and test.
275  */
276 #define BLK_MAX_BLOCK_SIZE      SZ_64K
277 
278 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)279 static inline int blk_validate_block_size(unsigned long bsize)
280 {
281 	if (bsize < 512 || bsize > BLK_MAX_BLOCK_SIZE || !is_power_of_2(bsize))
282 		return -EINVAL;
283 
284 	return 0;
285 }
286 
blk_op_is_passthrough(blk_opf_t op)287 static inline bool blk_op_is_passthrough(blk_opf_t op)
288 {
289 	op &= REQ_OP_MASK;
290 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
291 }
292 
293 /* flags set by the driver in queue_limits.features */
294 typedef unsigned int __bitwise blk_features_t;
295 
296 /* supports a volatile write cache */
297 #define BLK_FEAT_WRITE_CACHE		((__force blk_features_t)(1u << 0))
298 
299 /* supports passing on the FUA bit */
300 #define BLK_FEAT_FUA			((__force blk_features_t)(1u << 1))
301 
302 /* rotational device (hard drive or floppy) */
303 #define BLK_FEAT_ROTATIONAL		((__force blk_features_t)(1u << 2))
304 
305 /* contributes to the random number pool */
306 #define BLK_FEAT_ADD_RANDOM		((__force blk_features_t)(1u << 3))
307 
308 /* do disk/partitions IO accounting */
309 #define BLK_FEAT_IO_STAT		((__force blk_features_t)(1u << 4))
310 
311 /* don't modify data until writeback is done */
312 #define BLK_FEAT_STABLE_WRITES		((__force blk_features_t)(1u << 5))
313 
314 /* always completes in submit context */
315 #define BLK_FEAT_SYNCHRONOUS		((__force blk_features_t)(1u << 6))
316 
317 /* supports REQ_NOWAIT */
318 #define BLK_FEAT_NOWAIT			((__force blk_features_t)(1u << 7))
319 
320 /* supports DAX */
321 #define BLK_FEAT_DAX			((__force blk_features_t)(1u << 8))
322 
323 /* supports I/O polling */
324 #define BLK_FEAT_POLL			((__force blk_features_t)(1u << 9))
325 
326 /* is a zoned device */
327 #define BLK_FEAT_ZONED			((__force blk_features_t)(1u << 10))
328 
329 /* supports PCI(e) p2p requests */
330 #define BLK_FEAT_PCI_P2PDMA		((__force blk_features_t)(1u << 12))
331 
332 /* skip this queue in blk_mq_(un)quiesce_tagset */
333 #define BLK_FEAT_SKIP_TAGSET_QUIESCE	((__force blk_features_t)(1u << 13))
334 
335 /* undocumented magic for bcache */
336 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
337 	((__force blk_features_t)(1u << 15))
338 
339 /* atomic writes enabled */
340 #define BLK_FEAT_ATOMIC_WRITES \
341 	((__force blk_features_t)(1u << 16))
342 
343 /*
344  * Flags automatically inherited when stacking limits.
345  */
346 #define BLK_FEAT_INHERIT_MASK \
347 	(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
348 	 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | \
349 	 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
350 
351 /* internal flags in queue_limits.flags */
352 typedef unsigned int __bitwise blk_flags_t;
353 
354 /* do not send FLUSH/FUA commands despite advertising a write cache */
355 #define BLK_FLAG_WRITE_CACHE_DISABLED	((__force blk_flags_t)(1u << 0))
356 
357 /* I/O topology is misaligned */
358 #define BLK_FLAG_MISALIGNED		((__force blk_flags_t)(1u << 1))
359 
360 /* passthrough command IO accounting */
361 #define BLK_FLAG_IOSTATS_PASSTHROUGH	((__force blk_flags_t)(1u << 2))
362 
363 struct queue_limits {
364 	blk_features_t		features;
365 	blk_flags_t		flags;
366 	unsigned long		seg_boundary_mask;
367 	unsigned long		virt_boundary_mask;
368 
369 	unsigned int		max_hw_sectors;
370 	unsigned int		max_dev_sectors;
371 	unsigned int		chunk_sectors;
372 	unsigned int		max_sectors;
373 	unsigned int		max_user_sectors;
374 	unsigned int		max_segment_size;
375 	unsigned int		min_segment_size;
376 	unsigned int		physical_block_size;
377 	unsigned int		logical_block_size;
378 	unsigned int		alignment_offset;
379 	unsigned int		io_min;
380 	unsigned int		io_opt;
381 	unsigned int		max_discard_sectors;
382 	unsigned int		max_hw_discard_sectors;
383 	unsigned int		max_user_discard_sectors;
384 	unsigned int		max_secure_erase_sectors;
385 	unsigned int		max_write_zeroes_sectors;
386 	unsigned int		max_hw_zone_append_sectors;
387 	unsigned int		max_zone_append_sectors;
388 	unsigned int		discard_granularity;
389 	unsigned int		discard_alignment;
390 	unsigned int		zone_write_granularity;
391 
392 	/* atomic write limits */
393 	unsigned int		atomic_write_hw_max;
394 	unsigned int		atomic_write_max_sectors;
395 	unsigned int		atomic_write_hw_boundary;
396 	unsigned int		atomic_write_boundary_sectors;
397 	unsigned int		atomic_write_hw_unit_min;
398 	unsigned int		atomic_write_unit_min;
399 	unsigned int		atomic_write_hw_unit_max;
400 	unsigned int		atomic_write_unit_max;
401 
402 	unsigned short		max_segments;
403 	unsigned short		max_integrity_segments;
404 	unsigned short		max_discard_segments;
405 
406 	unsigned short		max_write_streams;
407 	unsigned int		write_stream_granularity;
408 
409 	unsigned int		max_open_zones;
410 	unsigned int		max_active_zones;
411 
412 	/*
413 	 * Drivers that set dma_alignment to less than 511 must be prepared to
414 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
415 	 * due to possible offsets.
416 	 */
417 	unsigned int		dma_alignment;
418 	unsigned int		dma_pad_mask;
419 
420 	struct blk_integrity	integrity;
421 };
422 
423 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
424 			       void *data);
425 
426 #define BLK_ALL_ZONES  ((unsigned int)-1)
427 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
428 		unsigned int nr_zones, report_zones_cb cb, void *data);
429 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
430 		sector_t sectors, sector_t nr_sectors);
431 int blk_revalidate_disk_zones(struct gendisk *disk);
432 
433 /*
434  * Independent access ranges: struct blk_independent_access_range describes
435  * a range of contiguous sectors that can be accessed using device command
436  * execution resources that are independent from the resources used for
437  * other access ranges. This is typically found with single-LUN multi-actuator
438  * HDDs where each access range is served by a different set of heads.
