xref: /linux/drivers/i2c/busses/i2c-bcm-iproc.c (revision b67ec639010f7d2ce2b467cef36f3e5e785d8d50)
1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (C) 2014 Broadcom Corporation
3 
4 #include <linux/delay.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/io.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/platform_device.h>
12 #include <linux/slab.h>
13 
14 #define IDM_CTRL_DIRECT_OFFSET       0x00
15 #define CFG_OFFSET                   0x00
16 #define CFG_RESET_SHIFT              31
17 #define CFG_EN_SHIFT                 30
18 #define CFG_SLAVE_ADDR_0_SHIFT       28
19 #define CFG_M_RETRY_CNT_SHIFT        16
20 #define CFG_M_RETRY_CNT_MASK         0x0f
21 
22 #define TIM_CFG_OFFSET               0x04
23 #define TIM_CFG_MODE_400_SHIFT       31
24 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
25 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
26 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
27 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
28 
29 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
30 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
31 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
32 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
33 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
34 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
35 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
36 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
37 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
38 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
39 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
40 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
41 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
42 
43 #define M_FIFO_CTRL_OFFSET           0x0c
44 #define M_FIFO_RX_FLUSH_SHIFT        31
45 #define M_FIFO_TX_FLUSH_SHIFT        30
46 #define M_FIFO_RX_CNT_SHIFT          16
47 #define M_FIFO_RX_CNT_MASK           0x7f
48 #define M_FIFO_RX_THLD_SHIFT         8
49 #define M_FIFO_RX_THLD_MASK          0x3f
50 
51 #define S_FIFO_CTRL_OFFSET           0x10
52 #define S_FIFO_RX_FLUSH_SHIFT        31
53 #define S_FIFO_TX_FLUSH_SHIFT        30
54 #define S_FIFO_RX_CNT_SHIFT          16
55 #define S_FIFO_RX_CNT_MASK           0x7f
56 #define S_FIFO_RX_THLD_SHIFT         8
57 #define S_FIFO_RX_THLD_MASK          0x3f
58 
59 #define M_CMD_OFFSET                 0x30
60 #define M_CMD_START_BUSY_SHIFT       31
61 #define M_CMD_STATUS_SHIFT           25
62 #define M_CMD_STATUS_MASK            0x07
63 #define M_CMD_STATUS_SUCCESS         0x0
64 #define M_CMD_STATUS_LOST_ARB        0x1
65 #define M_CMD_STATUS_NACK_ADDR       0x2
66 #define M_CMD_STATUS_NACK_DATA       0x3
67 #define M_CMD_STATUS_TIMEOUT         0x4
68 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
69 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
70 #define M_CMD_PROTOCOL_SHIFT         9
71 #define M_CMD_PROTOCOL_MASK          0xf
72 #define M_CMD_PROTOCOL_QUICK         0x0
73 #define M_CMD_PROTOCOL_BLK_WR        0x7
74 #define M_CMD_PROTOCOL_BLK_RD        0x8
75 #define M_CMD_PROTOCOL_PROCESS       0xa
76 #define M_CMD_PEC_SHIFT              8
77 #define M_CMD_RD_CNT_SHIFT           0
78 #define M_CMD_RD_CNT_MASK            0xff
79 
80 #define S_CMD_OFFSET                 0x34
81 #define S_CMD_START_BUSY_SHIFT       31
82 #define S_CMD_STATUS_SHIFT           23
83 #define S_CMD_STATUS_MASK            0x07
84 #define S_CMD_STATUS_SUCCESS         0x0
85 #define S_CMD_STATUS_TIMEOUT         0x5
86 #define S_CMD_STATUS_MASTER_ABORT    0x7
87 
88 #define IE_OFFSET                    0x38
89 #define IE_M_RX_FIFO_FULL_SHIFT      31
90 #define IE_M_RX_THLD_SHIFT           30
91 #define IE_M_START_BUSY_SHIFT        28
92 #define IE_M_TX_UNDERRUN_SHIFT       27
93 #define IE_S_RX_FIFO_FULL_SHIFT      26
94 #define IE_S_RX_THLD_SHIFT           25
95 #define IE_S_RX_EVENT_SHIFT          24
96 #define IE_S_START_BUSY_SHIFT        23
97 #define IE_S_TX_UNDERRUN_SHIFT       22
98 #define IE_S_RD_EVENT_SHIFT          21
99 
100 #define IS_OFFSET                    0x3c
101 #define IS_M_RX_FIFO_FULL_SHIFT      31
102 #define IS_M_RX_THLD_SHIFT           30
103 #define IS_M_START_BUSY_SHIFT        28
104 #define IS_M_TX_UNDERRUN_SHIFT       27
105 #define IS_S_RX_FIFO_FULL_SHIFT      26
106 #define IS_S_RX_THLD_SHIFT           25
107 #define IS_S_RX_EVENT_SHIFT          24
108 #define IS_S_START_BUSY_SHIFT        23
109 #define IS_S_TX_UNDERRUN_SHIFT       22
110 #define IS_S_RD_EVENT_SHIFT          21
111 
112 #define M_TX_OFFSET                  0x40
113 #define M_TX_WR_STATUS_SHIFT         31
114 #define M_TX_DATA_SHIFT              0
115 #define M_TX_DATA_MASK               0xff
116 
117 #define M_RX_OFFSET                  0x44
118 #define M_RX_STATUS_SHIFT            30
119 #define M_RX_STATUS_MASK             0x03
120 #define M_RX_PEC_ERR_SHIFT           29
121 #define M_RX_DATA_SHIFT              0
122 #define M_RX_DATA_MASK               0xff
123 
124 #define S_TX_OFFSET                  0x48
125 #define S_TX_WR_STATUS_SHIFT         31
