xref: /linux/drivers/md/bcache/super.c (revision c06944560a562828d507166b4f87c01c367cc9c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17 
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28 
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31 
32 static const char bcache_magic[] = {
33 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36 
37 static const char invalid_uuid[] = {
38 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41 
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47 
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54 
55 
56 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS		128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
61 
62 /* Superblock */
63 
get_bucket_size(struct cache_sb * sb,struct cache_sb_disk * s)64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66 	unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67 
68 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69 		if (bch_has_feature_large_bucket(sb)) {
70 			unsigned int max, order;
71 
72 			max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73 			order = le16_to_cpu(s->bucket_size);
74 			/*
75 			 * bcache tool will make sure the overflow won't
76 			 * happen, an error message here is enough.
77 			 */
78 			if (order > max)
79 				pr_err("Bucket size (1 << %u) overflows\n",
80 					order);
81 			bucket_size = 1 << order;
82 		} else if (bch_has_feature_obso_large_bucket(sb)) {
83 			bucket_size +=
84 				le16_to_cpu(s->obso_bucket_size_hi) << 16;
85 		}
86 	}
87 
88 	return bucket_size;
89 }
90 
read_super_common(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk * s)91 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
92 				     struct cache_sb_disk *s)
93 {
94 	const char *err;
95 	unsigned int i;
96 
97 	sb->first_bucket= le16_to_cpu(s->first_bucket);
98 	sb->nbuckets	= le64_to_cpu(s->nbuckets);
99 	sb->bucket_size	= get_bucket_size(sb, s);
100 
101 	sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
102 	sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
103 
104 	err = "Too many journal buckets";
105 	if (sb->keys > SB_JOURNAL_BUCKETS)
106 		goto err;
107 
108 	err = "Too many buckets";
109 	if (sb->nbuckets > LONG_MAX)
110 		goto err;
111 
112 	err = "Not enough buckets";
113 	if (sb->nbuckets < 1 << 7)
114 		goto err;
115 
116 	err = "Bad block size (not power of 2)";
117 	if (!is_power_of_2(sb->block_size))
118 		goto err;
119 
120 	err = "Bad block size (larger than page size)";
121 	if (sb->block_size > PAGE_SECTORS)
122 		goto err;
123 
124 	err = "Bad bucket size (not power of 2)";
125 	if (!is_power_of_2(sb->bucket_size))
126 		goto err;
127 
128 	err = "Bad bucket size (smaller than page size)";
129 	if (sb->bucket_size < PAGE_SECTORS)
130 		goto err;
131 
132 	err = "Invalid superblock: device too small";
133 	if (get_capacity(bdev->bd_disk) <
134 	    sb->bucket_size * sb->nbuckets)
135 		goto err;
136 
137 	err = "Bad UUID";
138 	if (bch_is_zero(sb->set_uuid, 16))
139 		goto err;
140 
141 	err = "Bad cache device number in set";
142 	if (!sb->nr_in_set ||
143 	    sb->nr_in_set <= sb->nr_this_dev ||
144 	    sb->nr_in_set > MAX_CACHES_PER_SET)
145 		goto err;
146 
147 	err = "Journal buckets not sequential";
148 	for (i = 0; i < sb->keys; i++)
149 		if (sb->d[i] != sb->first_bucket + i)
150 			goto err;
151 
152 	err = "Too many journal buckets";
153 	if (sb->first_bucket + sb->keys > sb->nbuckets)
154 		goto err;
155 
156 	err = "Invalid superblock: first bucket comes before end of super";
157 	if (sb->first_bucket * sb->bucket_size < 16)
158 		goto err;
159 
160 	err = NULL;
161 err:
162 	return err;
163 }
164 
165 
read_super(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk ** res)166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167 			      struct cache_sb_disk **res)
168 {
169 	const char *err;
170 	struct cache_sb_disk *s;
171 	struct page *page;
172 	unsigned int i;
173 
174 	page = read_cache_page_gfp(bdev->bd_mapping,
175 				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176 	if (IS_ERR(page))
177 		return "IO error";
178 	s = page_address(page) + offset_in_page(SB_OFFSET);
179 
180 	sb->offset		= le64_to_cpu(s->offset);
181 	sb->version		= le64_to_cpu(s->version);
182 
183 	memcpy(sb->magic,	s->magic, 16);
184 	memcpy(sb->uuid,	s->uuid, 16);
185 	memcpy(sb->set_uuid,	s->set_uuid, 16);
186 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
187 
188 	sb->flags		= le64_to_cpu(s->flags);
189 	sb->seq			= le64_to_cpu(s->seq);
190 	sb->last_mount		= le32_to_cpu(s->last_mount);
191 	sb->keys		= le16_to_cpu(s->keys);
192 
193 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194 		sb->d[i] = le64_to_cpu(s->d[i]);
195 
196 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197 		 sb->version, sb->flags, sb->seq, sb->keys);
198 
199 	err = "Not a bcache superblock (bad offset)";
200 	if (sb->offset != SB_SECTOR)
201 		goto err;
202 
203 	err = "Not a bcache superblock (bad magic)";
204 	if (memcmp(sb->magic, bcache_magic, 16))
205 		goto err;
206 
207 	err = "Bad checksum";
208 	if (s->csum != csum_set(s))
209 		goto err;
210 
211 	err = "Bad UUID";
212 	if (bch_is_zero(sb->uuid, 16))
213 		goto err;
214 
215 	sb->block_size	= le16_to_cpu(s->block_size);
216 
217 	err = "Superblock block size smaller than device block size";
218 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219 		goto err;
220 
221 	switch (sb->version) {
222 	case BCACHE_SB_VERSION_BDEV:
223 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
224 		break;
225 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226 	case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227 		sb->data_offset	= le64_to_cpu(s->data_offset);
228 
229 		err = "Bad data offset";
230 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231 			goto err;
232 
233 		break;
234 	case BCACHE_SB_VERSION_CDEV:
235 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236 		err = read_super_common(sb, bdev, s);
237 		if (err)
238 			goto err;
239 		break;
240 	case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241 		/*
242 		 * Feature bits are needed in read_super_common(),
243 		 * convert them firstly.