439  * The set of independent ranges supported by the device is defined using
440  * struct blk_independent_access_ranges. The independent ranges must not overlap
441  * and must include all sectors within the disk capacity (no sector holes
442  * allowed).
443  * For a device with multiple ranges, requests targeting sectors in different
444  * ranges can be executed in parallel. A request can straddle an access range
445  * boundary.
446  */
447 struct blk_independent_access_range {
448 	struct kobject		kobj;
449 	sector_t		sector;
450 	sector_t		nr_sectors;
451 };
452 
453 struct blk_independent_access_ranges {
454 	struct kobject				kobj;
455 	bool					sysfs_registered;
456 	unsigned int				nr_ia_ranges;
457 	struct blk_independent_access_range	ia_range[];
458 };
459 
460 struct request_queue {
461 	/*
462 	 * The queue owner gets to use this for whatever they like.
463 	 * ll_rw_blk doesn't touch it.
464 	 */
465 	void			*queuedata;
466 
467 	struct elevator_queue	*elevator;
468 
469 	const struct blk_mq_ops	*mq_ops;
470 
471 	/* sw queues */
472 	struct blk_mq_ctx __percpu	*queue_ctx;
473 
474 	/*
475 	 * various queue flags, see QUEUE_* below
476 	 */
477 	unsigned long		queue_flags;
478 
479 	unsigned int		rq_timeout;
480 
481 	unsigned int		queue_depth;
482 
483 	refcount_t		refs;
484 
485 	/* hw dispatch queues */
486 	unsigned int		nr_hw_queues;
487 	struct xarray		hctx_table;
488 
489 	struct percpu_ref	q_usage_counter;
490 	struct lock_class_key	io_lock_cls_key;
491 	struct lockdep_map	io_lockdep_map;
492 
493 	struct lock_class_key	q_lock_cls_key;
494 	struct lockdep_map	q_lockdep_map;
495 
496 	struct request		*last_merge;
497 
498 	spinlock_t		queue_lock;
499 
500 	int			quiesce_depth;
501 
502 	struct gendisk		*disk;
503 
504 	/*
505 	 * mq queue kobject
506 	 */
507 	struct kobject *mq_kobj;
508 
509 	struct queue_limits	limits;
510 
511 #ifdef CONFIG_PM
512 	struct device		*dev;
513 	enum rpm_status		rpm_status;
514 #endif
515 
516 	/*
517 	 * Number of contexts that have called blk_set_pm_only(). If this
518 	 * counter is above zero then only RQF_PM requests are processed.
519 	 */
520 	atomic_t		pm_only;
521 
522 	struct blk_queue_stats	*stats;
523 	struct rq_qos		*rq_qos;
524 	struct mutex		rq_qos_mutex;
525 
526 	/*
527 	 * ida allocated id for this queue.  Used to index queues from
528 	 * ioctx.
529 	 */
530 	int			id;
531 
532 	/*
533 	 * queue settings
534 	 */
535 	unsigned long		nr_requests;	/* Max # of requests */
536 
537 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
538 	struct blk_crypto_profile *crypto_profile;
539 	struct kobject *crypto_kobject;
540 #endif
541 
542 	struct timer_list	timeout;
543 	struct work_struct	timeout_work;
544 
545 	atomic_t		nr_active_requests_shared_tags;
546 
547 	struct blk_mq_tags	*sched_shared_tags;
548 
549 	struct list_head	icq_list;
550 #ifdef CONFIG_BLK_CGROUP
551 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
552 	struct blkcg_gq		*root_blkg;
553 	struct list_head	blkg_list;
554 	struct mutex		blkcg_mutex;
555 #endif
556 
557 	int			node;
558 
559 	spinlock_t		requeue_lock;
560 	struct list_head	requeue_list;
561 	struct delayed_work	requeue_work;
562 
563 #ifdef CONFIG_BLK_DEV_IO_TRACE
564 	struct blk_trace __rcu	*blk_trace;
565 #endif
566 	/*
567 	 * for flush operations
568 	 */
569 	struct blk_flush_queue	*fq;
570 	struct list_head	flush_list;
571 
572 	/*
573 	 * Protects against I/O scheduler switching, particularly when updating
574 	 * q->elevator. Since the elevator update code path may also modify q->
575 	 * nr_requests and wbt latency, this lock also protects the sysfs attrs
576 	 * nr_requests and wbt_lat_usec. Additionally the nr_hw_queues update
577 	 * may modify hctx tags, reserved-tags and cpumask, so this lock also
578 	 * helps protect the hctx sysfs/debugfs attrs. To ensure proper locking
579 	 * order during an elevator or nr_hw_queue update, first freeze the
580 	 * queue, then acquire ->elevator_lock.
581 	 */
582 	struct mutex		elevator_lock;
583 
584 	struct mutex		sysfs_lock;
585 	/*
586 	 * Protects queue limits and also sysfs attribute read_ahead_kb.
587 	 */
588 	struct mutex		limits_lock;
589 
590 	/*
591 	 * for reusing dead hctx instance in case of updating
592 	 * nr_hw_queues
593 	 */
594 	struct list_head	unused_hctx_list;
595 	spinlock_t		unused_hctx_lock;
596 
597 	int			mq_freeze_depth;
598 
599 #ifdef CONFIG_BLK_DEV_THROTTLING
600 	/* Throttle data */
601 	struct throtl_data *td;
602 #endif
603 	struct rcu_head		rcu_head;
604 #ifdef CONFIG_LOCKDEP
605 	struct task_struct	*mq_freeze_owner;
606 	int			mq_freeze_owner_depth;
607 	/*
608 	 * Records disk & queue state in current context, used in unfreeze
609 	 * queue
610 	 */
611 	bool			mq_freeze_disk_dead;
612 	bool			mq_freeze_queue_dying;
613 #endif
614 	wait_queue_head_t	mq_freeze_wq;
615 	/*
616 	 * Protect concurrent access to q_usage_counter by
617 	 * percpu_ref_kill() and percpu_ref_reinit().
618 	 */
619 	struct mutex		mq_freeze_lock;
620 
621 	struct blk_mq_tag_set	*tag_set;
622 	struct list_head	tag_set_list;
623 
624 	struct dentry		*debugfs_dir;
625 	struct dentry		*sched_debugfs_dir;
626 	struct dentry		*rqos_debugfs_dir;
627 	/*
628 	 * Serializes all debugfs metadata operations using the above dentries.
