1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #ifndef _BCACHE_UTIL_H
4 #define _BCACHE_UTIL_H
5
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/kernel.h>
10 #include <linux/sched/clock.h>
11 #include <linux/llist.h>
12 #include <linux/min_heap.h>
13 #include <linux/ratelimit.h>
14 #include <linux/vmalloc.h>
15 #include <linux/workqueue.h>
16 #include <linux/crc64.h>
17
18 struct closure;
19
20 #ifdef CONFIG_BCACHE_DEBUG
21
22 #define EBUG_ON(cond) BUG_ON(cond)
23 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
24 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
25
26 #else /* DEBUG */
27
28 #define EBUG_ON(cond) do { if (cond) do {} while (0); } while (0)
29 #define atomic_dec_bug(v) atomic_dec(v)
30 #define atomic_inc_bug(v, i) atomic_inc(v)
31
32 #endif
33
34 #define init_heap(heap, _size, gfp) \
35 ({ \
36 size_t _bytes; \
37 (heap)->nr = 0; \
38 (heap)->size = (_size); \
39 _bytes = (heap)->size * sizeof(*(heap)->data); \
40 (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
41 (heap)->data; \
42 })
43
44 #define free_heap(heap) \
45 do { \
46 kvfree((heap)->data); \
47 (heap)->data = NULL; \
48 } while (0)
49
50 #define DECLARE_FIFO(type, name) \
51 struct { \
52 size_t front, back, size, mask; \
53 type *data; \
54 } name
55
56 #define fifo_for_each(c, fifo, iter) \
57 for (iter = (fifo)->front; \
58 c = (fifo)->data[iter], iter != (fifo)->back; \
59 iter = (iter + 1) & (fifo)->mask)
60
61 #define __init_fifo(fifo, gfp) \
62 ({ \
63 size_t _allocated_size, _bytes; \
64 BUG_ON(!(fifo)->size); \
65 \
66 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
67 _bytes = _allocated_size * sizeof(*(fifo)->data); \
68 \
69 (fifo)->mask = _allocated_size - 1; \
70 (fifo)->front = (fifo)->back = 0; \
71 \
72 (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
73 (fifo)->data; \
74 })
75
76 #define init_fifo_exact(fifo, _size, gfp) \
77 ({ \
78 (fifo)->size = (_size); \
79 __init_fifo(fifo, gfp); \
80 })
81
82 #define init_fifo(fifo, _size, gfp) \
83 ({ \
84 (fifo)->size = (_size); \
85 if ((fifo)->size > 4) \
86 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
87 __init_fifo(fifo, gfp); \
88 })
89
90 #define free_fifo(fifo) \
91 do { \
92 kvfree((fifo)->data); \
93 (fifo)->data = NULL; \
94 } while (0)
95
96 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
97 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
98
99 #define fifo_empty(fifo) (!fifo_used(fifo))
100 #define fifo_full(fifo) (!fifo_free(fifo))
101
102 #define fifo_front(fifo) ((fifo)->data[(fifo)->front])
103 #define fifo_back(fifo) \
104 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
105
106 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
107
108 #define fifo_push_back(fifo, i) \
109 ({ \
110 bool _r = !fifo_full((fifo)); \
111 if (_r) { \
112 (fifo)->data[(fifo)->back++] = (i); \
113 (fifo)->back &= (fifo)->mask; \
114 } \
115 _r; \
116 })
117
118 #define fifo_pop_front(fifo, i) \
119 ({ \
120 bool _r = !fifo_empty((fifo)); \
121 if (_r) { \
122 (i) = (fifo)->data[(fifo)->front++]; \
123 (fifo)->front &= (fifo)->mask; \
124 } \
125 _r; \
126 })
127
128 #define fifo_push_front(fifo, i) \
129 ({ \
130 bool _r = !fifo_full((fifo)); \
131 if (_r) { \
132 --(fifo)->front; \
133 (fifo)->front &= (fifo)->mask; \
134 (fifo)->data[(fifo)->front] = (i); \
135 } \
136 _r; \
137 })
138
139 #define fifo_pop_back(fifo, i) \
140 ({ \
141 bool _r = !fifo_empty((fifo)); \
142 if (_r) { \