244 		 */
245 		sb->feature_compat = le64_to_cpu(s->feature_compat);
246 		sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247 		sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248 
249 		/* Check incompatible features */
250 		err = "Unsupported compatible feature found";
251 		if (bch_has_unknown_compat_features(sb))
252 			goto err;
253 
254 		err = "Unsupported read-only compatible feature found";
255 		if (bch_has_unknown_ro_compat_features(sb))
256 			goto err;
257 
258 		err = "Unsupported incompatible feature found";
259 		if (bch_has_unknown_incompat_features(sb))
260 			goto err;
261 
262 		err = read_super_common(sb, bdev, s);
263 		if (err)
264 			goto err;
265 		break;
266 	default:
267 		err = "Unsupported superblock version";
268 		goto err;
269 	}
270 
271 	sb->last_mount = (u32)ktime_get_real_seconds();
272 	*res = s;
273 	return NULL;
274 err:
275 	put_page(page);
276 	return err;
277 }
278 
write_bdev_super_endio(struct bio * bio)279 static void write_bdev_super_endio(struct bio *bio)
280 {
281 	struct cached_dev *dc = bio->bi_private;
282 
283 	if (bio->bi_status)
284 		bch_count_backing_io_errors(dc, bio);
285 
286 	closure_put(&dc->sb_write);
287 }
288 
__write_super(struct cache_sb * sb,struct cache_sb_disk * out,struct bio * bio)289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290 		struct bio *bio)
291 {
292 	unsigned int i;
293 
294 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295 	bio->bi_iter.bi_sector	= SB_SECTOR;
296 	bio_add_virt_nofail(bio, out, SB_SIZE);
297 
298 	out->offset		= cpu_to_le64(sb->offset);
299 
300 	memcpy(out->uuid,	sb->uuid, 16);
301 	memcpy(out->set_uuid,	sb->set_uuid, 16);
302 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
303 
304 	out->flags		= cpu_to_le64(sb->flags);
305 	out->seq		= cpu_to_le64(sb->seq);
306 
307 	out->last_mount		= cpu_to_le32(sb->last_mount);
308 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
309 	out->keys		= cpu_to_le16(sb->keys);
310 
311 	for (i = 0; i < sb->keys; i++)
312 		out->d[i] = cpu_to_le64(sb->d[i]);
313 
314 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
315 		out->feature_compat    = cpu_to_le64(sb->feature_compat);
316 		out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
317 		out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
318 	}
319 
320 	out->version		= cpu_to_le64(sb->version);
321 	out->csum = csum_set(out);
322 
323 	pr_debug("ver %llu, flags %llu, seq %llu\n",
324 		 sb->version, sb->flags, sb->seq);
325 
326 	submit_bio(bio);
327 }
328 
CLOSURE_CALLBACK(bch_write_bdev_super_unlock)329 static CLOSURE_CALLBACK(bch_write_bdev_super_unlock)
330 {
331 	closure_type(dc, struct cached_dev, sb_write);
332 
333 	up(&dc->sb_write_mutex);
334 }
335 
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)336 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
337 {
338 	struct closure *cl = &dc->sb_write;
339 	struct bio *bio = &dc->sb_bio;
340 
341 	down(&dc->sb_write_mutex);
342 	closure_init(cl, parent);
343 
344 	bio_init(bio, dc->bdev, dc->sb_bv, 1, 0);
345 	bio->bi_end_io	= write_bdev_super_endio;
346 	bio->bi_private = dc;
347 
348 	closure_get(cl);
349 	/* I/O request sent to backing device */
350 	__write_super(&dc->sb, dc->sb_disk, bio);
351 
352 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
353 }
354 
write_super_endio(struct bio * bio)355 static void write_super_endio(struct bio *bio)
356 {
357 	struct cache *ca = bio->bi_private;
358 
359 	/* is_read = 0 */
360 	bch_count_io_errors(ca, bio->bi_status, 0,
361 			    "writing superblock");
362 	closure_put(&ca->set->sb_write);
363 }
364 
CLOSURE_CALLBACK(bcache_write_super_unlock)365 static CLOSURE_CALLBACK(bcache_write_super_unlock)
366 {
367 	closure_type(c, struct cache_set, sb_write);
368 
369 	up(&c->sb_write_mutex);
370 }
371 
bcache_write_super(struct cache_set * c)372 void bcache_write_super(struct cache_set *c)
373 {
374 	struct closure *cl = &c->sb_write;
375 	struct cache *ca = c->cache;
376 	struct bio *bio = &ca->sb_bio;
377 	unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
378 
379 	down(&c->sb_write_mutex);
380 	closure_init(cl, &c->cl);
381 
382 	ca->sb.seq++;
383 
384 	if (ca->sb.version < version)
385 		ca->sb.version = version;
386 
387 	bio_init(bio, ca->bdev, ca->sb_bv, 1, 0);
388 	bio->bi_end_io	= write_super_endio;
389 	bio->bi_private = ca;
390 
391 	closure_get(cl);
392 	__write_super(&ca->sb, ca->sb_disk, bio);
393 
394 	closure_return_with_destructor(cl, bcache_write_super_unlock);
395 }
396 
397 /* UUID io */
398 
uuid_endio(struct bio * bio)399 static void uuid_endio(struct bio *bio)
400 {
401 	struct closure *cl = bio->bi_private;
402 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
403 
404 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
405 	bch_bbio_free(bio, c);
406 	closure_put(cl);
407 }
408 
CLOSURE_CALLBACK(uuid_io_unlock)409 static CLOSURE_CALLBACK(uuid_io_unlock)
410 {
411 	closure_type(c, struct cache_set, uuid_write);
412 
413 	up(&c->uuid_write_mutex);
414 }
415 
uuid_io(struct cache_set * c,blk_opf_t opf,struct bkey * k,struct closure * parent)416 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k,
417 		    struct closure *parent)
418 {
419 	struct closure *cl = &c->uuid_write;
420 	struct uuid_entry *u;
421 	unsigned int i;
422 	char buf[80];
423 
424 	BUG_ON(!parent);
425 	down(&c->uuid_write_mutex);
426 	closure_init(cl, parent);
427 
428 	for (i = 0; i < KEY_PTRS(k); i++) {
429 		struct bio *bio = bch_bbio_alloc(c);
430 
431 		bio->bi_opf = opf | REQ_SYNC | REQ_META;
432 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
433 
434 		bio->bi_end_io	= uuid_endio;
435 		bio->bi_private = cl;
436 		bch_bio_map(bio, c->uuids);
437 
438 		bch_submit_bbio(bio, c, k, i);
439 
440 		if ((opf & REQ_OP_MASK) != REQ_OP_WRITE)
441 			break;
442 	}
443 
444 	bch_extent_to_text(buf, sizeof(buf), k);
445 	pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ?
446 		 "wrote" : "read", buf);
447 
448 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
449 		if (!bch_is_zero(u->uuid, 16))
450 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
451 				 u - c->uuids, u->uuid, u->label,
452 				 u->first_reg, u->last_reg, u->invalidated);
453 
454 	closure_return_with_destructor(cl, uuid_io_unlock);
455 }
456 
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)457 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
458 {
459 	struct bkey *k = &j->uuid_bucket;
460 
461 	if (__bch_btree_ptr_invalid(c, k))
462 		return "bad uuid pointer";
463 
464 	bkey_copy(&c->uuid_bucket, k);
465 	uuid_io(c, REQ_OP_READ, k, cl);
466 
467 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
468 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
469 		struct uuid_entry	*u1 = (void *) c->uuids;
470 		int i;
471 
472 		closure_sync(cl);
473 
474 		/*
475 		 * Since the new uuid entry is bigger than the old, we have to
476 		 * convert starting at the highest memory address and work down
477 		 * in order to do it in place
478 		 */
479 
480 		for (i = c->nr_uuids - 1;
481 		     i >= 0;
482 		     --i) {
483 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
484 			memcpy(u1[i].label,	u0[i].label, 32);
485 
486 			u1[i].first_reg		= u0[i].first_reg;
487 			u1[i].last_reg		= u0[i].last_reg;
488 			u1[i].invalidated	= u0[i].invalidated;
489 
490 			u1[i].flags	= 0;
491 			u1[i].sectors	= 0;
492 		}
493 	}
494 
495 	return NULL;
496 }
497 
__uuid_write(struct cache_set * c)498 static int __uuid_write(struct cache_set *c)
499 {
500 	BKEY_PADDED(key) k;
501 	struct closure cl;
502 	struct cache *ca = c->cache;
503 	unsigned int size;
504 
505 	closure_init_stack(&cl);
506 	lockdep_assert_held(&bch_register_lock);
507 
508 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
509 		return 1;
510 
511 	size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
512 	SET_KEY_SIZE(&k.key, size);
513 	uuid_io(c, REQ_OP_WRITE, &k.key, &cl);
514 	closure_sync(&cl);
515 
516 	/* Only one bucket used for uuid write */
517 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
518 
519 	bkey_copy(&c->uuid_bucket, &k.key);
520 	bkey_put(c, &k.key);
521 	return 0;
522 }
523 
bch_uuid_write(struct cache_set * c)524 int bch_uuid_write(struct cache_set *c)
525 {
526 	int ret = __uuid_write(c);
527 
528 	if (!ret)
529 		bch_journal_meta(c, NULL);
530 
531 	return ret;
532 }
533 
uuid_find(struct cache_set * c,const char * uuid)534 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
535 {
536 	struct uuid_entry *u;
537 
538 	for (u = c->uuids;
539 	     u < c->uuids + c->nr_uuids; u++)
540 		if (!memcmp(u->uuid, uuid, 16))
541 			return u;
542 
543 	return NULL;
544 }
545 
uuid_find_empty(struct cache_set * c)546 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
547 {
548 	static const char zero_uuid[16] __nonstring =
549 		{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
550 
551 	return uuid_find(c, zero_uuid);
552 }
553 
554 /*
555  * Bucket priorities/gens:
556  *
557  * For each bucket, we store on disk its
558  *   8 bit gen
559  *  16 bit priority
560  *
561  * See alloc.c for an explanation of the gen. The priority is used to implement
562  * lru (and in the future other) cache replacement policies; for most purposes
563  * it's just an opaque integer.
564  *
565  * The gens and the priorities don't have a whole lot to do with each other, and
566  * it's actually the gens that must be written out at specific times - it's no
567  * big deal if the priorities don't get written, if we lose them we just reuse
568  * buckets in suboptimal order.
569  *
570  * On disk they're stored in a packed array, and in as many buckets are required
571  * to fit them all. The buckets we use to store them form a list; the journal
572  * header points to the first bucket, the first bucket points to the second
573  * bucket, et cetera.
574  *
575  * This code is used by the allocation code; periodically (whenever it runs out
576  * of buckets to allocate from) the allocation code will invalidate some
577  * buckets, but it can't use those buckets until their new gens are safely on
578  * disk.