629 	 */
630 	struct mutex		debugfs_mutex;
631 };
632 
633 /* Keep blk_queue_flag_name[] in sync with the definitions below */
634 enum {
635 	QUEUE_FLAG_DYING,		/* queue being torn down */
636 	QUEUE_FLAG_NOMERGES,		/* disable merge attempts */
637 	QUEUE_FLAG_SAME_COMP,		/* complete on same CPU-group */
638 	QUEUE_FLAG_FAIL_IO,		/* fake timeout */
639 	QUEUE_FLAG_NOXMERGES,		/* No extended merges */
640 	QUEUE_FLAG_SAME_FORCE,		/* force complete on same CPU */
641 	QUEUE_FLAG_INIT_DONE,		/* queue is initialized */
642 	QUEUE_FLAG_STATS,		/* track IO start and completion times */
643 	QUEUE_FLAG_REGISTERED,		/* queue has been registered to a disk */
644 	QUEUE_FLAG_QUIESCED,		/* queue has been quiesced */
645 	QUEUE_FLAG_RQ_ALLOC_TIME,	/* record rq->alloc_time_ns */
646 	QUEUE_FLAG_HCTX_ACTIVE,		/* at least one blk-mq hctx is active */
647 	QUEUE_FLAG_SQ_SCHED,		/* single queue style io dispatch */
648 	QUEUE_FLAG_DISABLE_WBT_DEF,	/* for sched to disable/enable wbt */
649 	QUEUE_FLAG_NO_ELV_SWITCH,	/* can't switch elevator any more */
650 	QUEUE_FLAG_MAX
651 };
652 
653 #define QUEUE_FLAG_MQ_DEFAULT	(1UL << QUEUE_FLAG_SAME_COMP)
654 
655 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
656 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
657 
658 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
659 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
660 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
661 #define blk_queue_noxmerges(q)	\
662 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
663 #define blk_queue_nonrot(q)	(!((q)->limits.features & BLK_FEAT_ROTATIONAL))
664 #define blk_queue_io_stat(q)	((q)->limits.features & BLK_FEAT_IO_STAT)
665 #define blk_queue_passthrough_stat(q)	\
666 	((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH)
667 #define blk_queue_dax(q)	((q)->limits.features & BLK_FEAT_DAX)
668 #define blk_queue_pci_p2pdma(q)	((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
669 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
670 #define blk_queue_rq_alloc_time(q)	\
671 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
672 #else
673 #define blk_queue_rq_alloc_time(q)	false
674 #endif
675 
676 #define blk_noretry_request(rq) \
677 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
678 			     REQ_FAILFAST_DRIVER))
679 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
680 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
681 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
682 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
683 #define blk_queue_skip_tagset_quiesce(q) \
684 	((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
685 #define blk_queue_disable_wbt(q)	\
686 	test_bit(QUEUE_FLAG_DISABLE_WBT_DEF, &(q)->queue_flags)
687 #define blk_queue_no_elv_switch(q)	\
688 	test_bit(QUEUE_FLAG_NO_ELV_SWITCH, &(q)->queue_flags)
689 
690 extern void blk_set_pm_only(struct request_queue *q);
691 extern void blk_clear_pm_only(struct request_queue *q);
692 
693 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
694 
695 #define dma_map_bvec(dev, bv, dir, attrs) \
696 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
697 	(dir), (attrs))
698 
queue_is_mq(struct request_queue * q)699 static inline bool queue_is_mq(struct request_queue *q)
700 {
701 	return q->mq_ops;
702 }
703 
704 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)705 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
706 {
707 	return q->rpm_status;
708 }
709 #else
queue_rpm_status(struct request_queue * q)710 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
711 {
712 	return RPM_ACTIVE;
713 }
714 #endif
715 
blk_queue_is_zoned(struct request_queue * q)716 static inline bool blk_queue_is_zoned(struct request_queue *q)
717 {
718 	return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
719 		(q->limits.features & BLK_FEAT_ZONED);
720 }
721 
disk_zone_no(struct gendisk * disk,sector_t sector)722 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
723 {
724 	if (!blk_queue_is_zoned(disk->queue))
725 		return 0;
726 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
727 }
728 
bdev_max_open_zones(struct block_device * bdev)729 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
730 {
731 	return bdev->bd_disk->queue->limits.max_open_zones;
732 }
733 
bdev_max_active_zones(struct block_device * bdev)734 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
735 {
736 	return bdev->bd_disk->queue->limits.max_active_zones;
737 }
738 
blk_queue_depth(struct request_queue * q)739 static inline unsigned int blk_queue_depth(struct request_queue *q)
740 {
741 	if (q->queue_depth)
742 		return q->queue_depth;
743 
744 	return q->nr_requests;
745 }
746 
747 /*
748  * default timeout for SG_IO if none specified
749  */
750 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
751 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
752 
753 /* This should not be used directly - use rq_for_each_segment */
754 #define for_each_bio(_bio)		\
755 	for (; _bio; _bio = _bio->bi_next)
756 
757 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk,
758 				 const struct attribute_group **groups,
759 				 struct fwnode_handle *fwnode);
760 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
761 				 const struct attribute_group **groups);
add_disk(struct gendisk * disk)762 static inline int __must_check add_disk(struct gendisk *disk)
763 {
764 	return device_add_disk(NULL, disk, NULL);
765 }
766 void del_gendisk(struct gendisk *gp);
767 void invalidate_disk(struct gendisk *disk);
768 void set_disk_ro(struct gendisk *disk, bool read_only);
769 void disk_uevent(struct gendisk *disk, enum kobject_action action);
770 
bdev_partno(const struct block_device * bdev)771 static inline u8 bdev_partno(const struct block_device *bdev)
772 {
773 	return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
774 }
775 
bdev_test_flag(const struct block_device * bdev,unsigned flag)776 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
777 {
778 	return atomic_read(&bdev->__bd_flags) & flag;
779 }
780 
bdev_set_flag(struct block_device * bdev,unsigned flag)781 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
782 {
783 	atomic_or(flag, &bdev->__bd_flags);
784 }
785 
bdev_clear_flag(struct block_device * bdev,unsigned flag)786 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
787 {
788 	atomic_andnot(flag, &bdev->__bd_flags);
789 }
790 
get_disk_ro(struct gendisk * disk)791 static inline bool get_disk_ro(struct gendisk *disk)
792 {
793 	return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
794 		test_bit(GD_READ_ONLY, &disk->state);
795 }
796 
bdev_read_only(struct block_device * bdev)797 static inline bool bdev_read_only(struct block_device *bdev)
798 {
799 	return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
800 }
801 
802 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
803 void disk_force_media_change(struct gendisk *disk);
804 void bdev_mark_dead(struct block_device *bdev, bool surprise);
805 
806 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
807 void rand_initialize_disk(struct gendisk *disk);
808 
get_start_sect(struct block_device * bdev)809 static inline sector_t get_start_sect(struct block_device *bdev)
810 {
811 	return bdev->bd_start_sect;
812 }
813 
bdev_nr_sectors(struct block_device * bdev)814 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
815 {
816 	return bdev->bd_nr_sectors;
817 }
818 
bdev_nr_bytes(struct block_device * bdev)819 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
820 {
821 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
822 }
823 
get_capacity(struct gendisk * disk)824 static inline sector_t get_capacity(struct gendisk *disk)
825 {
826 	return bdev_nr_sectors(disk->part0);
827 }
828 
sb_bdev_nr_blocks(struct super_block * sb)829 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
830 {
831 	return bdev_nr_sectors(sb->s_bdev) >>
832 		(sb->s_blocksize_bits - SECTOR_SHIFT);
833 }
834 
835 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)836 static inline unsigned int disk_nr_zones(struct gendisk *disk)
837 {
838 	return disk->nr_zones;
839 }
840 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
841 
842 /**
843  * disk_zone_capacity - returns the zone capacity of zone containing @sector
844  * @disk:	disk to work with
845  * @sector:	sector number within the querying zone
846  *
847  * Returns the zone capacity of a zone containing @sector. @sector can be any
848  * sector in the zone.