143 --(fifo)->back; \
144 (fifo)->back &= (fifo)->mask; \
145 (i) = (fifo)->data[(fifo)->back] \
146 } \
147 _r; \
148 })
149
150 #define fifo_push(fifo, i) fifo_push_back(fifo, (i))
151 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
152
153 #define fifo_swap(l, r) \
154 do { \
155 swap((l)->front, (r)->front); \
156 swap((l)->back, (r)->back); \
157 swap((l)->size, (r)->size); \
158 swap((l)->mask, (r)->mask); \
159 swap((l)->data, (r)->data); \
160 } while (0)
161
162 #define fifo_move(dest, src) \
163 do { \
164 typeof(*((dest)->data)) _t; \
165 while (!fifo_full(dest) && \
166 fifo_pop(src, _t)) \
167 fifo_push(dest, _t); \
168 } while (0)
169
170 /*
171 * Simple array based allocator - preallocates a number of elements and you can
172 * never allocate more than that, also has no locking.
173 *
174 * Handy because if you know you only need a fixed number of elements you don't
175 * have to worry about memory allocation failure, and sometimes a mempool isn't
176 * what you want.
177 *
178 * We treat the free elements as entries in a singly linked list, and the
179 * freelist as a stack - allocating and freeing push and pop off the freelist.
180 */
181
182 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
183 struct { \
184 type *freelist; \
185 type data[size]; \
186 } name
187
188 #define array_alloc(array) \
189 ({ \
190 typeof((array)->freelist) _ret = (array)->freelist; \
191 \
192 if (_ret) \
193 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
194 \
195 _ret; \
196 })
197
198 #define array_free(array, ptr) \
199 do { \
200 typeof((array)->freelist) _ptr = ptr; \
201 \
202 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
203 (array)->freelist = _ptr; \
204 } while (0)
205
206 #define array_allocator_init(array) \
207 do { \
208 typeof((array)->freelist) _i; \
209 \
210 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
211 (array)->freelist = NULL; \
212 \
213 for (_i = (array)->data; \
214 _i < (array)->data + ARRAY_SIZE((array)->data); \
215 _i++) \
216 array_free(array, _i); \
217 } while (0)
218
219 #define array_freelist_empty(array) ((array)->freelist == NULL)
220
221 #define ANYSINT_MAX(t) \
222 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
223
224 int bch_strtoint_h(const char *cp, int *res);
225 int bch_strtouint_h(const char *cp, unsigned int *res);
226 int bch_strtoll_h(const char *cp, long long *res);
227 int bch_strtoull_h(const char *cp, unsigned long long *res);
228
bch_strtol_h(const char * cp,long * res)229 static inline int bch_strtol_h(const char *cp, long *res)
230 {
231 #if BITS_PER_LONG == 32
232 return bch_strtoint_h(cp, (int *) res);
233 #else
234 return bch_strtoll_h(cp, (long long *) res);
235 #endif
236 }
237
bch_strtoul_h(const char * cp,long * res)238 static inline int bch_strtoul_h(const char *cp, long *res)
239 {
240 #if BITS_PER_LONG == 32
241 return bch_strtouint_h(cp, (unsigned int *) res);
242 #else
243 return bch_strtoull_h(cp, (unsigned long long *) res);
244 #endif
245 }
246
247 #define strtoi_h(cp, res) \
248 (__builtin_types_compatible_p(typeof(*res), int) \
249 ? bch_strtoint_h(cp, (void *) res) \
250 : __builtin_types_compatible_p(typeof(*res), long) \
251 ? bch_strtol_h(cp, (void *) res) \
252 : __builtin_types_compatible_p(typeof(*res), long long) \
253 ? bch_strtoll_h(cp, (void *) res) \
254 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
255 ? bch_strtouint_h(cp, (void *) res) \
256 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