579  */
580 
prio_endio(struct bio * bio)581 static void prio_endio(struct bio *bio)
582 {
583 	struct cache *ca = bio->bi_private;
584 
585 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
586 	bch_bbio_free(bio, ca->set);
587 	closure_put(&ca->prio);
588 }
589 
prio_io(struct cache * ca,uint64_t bucket,blk_opf_t opf)590 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf)
591 {
592 	struct closure *cl = &ca->prio;
593 	struct bio *bio = bch_bbio_alloc(ca->set);
594 
595 	closure_init_stack(cl);
596 
597 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
598 	bio_set_dev(bio, ca->bdev);
599 	bio->bi_iter.bi_size	= meta_bucket_bytes(&ca->sb);
600 
601 	bio->bi_end_io	= prio_endio;
602 	bio->bi_private = ca;
603 	bio->bi_opf = opf | REQ_SYNC | REQ_META;
604 	bch_bio_map(bio, ca->disk_buckets);
605 
606 	closure_bio_submit(ca->set, bio, &ca->prio);
607 	closure_sync(cl);
608 }
609 
bch_prio_write(struct cache * ca,bool wait)610 int bch_prio_write(struct cache *ca, bool wait)
611 {
612 	int i;
613 	struct bucket *b;
614 	struct closure cl;
615 
616 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
617 		 fifo_used(&ca->free[RESERVE_PRIO]),
618 		 fifo_used(&ca->free[RESERVE_NONE]),
619 		 fifo_used(&ca->free_inc));
620 
621 	/*
622 	 * Pre-check if there are enough free buckets. In the non-blocking
623 	 * scenario it's better to fail early rather than starting to allocate
624 	 * buckets and do a cleanup later in case of failure.
625 	 */
626 	if (!wait) {
627 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
628 			       fifo_used(&ca->free[RESERVE_NONE]);
629 		if (prio_buckets(ca) > avail)
630 			return -ENOMEM;
631 	}
632 
633 	closure_init_stack(&cl);
634 
635 	lockdep_assert_held(&ca->set->bucket_lock);
636 
637 	ca->disk_buckets->seq++;
638 
639 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
640 			&ca->meta_sectors_written);
641 
642 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
643 		long bucket;
644 		struct prio_set *p = ca->disk_buckets;
645 		struct bucket_disk *d = p->data;
646 		struct bucket_disk *end = d + prios_per_bucket(ca);
647 
648 		for (b = ca->buckets + i * prios_per_bucket(ca);
649 		     b < ca->buckets + ca->sb.nbuckets && d < end;
650 		     b++, d++) {
651 			d->prio = cpu_to_le16(b->prio);
652 			d->gen = b->gen;
653 		}
654 
655 		p->next_bucket	= ca->prio_buckets[i + 1];
656 		p->magic	= pset_magic(&ca->sb);
657 		p->csum		= bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
658 
659 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
660 		BUG_ON(bucket == -1);
661 
662 		mutex_unlock(&ca->set->bucket_lock);
663 		prio_io(ca, bucket, REQ_OP_WRITE);
664 		mutex_lock(&ca->set->bucket_lock);
665 
666 		ca->prio_buckets[i] = bucket;
667 		atomic_dec_bug(&ca->buckets[bucket].pin);
668 	}
669 
670 	mutex_unlock(&ca->set->bucket_lock);
671 
672 	bch_journal_meta(ca->set, &cl);
673 	closure_sync(&cl);
674 
675 	mutex_lock(&ca->set->bucket_lock);
676 
677 	/*
678 	 * Don't want the old priorities to get garbage collected until after we
679 	 * finish writing the new ones, and they're journalled
680 	 */
681 	for (i = 0; i < prio_buckets(ca); i++) {
682 		if (ca->prio_last_buckets[i])
683 			__bch_bucket_free(ca,
684 				&ca->buckets[ca->prio_last_buckets[i]]);
685 
686 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
687 	}
688 	return 0;
689 }
690 
prio_read(struct cache * ca,uint64_t bucket)691 static int prio_read(struct cache *ca, uint64_t bucket)
692 {
693 	struct prio_set *p = ca->disk_buckets;
694 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
695 	struct bucket *b;
696 	unsigned int bucket_nr = 0;
697 	int ret = -EIO;
698 
699 	for (b = ca->buckets;
700 	     b < ca->buckets + ca->sb.nbuckets;
701 	     b++, d++) {
702 		if (d == end) {
703 			ca->prio_buckets[bucket_nr] = bucket;
704 			ca->prio_last_buckets[bucket_nr] = bucket;
705 			bucket_nr++;
706 
707 			prio_io(ca, bucket, REQ_OP_READ);
708 
709 			if (p->csum !=
710 			    bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
711 				pr_warn("bad csum reading priorities\n");
712 				goto out;
713 			}
714 
715 			if (p->magic != pset_magic(&ca->sb)) {
716 				pr_warn("bad magic reading priorities\n");
717 				goto out;
718 			}
719 
720 			bucket = p->next_bucket;
721 			d = p->data;
722 		}
723 
724 		b->prio = le16_to_cpu(d->prio);
725 		b->gen = b->last_gc = d->gen;
726 	}
727 
728 	ret = 0;
729 out:
730 	return ret;
731 }
732 
733 /* Bcache device */
734 
open_dev(struct gendisk * disk,blk_mode_t mode)735 static int open_dev(struct gendisk *disk, blk_mode_t mode)
736 {
737 	struct bcache_device *d = disk->private_data;
738 
739 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
740 		return -ENXIO;
741 
742 	closure_get(&d->cl);
743 	return 0;
744 }
745 
release_dev(struct gendisk * b)746 static void release_dev(struct gendisk *b)
747 {
748 	struct bcache_device *d = b->private_data;
749 
750 	closure_put(&d->cl);
751 }
752 
ioctl_dev(struct block_device * b,blk_mode_t mode,unsigned int cmd,unsigned long arg)753 static int ioctl_dev(struct block_device *b, blk_mode_t mode,
754 		     unsigned int cmd, unsigned long arg)
755 {
756 	struct bcache_device *d = b->bd_disk->private_data;
757 
758 	return d->ioctl(d, mode, cmd, arg);
759 }
760 
761 static const struct block_device_operations bcache_cached_ops = {
762 	.submit_bio	= cached_dev_submit_bio,
763 	.open		= open_dev,
764 	.release	= release_dev,
765 	.ioctl		= ioctl_dev,
766 	.owner		= THIS_MODULE,
767 };
768 
769 static const struct block_device_operations bcache_flash_ops = {
770 	.submit_bio	= flash_dev_submit_bio,
771 	.open		= open_dev,
772 	.release	= release_dev,
773 	.ioctl		= ioctl_dev,
774 	.owner		= THIS_MODULE,
775 };
776 
bcache_device_stop(struct bcache_device * d)777 void bcache_device_stop(struct bcache_device *d)
778 {
779 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
780 		/*
781 		 * closure_fn set to
782 		 * - cached device: cached_dev_flush()
783 		 * - flash dev: flash_dev_flush()
784 		 */
785 		closure_queue(&d->cl);
786 }
787 
bcache_device_unlink(struct bcache_device * d)788 static void bcache_device_unlink(struct bcache_device *d)
789 {
790 	lockdep_assert_held(&bch_register_lock);
791 
792 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
793 		struct cache *ca = d->c->cache;
794 
795 		sysfs_remove_link(&d->c->kobj, d->name);
796 		sysfs_remove_link(&d->kobj, "cache");
797 
798 		bd_unlink_disk_holder(ca->bdev, d->disk);
799 	}
800 }
801 
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)802 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
803 			       const char *name)
804 {
805 	struct cache *ca = c->cache;
806 	int ret;
807 
808 	bd_link_disk_holder(ca->bdev, d->disk);
809 
810 	snprintf(d->name, BCACHEDEVNAME_SIZE,
811 		 "%s%u", name, d->id);
812 
813 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
814 	if (ret < 0)
815 		pr_err("Couldn't create device -> cache set symlink\n");
816 
817 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
818 	if (ret < 0)
819 		pr_err("Couldn't create cache set -> device symlink\n");
820 
821 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
822 }
823 
bcache_device_detach(struct bcache_device * d)824 static void bcache_device_detach(struct bcache_device *d)
825 {
826 	lockdep_assert_held(&bch_register_lock);
827 
828 	atomic_dec(&d->c->attached_dev_nr);
829 
830 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
831 		struct uuid_entry *u = d->c->uuids + d->id;
832 
833 		SET_UUID_FLASH_ONLY(u, 0);
834 		memcpy(u->uuid, invalid_uuid, 16);
835 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
836 		bch_uuid_write(d->c);
837 	}
838 
839 	bcache_device_unlink(d);
840 
841 	d->c->devices[d->id] = NULL;
842 	closure_put(&d->c->caching);
843 	d->c = NULL;
844 }
845 
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)846 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
847 				 unsigned int id)
848 {
849 	d->id = id;
850 	d->c = c;
851 	c->devices[id] = d;
852 
853 	if (id >= c->devices_max_used)
854 		c->devices_max_used = id + 1;