849  */
disk_zone_capacity(struct gendisk * disk,sector_t sector)850 static inline unsigned int disk_zone_capacity(struct gendisk *disk,
851 					      sector_t sector)
852 {
853 	sector_t zone_sectors = disk->queue->limits.chunk_sectors;
854 
855 	if (sector + zone_sectors >= get_capacity(disk))
856 		return disk->last_zone_capacity;
857 	return disk->zone_capacity;
858 }
bdev_zone_capacity(struct block_device * bdev,sector_t pos)859 static inline unsigned int bdev_zone_capacity(struct block_device *bdev,
860 					      sector_t pos)
861 {
862 	return disk_zone_capacity(bdev->bd_disk, pos);
863 }
864 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)865 static inline unsigned int disk_nr_zones(struct gendisk *disk)
866 {
867 	return 0;
868 }
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)869 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
870 {
871 	return false;
872 }
873 #endif /* CONFIG_BLK_DEV_ZONED */
874 
bdev_nr_zones(struct block_device * bdev)875 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
876 {
877 	return disk_nr_zones(bdev->bd_disk);
878 }
879 
880 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
881 
882 void put_disk(struct gendisk *disk);
883 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
884 		struct lock_class_key *lkclass);
885 
886 /**
887  * blk_alloc_disk - allocate a gendisk structure
888  * @lim: queue limits to be used for this disk.
889  * @node_id: numa node to allocate on
890  *
891  * Allocate and pre-initialize a gendisk structure for use with BIO based
892  * drivers.
893  *
894  * Returns an ERR_PTR on error, else the allocated disk.
895  *
896  * Context: can sleep
897  */
898 #define blk_alloc_disk(lim, node_id)					\
899 ({									\
900 	static struct lock_class_key __key;				\
901 									\
902 	__blk_alloc_disk(lim, node_id, &__key);				\
903 })
904 
905 int __register_blkdev(unsigned int major, const char *name,
906 		void (*probe)(dev_t devt));
907 #define register_blkdev(major, name) \
908 	__register_blkdev(major, name, NULL)
909 void unregister_blkdev(unsigned int major, const char *name);
910 
911 bool disk_check_media_change(struct gendisk *disk);
912 void set_capacity(struct gendisk *disk, sector_t size);
913 
914 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
915 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
916 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
917 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)918 static inline int bd_link_disk_holder(struct block_device *bdev,
919 				      struct gendisk *disk)
920 {
921 	return 0;
922 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)923 static inline void bd_unlink_disk_holder(struct block_device *bdev,
924 					 struct gendisk *disk)
925 {
926 }
927 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
928 
929 dev_t part_devt(struct gendisk *disk, u8 partno);
930 void inc_diskseq(struct gendisk *disk);
931 void blk_request_module(dev_t devt);
932 
933 extern int blk_register_queue(struct gendisk *disk);
934 extern void blk_unregister_queue(struct gendisk *disk);
935 void submit_bio_noacct(struct bio *bio);
936 struct bio *bio_split_to_limits(struct bio *bio);
937 
938 extern int blk_lld_busy(struct request_queue *q);
939 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
940 extern void blk_queue_exit(struct request_queue *q);
941 extern void blk_sync_queue(struct request_queue *q);
942 
943 /* Helper to convert REQ_OP_XXX to its string format XXX */
944 extern const char *blk_op_str(enum req_op op);
945 
946 int blk_status_to_errno(blk_status_t status);
947 blk_status_t errno_to_blk_status(int errno);
948 const char *blk_status_to_str(blk_status_t status);
949 
950 /* only poll the hardware once, don't continue until a completion was found */
951 #define BLK_POLL_ONESHOT		(1 << 0)
952 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
953 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
954 			unsigned int flags);
955 
bdev_get_queue(struct block_device * bdev)956 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
957 {
958 	return bdev->bd_queue;	/* this is never NULL */
959 }
960 
961 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
962 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
963 
bio_zone_no(struct bio * bio)964 static inline unsigned int bio_zone_no(struct bio *bio)
965 {
966 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
967 }
968 
bio_straddles_zones(struct bio * bio)969 static inline bool bio_straddles_zones(struct bio *bio)
970 {
971 	return bio_sectors(bio) &&
972 		bio_zone_no(bio) !=
973 		disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
974 }
975 
976 /*
977  * Return how much within the boundary is left to be used for I/O at a given
978  * offset.
979  */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)980 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
981 		unsigned int boundary_sectors)
982 {
983 	if (unlikely(!is_power_of_2(boundary_sectors)))
984 		return boundary_sectors - sector_div(offset, boundary_sectors);
985 	return boundary_sectors - (offset & (boundary_sectors - 1));
986 }
987 
988 /**
989  * queue_limits_start_update - start an atomic update of queue limits
990  * @q:		queue to update
991  *
992  * This functions starts an atomic update of the queue limits.  It takes a lock
993  * to prevent other updates and returns a snapshot of the current limits that
994  * the caller can modify.  The caller must call queue_limits_commit_update()
995  * to finish the update.
996  *
997  * Context: process context.
998  */
999 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)1000 queue_limits_start_update(struct request_queue *q)
1001 {
1002 	mutex_lock(&q->limits_lock);
1003 	return q->limits;
1004 }
1005 int queue_limits_commit_update_frozen(struct request_queue *q,
1006 		struct queue_limits *lim);
1007 int queue_limits_commit_update(struct request_queue *q,
1008 		struct queue_limits *lim);
1009 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
1010 int blk_validate_limits(struct queue_limits *lim);
1011 
1012 /**
1013  * queue_limits_cancel_update - cancel an atomic update of queue limits
1014  * @q:		queue to update
1015  *
1016  * This functions cancels an atomic update of the queue limits started by
1017  * queue_limits_start_update() and should be used when an error occurs after
1018  * starting update.