126 #define S_TX_DATA_SHIFT              0
127 #define S_TX_DATA_MASK               0xff
128 
129 #define S_RX_OFFSET                  0x4c
130 #define S_RX_STATUS_SHIFT            30
131 #define S_RX_STATUS_MASK             0x03
132 #define S_RX_PEC_ERR_SHIFT           29
133 #define S_RX_DATA_SHIFT              0
134 #define S_RX_DATA_MASK               0xff
135 
136 #define I2C_TIMEOUT_MSEC             50000
137 #define M_TX_RX_FIFO_SIZE            64
138 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
139 
140 #define M_RX_MAX_READ_LEN            255
141 #define M_RX_FIFO_THLD_VALUE         50
142 
143 #define IE_M_ALL_INTERRUPT_SHIFT     27
144 #define IE_M_ALL_INTERRUPT_MASK      0x1e
145 
146 #define SLAVE_READ_WRITE_BIT_MASK    0x1
147 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
148 #define SLAVE_MAX_SIZE_TRANSACTION   64
149 #define SLAVE_CLOCK_STRETCH_TIME     25
150 
151 #define IE_S_ALL_INTERRUPT_SHIFT     21
152 #define IE_S_ALL_INTERRUPT_MASK      0x3f
153 /*
154  * It takes ~18us to reading 10bytes of data, hence to keep tasklet
155  * running for less time, max slave read per tasklet is set to 10 bytes.
156  */
157 #define MAX_SLAVE_RX_PER_INT         10
158 
159 enum i2c_slave_read_status {
160 	I2C_SLAVE_RX_FIFO_EMPTY = 0,
161 	I2C_SLAVE_RX_START,
162 	I2C_SLAVE_RX_DATA,
163 	I2C_SLAVE_RX_END,
164 };
165 
166 enum bus_speed_index {
167 	I2C_SPD_100K = 0,
168 	I2C_SPD_400K,
169 };
170 
171 enum bcm_iproc_i2c_type {
172 	IPROC_I2C,
173 	IPROC_I2C_NIC
174 };
175 
176 struct bcm_iproc_i2c_dev {
177 	struct device *device;
178 	enum bcm_iproc_i2c_type type;
179 	int irq;
180 
181 	void __iomem *base;
182 	void __iomem *idm_base;
183 
184 	u32 ape_addr_mask;
185 
186 	/* lock for indirect access through IDM */
187 	spinlock_t idm_lock;
188 
189 	struct i2c_adapter adapter;
190 	unsigned int bus_speed;
191 
192 	struct completion done;
193 	int xfer_is_done;
194 
195 	struct i2c_msg *msg;
196 
197 	struct i2c_client *slave;
198 
199 	/* bytes that have been transferred */
200 	unsigned int tx_bytes;
201 	/* bytes that have been read */
202 	unsigned int rx_bytes;
203 	unsigned int thld_bytes;
204 
205 	bool slave_rx_only;
206 	bool rx_start_rcvd;
207 	bool slave_read_complete;
208 	u32 tx_underrun;
209 	u32 slave_int_mask;
210 	struct tasklet_struct slave_rx_tasklet;
211 };
212 
213 /* tasklet to process slave rx data */
214 static void slave_rx_tasklet_fn(unsigned long);
215 
216 /*
217  * Can be expanded in the future if more interrupt status bits are utilized
218  */
219 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
220 		| BIT(IS_M_RX_THLD_SHIFT))
221 
222 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
223 		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
224 		| BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
225 		| BIT(IS_S_RX_THLD_SHIFT))
226 
iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev * iproc_i2c,u32 offset)227 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
228 				   u32 offset)
229 {
230 	u32 val;
231 	unsigned long flags;
232 
233 	if (iproc_i2c->idm_base) {
234 		spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
235 		writel(iproc_i2c->ape_addr_mask,
236 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
237 		val = readl(iproc_i2c->base + offset);
238 		spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
239 	} else {
240 		val = readl(iproc_i2c->base + offset);
241 	}
242 
243 	return val;
244 }
245 
iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev * iproc_i2c,u32 offset,u32 val)246 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
247 				    u32 offset, u32 val)
248 {
249 	unsigned long flags;
250 
251 	if (iproc_i2c->idm_base) {
252 		spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
253 		writel(iproc_i2c->ape_addr_mask,
254 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
255 		writel(val, iproc_i2c->base + offset);
256 		spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
257 	} else {
258 		writel(val, iproc_i2c->base + offset);
259 	}
260 }
261 
bcm_iproc_i2c_slave_init(struct bcm_iproc_i2c_dev * iproc_i2c,bool need_reset)262 static void bcm_iproc_i2c_slave_init(struct bcm_iproc_i2c_dev *iproc_i2c,
263 				     bool need_reset)
264 {
265 	u32 val;
266 
267 	iproc_i2c->tx_underrun = 0;
268 	if (need_reset) {
269 		/* put controller in reset */
270 		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
271 		val |= BIT(CFG_RESET_SHIFT);
272 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
273 
274 		/* wait approximately 100 usec as per spec */
275 		usleep_range(100, 200);
276 
277 		/* bring controller out of reset */
278 		val &= ~(BIT(CFG_RESET_SHIFT));
279 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
280 	}
281 
282 	/* flush TX/RX FIFOs */
283 	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
284 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
285 
286 	/* Maximum slave stretch time */
287 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
288 	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