257 ? bch_strtoul_h(cp, (void *) res) \
258 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
259 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
260
261 #define strtoul_safe(cp, var) \
262 ({ \
263 unsigned long _v; \
264 int _r = kstrtoul(cp, 10, &_v); \
265 if (!_r) \
266 var = _v; \
267 _r; \
268 })
269
270 #define strtoul_safe_clamp(cp, var, min, max) \
271 ({ \
272 unsigned long _v; \
273 int _r = kstrtoul(cp, 10, &_v); \
274 if (!_r) \
275 var = clamp_t(typeof(var), _v, min, max); \
276 _r; \
277 })
278
279 ssize_t bch_hprint(char *buf, int64_t v);
280
281 bool bch_is_zero(const char *p, size_t n);
282 int bch_parse_uuid(const char *s, char *uuid);
283
284 struct time_stats {
285 spinlock_t lock;
286 /*
287 * all fields are in nanoseconds, averages are ewmas stored left shifted
288 * by 8
289 */
290 uint64_t max_duration;
291 uint64_t average_duration;
292 uint64_t average_frequency;
293 uint64_t last;
294 };
295
296 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
297
local_clock_us(void)298 static inline unsigned int local_clock_us(void)
299 {
300 return local_clock() >> 10;
301 }
302
303 #define NSEC_PER_ns 1L
304 #define NSEC_PER_us NSEC_PER_USEC
305 #define NSEC_PER_ms NSEC_PER_MSEC
306 #define NSEC_PER_sec NSEC_PER_SEC
307
308 #define __print_time_stat(stats, name, stat, units) \
309 sysfs_print(name ## _ ## stat ## _ ## units, \
310 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
311
312 #define sysfs_print_time_stats(stats, name, \
313 frequency_units, \
314 duration_units) \
315 do { \
316 __print_time_stat(stats, name, \
317 average_frequency, frequency_units); \
318 __print_time_stat(stats, name, \
319 average_duration, duration_units); \
320 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
321 div_u64((stats)->max_duration, \
322 NSEC_PER_ ## duration_units)); \
323 \
324 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
325 ? div_s64(local_clock() - (stats)->last, \
326 NSEC_PER_ ## frequency_units) \
327 : -1LL); \
328 } while (0)
329
330 #define sysfs_time_stats_attribute(name, \
331 frequency_units, \
332 duration_units) \
333 read_attribute(name ## _average_frequency_ ## frequency_units); \
334 read_attribute(name ## _average_duration_ ## duration_units); \
335 read_attribute(name ## _max_duration_ ## duration_units); \
336 read_attribute(name ## _last_ ## frequency_units)
337
338 #define sysfs_time_stats_attribute_list(name, \
339 frequency_units, \
340 duration_units) \
341 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \
342 &sysfs_ ## name ## _average_duration_ ## duration_units, \
343 &sysfs_ ## name ## _max_duration_ ## duration_units, \
344 &sysfs_ ## name ## _last_ ## frequency_units,
345
346 #define ewma_add(ewma, val, weight, factor) \
347 ({ \
348 (ewma) *= (weight) - 1; \
349 (ewma) += (val) << factor; \
350 (ewma) /= (weight); \
351 (ewma) >> factor; \
352 })
353
354 struct bch_ratelimit {
355 /* Next time we want to do some work, in nanoseconds */
356 uint64_t next;
357
358 /*
359 * Rate at which we want to do work, in units per second
360 * The units here correspond to the units passed to bch_next_delay()
361 */
362 atomic_long_t rate;
363 };
364
bch_ratelimit_reset(struct bch_ratelimit * d)365 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
366 {
367 d->next = local_clock();
368 }
369
370 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
371
372 #define __DIV_SAFE(n, d, zero) \
373 ({ \