1019  */
queue_limits_cancel_update(struct request_queue * q)1020 static inline void queue_limits_cancel_update(struct request_queue *q)
1021 {
1022 	mutex_unlock(&q->limits_lock);
1023 }
1024 
1025 /*
1026  * These helpers are for drivers that have sloppy feature negotiation and might
1027  * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
1028  * completion handler when the device returned an indicator that the respective
1029  * feature is not actually supported.  They are racy and the driver needs to
1030  * cope with that.  Try to avoid this scheme if you can.
1031  */
blk_queue_disable_discard(struct request_queue * q)1032 static inline void blk_queue_disable_discard(struct request_queue *q)
1033 {
1034 	q->limits.max_discard_sectors = 0;
1035 }
1036 
blk_queue_disable_secure_erase(struct request_queue * q)1037 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
1038 {
1039 	q->limits.max_secure_erase_sectors = 0;
1040 }
1041 
blk_queue_disable_write_zeroes(struct request_queue * q)1042 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
1043 {
1044 	q->limits.max_write_zeroes_sectors = 0;
1045 }
1046 
1047 /*
1048  * Access functions for manipulating queue properties
1049  */
1050 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1051 extern void blk_set_stacking_limits(struct queue_limits *lim);
1052 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1053 			    sector_t offset);
1054 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1055 		sector_t offset, const char *pfx);
1056 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1057 
1058 struct blk_independent_access_ranges *
1059 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1060 void disk_set_independent_access_ranges(struct gendisk *disk,
1061 				struct blk_independent_access_ranges *iars);
1062 
1063 bool __must_check blk_get_queue(struct request_queue *);
1064 extern void blk_put_queue(struct request_queue *);
1065 
1066 void blk_mark_disk_dead(struct gendisk *disk);
1067 
1068 struct rq_list {
1069 	struct request *head;
1070 	struct request *tail;
1071 };
1072 
1073 #ifdef CONFIG_BLOCK
1074 /*
1075  * blk_plug permits building a queue of related requests by holding the I/O
1076  * fragments for a short period. This allows merging of sequential requests
1077  * into single larger request. As the requests are moved from a per-task list to
1078  * the device's request_queue in a batch, this results in improved scalability
1079  * as the lock contention for request_queue lock is reduced.
1080  *
1081  * It is ok not to disable preemption when adding the request to the plug list
1082  * or when attempting a merge. For details, please see schedule() where
1083  * blk_flush_plug() is called.
1084  */
1085 struct blk_plug {
1086 	struct rq_list mq_list; /* blk-mq requests */
1087 
1088 	/* if ios_left is > 1, we can batch tag/rq allocations */
1089 	struct rq_list cached_rqs;
1090 	u64 cur_ktime;
1091 	unsigned short nr_ios;
1092 
1093 	unsigned short rq_count;
1094 
1095 	bool multiple_queues;
1096 	bool has_elevator;
1097 
1098 	struct list_head cb_list; /* md requires an unplug callback */
1099 };
1100 
1101 struct blk_plug_cb;
1102 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1103 struct blk_plug_cb {
1104 	struct list_head list;
1105 	blk_plug_cb_fn callback;
1106 	void *data;
1107 };
1108 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1109 					     void *data, int size);
1110 extern void blk_start_plug(struct blk_plug *);
1111 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1112 extern void blk_finish_plug(struct blk_plug *);
1113 
1114 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1115 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1116 {
1117 	if (plug)
1118 		__blk_flush_plug(plug, async);
1119 }
1120 
1121 /*
1122  * tsk == current here
1123  */
blk_plug_invalidate_ts(struct task_struct * tsk)1124 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1125 {
1126 	struct blk_plug *plug = tsk->plug;
1127 
1128 	if (plug)
1129 		plug->cur_ktime = 0;
1130 	current->flags &= ~PF_BLOCK_TS;
1131 }
1132 
1133 int blkdev_issue_flush(struct block_device *bdev);
1134 long nr_blockdev_pages(void);
1135 #else /* CONFIG_BLOCK */
1136 struct blk_plug {
1137 };
1138 
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1139 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1140 					 unsigned short nr_ios)
1141 {
1142 }
1143 
blk_start_plug(struct blk_plug * plug)1144 static inline void blk_start_plug(struct blk_plug *plug)
1145 {
1146 }
1147 
blk_finish_plug(struct blk_plug * plug)1148 static inline void blk_finish_plug(struct blk_plug *plug)
1149 {
1150 }
1151 
blk_flush_plug(struct blk_plug * plug,bool async)1152 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1153 {
1154 }
1155 
blk_plug_invalidate_ts(struct task_struct * tsk)1156 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1157 {
1158 }
1159 
blkdev_issue_flush(struct block_device * bdev)1160 static inline int blkdev_issue_flush(struct block_device *bdev)
1161 {
1162 	return 0;
1163 }
1164 
nr_blockdev_pages(void)1165 static inline long nr_blockdev_pages(void)
1166 {
1167 	return 0;
1168 }
1169 #endif /* CONFIG_BLOCK */
1170 
1171 extern void blk_io_schedule(void);
1172 
1173 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1174 		sector_t nr_sects, gfp_t gfp_mask);
1175 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1176 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1177 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1178 		sector_t nr_sects, gfp_t gfp);
1179 
1180 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1181 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1182 #define BLKDEV_ZERO_KILLABLE	(1 << 2)  /* interruptible by fatal signals */
1183 
1184 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1185 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1186 		unsigned flags);
1187 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1188 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1189 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1190 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1191 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1192 {
1193 	return blkdev_issue_discard(sb->s_bdev,
1194 				    block << (sb->s_blocksize_bits -
1195 					      SECTOR_SHIFT),
1196 				    nr_blocks << (sb->s_blocksize_bits -
1197 						  SECTOR_SHIFT),
1198 				    gfp_mask);
1199 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1200 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1201 		sector_t nr_blocks, gfp_t gfp_mask)
1202 {
1203 	return blkdev_issue_zeroout(sb->s_bdev,
1204 				    block << (sb->s_blocksize_bits -
1205 					      SECTOR_SHIFT),
1206 				    nr_blocks << (sb->s_blocksize_bits -
1207 						  SECTOR_SHIFT),
1208 				    gfp_mask, 0);
1209 }
1210 
bdev_is_partition(struct block_device * bdev)1211 static inline bool bdev_is_partition(struct block_device *bdev)
1212 {
1213 	return bdev_partno(bdev) != 0;
1214 }
1215 
1216 enum blk_default_limits {
1217 	BLK_MAX_SEGMENTS	= 128,
1218 	BLK_SAFE_MAX_SECTORS	= 255,
1219 	BLK_MAX_SEGMENT_SIZE	= 65536,
1220 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1221 };
1222 
1223 /*
1224  * Default upper limit for the software max_sectors limit used for
1225  * regular file system I/O.  This can be increased through sysfs.