289 	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
290 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
291 
292 	/* Configure the slave address */
293 	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
294 	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
295 	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
296 	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
297 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
298 
299 	/* clear all pending slave interrupts */
300 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
301 
302 	/* Enable interrupt register to indicate a valid byte in receive fifo */
303 	val = BIT(IE_S_RX_EVENT_SHIFT);
304 	/* Enable interrupt register to indicate Slave Rx FIFO Full */
305 	val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
306 	/* Enable interrupt register to indicate a Master read transaction */
307 	val |= BIT(IE_S_RD_EVENT_SHIFT);
308 	/* Enable interrupt register for the Slave BUSY command */
309 	val |= BIT(IE_S_START_BUSY_SHIFT);
310 	iproc_i2c->slave_int_mask = val;
311 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
312 }
313 
bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev * iproc_i2c,bool enable)314 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
315 					 bool enable)
316 {
317 	u32 val;
318 
319 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
320 	if (enable)
321 		val |= BIT(CFG_EN_SHIFT);
322 	else
323 		val &= ~BIT(CFG_EN_SHIFT);
324 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
325 }
326 
bcm_iproc_i2c_check_slave_status(struct bcm_iproc_i2c_dev * iproc_i2c,u32 status)327 static bool bcm_iproc_i2c_check_slave_status
328 	(struct bcm_iproc_i2c_dev *iproc_i2c, u32 status)
329 {
330 	u32 val;
331 	bool recover = false;
332 
333 	/* check slave transmit status only if slave is transmitting */
334 	if (!iproc_i2c->slave_rx_only) {
335 		val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
336 		/* status is valid only when START_BUSY is cleared */
337 		if (!(val & BIT(S_CMD_START_BUSY_SHIFT))) {
338 			val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
339 			if (val == S_CMD_STATUS_TIMEOUT ||
340 			    val == S_CMD_STATUS_MASTER_ABORT) {
341 				dev_warn(iproc_i2c->device,
342 					 (val == S_CMD_STATUS_TIMEOUT) ?
343 					 "slave random stretch time timeout\n" :
344 					 "Master aborted read transaction\n");
345 				recover = true;
346 			}
347 		}
348 	}
349 
350 	/* RX_EVENT is not valid when START_BUSY is set */
351 	if ((status & BIT(IS_S_RX_EVENT_SHIFT)) &&
352 	    (status & BIT(IS_S_START_BUSY_SHIFT))) {
353 		dev_warn(iproc_i2c->device, "Slave aborted read transaction\n");
354 		recover = true;
355 	}
356 
357 	if (recover) {
358 		/* re-initialize i2c for recovery */
359 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
360 		bcm_iproc_i2c_slave_init(iproc_i2c, true);
361 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
362 	}
363 
364 	return recover;
365 }
366 
bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev * iproc_i2c)367 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
368 {
369 	u8 rx_data, rx_status;
370 	u32 rx_bytes = 0;
371 	u32 val;
372 
373 	while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
374 		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
375 		rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
376 		rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
377 
378 		if (rx_status == I2C_SLAVE_RX_START) {
379 			/* Start of SMBUS Master write */
380 			i2c_slave_event(iproc_i2c->slave,
381 					I2C_SLAVE_WRITE_REQUESTED, &rx_data);
382 			iproc_i2c->rx_start_rcvd = true;
383 			iproc_i2c->slave_read_complete = false;
384 		} else if (rx_status == I2C_SLAVE_RX_DATA &&
385 			   iproc_i2c->rx_start_rcvd) {
386 			/* Middle of SMBUS Master write */
387 			i2c_slave_event(iproc_i2c->slave,
388 					I2C_SLAVE_WRITE_RECEIVED, &rx_data);
389 		} else if (rx_status == I2C_SLAVE_RX_END &&
390 			   iproc_i2c->rx_start_rcvd) {
391 			/* End of SMBUS Master write */
392 			if (iproc_i2c->slave_rx_only)
393 				i2c_slave_event(iproc_i2c->slave,
394 						I2C_SLAVE_WRITE_RECEIVED,
395 						&rx_data);
396 
397 			i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
398 					&rx_data);
399 		} else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
400 			iproc_i2c->rx_start_rcvd = false;
401 			iproc_i2c->slave_read_complete = true;
402 			break;
403 		}
404 
405 		rx_bytes++;
406 	}
407 }
408 
slave_rx_tasklet_fn(unsigned long data)409 static void slave_rx_tasklet_fn(unsigned long data)
410 {
411 	struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
412 	u32 int_clr;
413 
414 	bcm_iproc_i2c_slave_read(iproc_i2c);
415 
416 	/* clear pending IS_S_RX_EVENT_SHIFT interrupt */
417 	int_clr = BIT(IS_S_RX_EVENT_SHIFT);
418 
419 	if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
420 		/*
421 		 * In case of single byte master-read request,
422 		 * IS_S_TX_UNDERRUN_SHIFT event is generated before
423 		 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
424 		 * from first IS_S_TX_UNDERRUN_SHIFT event.