855 
856 	closure_get(&c->caching);
857 }
858 
first_minor_to_idx(int first_minor)859 static inline int first_minor_to_idx(int first_minor)
860 {
861 	return (first_minor/BCACHE_MINORS);
862 }
863 
idx_to_first_minor(int idx)864 static inline int idx_to_first_minor(int idx)
865 {
866 	return (idx * BCACHE_MINORS);
867 }
868 
bcache_device_free(struct bcache_device * d)869 static void bcache_device_free(struct bcache_device *d)
870 {
871 	struct gendisk *disk = d->disk;
872 
873 	lockdep_assert_held(&bch_register_lock);
874 
875 	if (disk)
876 		pr_info("%s stopped\n", disk->disk_name);
877 	else
878 		pr_err("bcache device (NULL gendisk) stopped\n");
879 
880 	if (d->c)
881 		bcache_device_detach(d);
882 
883 	if (disk) {
884 		ida_free(&bcache_device_idx,
885 			 first_minor_to_idx(disk->first_minor));
886 		put_disk(disk);
887 	}
888 
889 	bioset_exit(&d->bio_split);
890 	kvfree(d->full_dirty_stripes);
891 	kvfree(d->stripe_sectors_dirty);
892 
893 	closure_debug_destroy(&d->cl);
894 }
895 
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors,struct block_device * cached_bdev,const struct block_device_operations * ops)896 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
897 		sector_t sectors, struct block_device *cached_bdev,
898 		const struct block_device_operations *ops)
899 {
900 	const size_t max_stripes = min_t(size_t, INT_MAX,
901 					 SIZE_MAX / sizeof(atomic_t));
902 	struct queue_limits lim = {
903 		.max_hw_sectors		= UINT_MAX,
904 		.max_sectors		= UINT_MAX,
905 		.max_segment_size	= UINT_MAX,
906 		.max_segments		= BIO_MAX_VECS,
907 		.max_hw_discard_sectors	= UINT_MAX,
908 		.io_min			= block_size,
909 		.logical_block_size	= block_size,
910 		.physical_block_size	= block_size,
911 		.features		= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA,
912 	};
913 	uint64_t n;
914 	int idx;
915 
916 	if (cached_bdev) {
917 		d->stripe_size = bdev_io_opt(cached_bdev) >> SECTOR_SHIFT;
918 		lim.io_opt = umax(block_size, bdev_io_opt(cached_bdev));
919 	}
920 	if (!d->stripe_size)
921 		d->stripe_size = 1 << 31;
922 	else if (d->stripe_size < BCH_MIN_STRIPE_SZ)
923 		d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size);
924 
925 	n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
926 	if (!n || n > max_stripes) {
927 		pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
928 			n);
929 		return -ENOMEM;
930 	}
931 	d->nr_stripes = n;
932 
933 	n = d->nr_stripes * sizeof(atomic_t);
934 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
935 	if (!d->stripe_sectors_dirty)
936 		return -ENOMEM;
937 
938 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
939 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
940 	if (!d->full_dirty_stripes)
941 		goto out_free_stripe_sectors_dirty;
942 
943 	idx = ida_alloc_max(&bcache_device_idx, BCACHE_DEVICE_IDX_MAX - 1,
944 			    GFP_KERNEL);
945 	if (idx < 0)
946 		goto out_free_full_dirty_stripes;
947 
948 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
949 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
950 		goto out_ida_remove;
951 
952 	if (lim.logical_block_size > PAGE_SIZE && cached_bdev) {
953 		/*
954 		 * This should only happen with BCACHE_SB_VERSION_BDEV.
955 		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
956 		 */
957 		pr_info("bcache%i: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
958 			idx, lim.logical_block_size,
959 			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
960 
961 		/* This also adjusts physical block size/min io size if needed */
962 		lim.logical_block_size = bdev_logical_block_size(cached_bdev);
963 	}
964 
965 	d->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
966 	if (IS_ERR(d->disk))
967 		goto out_bioset_exit;
968 
969 	set_capacity(d->disk, sectors);
970 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
971 
972 	d->disk->major		= bcache_major;
973 	d->disk->first_minor	= idx_to_first_minor(idx);
974 	d->disk->minors		= BCACHE_MINORS;
975 	d->disk->fops		= ops;
976 	d->disk->private_data	= d;
977 	return 0;
978 
979 out_bioset_exit:
980 	bioset_exit(&d->bio_split);
981 out_ida_remove:
982 	ida_free(&bcache_device_idx, idx);
983 out_free_full_dirty_stripes:
984 	kvfree(d->full_dirty_stripes);
985 out_free_stripe_sectors_dirty:
986 	kvfree(d->stripe_sectors_dirty);
987 	return -ENOMEM;
988 
989 }
990 
991 /* Cached device */
992 
calc_cached_dev_sectors(struct cache_set * c)993 static void calc_cached_dev_sectors(struct cache_set *c)
994 {
995 	uint64_t sectors = 0;
996 	struct cached_dev *dc;
997 
998 	list_for_each_entry(dc, &c->cached_devs, list)
999 		sectors += bdev_nr_sectors(dc->bdev);
1000 
1001 	c->cached_dev_sectors = sectors;
1002 }
1003 
1004 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)1005 static int cached_dev_status_update(void *arg)
1006 {
1007 	struct cached_dev *dc = arg;
1008 	struct request_queue *q;
1009 
1010 	/*
1011 	 * If this delayed worker is stopping outside, directly quit here.
1012 	 * dc->io_disable might be set via sysfs interface, so check it
1013 	 * here too.
1014 	 */
1015 	while (!kthread_should_stop() && !dc->io_disable) {
1016 		q = bdev_get_queue(dc->bdev);
1017 		if (blk_queue_dying(q))
1018 			dc->offline_seconds++;
1019 		else
1020 			dc->offline_seconds = 0;
1021 
1022 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1023 			pr_err("%pg: device offline for %d seconds\n",
1024 			       dc->bdev,
1025 			       BACKING_DEV_OFFLINE_TIMEOUT);
1026 			pr_err("%s: disable I/O request due to backing device offline\n",
1027 			       dc->disk.name);
1028 			dc->io_disable = true;
1029 			/* let others know earlier that io_disable is true */
1030 			smp_mb();
1031 			bcache_device_stop(&dc->disk);
1032 			break;
1033 		}
1034 		schedule_timeout_interruptible(HZ);
1035 	}
1036 
1037 	wait_for_kthread_stop();
1038 	return 0;
1039 }
1040 
1041 
bch_cached_dev_run(struct cached_dev * dc)1042 int bch_cached_dev_run(struct cached_dev *dc)
1043 {
1044 	int ret = 0;
1045 	struct bcache_device *d = &dc->disk;
1046 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1047 	char *env[] = {
1048 		"DRIVER=bcache",
1049 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1050 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1051 		NULL,
1052 	};
1053 
1054 	if (dc->io_disable) {
1055 		pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
1056 		ret = -EIO;
1057 		goto out;
1058 	}
1059 
1060 	if (atomic_xchg(&dc->running, 1)) {
1061 		pr_info("cached dev %pg is running already\n", dc->bdev);
1062 		ret = -EBUSY;
1063 		goto out;
1064 	}
1065 
1066 	if (!d->c &&
1067 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1068 		struct closure cl;
1069 
1070 		closure_init_stack(&cl);
1071 
1072 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1073 		bch_write_bdev_super(dc, &cl);
1074 		closure_sync(&cl);
1075 	}
1076 
1077 	ret = add_disk(d->disk);
1078 	if (ret)
1079 		goto out;
1080 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1081 	/*
1082 	 * won't show up in the uevent file, use udevadm monitor -e instead
1083 	 * only class / kset properties are persistent
1084 	 */
1085 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1086 
1087 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1088 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1089 			      &d->kobj, "bcache")) {
1090 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1091 		ret = -ENOMEM;
1092 		goto out;
1093 	}
1094 
1095 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1096 					       dc, "bcache_status_update");
1097 	if (IS_ERR(dc->status_update_thread)) {
1098 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1099 	}
1100 
1101 out:
1102 	kfree(env[1]);
1103 	kfree(env[2]);
1104 	kfree(buf);
1105 	return ret;
1106 }
1107 
1108 /*
1109  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1110  * work dc->writeback_rate_update is running. Wait until the routine
1111  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1112  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1113  * seconds, give up waiting here and continue to cancel it too.