1226  *
1227  * Not to be confused with the max_hw_sector limit that is entirely
1228  * controlled by the driver, usually based on hardware limits.
1229  */
1230 #define BLK_DEF_MAX_SECTORS_CAP	2560u
1231 
bdev_limits(struct block_device * bdev)1232 static inline struct queue_limits *bdev_limits(struct block_device *bdev)
1233 {
1234 	return &bdev_get_queue(bdev)->limits;
1235 }
1236 
queue_segment_boundary(const struct request_queue * q)1237 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1238 {
1239 	return q->limits.seg_boundary_mask;
1240 }
1241 
queue_virt_boundary(const struct request_queue * q)1242 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1243 {
1244 	return q->limits.virt_boundary_mask;
1245 }
1246 
queue_max_sectors(const struct request_queue * q)1247 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1248 {
1249 	return q->limits.max_sectors;
1250 }
1251 
queue_max_bytes(struct request_queue * q)1252 static inline unsigned int queue_max_bytes(struct request_queue *q)
1253 {
1254 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1255 }
1256 
queue_max_hw_sectors(const struct request_queue * q)1257 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1258 {
1259 	return q->limits.max_hw_sectors;
1260 }
1261 
queue_max_segments(const struct request_queue * q)1262 static inline unsigned short queue_max_segments(const struct request_queue *q)
1263 {
1264 	return q->limits.max_segments;
1265 }
1266 
queue_max_discard_segments(const struct request_queue * q)1267 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1268 {
1269 	return q->limits.max_discard_segments;
1270 }
1271 
queue_max_segment_size(const struct request_queue * q)1272 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1273 {
1274 	return q->limits.max_segment_size;
1275 }
1276 
queue_emulates_zone_append(struct request_queue * q)1277 static inline bool queue_emulates_zone_append(struct request_queue *q)
1278 {
1279 	return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors;
1280 }
1281 
bdev_emulates_zone_append(struct block_device * bdev)1282 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1283 {
1284 	return queue_emulates_zone_append(bdev_get_queue(bdev));
1285 }
1286 
1287 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1288 bdev_max_zone_append_sectors(struct block_device *bdev)
1289 {
1290 	return bdev_limits(bdev)->max_zone_append_sectors;
1291 }
1292 
bdev_max_segments(struct block_device * bdev)1293 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1294 {
1295 	return queue_max_segments(bdev_get_queue(bdev));
1296 }
1297 
bdev_max_write_streams(struct block_device * bdev)1298 static inline unsigned short bdev_max_write_streams(struct block_device *bdev)
1299 {
1300 	if (bdev_is_partition(bdev))
1301 		return 0;
1302 	return bdev_limits(bdev)->max_write_streams;
1303 }
1304 
queue_logical_block_size(const struct request_queue * q)1305 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1306 {
1307 	return q->limits.logical_block_size;
1308 }
1309 
bdev_logical_block_size(struct block_device * bdev)1310 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1311 {
1312 	return queue_logical_block_size(bdev_get_queue(bdev));
1313 }
1314 
queue_physical_block_size(const struct request_queue * q)1315 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1316 {
1317 	return q->limits.physical_block_size;
1318 }
1319 
bdev_physical_block_size(struct block_device * bdev)1320 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1321 {
1322 	return queue_physical_block_size(bdev_get_queue(bdev));
1323 }
1324 
queue_io_min(const struct request_queue * q)1325 static inline unsigned int queue_io_min(const struct request_queue *q)
1326 {
1327 	return q->limits.io_min;
1328 }
1329 
bdev_io_min(struct block_device * bdev)1330 static inline unsigned int bdev_io_min(struct block_device *bdev)
1331 {
1332 	return queue_io_min(bdev_get_queue(bdev));
1333 }
1334 
queue_io_opt(const struct request_queue * q)1335 static inline unsigned int queue_io_opt(const struct request_queue *q)
1336 {
1337 	return q->limits.io_opt;
1338 }
1339 
bdev_io_opt(struct block_device * bdev)1340 static inline unsigned int bdev_io_opt(struct block_device *bdev)
1341 {
1342 	return queue_io_opt(bdev_get_queue(bdev));
1343 }
1344 
1345 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1346 queue_zone_write_granularity(const struct request_queue *q)
1347 {
1348 	return q->limits.zone_write_granularity;
1349 }
1350 
1351 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1352 bdev_zone_write_granularity(struct block_device *bdev)
1353 {
1354 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1355 }
1356 
1357 int bdev_alignment_offset(struct block_device *bdev);
1358 unsigned int bdev_discard_alignment(struct block_device *bdev);
1359 
bdev_max_discard_sectors(struct block_device * bdev)1360 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1361 {
1362 	return bdev_limits(bdev)->max_discard_sectors;
1363 }
1364 
bdev_discard_granularity(struct block_device * bdev)1365 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1366 {
1367 	return bdev_limits(bdev)->discard_granularity;
1368 }
1369 
1370 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1371 bdev_max_secure_erase_sectors(struct block_device *bdev)
1372 {
1373 	return bdev_limits(bdev)->max_secure_erase_sectors;
1374 }
1375 
bdev_write_zeroes_sectors(struct block_device * bdev)1376 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1377 {
1378 	return bdev_limits(bdev)->max_write_zeroes_sectors;
1379 }
1380 
bdev_nonrot(struct block_device * bdev)1381 static inline bool bdev_nonrot(struct block_device *bdev)
1382 {
1383 	return blk_queue_nonrot(bdev_get_queue(bdev));
1384 }
1385 
bdev_synchronous(struct block_device * bdev)1386 static inline bool bdev_synchronous(struct block_device *bdev)
1387 {
1388 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1389 }
1390 
bdev_stable_writes(struct block_device * bdev)1391 static inline bool bdev_stable_writes(struct block_device *bdev)
1392 {
1393 	struct request_queue *q = bdev_get_queue(bdev);
1394 
1395 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1396 	    q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1397 		return true;
1398 	return q->limits.features & BLK_FEAT_STABLE_WRITES;
1399 }
1400 
blk_queue_write_cache(struct request_queue * q)1401 static inline bool blk_queue_write_cache(struct request_queue *q)
1402 {
1403 	return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1404 		!(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1405 }
1406 
bdev_write_cache(struct block_device * bdev)1407 static inline bool bdev_write_cache(struct block_device *bdev)
1408 {
1409 	return blk_queue_write_cache(bdev_get_queue(bdev));
1410 }
1411 
bdev_fua(struct block_device * bdev)1412 static inline bool bdev_fua(struct block_device *bdev)
1413 {
1414 	return bdev_limits(bdev)->features & BLK_FEAT_FUA;
1415 }
1416 
bdev_nowait(struct block_device * bdev)1417 static inline bool bdev_nowait(struct block_device *bdev)
1418 {
1419 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1420 }
1421 