425 		 *
426 		 * This means don't send any data from slave when
427 		 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
428 		 * eeprom or other backend slave driver read pointer twice.
429 		 */
430 		iproc_i2c->tx_underrun = 0;
431 		iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
432 
433 		/* clear IS_S_RD_EVENT_SHIFT interrupt */
434 		int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
435 	}
436 
437 	/* clear slave interrupt */
438 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
439 	/* enable slave interrupts */
440 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
441 }
442 
bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev * iproc_i2c,u32 status)443 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
444 				    u32 status)
445 {
446 	u32 val;
447 	u8 value;
448 
449 	if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
450 		iproc_i2c->tx_underrun++;
451 		if (iproc_i2c->tx_underrun == 1)
452 			/* Start of SMBUS for Master Read */
453 			i2c_slave_event(iproc_i2c->slave,
454 					I2C_SLAVE_READ_REQUESTED,
455 					&value);
456 		else
457 			/* Master read other than start */
458 			i2c_slave_event(iproc_i2c->slave,
459 					I2C_SLAVE_READ_PROCESSED,
460 					&value);
461 
462 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
463 		/* start transfer */
464 		val = BIT(S_CMD_START_BUSY_SHIFT);
465 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
466 
467 		/* clear interrupt */
468 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
469 				 BIT(IS_S_TX_UNDERRUN_SHIFT));
470 	}
471 
472 	/* Stop received from master in case of master read transaction */
473 	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
474 		/*
475 		 * Disable interrupt for TX FIFO becomes empty and
476 		 * less than PKT_LENGTH bytes were output on the SMBUS
477 		 */
478 		iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
479 		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
480 		val &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
481 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
482 
483 		/* End of SMBUS for Master Read */
484 		val = BIT(S_TX_WR_STATUS_SHIFT);
485 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
486 
487 		val = BIT(S_CMD_START_BUSY_SHIFT);
488 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
489 
490 		/* flush TX FIFOs */
491 		val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
492 		val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
493 		iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
494 
495 		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
496 
497 		/* clear interrupt */
498 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
499 				 BIT(IS_S_START_BUSY_SHIFT));
500 	}
501 
502 	/* if the controller has been reset, immediately return from the ISR */
503 	if (bcm_iproc_i2c_check_slave_status(iproc_i2c, status))
504 		return true;
505 
506 	/*
507 	 * Slave events in case of master-write, master-write-read and,
508 	 * master-read
509 	 *
510 	 * Master-write     : only IS_S_RX_EVENT_SHIFT event
511 	 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
512 	 *                    events
513 	 * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
514 	 *                    events or only IS_S_RD_EVENT_SHIFT
515 	 *
516 	 * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
517 	 * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
518 	 * full. This can happen if Master issues write requests of more than
519 	 * 64 bytes.
520 	 */
521 	if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
522 	    status & BIT(IS_S_RD_EVENT_SHIFT) ||
523 	    status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
524 		/* disable slave interrupts */
525 		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
526 		val &= ~iproc_i2c->slave_int_mask;
527 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
528 
529 		if (status & BIT(IS_S_RD_EVENT_SHIFT))
530 			/* Master-write-read request */
531 			iproc_i2c->slave_rx_only = false;
532 		else
533 			/* Master-write request only */
534 			iproc_i2c->slave_rx_only = true;
535 
536 		/* schedule tasklet to read data later */
537 		tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
538 
539 		/* clear IS_S_RX_FIFO_FULL_SHIFT interrupt */
540 		if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
541 			val = BIT(IS_S_RX_FIFO_FULL_SHIFT);
542 			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
543 		}
544 	}
545 
546 	return true;
547 }
548 
bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev * iproc_i2c)549 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
550 {
551 	struct i2c_msg *msg = iproc_i2c->msg;
552 	u32 val;
553 
554 	/* Read valid data from RX FIFO */
555 	while (iproc_i2c->rx_bytes < msg->len) {
556 		val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
557 
558 		/* rx fifo empty */
559 		if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
560 			break;
561 
562 		msg->buf[iproc_i2c->rx_bytes] =
563 			(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
564 		iproc_i2c->rx_bytes++;
565 	}
566 }
567 
bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev * iproc_i2c)568 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
569 {
570 	struct i2c_msg *msg = iproc_i2c->msg;
571 	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
572 	unsigned int i;
573 	u32 val;
574 
575 	/* can only fill up to the FIFO size */
576 	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
577 	for (i = 0; i < tx_bytes; i++) {
578 		/* start from where we left over */
579 		unsigned int idx = iproc_i2c->tx_bytes + i;
580 
581 		val = msg->buf[idx];
582 
583 		/* mark the last byte */
584 		if (idx == msg->len - 1) {
585 			val |= BIT(M_TX_WR_STATUS_SHIFT);
586 
587 			if (iproc_i2c->irq) {
588 				u32 tmp;
589 
590 				/*
591 				 * Since this is the last byte, we should now
592 				 * disable TX FIFO underrun interrupt
593 				 */
594 				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
595 				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
596 				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
597 						 tmp);
598 			}
599 		}
600 
601 		/* load data into TX FIFO */
602 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
603 	}
604 
605 	/* update number of transferred bytes */
606 	iproc_i2c->tx_bytes += tx_bytes;
607 }
608 
bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev * iproc_i2c)609 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
610 {
611 	struct i2c_msg *msg = iproc_i2c->msg;
612 	u32 bytes_left, val;
613 
614 	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
615 	bytes_left = msg->len - iproc_i2c->rx_bytes;
616 	if (bytes_left == 0) {
617 		if (iproc_i2c->irq) {
618 			/* finished reading all data, disable rx thld event */
619 			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
620 			val &= ~BIT(IS_M_RX_THLD_SHIFT);
621 			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
622 		}
623 	} else if (bytes_left < iproc_i2c->thld_bytes) {
624 		/* set bytes left as threshold */
625 		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
626 		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
627 		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
628 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
629 		iproc_i2c->thld_bytes = bytes_left;
630 	}
631 	/*
632 	 * bytes_left >= iproc_i2c->thld_bytes,
633 	 * hence no need to change the THRESHOLD SET.