1114  */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1115 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1116 {
1117 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1118 
1119 	do {
1120 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1121 			      &dc->disk.flags))
1122 			break;
1123 		time_out--;
1124 		schedule_timeout_interruptible(1);
1125 	} while (time_out > 0);
1126 
1127 	if (time_out == 0)
1128 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1129 
1130 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1131 }
1132 
cached_dev_detach_finish(struct work_struct * w)1133 static void cached_dev_detach_finish(struct work_struct *w)
1134 {
1135 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1136 	struct cache_set *c = dc->disk.c;
1137 
1138 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1139 	BUG_ON(refcount_read(&dc->count));
1140 
1141 
1142 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1143 		cancel_writeback_rate_update_dwork(dc);
1144 
1145 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1146 		kthread_stop(dc->writeback_thread);
1147 		dc->writeback_thread = NULL;
1148 	}
1149 
1150 	mutex_lock(&bch_register_lock);
1151 
1152 	bcache_device_detach(&dc->disk);
1153 	list_move(&dc->list, &uncached_devices);
1154 	calc_cached_dev_sectors(c);
1155 
1156 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1157 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1158 
1159 	mutex_unlock(&bch_register_lock);
1160 
1161 	pr_info("Caching disabled for %pg\n", dc->bdev);
1162 
1163 	/* Drop ref we took in cached_dev_detach() */
1164 	closure_put(&dc->disk.cl);
1165 }
1166 
bch_cached_dev_detach(struct cached_dev * dc)1167 void bch_cached_dev_detach(struct cached_dev *dc)
1168 {
1169 	lockdep_assert_held(&bch_register_lock);
1170 
1171 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1172 		return;
1173 
1174 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1175 		return;
1176 
1177 	/*
1178 	 * Block the device from being closed and freed until we're finished
1179 	 * detaching
1180 	 */
1181 	closure_get(&dc->disk.cl);
1182 
1183 	bch_writeback_queue(dc);
1184 
1185 	cached_dev_put(dc);
1186 }
1187 
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1188 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1189 			  uint8_t *set_uuid)
1190 {
1191 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1192 	struct uuid_entry *u;
1193 	struct cached_dev *exist_dc, *t;
1194 	int ret = 0;
1195 
1196 	if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1197 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1198 		return -ENOENT;
1199 
1200 	if (dc->disk.c) {
1201 		pr_err("Can't attach %pg: already attached\n", dc->bdev);
1202 		return -EINVAL;
1203 	}
1204 
1205 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1206 		pr_err("Can't attach %pg: shutting down\n", dc->bdev);
1207 		return -EINVAL;
1208 	}
1209 
1210 	if (dc->sb.block_size < c->cache->sb.block_size) {
1211 		/* Will die */
1212 		pr_err("Couldn't attach %pg: block size less than set's block size\n",
1213 		       dc->bdev);
1214 		return -EINVAL;
1215 	}
1216 
1217 	/* Check whether already attached */
1218 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1219 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1220 			pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1221 				dc->bdev);
1222 
1223 			return -EINVAL;
1224 		}
1225 	}
1226 
1227 	u = uuid_find(c, dc->sb.uuid);
1228 
1229 	if (u &&
1230 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1231 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1232 		memcpy(u->uuid, invalid_uuid, 16);
1233 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1234 		u = NULL;
1235 	}
1236 
1237 	if (!u) {
1238 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1239 			pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
1240 			return -ENOENT;
1241 		}
1242 
1243 		u = uuid_find_empty(c);
1244 		if (!u) {
1245 			pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
1246 			return -EINVAL;
1247 		}
1248 	}
1249 
1250 	/*
1251 	 * Deadlocks since we're called via sysfs...
1252 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1253 	 */
1254 
1255 	if (bch_is_zero(u->uuid, 16)) {
1256 		struct closure cl;
1257 
1258 		closure_init_stack(&cl);
1259 
1260 		memcpy(u->uuid, dc->sb.uuid, 16);
1261 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1262 		u->first_reg = u->last_reg = rtime;
1263 		bch_uuid_write(c);
1264 
1265 		memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1266 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1267 
1268 		bch_write_bdev_super(dc, &cl);
1269 		closure_sync(&cl);
1270 	} else {
1271 		u->last_reg = rtime;
1272 		bch_uuid_write(c);
1273 	}
1274 
1275 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1276 	list_move(&dc->list, &c->cached_devs);
1277 	calc_cached_dev_sectors(c);
1278 
1279 	/*
1280 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1281 	 * cached_dev_get()
1282 	 */
1283 	smp_wmb();
1284 	refcount_set(&dc->count, 1);
1285 
1286 	/* Block writeback thread, but spawn it */
1287 	down_write(&dc->writeback_lock);
1288 	if (bch_cached_dev_writeback_start(dc)) {
1289 		up_write(&dc->writeback_lock);
1290 		pr_err("Couldn't start writeback facilities for %s\n",
1291 		       dc->disk.disk->disk_name);
1292 		return -ENOMEM;
1293 	}
1294 
1295 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1296 		atomic_set(&dc->has_dirty, 1);
1297 		bch_writeback_queue(dc);
1298 	}
1299 
1300 	bch_sectors_dirty_init(&dc->disk);
1301 
1302 	ret = bch_cached_dev_run(dc);
1303 	if (ret && (ret != -EBUSY)) {
1304 		up_write(&dc->writeback_lock);
1305 		/*
1306 		 * bch_register_lock is held, bcache_device_stop() is not
1307 		 * able to be directly called. The kthread and kworker
1308 		 * created previously in bch_cached_dev_writeback_start()
1309 		 * have to be stopped manually here.
1310 		 */
1311 		kthread_stop(dc->writeback_thread);
1312 		cancel_writeback_rate_update_dwork(dc);
1313 		pr_err("Couldn't run cached device %pg\n", dc->bdev);
1314 		return ret;
1315 	}
1316 
1317 	bcache_device_link(&dc->disk, c, "bdev");
1318 	atomic_inc(&c->attached_dev_nr);
1319 
1320 	if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1321 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1322 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1323 		set_disk_ro(dc->disk.disk, 1);
1324 	}
1325 
1326 	/* Allow the writeback thread to proceed */
1327 	up_write(&dc->writeback_lock);
1328 
1329 	pr_info("Caching %pg as %s on set %pU\n",
1330 		dc->bdev,
1331 		dc->disk.disk->disk_name,
1332 		dc->disk.c->set_uuid);
1333 	return 0;
1334 }
1335 
1336 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1337 void bch_cached_dev_release(struct kobject *kobj)
1338 {
1339 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1340 					     disk.kobj);
1341 	kfree(dc);
1342 	module_put(THIS_MODULE);
1343 }
1344 
CLOSURE_CALLBACK(cached_dev_free)1345 static CLOSURE_CALLBACK(cached_dev_free)
1346 {
1347 	closure_type(dc, struct cached_dev, disk.cl);
1348 
1349 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1350 		cancel_writeback_rate_update_dwork(dc);
1351 
1352 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1353 		kthread_stop(dc->writeback_thread);
1354 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1355 		kthread_stop(dc->status_update_thread);
1356 
1357 	mutex_lock(&bch_register_lock);
1358 
1359 	if (atomic_read(&dc->running)) {
1360 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1361 		del_gendisk(dc->disk.disk);
1362 	}
1363 	bcache_device_free(&dc->disk);
1364 	list_del(&dc->list);
1365 
1366 	mutex_unlock(&bch_register_lock);
1367 
1368 	if (dc->sb_disk)
1369 		put_page(virt_to_page(dc->sb_disk));
1370 
1371 	if (dc->bdev_file)
1372 		fput(dc->bdev_file);
1373 
1374 	wake_up(&unregister_wait);
1375 
1376 	kobject_put(&dc->disk.kobj);
1377 }
1378 
CLOSURE_CALLBACK(cached_dev_flush)1379 static CLOSURE_CALLBACK(cached_dev_flush)
1380 {
1381 	closure_type(dc, struct cached_dev, disk.cl);
1382 	struct bcache_device *d = &dc->disk;
1383 
1384 	mutex_lock(&bch_register_lock);
1385 	bcache_device_unlink(d);
1386 	mutex_unlock(&bch_register_lock);
1387 
1388 	bch_cache_accounting_destroy(&dc->accounting);
1389 	kobject_del(&d->kobj);
1390 
1391 	continue_at(cl, cached_dev_free, system_wq);
1392 }
1393 
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1394 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1395 {
1396 	int ret;
1397 	struct io *io;
1398 	struct request_queue *q = bdev_get_queue(dc->bdev);
1399 
1400 	__module_get(THIS_MODULE);
1401 	INIT_LIST_HEAD(&dc->list);
1402 	closure_init(&dc->disk.cl, NULL);
1403 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1404 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1405 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1406 	sema_init(&dc->sb_write_mutex, 1);
1407 	INIT_LIST_HEAD(&dc->io_lru);
1408 	spin_lock_init(&dc->io_lock);
1409 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1410 