bdev_is_zoned(struct block_device * bdev)1422 static inline bool bdev_is_zoned(struct block_device *bdev)
1423 {
1424 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1425 }
1426 
bdev_zone_no(struct block_device * bdev,sector_t sec)1427 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1428 {
1429 	return disk_zone_no(bdev->bd_disk, sec);
1430 }
1431 
bdev_zone_sectors(struct block_device * bdev)1432 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1433 {
1434 	struct request_queue *q = bdev_get_queue(bdev);
1435 
1436 	if (!blk_queue_is_zoned(q))
1437 		return 0;
1438 	return q->limits.chunk_sectors;
1439 }
1440 
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1441 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1442 						   sector_t sector)
1443 {
1444 	return sector & (bdev_zone_sectors(bdev) - 1);
1445 }
1446 
bio_offset_from_zone_start(struct bio * bio)1447 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1448 {
1449 	return bdev_offset_from_zone_start(bio->bi_bdev,
1450 					   bio->bi_iter.bi_sector);
1451 }
1452 
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1453 static inline bool bdev_is_zone_start(struct block_device *bdev,
1454 				      sector_t sector)
1455 {
1456 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1457 }
1458 
1459 /* Check whether @sector is a multiple of the zone size. */
bdev_is_zone_aligned(struct block_device * bdev,sector_t sector)1460 static inline bool bdev_is_zone_aligned(struct block_device *bdev,
1461 					sector_t sector)
1462 {
1463 	return bdev_is_zone_start(bdev, sector);
1464 }
1465 
1466 /**
1467  * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1468  * @bdev:	block device to check
1469  * @sector:	sector number
1470  *
1471  * Check if @sector on @bdev is contained in a sequential write required zone.
1472  */
bdev_zone_is_seq(struct block_device * bdev,sector_t sector)1473 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1474 {
1475 	bool is_seq = false;
1476 
1477 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1478 	if (bdev_is_zoned(bdev)) {
1479 		struct gendisk *disk = bdev->bd_disk;
1480 		unsigned long *bitmap;
1481 
1482 		rcu_read_lock();
1483 		bitmap = rcu_dereference(disk->conv_zones_bitmap);
1484 		is_seq = !bitmap ||
1485 			!test_bit(disk_zone_no(disk, sector), bitmap);
1486 		rcu_read_unlock();
1487 	}
1488 #endif
1489 
1490 	return is_seq;
1491 }
1492 
1493 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1494 			   sector_t nr_sects, gfp_t gfp_mask);
1495 
queue_dma_alignment(const struct request_queue * q)1496 static inline unsigned int queue_dma_alignment(const struct request_queue *q)
1497 {
1498 	return q->limits.dma_alignment;
1499 }
1500 
1501 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1502 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1503 {
1504 	return q->limits.atomic_write_unit_max;
1505 }
1506 
1507 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1508 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1509 {
1510 	return q->limits.atomic_write_unit_min;
1511 }
1512 
1513 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1514 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1515 {
1516 	return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1517 }
1518 
1519 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1520 queue_atomic_write_max_bytes(const struct request_queue *q)
1521 {
1522 	return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1523 }
1524 
bdev_dma_alignment(struct block_device * bdev)1525 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1526 {
1527 	return queue_dma_alignment(bdev_get_queue(bdev));
1528 }
1529 
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1530 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1531 					struct iov_iter *iter)
1532 {
1533 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1534 				   bdev_logical_block_size(bdev) - 1);
1535 }
1536 
1537 static inline unsigned int
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1538 blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1539 {
1540 	return lim->dma_alignment | lim->dma_pad_mask;
1541 }
1542 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1543 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr,
1544 				 unsigned int len)
1545 {
1546 	unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1547 
1548 	return !(addr & alignment) && !(len & alignment);
1549 }
1550 
1551 /* assumes size > 256 */
blksize_bits(unsigned int size)1552 static inline unsigned int blksize_bits(unsigned int size)
1553 {
1554 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1555 }
1556 
1557 int kblockd_schedule_work(struct work_struct *work);
1558 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1559 
1560 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1561 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1562 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1563 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1564 
1565 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1566 
1567 bool blk_crypto_register(struct blk_crypto_profile *profile,
1568 			 struct request_queue *q);
1569 
1570 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1571 
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1572 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1573 				       struct request_queue *q)
1574 {
1575 	return true;
1576 }
1577 
1578 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1579 
1580 enum blk_unique_id {
1581 	/* these match the Designator Types specified in SPC */
1582 	BLK_UID_T10	= 1,
1583 	BLK_UID_EUI64	= 2,
1584 	BLK_UID_NAA	= 3,
1585 };
1586 
1587 struct block_device_operations {
1588 	void (*submit_bio)(struct bio *bio);
1589 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1590 			unsigned int flags);
1591 	int (*open)(struct gendisk *disk, blk_mode_t mode);
1592 	void (*release)(struct gendisk *disk);
1593 	int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1594 			unsigned cmd, unsigned long arg);
1595 	int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1596 			unsigned cmd, unsigned long arg);
1597 	unsigned int (*check_events) (struct gendisk *disk,
1598 				      unsigned int clearing);
1599 	void (*unlock_native_capacity) (struct gendisk *);
1600 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1601 	int (*set_read_only)(struct block_device *bdev, bool ro);
1602 	void (*free_disk)(struct gendisk *disk);
1603 	/* this callback is with swap_lock and sometimes page table lock held */
1604 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1605 	int (*report_zones)(struct gendisk *, sector_t sector,
1606 			unsigned int nr_zones, report_zones_cb cb, void *data);
1607 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1608 	/* returns the length of the identifier or a negative errno: */
1609 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1610 			enum blk_unique_id id_type);
1611 	struct module *owner;
1612 	const struct pr_ops *pr_ops;
1613 
1614 	/*
1615 	 * Special callback for probing GPT entry at a given sector.
1616 	 * Needed by Android devices, used by GPT scanner and MMC blk
1617 	 * driver.