634 	 * It will remain as iproc_i2c->thld_bytes itself
635 	 */
636 }
637 
bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev * iproc_i2c,u32 status)638 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
639 					  u32 status)
640 {
641 	/* TX FIFO is empty and we have more data to send */
642 	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
643 		bcm_iproc_i2c_send(iproc_i2c);
644 
645 	/* RX FIFO threshold is reached and data needs to be read out */
646 	if (status & BIT(IS_M_RX_THLD_SHIFT))
647 		bcm_iproc_i2c_read(iproc_i2c);
648 
649 	/* transfer is done */
650 	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
651 		iproc_i2c->xfer_is_done = 1;
652 		if (iproc_i2c->irq)
653 			complete(&iproc_i2c->done);
654 	}
655 }
656 
bcm_iproc_i2c_isr(int irq,void * data)657 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
658 {
659 	struct bcm_iproc_i2c_dev *iproc_i2c = data;
660 	u32 slave_status;
661 	u32 status;
662 	bool ret;
663 
664 	status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
665 	/* process only slave interrupt which are enabled */
666 	slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
667 		       ISR_MASK_SLAVE;
668 
669 	if (slave_status) {
670 		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
671 		if (ret)
672 			return IRQ_HANDLED;
673 		else
674 			return IRQ_NONE;
675 	}
676 
677 	status &= ISR_MASK;
678 	if (!status)
679 		return IRQ_NONE;
680 
681 	/* process all master based events */
682 	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
683 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
684 
685 	return IRQ_HANDLED;
686 }
687 
bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev * iproc_i2c)688 static void bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
689 {
690 	u32 val;
691 
692 	/* put controller in reset */
693 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
694 	val |= BIT(CFG_RESET_SHIFT);
695 	val &= ~(BIT(CFG_EN_SHIFT));
696 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
697 
698 	/* wait approximately 100 usec as per spec */
699 	usleep_range(100, 200);
700 
701 	/* bring controller out of reset */
702 	val &= ~(BIT(CFG_RESET_SHIFT));
703 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
704 
705 	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
706 	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
707 	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
708 	/* disable all interrupts */
709 	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
710 	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
711 			IE_M_ALL_INTERRUPT_SHIFT);
712 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
713 
714 	/* clear all pending interrupts */
715 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
716 }
717 
bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev * iproc_i2c,struct i2c_msg * msg)718 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
719 				      struct i2c_msg *msg)
720 {
721 	u32 val;
722 
723 	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
724 	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
725 
726 	switch (val) {
727 	case M_CMD_STATUS_SUCCESS:
728 		return 0;
729 
730 	case M_CMD_STATUS_LOST_ARB:
731 		dev_err(iproc_i2c->device, "lost bus arbitration\n");
732 		return -EAGAIN;
733 
734 	case M_CMD_STATUS_NACK_ADDR:
735 		dev_err(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
736 		return -ENXIO;
737 
738 	case M_CMD_STATUS_NACK_DATA:
739 		dev_err(iproc_i2c->device, "NAK data\n");
740 		return -ENXIO;
741 
742 	case M_CMD_STATUS_TIMEOUT:
743 		dev_err(iproc_i2c->device, "bus timeout\n");
744 		return -ETIMEDOUT;
745 
746 	case M_CMD_STATUS_FIFO_UNDERRUN:
747 		dev_err(iproc_i2c->device, "FIFO under-run\n");
748 		return -ENXIO;
749 
750 	case M_CMD_STATUS_RX_FIFO_FULL:
751 		dev_err(iproc_i2c->device, "RX FIFO full\n");
752 		return -ETIMEDOUT;
753 
754 	default:
755 		dev_err(iproc_i2c->device, "unknown error code=%d\n", val);
756 
757 		/* re-initialize i2c for recovery */
758 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
759 		bcm_iproc_i2c_init(iproc_i2c);
760 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
761 
762 		return -EIO;
763 	}
764 }
765 
bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev * iproc_i2c,struct i2c_msg * msg,u32 cmd)766 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
767 				   struct i2c_msg *msg,
768 				   u32 cmd)
769 {
770 	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
771 	u32 val, status;
772 	int ret;
773 
774 	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
775 
776 	if (iproc_i2c->irq) {
777 		time_left = wait_for_completion_timeout(&iproc_i2c->done,
778 							time_left);
779 		/* disable all interrupts */
780 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
781 		/* read it back to flush the write */
782 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
783 		/* make sure the interrupt handler isn't running */
784 		synchronize_irq(iproc_i2c->irq);