1411 	dc->sequential_cutoff		= 4 << 20;
1412 
1413 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1414 		list_add(&io->lru, &dc->io_lru);
1415 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1416 	}
1417 
1418 	if (bdev_io_opt(dc->bdev))
1419 		dc->partial_stripes_expensive = !!(q->limits.features &
1420 			BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE);
1421 
1422 	ret = bcache_device_init(&dc->disk, block_size,
1423 			 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1424 			 dc->bdev, &bcache_cached_ops);
1425 	if (ret)
1426 		return ret;
1427 
1428 	atomic_set(&dc->io_errors, 0);
1429 	dc->io_disable = false;
1430 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1431 	/* default to auto */
1432 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1433 
1434 	bch_cached_dev_request_init(dc);
1435 	bch_cached_dev_writeback_init(dc);
1436 	return 0;
1437 }
1438 
1439 /* Cached device - bcache superblock */
1440 
register_bdev(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct file * bdev_file,struct cached_dev * dc)1441 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1442 				 struct file *bdev_file,
1443 				 struct cached_dev *dc)
1444 {
1445 	const char *err = "cannot allocate memory";
1446 	struct cache_set *c;
1447 	int ret = -ENOMEM;
1448 
1449 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1450 	dc->bdev_file = bdev_file;
1451 	dc->bdev = file_bdev(bdev_file);
1452 	dc->sb_disk = sb_disk;
1453 
1454 	if (cached_dev_init(dc, sb->block_size << 9))
1455 		goto err;
1456 
1457 	err = "error creating kobject";
1458 	if (kobject_add(&dc->disk.kobj, bdev_kobj(dc->bdev), "bcache"))
1459 		goto err;
1460 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1461 		goto err;
1462 
1463 	pr_info("registered backing device %pg\n", dc->bdev);
1464 
1465 	list_add(&dc->list, &uncached_devices);
1466 	/* attach to a matched cache set if it exists */
1467 	list_for_each_entry(c, &bch_cache_sets, list)
1468 		bch_cached_dev_attach(dc, c, NULL);
1469 
1470 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1471 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1472 		err = "failed to run cached device";
1473 		ret = bch_cached_dev_run(dc);
1474 		if (ret)
1475 			goto err;
1476 	}
1477 
1478 	return 0;
1479 err:
1480 	pr_notice("error %pg: %s\n", dc->bdev, err);
1481 	bcache_device_stop(&dc->disk);
1482 	return ret;
1483 }
1484 
1485 /* Flash only volumes */
1486 
1487 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1488 void bch_flash_dev_release(struct kobject *kobj)
1489 {
1490 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1491 					       kobj);
1492 	kfree(d);
1493 }
1494 
CLOSURE_CALLBACK(flash_dev_free)1495 static CLOSURE_CALLBACK(flash_dev_free)
1496 {
1497 	closure_type(d, struct bcache_device, cl);
1498 
1499 	mutex_lock(&bch_register_lock);
1500 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1501 			&d->c->flash_dev_dirty_sectors);
1502 	del_gendisk(d->disk);
1503 	bcache_device_free(d);
1504 	mutex_unlock(&bch_register_lock);
1505 	kobject_put(&d->kobj);
1506 }
1507 
CLOSURE_CALLBACK(flash_dev_flush)1508 static CLOSURE_CALLBACK(flash_dev_flush)
1509 {
1510 	closure_type(d, struct bcache_device, cl);
1511 
1512 	mutex_lock(&bch_register_lock);
1513 	bcache_device_unlink(d);
1514 	mutex_unlock(&bch_register_lock);
1515 	kobject_del(&d->kobj);
1516 	continue_at(cl, flash_dev_free, system_wq);
1517 }
1518 
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1519 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1520 {
1521 	int err = -ENOMEM;
1522 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1523 					  GFP_KERNEL);
1524 	if (!d)
1525 		goto err_ret;
1526 
1527 	closure_init(&d->cl, NULL);
1528 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1529 
1530 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1531 
1532 	if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1533 			NULL, &bcache_flash_ops))
1534 		goto err;
1535 
1536 	bcache_device_attach(d, c, u - c->uuids);
1537 	bch_sectors_dirty_init(d);
1538 	bch_flash_dev_request_init(d);
1539 	err = add_disk(d->disk);
1540 	if (err)
1541 		goto err;
1542 
1543 	err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache");
1544 	if (err)
1545 		goto err;
1546 
1547 	bcache_device_link(d, c, "volume");
1548 
1549 	if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1550 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1551 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1552 		set_disk_ro(d->disk, 1);
1553 	}
1554 
1555 	return 0;
1556 err:
1557 	kobject_put(&d->kobj);
1558 err_ret:
1559 	return err;
1560 }
1561 
flash_devs_run(struct cache_set * c)1562 static int flash_devs_run(struct cache_set *c)
1563 {
1564 	int ret = 0;
1565 	struct uuid_entry *u;
1566 
1567 	for (u = c->uuids;
1568 	     u < c->uuids + c->nr_uuids && !ret;
1569 	     u++)
1570 		if (UUID_FLASH_ONLY(u))
1571 			ret = flash_dev_run(c, u);
1572 
1573 	return ret;
1574 }
1575 
bch_flash_dev_create(struct cache_set * c,uint64_t size)1576 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1577 {
1578 	struct uuid_entry *u;
1579 
1580 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1581 		return -EINTR;
1582 
1583 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1584 		return -EPERM;
1585 
1586 	u = uuid_find_empty(c);
1587 	if (!u) {
1588 		pr_err("Can't create volume, no room for UUID\n");
1589 		return -EINVAL;
1590 	}
1591 
1592 	get_random_bytes(u->uuid, 16);
1593 	memset(u->label, 0, 32);
1594 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1595 
1596 	SET_UUID_FLASH_ONLY(u, 1);
1597 	u->sectors = size >> 9;
1598 
1599 	bch_uuid_write(c);
1600 
1601 	return flash_dev_run(c, u);
1602 }
1603 
bch_cached_dev_error(struct cached_dev * dc)1604 bool bch_cached_dev_error(struct cached_dev *dc)
1605 {
1606 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1607 		return false;
1608 
1609 	dc->io_disable = true;
1610 	/* make others know io_disable is true earlier */
1611 	smp_mb();
1612 
1613 	pr_err("stop %s: too many IO errors on backing device %pg\n",
1614 	       dc->disk.disk->disk_name, dc->bdev);
1615 
1616 	bcache_device_stop(&dc->disk);
1617 	return true;
1618 }
1619 
1620 /* Cache set */
1621 
1622 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1623 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1624 {
1625 	struct va_format vaf;
1626 	va_list args;
1627 
1628 	if (c->on_error != ON_ERROR_PANIC &&
1629 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1630 		return false;
1631 
1632 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1633 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1634 
1635 	/*
1636 	 * XXX: we can be called from atomic context
1637 	 * acquire_console_sem();
1638 	 */
1639 
1640 	va_start(args, fmt);
1641 
1642 	vaf.fmt = fmt;
1643 	vaf.va = &args;
1644 
1645 	pr_err("error on %pU: %pV, disabling caching\n",
1646 	       c->set_uuid, &vaf);
1647 
1648 	va_end(args);
1649 
1650 	if (c->on_error == ON_ERROR_PANIC)
1651 		panic("panic forced after error\n");
1652 
1653 	bch_cache_set_unregister(c);
1654 	return true;
1655 }
1656 
1657 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1658 void bch_cache_set_release(struct kobject *kobj)
1659 {
1660 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1661 
1662 	kfree(c);
1663 	module_put(THIS_MODULE);
1664 }
1665 
CLOSURE_CALLBACK(cache_set_free)1666 static CLOSURE_CALLBACK(cache_set_free)
1667 {
1668 	closure_type(c, struct cache_set, cl);
1669 	struct cache *ca;
1670 
1671 	debugfs_remove(c->debug);
1672 
1673 	bch_open_buckets_free(c);
1674 	bch_btree_cache_free(c);
1675 	bch_journal_free(c);
1676 
1677 	mutex_lock(&bch_register_lock);
1678 	bch_bset_sort_state_free(&c->sort);
1679 	free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1680 
1681 	ca = c->cache;
1682 	if (ca) {
1683 		ca->set = NULL;
1684 		c->cache = NULL;
1685 		kobject_put(&ca->kobj);
1686 	}
1687 
1688 
1689 	if (c->moving_gc_wq)
1690 		destroy_workqueue(c->moving_gc_wq);
1691 	bioset_exit(&c->bio_split);
1692 	mempool_exit(&c->fill_iter);
1693 	mempool_exit(&c->bio_meta);
1694 	mempool_exit(&c->search);
1695 	kfree(c->devices);
1696 
1697 	list_del(&c->list);
1698 	mutex_unlock(&bch_register_lock);
1699 
1700 	pr_info("Cache set %pU unregistered\n", c->set_uuid);
1701 	wake_up(&unregister_wait);
1702 
1703 	closure_debug_destroy(&c->cl);
1704 	kobject_put(&c->kobj);
1705 }
1706 
CLOSURE_CALLBACK(cache_set_flush)1707 static CLOSURE_CALLBACK(cache_set_flush)
1708 {
1709 	closure_type(c, struct cache_set, caching);
1710 	struct cache *ca = c->cache;
1711 	struct btree *b;
1712 
1713 	bch_cache_accounting_destroy(&c->accounting);
1714 
1715 	kobject_put(&c->internal);
1716 	kobject_del(&c->kobj);
1717 
1718 	if (!IS_ERR_OR_NULL(c->gc_thread))
1719 		kthread_stop(c->gc_thread);
1720 
1721 	if (!IS_ERR_OR_NULL(c->root))
1722 		list_add(&c->root->list, &c->btree_cache);
1723 
1724 	/*
1725 	 * Avoid flushing cached nodes if cache set is retiring
1726 	 * due to too many I/O errors detected.