1618 	 */
1619 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1620 };
1621 
1622 #ifdef CONFIG_COMPAT
1623 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1624 				      unsigned int, unsigned long);
1625 #else
1626 #define blkdev_compat_ptr_ioctl NULL
1627 #endif
1628 
blk_wake_io_task(struct task_struct * waiter)1629 static inline void blk_wake_io_task(struct task_struct *waiter)
1630 {
1631 	/*
1632 	 * If we're polling, the task itself is doing the completions. For
1633 	 * that case, we don't need to signal a wakeup, it's enough to just
1634 	 * mark us as RUNNING.
1635 	 */
1636 	if (waiter == current)
1637 		__set_current_state(TASK_RUNNING);
1638 	else
1639 		wake_up_process(waiter);
1640 }
1641 
1642 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1643 				 unsigned long start_time);
1644 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1645 		      unsigned int sectors, unsigned long start_time);
1646 
1647 unsigned long bio_start_io_acct(struct bio *bio);
1648 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1649 		struct block_device *orig_bdev);
1650 
1651 /**
1652  * bio_end_io_acct - end I/O accounting for bio based drivers
1653  * @bio:	bio to end account for
1654  * @start_time:	start time returned by bio_start_io_acct()
1655  */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1656 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1657 {
1658 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1659 }
1660 
1661 int bdev_validate_blocksize(struct block_device *bdev, int block_size);
1662 int set_blocksize(struct file *file, int size);
1663 
1664 int lookup_bdev(const char *pathname, dev_t *dev);
1665 
1666 void blkdev_show(struct seq_file *seqf, off_t offset);
1667 
1668 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1669 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1670 #ifdef CONFIG_BLOCK
1671 #define BLKDEV_MAJOR_MAX	512
1672 #else
1673 #define BLKDEV_MAJOR_MAX	0
1674 #endif
1675 
1676 struct blk_holder_ops {
1677 	void (*mark_dead)(struct block_device *bdev, bool surprise);
1678 
1679 	/*
1680 	 * Sync the file system mounted on the block device.
1681 	 */
1682 	void (*sync)(struct block_device *bdev);
1683 
1684 	/*
1685 	 * Freeze the file system mounted on the block device.
1686 	 */
1687 	int (*freeze)(struct block_device *bdev);
1688 
1689 	/*
1690 	 * Thaw the file system mounted on the block device.
1691 	 */
1692 	int (*thaw)(struct block_device *bdev);
1693 };
1694 
1695 /*
1696  * For filesystems using @fs_holder_ops, the @holder argument passed to
1697  * helpers used to open and claim block devices via
1698  * bd_prepare_to_claim() must point to a superblock.
1699  */
1700 extern const struct blk_holder_ops fs_holder_ops;
1701 
1702 /*
1703  * Return the correct open flags for blkdev_get_by_* for super block flags
1704  * as stored in sb->s_flags.
1705  */
1706 #define sb_open_mode(flags) \
1707 	(BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1708 	 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1709 
1710 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1711 		const struct blk_holder_ops *hops);
1712 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1713 		void *holder, const struct blk_holder_ops *hops);
1714 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1715 		const struct blk_holder_ops *hops);
1716 void bd_abort_claiming(struct block_device *bdev, void *holder);
1717 
1718 struct block_device *I_BDEV(struct inode *inode);
1719 struct block_device *file_bdev(struct file *bdev_file);
1720 bool disk_live(struct gendisk *disk);
1721 unsigned int block_size(struct block_device *bdev);
1722 
1723 #ifdef CONFIG_BLOCK
1724 void invalidate_bdev(struct block_device *bdev);
1725 int sync_blockdev(struct block_device *bdev);
1726 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1727 int sync_blockdev_nowait(struct block_device *bdev);
1728 void sync_bdevs(bool wait);
1729 void bdev_statx(const struct path *path, struct kstat *stat, u32 request_mask);
1730 void printk_all_partitions(void);
1731 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1732 #else
invalidate_bdev(struct block_device * bdev)1733 static inline void invalidate_bdev(struct block_device *bdev)
1734 {
1735 }
sync_blockdev(struct block_device * bdev)1736 static inline int sync_blockdev(struct block_device *bdev)
1737 {
1738 	return 0;
1739 }
sync_blockdev_nowait(struct block_device * bdev)1740 static inline int sync_blockdev_nowait(struct block_device *bdev)
1741 {
1742 	return 0;
1743 }
sync_bdevs(bool wait)1744 static inline void sync_bdevs(bool wait)
1745 {
1746 }
bdev_statx(const struct path * path,struct kstat * stat,u32 request_mask)1747 static inline void bdev_statx(const struct path *path, struct kstat *stat,
1748 		u32 request_mask)
1749 {
1750 }
printk_all_partitions(void)1751 static inline void printk_all_partitions(void)
1752 {
1753 }
early_lookup_bdev(const char * pathname,dev_t * dev)1754 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1755 {
1756 	return -EINVAL;
1757 }
1758 #endif /* CONFIG_BLOCK */
1759 
1760 int bdev_freeze(struct block_device *bdev);
1761 int bdev_thaw(struct block_device *bdev);
1762 void bdev_fput(struct file *bdev_file);
1763 
1764 struct io_comp_batch {
1765 	struct rq_list req_list;
1766 	bool need_ts;
1767 	void (*complete)(struct io_comp_batch *);
1768 };
1769 
blk_atomic_write_start_sect_aligned(sector_t sector,struct queue_limits * limits)1770 static inline bool blk_atomic_write_start_sect_aligned(sector_t sector,
1771 						struct queue_limits *limits)
1772 {
1773 	unsigned int alignment = max(limits->atomic_write_hw_unit_min,
1774 				limits->atomic_write_hw_boundary);
1775 
1776 	return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT);
1777 }
1778 
bdev_can_atomic_write(struct block_device * bdev)1779 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1780 {
1781 	struct request_queue *bd_queue = bdev->bd_queue;
1782 	struct queue_limits *limits = &bd_queue->limits;
1783 
1784 	if (!limits->atomic_write_unit_min)
1785 		return false;
1786 
1787 	if (bdev_is_partition(bdev))
1788 		return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect,
1789 							limits);
1790 
1791 	return true;
1792 }
1793 
1794 static inline unsigned int
bdev_atomic_write_unit_min_bytes(struct block_device * bdev)1795 bdev_atomic_write_unit_min_bytes(struct block_device *bdev)
1796 {
1797 	if (!bdev_can_atomic_write(bdev))
1798 		return 0;
1799 	return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev));
1800 }
1801 
1802 static inline unsigned int
bdev_atomic_write_unit_max_bytes(struct block_device * bdev)1803 bdev_atomic_write_unit_max_bytes(struct block_device *bdev)
1804 {
1805 	if (!bdev_can_atomic_write(bdev))
1806 		return 0;
1807 	return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev));
1808 }
1809 
1810 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1811 
1812 #endif /* _LINUX_BLKDEV_H */
1813