374 typeof(n) _n = (n); \
375 typeof(d) _d = (d); \
376 _d ? _n / _d : zero; \
377 })
378
379 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
380
381 #define container_of_or_null(ptr, type, member) \
382 ({ \
383 typeof(ptr) _ptr = ptr; \
384 _ptr ? container_of(_ptr, type, member) : NULL; \
385 })
386
387 #define RB_INSERT(root, new, member, cmp) \
388 ({ \
389 __label__ dup; \
390 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
391 typeof(new) this; \
392 int res, ret = -1; \
393 \
394 while (*n) { \
395 parent = *n; \
396 this = container_of(*n, typeof(*(new)), member); \
397 res = cmp(new, this); \
398 if (!res) \
399 goto dup; \
400 n = res < 0 \
401 ? &(*n)->rb_left \
402 : &(*n)->rb_right; \
403 } \
404 \
405 rb_link_node(&(new)->member, parent, n); \
406 rb_insert_color(&(new)->member, root); \
407 ret = 0; \
408 dup: \
409 ret; \
410 })
411
412 #define RB_SEARCH(root, search, member, cmp) \
413 ({ \
414 struct rb_node *n = (root)->rb_node; \
415 typeof(&(search)) this, ret = NULL; \
416 int res; \
417 \
418 while (n) { \
419 this = container_of(n, typeof(search), member); \
420 res = cmp(&(search), this); \
421 if (!res) { \
422 ret = this; \
423 break; \
424 } \
425 n = res < 0 \
426 ? n->rb_left \
427 : n->rb_right; \
428 } \
429 ret; \
430 })
431
432 #define RB_GREATER(root, search, member, cmp) \
433 ({ \
434 struct rb_node *n = (root)->rb_node; \
435 typeof(&(search)) this, ret = NULL; \
436 int res; \
437 \
438 while (n) { \
439 this = container_of(n, typeof(search), member); \
440 res = cmp(&(search), this); \
441 if (res < 0) { \
442 ret = this; \
443 n = n->rb_left; \
444 } else \
445 n = n->rb_right; \
446 } \
447 ret; \
448 })
449
450 #define RB_FIRST(root, type, member) \
451 container_of_or_null(rb_first(root), type, member)
452
453 #define RB_LAST(root, type, member) \
454 container_of_or_null(rb_last(root), type, member)
455
456 #define RB_NEXT(ptr, member) \
457 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
458
459 #define RB_PREV(ptr, member) \
460 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
461
bch_crc64(const void * p,size_t len)462 static inline uint64_t bch_crc64(const void *p, size_t len)
463 {
464 uint64_t crc = 0xffffffffffffffffULL;
465
466 crc = crc64_be(crc, p, len);
467 return crc ^ 0xffffffffffffffffULL;
468 }
469
470 /*
471 * A stepwise-linear pseudo-exponential. This returns 1 << (x >>
472 * frac_bits), with the less-significant bits filled in by linear
473 * interpolation.
474 *
475 * This can also be interpreted as a floating-point number format,
476 * where the low frac_bits are the mantissa (with implicit leading
477 * 1 bit), and the more significant bits are the exponent.
478 * The return value is 1.mantissa * 2^exponent.
479 *
480 * The way this is used, fract_bits is 6 and the largest possible
481 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
482 * so the maximum output is 0x1fc00.
483 */
fract_exp_two(unsigned int x,unsigned int fract_bits)484 static inline unsigned int fract_exp_two(unsigned int x,
485 unsigned int fract_bits)
486 {
487 unsigned int mantissa = 1 << fract_bits; /* Implicit bit */
488
489 mantissa += x & (mantissa - 1);
490 x >>= fract_bits; /* The exponent */
491 /* Largest intermediate value 0x7f0000 */
492 return mantissa << x >> fract_bits;
493 }
494
495 void bch_bio_map(struct bio *bio, void *base);
496 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
497
498 #endif /* _BCACHE_UTIL_H */
499