1727 	 */
1728 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1729 		list_for_each_entry(b, &c->btree_cache, list) {
1730 			mutex_lock(&b->write_lock);
1731 			if (btree_node_dirty(b))
1732 				__bch_btree_node_write(b, NULL);
1733 			mutex_unlock(&b->write_lock);
1734 		}
1735 
1736 	/*
1737 	 * If the register_cache_set() call to bch_cache_set_alloc() failed,
1738 	 * ca has not been assigned a value and return error.
1739 	 * So we need check ca is not NULL during bch_cache_set_unregister().
1740 	 */
1741 	if (ca && ca->alloc_thread)
1742 		kthread_stop(ca->alloc_thread);
1743 
1744 	if (c->journal.cur) {
1745 		cancel_delayed_work_sync(&c->journal.work);
1746 		/* flush last journal entry if needed */
1747 		c->journal.work.work.func(&c->journal.work.work);
1748 	}
1749 
1750 	closure_return(cl);
1751 }
1752 
1753 /*
1754  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1755  * cache set is unregistering due to too many I/O errors. In this condition,
1756  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1757  * value and whether the broken cache has dirty data:
1758  *
1759  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1760  *  BCH_CACHED_STOP_AUTO               0               NO
1761  *  BCH_CACHED_STOP_AUTO               1               YES
1762  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1763  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1764  *
1765  * The expected behavior is, if stop_when_cache_set_failed is configured to
1766  * "auto" via sysfs interface, the bcache device will not be stopped if the
1767  * backing device is clean on the broken cache device.
1768  */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1769 static void conditional_stop_bcache_device(struct cache_set *c,
1770 					   struct bcache_device *d,
1771 					   struct cached_dev *dc)
1772 {
1773 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1774 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1775 			d->disk->disk_name, c->set_uuid);
1776 		bcache_device_stop(d);
1777 	} else if (atomic_read(&dc->has_dirty)) {
1778 		/*
1779 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1780 		 * and dc->has_dirty == 1
1781 		 */
1782 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1783 			d->disk->disk_name);
1784 		/*
1785 		 * There might be a small time gap that cache set is
1786 		 * released but bcache device is not. Inside this time
1787 		 * gap, regular I/O requests will directly go into
1788 		 * backing device as no cache set attached to. This
1789 		 * behavior may also introduce potential inconsistence
1790 		 * data in writeback mode while cache is dirty.
1791 		 * Therefore before calling bcache_device_stop() due
1792 		 * to a broken cache device, dc->io_disable should be
1793 		 * explicitly set to true.
1794 		 */
1795 		dc->io_disable = true;
1796 		/* make others know io_disable is true earlier */
1797 		smp_mb();
1798 		bcache_device_stop(d);
1799 	} else {
1800 		/*
1801 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1802 		 * and dc->has_dirty == 0
1803 		 */
1804 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1805 			d->disk->disk_name);
1806 	}
1807 }
1808 
CLOSURE_CALLBACK(__cache_set_unregister)1809 static CLOSURE_CALLBACK(__cache_set_unregister)
1810 {
1811 	closure_type(c, struct cache_set, caching);
1812 	struct cached_dev *dc;
1813 	struct bcache_device *d;
1814 	size_t i;
1815 
1816 	mutex_lock(&bch_register_lock);
1817 
1818 	for (i = 0; i < c->devices_max_used; i++) {
1819 		d = c->devices[i];
1820 		if (!d)
1821 			continue;
1822 
1823 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1824 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1825 			dc = container_of(d, struct cached_dev, disk);
1826 			bch_cached_dev_detach(dc);
1827 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1828 				conditional_stop_bcache_device(c, d, dc);
1829 		} else {
1830 			bcache_device_stop(d);
1831 		}
1832 	}
1833 
1834 	mutex_unlock(&bch_register_lock);
1835 
1836 	continue_at(cl, cache_set_flush, system_wq);
1837 }
1838 
bch_cache_set_stop(struct cache_set * c)1839 void bch_cache_set_stop(struct cache_set *c)
1840 {
1841 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1842 		/* closure_fn set to __cache_set_unregister() */
1843 		closure_queue(&c->caching);
1844 }
1845 
bch_cache_set_unregister(struct cache_set * c)1846 void bch_cache_set_unregister(struct cache_set *c)
1847 {
1848 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1849 	bch_cache_set_stop(c);
1850 }
1851 
1852 #define alloc_meta_bucket_pages(gfp, sb)		\
1853 	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1854 
bch_cache_set_alloc(struct cache_sb * sb)1855 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1856 {
1857 	int iter_size;
1858 	struct cache *ca = container_of(sb, struct cache, sb);
1859 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1860 
1861 	if (!c)
1862 		return NULL;
1863 
1864 	__module_get(THIS_MODULE);
1865 	closure_init(&c->cl, NULL);
1866 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1867 
1868 	closure_init(&c->caching, &c->cl);
1869 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1870 
1871 	/* Maybe create continue_at_noreturn() and use it here? */
1872 	closure_set_stopped(&c->cl);
1873 	closure_put(&c->cl);
1874 
1875 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1876 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1877 
1878 	bch_cache_accounting_init(&c->accounting, &c->cl);
1879 
1880 	memcpy(c->set_uuid, sb->set_uuid, 16);
1881 
1882 	c->cache		= ca;
1883 	c->cache->set		= c;
1884 	c->bucket_bits		= ilog2(sb->bucket_size);
1885 	c->block_bits		= ilog2(sb->block_size);
1886 	c->nr_uuids		= meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1887 	c->devices_max_used	= 0;
1888 	atomic_set(&c->attached_dev_nr, 0);
1889 	c->btree_pages		= meta_bucket_pages(sb);
1890 	if (c->btree_pages > BTREE_MAX_PAGES)
1891 		c->btree_pages = max_t(int, c->btree_pages / 4,
1892 				       BTREE_MAX_PAGES);
1893 
1894 	sema_init(&c->sb_write_mutex, 1);
1895 	mutex_init(&c->bucket_lock);
1896 	init_waitqueue_head(&c->btree_cache_wait);
1897 	spin_lock_init(&c->btree_cannibalize_lock);
1898 	init_waitqueue_head(&c->bucket_wait);
1899 	init_waitqueue_head(&c->gc_wait);
1900 	sema_init(&c->uuid_write_mutex, 1);
1901 
1902 	spin_lock_init(&c->btree_gc_time.lock);
1903 	spin_lock_init(&c->btree_split_time.lock);
1904 	spin_lock_init(&c->btree_read_time.lock);
1905 
1906 	bch_moving_init_cache_set(c);
1907 
1908 	INIT_LIST_HEAD(&c->list);
1909 	INIT_LIST_HEAD(&c->cached_devs);
1910 	INIT_LIST_HEAD(&c->btree_cache);
1911 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1912 	INIT_LIST_HEAD(&c->btree_cache_freed);
1913 	INIT_LIST_HEAD(&c->data_buckets);
1914 
1915 	iter_size = sizeof(struct btree_iter) +
1916 		    ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size) *
1917 			    sizeof(struct btree_iter_set);
1918 
1919 	c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1920 	if (!c->devices)
1921 		goto err;
1922 