785 
786 	} else { /* polling mode */
787 		unsigned long timeout = jiffies + time_left;
788 
789 		do {
790 			status = iproc_i2c_rd_reg(iproc_i2c,
791 						  IS_OFFSET) & ISR_MASK;
792 			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
793 			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
794 
795 			if (time_after(jiffies, timeout)) {
796 				time_left = 0;
797 				break;
798 			}
799 
800 			cpu_relax();
801 			cond_resched();
802 		} while (!iproc_i2c->xfer_is_done);
803 	}
804 
805 	if (!time_left && !iproc_i2c->xfer_is_done) {
806 		/* flush both TX/RX FIFOs */
807 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
808 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
809 		return -ETIMEDOUT;
810 	}
811 
812 	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
813 	if (ret) {
814 		/* flush both TX/RX FIFOs */
815 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
816 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
817 		return ret;
818 	}
819 
820 	return 0;
821 }
822 
823 /*
824  * If 'process_call' is true, then this is a multi-msg transfer that requires
825  * a repeated start between the messages.
826  * More specifically, it must be a write (reg) followed by a read (data).
827  * The i2c quirks are set to enforce this rule.
828  */
bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev * iproc_i2c,struct i2c_msg * msgs,bool process_call)829 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
830 				       struct i2c_msg *msgs, bool process_call)
831 {
832 	int i;
833 	u8 addr;
834 	u32 val, tmp, val_intr_en;
835 	unsigned int tx_bytes;
836 	struct i2c_msg *msg = &msgs[0];
837 
838 	/* check if bus is busy */
839 	if (iproc_i2c_rd_reg(iproc_i2c,
840 			     M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT)) {
841 		dev_warn(iproc_i2c->device, "bus is busy\n");
842 		return -EBUSY;
843 	}
844 
845 	iproc_i2c->msg = msg;
846 
847 	/* format and load slave address into the TX FIFO */
848 	addr = i2c_8bit_addr_from_msg(msg);
849 	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
850 
851 	/*
852 	 * For a write transaction, load data into the TX FIFO. Only allow
853 	 * loading up to TX FIFO size - 1 bytes of data since the first byte
854 	 * has been used up by the slave address
855 	 */
856 	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
857 	if (!(msg->flags & I2C_M_RD)) {
858 		for (i = 0; i < tx_bytes; i++) {
859 			val = msg->buf[i];
860 
861 			/* mark the last byte */
862 			if (!process_call && (i == msg->len - 1))
863 				val |= BIT(M_TX_WR_STATUS_SHIFT);
864 
865 			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
866 		}
867 		iproc_i2c->tx_bytes = tx_bytes;
868 	}
869 
870 	/* Process the read message if this is process call */
871 	if (process_call) {
872 		msg++;
873 		iproc_i2c->msg = msg;  /* point to second msg */
874 
875 		/*
876 		 * The last byte to be sent out should be a slave
877 		 * address with read operation
878 		 */
879 		addr = i2c_8bit_addr_from_msg(msg);
880 		/* mark it the last byte out */
881 		val = addr | BIT(M_TX_WR_STATUS_SHIFT);
882 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
883 	}
884 
885 	/* mark as incomplete before starting the transaction */
886 	if (iproc_i2c->irq)
887 		reinit_completion(&iproc_i2c->done);
888 
889 	iproc_i2c->xfer_is_done = 0;
890 
891 	/*
892 	 * Enable the "start busy" interrupt, which will be triggered after the
893 	 * transaction is done, i.e., the internal start_busy bit, transitions
894 	 * from 1 to 0.
895 	 */
896 	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
897 
898 	/*
899 	 * If TX data size is larger than the TX FIFO, need to enable TX
900 	 * underrun interrupt, which will be triggerred when the TX FIFO is
901 	 * empty. When that happens we can then pump more data into the FIFO
902 	 */
903 	if (!process_call && !(msg->flags & I2C_M_RD) &&
904 	    msg->len > iproc_i2c->tx_bytes)
905 		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
906 
907 	/*
908 	 * Now we can activate the transfer. For a read operation, specify the
909 	 * number of bytes to read
910 	 */
911 	val = BIT(M_CMD_START_BUSY_SHIFT);
912 
913 	if (msg->len == 0) {
914 		/* SMBUS QUICK Command (Read/Write) */
915 		val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
916 	} else if (msg->flags & I2C_M_RD) {
917 		u32 protocol;
918 
919 		iproc_i2c->rx_bytes = 0;
920 		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
921 			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
922 		else
923 			iproc_i2c->thld_bytes = msg->len;
924 
925 		/* set threshold value */
926 		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
927 		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
928 		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
929 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
930 
931 		/* enable the RX threshold interrupt */
932 		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
933 
934 		protocol = process_call ?
935 				M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
936 
937 		val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
938 		       (msg->len << M_CMD_RD_CNT_SHIFT);
939 	} else {
940 		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
941 	}
942 
943 	if (iproc_i2c->irq)
944 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
945 
946 	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
947 }
948 
bcm_iproc_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg msgs[],int num)949 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
950 			      struct i2c_msg msgs[], int num)
951 {
952 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
953 	bool process_call = false;
954 	int ret;
955 
956 	if (num == 2) {
957 		/* Repeated start, use process call */
958 		process_call = true;
959 		if (msgs[1].flags & I2C_M_NOSTART) {
960 			dev_err(iproc_i2c->device, "Invalid repeated start\n");
961 			return -EOPNOTSUPP;
962 		}
963 	}
964 
965 	ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
966 	if (ret) {
967 		dev_err(iproc_i2c->device, "xfer failed\n");
968 		return ret;
969 	}
970 
971 	return num;
972 }
973 
bcm_iproc_i2c_functionality(struct i2c_adapter * adap)974 static u32 bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
975 {
976 	u32 val;
977 
978 	val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
979 
980 	if (adap->algo->reg_slave)
981 		val |= I2C_FUNC_SLAVE;
982 
983 	return val;
984 }
985 
bcm_iproc_i2c_reg_slave(struct i2c_client * slave)986 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
987 {
988 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
989 
990 	if (iproc_i2c->slave)
991 		return -EBUSY;
992 
993 	if (slave->flags & I2C_CLIENT_TEN)
994 		return -EAFNOSUPPORT;
995 
996 	iproc_i2c->slave = slave;
997 
998 	tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
999 		     (unsigned long)iproc_i2c);
1000 
1001 	bcm_iproc_i2c_slave_init(iproc_i2c, false);
1002 
1003 	return 0;
1004 }
1005 
bcm_iproc_i2c_unreg_slave(struct i2c_client * slave)1006 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1007 {
1008 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1009 	u32 tmp;
1010 
1011 	if (!iproc_i2c->slave)
1012 		return -EINVAL;
1013 
1014 	disable_irq(iproc_i2c->irq);
1015 
1016 	tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1017 
1018 	/* disable all slave interrupts */
1019 	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1020 	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1021 			IE_S_ALL_INTERRUPT_SHIFT);
1022 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1023 
1024 	/* Erase the slave address programmed */
1025 	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1026 	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1027 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1028 
1029 	/* flush TX/RX FIFOs */
1030 	tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1031 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1032 
1033 	/* clear all pending slave interrupts */
1034 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1035 
1036 	iproc_i2c->slave = NULL;
1037 
1038 	enable_irq(iproc_i2c->irq);
1039 
1040 	return 0;
1041 }
1042 
1043 static struct i2c_algorithm bcm_iproc_algo = {
1044 	.xfer = bcm_iproc_i2c_xfer,
1045 	.functionality = bcm_iproc_i2c_functionality,
1046 	.reg_slave = bcm_iproc_i2c_reg_slave,
1047 	.unreg_slave = bcm_iproc_i2c_unreg_slave,
1048 };
1049 
1050 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
1051 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
1052 	.max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
1053 	.max_read_len = M_RX_MAX_READ_LEN,
1054 };
1055 
bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev * iproc_i2c)1056 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
1057 {
1058 	unsigned int bus_speed;
1059 	u32 val;
1060 	int ret = of_property_read_u32(iproc_i2c->device->of_node,
1061 				       "clock-frequency", &bus_speed);
1062 	if (ret < 0) {
1063 		dev_info(iproc_i2c->device,
1064 			 "unable to interpret clock-frequency DT property\n");
1065 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1066 	}
1067 
1068 	if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ)
1069 		return dev_err_probe(iproc_i2c->device, -EINVAL,
1070 				     "%d Hz not supported (out of 100-400 kHz range)\n",
1071 				     bus_speed);
1072 	else if (bus_speed < I2C_MAX_FAST_MODE_FREQ)
1073 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1074 	else
1075 		bus_speed = I2C_MAX_FAST_MODE_FREQ;
1076 
1077 	iproc_i2c->bus_speed = bus_speed;
1078 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1079 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1080 	val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1081 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1082 
1083 	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1084 
1085 	return 0;
1086 }
1087 
bcm_iproc_i2c_probe(struct platform_device * pdev)1088 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1089 {
1090 	struct bcm_iproc_i2c_dev *iproc_i2c;
1091 	struct i2c_adapter *adap;
1092 	int irq, ret;
1093 
1094 	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1095 				 GFP_KERNEL);
1096 	if (!iproc_i2c)
1097 		return -ENOMEM;
1098 
1099 	platform_set_drvdata(pdev, iproc_i2c);
1100 	iproc_i2c->device = &pdev->dev;
1101 	iproc_i2c->type =
1102 		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1103 	init_completion(&iproc_i2c->done);
1104 
1105 	iproc_i2c->base = devm_platform_ioremap_resource(pdev, 0);
1106 	if (IS_ERR(iproc_i2c->base))
1107 		return PTR_ERR(iproc_i2c->base);
1108 
1109 	if (iproc_i2c->type == IPROC_I2C_NIC) {
1110 		iproc_i2c->idm_base = devm_platform_ioremap_resource(pdev, 1);
1111 		if (IS_ERR(iproc_i2c->idm_base))
1112 			return PTR_ERR(iproc_i2c->idm_base);
1113 
1114 		ret = of_property_read_u32(iproc_i2c->device->of_node,
1115 					   "brcm,ape-hsls-addr-mask",
1116 					   &iproc_i2c->ape_addr_mask);
1117 		if (ret < 0)
1118 			return dev_err_probe(iproc_i2c->device, ret,
1119 					     "'brcm,ape-hsls-addr-mask' missing\n");
1120 
1121 		spin_lock_init(&iproc_i2c->idm_lock);
1122 
1123 		/* no slave support */
1124 		bcm_iproc_algo.reg_slave = NULL;
1125 		bcm_iproc_algo.unreg_slave = NULL;
1126 	}
1127 
1128 	bcm_iproc_i2c_init(iproc_i2c);
1129 
1130 	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1131 	if (ret)
1132 		return ret;
1133 
1134 	irq = platform_get_irq(pdev, 0);
1135 	if (irq > 0) {
1136 		ret = devm_request_irq(iproc_i2c->device, irq,
1137 				       bcm_iproc_i2c_isr, 0, pdev->name,
1138 				       iproc_i2c);
1139 		if (ret < 0)
1140 			return dev_err_probe(iproc_i2c->device, ret,
1141 					     "unable to request irq %i\n", irq);
1142 
1143 		iproc_i2c->irq = irq;
1144 	} else {
1145 		dev_warn(iproc_i2c->device,
1146 			 "no irq resource, falling back to poll mode\n");
1147 	}
1148 
1149 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1150 
1151 	adap = &iproc_i2c->adapter;
1152 	i2c_set_adapdata(adap, iproc_i2c);
1153 	snprintf(adap->name, sizeof(adap->name), "Broadcom iProc (%s)",
1154 		 of_node_full_name(iproc_i2c->device->of_node));
1155 	adap->algo = &bcm_iproc_algo;
1156 	adap->quirks = &bcm_iproc_i2c_quirks;
1157 	adap->dev.parent = &pdev->dev;
1158 	adap->dev.of_node = pdev->dev.of_node;
1159 
1160 	return i2c_add_adapter(adap);
1161 }
1162 
bcm_iproc_i2c_remove(struct platform_device * pdev)1163 static void bcm_iproc_i2c_remove(struct platform_device *pdev)
1164 {
1165 	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1166 
1167 	if (iproc_i2c->irq) {
1168 		/*
1169 		 * Make sure there's no pending interrupt when we remove the
1170 		 * adapter
1171 		 */
1172 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1173 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1174 		synchronize_irq(iproc_i2c->irq);
1175 	}
1176 
1177 	i2c_del_adapter(&iproc_i2c->adapter);
1178 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1179 }
1180 
bcm_iproc_i2c_suspend(struct device * dev)1181 static int bcm_iproc_i2c_suspend(struct device *dev)
1182 {
1183 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1184 
1185 	if (iproc_i2c->irq) {
1186 		/*
1187 		 * Make sure there's no pending interrupt when we go into
1188 		 * suspend
1189 		 */
1190 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1191 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1192 		synchronize_irq(iproc_i2c->irq);
1193 	}
1194 
1195 	/* now disable the controller */
1196 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1197 
1198 	return 0;
1199 }
1200 
bcm_iproc_i2c_resume(struct device * dev)1201 static int bcm_iproc_i2c_resume(struct device *dev)
1202 {
1203 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1204 	u32 val;
1205 
1206 	/*
1207 	 * Power domain could have been shut off completely in system deep
1208 	 * sleep, so re-initialize the block here
1209 	 */
1210 	bcm_iproc_i2c_init(iproc_i2c);
1211 
1212 	/* configure to the desired bus speed */
1213 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1214 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1215 	val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1216 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1217 
1218 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1219 
1220 	return 0;
1221 }
1222 
1223 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1224 	.suspend_late = &bcm_iproc_i2c_suspend,
1225 	.resume_early = &bcm_iproc_i2c_resume
1226 };
1227 
1228 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1229 	{
1230 		.compatible = "brcm,iproc-i2c",
1231 		.data = (int *)IPROC_I2C,
1232 	}, {
1233 		.compatible = "brcm,iproc-nic-i2c",
1234 		.data = (int *)IPROC_I2C_NIC,
1235 	},
1236 	{ /* sentinel */ }
1237 };
1238 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1239 
1240 static struct platform_driver bcm_iproc_i2c_driver = {
1241 	.driver = {
1242 		.name = "bcm-iproc-i2c",
1243 		.of_match_table = bcm_iproc_i2c_of_match,
1244 		.pm = pm_sleep_ptr(&bcm_iproc_i2c_pm_ops),
1245 	},
1246 	.probe = bcm_iproc_i2c_probe,
1247 	.remove = bcm_iproc_i2c_remove,
1248 };
1249 module_platform_driver(bcm_iproc_i2c_driver);
1250 
1251 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1252 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1253 MODULE_LICENSE("GPL v2");
1254