1923 	if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1924 		goto err;
1925 
1926 	if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1927 			sizeof(struct bbio) +
1928 			sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1929 		goto err;
1930 
1931 	if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1932 		goto err;
1933 
1934 	if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1935 			BIOSET_NEED_RESCUER))
1936 		goto err;
1937 
1938 	c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1939 	if (!c->uuids)
1940 		goto err;
1941 
1942 	c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1943 	if (!c->moving_gc_wq)
1944 		goto err;
1945 
1946 	if (bch_journal_alloc(c))
1947 		goto err;
1948 
1949 	if (bch_btree_cache_alloc(c))
1950 		goto err;
1951 
1952 	if (bch_open_buckets_alloc(c))
1953 		goto err;
1954 
1955 	if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1956 		goto err;
1957 
1958 	c->congested_read_threshold_us	= 2000;
1959 	c->congested_write_threshold_us	= 20000;
1960 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1961 	c->idle_max_writeback_rate_enabled = 1;
1962 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1963 
1964 	return c;
1965 err:
1966 	bch_cache_set_unregister(c);
1967 	return NULL;
1968 }
1969 
run_cache_set(struct cache_set * c)1970 static int run_cache_set(struct cache_set *c)
1971 {
1972 	const char *err = "cannot allocate memory";
1973 	struct cached_dev *dc, *t;
1974 	struct cache *ca = c->cache;
1975 	struct closure cl;
1976 	LIST_HEAD(journal);
1977 	struct journal_replay *l;
1978 
1979 	closure_init_stack(&cl);
1980 
1981 	c->nbuckets = ca->sb.nbuckets;
1982 	set_gc_sectors(c);
1983 
1984 	if (CACHE_SYNC(&c->cache->sb)) {
1985 		struct bkey *k;
1986 		struct jset *j;
1987 
1988 		err = "cannot allocate memory for journal";
1989 		if (bch_journal_read(c, &journal))
1990 			goto err;
1991 
1992 		pr_debug("btree_journal_read() done\n");
1993 
1994 		err = "no journal entries found";
1995 		if (list_empty(&journal))
1996 			goto err;
1997 
1998 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1999 
2000 		err = "IO error reading priorities";
2001 		if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2002 			goto err;
2003 
2004 		/*
2005 		 * If prio_read() fails it'll call cache_set_error and we'll
2006 		 * tear everything down right away, but if we perhaps checked
2007 		 * sooner we could avoid journal replay.
2008 		 */
2009 
2010 		k = &j->btree_root;
2011 
2012 		err = "bad btree root";
2013 		if (__bch_btree_ptr_invalid(c, k))
2014 			goto err;
2015 
2016 		err = "error reading btree root";
2017 		c->root = bch_btree_node_get(c, NULL, k,
2018 					     j->btree_level,
2019 					     true, NULL);
2020 		if (IS_ERR(c->root))
2021 			goto err;
2022 
2023 		list_del_init(&c->root->list);
2024 		rw_unlock(true, c->root);
2025 
2026 		err = uuid_read(c, j, &cl);
2027 		if (err)
2028 			goto err;
2029 
2030 		err = "error in recovery";
2031 		if (bch_btree_check(c))
2032 			goto err;
2033 
2034 		bch_journal_mark(c, &journal);
2035 		bch_initial_gc_finish(c);
2036 		pr_debug("btree_check() done\n");
2037 
2038 		/*
2039 		 * bcache_journal_next() can't happen sooner, or
2040 		 * btree_gc_finish() will give spurious errors about last_gc >
2041 		 * gc_gen - this is a hack but oh well.
2042 		 */
2043 		bch_journal_next(&c->journal);
2044 
2045 		err = "error starting allocator thread";
2046 		if (bch_cache_allocator_start(ca))
2047 			goto err;
2048 
2049 		/*
2050 		 * First place it's safe to allocate: btree_check() and
2051 		 * btree_gc_finish() have to run before we have buckets to
2052 		 * allocate, and bch_bucket_alloc_set() might cause a journal
2053 		 * entry to be written so bcache_journal_next() has to be called
2054 		 * first.
2055 		 *
2056 		 * If the uuids were in the old format we have to rewrite them
2057 		 * before the next journal entry is written:
2058 		 */
2059 		if (j->version < BCACHE_JSET_VERSION_UUID)
2060 			__uuid_write(c);
2061 
2062 		err = "bcache: replay journal failed";
2063 		if (bch_journal_replay(c, &journal))
2064 			goto err;
2065 	} else {
2066 		unsigned int j;
2067 
2068 		pr_notice("invalidating existing data\n");
2069 		ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2070 					2, SB_JOURNAL_BUCKETS);
2071 
2072 		for (j = 0; j < ca->sb.keys; j++)
2073 			ca->sb.d[j] = ca->sb.first_bucket + j;
2074 
2075 		bch_initial_gc_finish(c);
2076 
2077 		err = "error starting allocator thread";
2078 		if (bch_cache_allocator_start(ca))
2079 			goto err;
2080 
2081 		mutex_lock(&c->bucket_lock);
2082 		bch_prio_write(ca, true);
2083 		mutex_unlock(&c->bucket_lock);
2084 
2085 		err = "cannot allocate new UUID bucket";
2086 		if (__uuid_write(c))
2087 			goto err;
2088 
2089 		err = "cannot allocate new btree root";
2090 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2091 		if (IS_ERR(c->root))
2092 			goto err;
2093 
2094 		mutex_lock(&c->root->write_lock);
2095 		bkey_copy_key(&c->root->key, &MAX_KEY);
2096 		bch_btree_node_write(c->root, &cl);
2097 		mutex_unlock(&c->root->write_lock);
2098 
2099 		bch_btree_set_root(c->root);
2100 		rw_unlock(true, c->root);
2101 
2102 		/*
2103 		 * We don't want to write the first journal entry until
2104 		 * everything is set up - fortunately journal entries won't be
2105 		 * written until the SET_CACHE_SYNC() here:
2106 		 */
2107 		SET_CACHE_SYNC(&c->cache->sb, true);
2108 
2109 		bch_journal_next(&c->journal);
2110 		bch_journal_meta(c, &cl);
2111 	}
2112 
2113 	err = "error starting gc thread";
2114 	if (bch_gc_thread_start(c))
2115 		goto err;
2116 
2117 	closure_sync(&cl);
2118 	c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2119 	bcache_write_super(c);
2120 
2121 	if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2122 		pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2123 
2124 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2125 		bch_cached_dev_attach(dc, c, NULL);
2126 
2127 	flash_devs_run(c);
2128 
2129 	bch_journal_space_reserve(&c->journal);
2130 	set_bit(CACHE_SET_RUNNING, &c->flags);
2131 	return 0;
2132 err:
2133 	while (!list_empty(&journal)) {
2134 		l = list_first_entry(&journal, struct journal_replay, list);
2135 		list_del(&l->list);
2136 		kfree(l);
2137 	}
2138 
2139 	closure_sync(&cl);
2140 
2141 	bch_cache_set_error(c, "%s", err);
2142 
2143 	return -EIO;
2144 }
2145 
register_cache_set(struct cache * ca)2146 static const char *register_cache_set(struct cache *ca)
2147 {
2148 	char buf[12];
2149 	const char *err = "cannot allocate memory";
2150 	struct cache_set *c;
2151 
2152 	list_for_each_entry(c, &bch_cache_sets, list)
2153 		if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2154 			if (c->cache)
2155 				return "duplicate cache set member";
2156 
2157 			goto found;
2158 		}
2159 
2160 	c = bch_cache_set_alloc(&ca->sb);
2161 	if (!c)
2162 		return err;
2163 
2164 	err = "error creating kobject";
2165 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2166 	    kobject_add(&c->internal, &c->kobj, "internal"))
2167 		goto err;
2168 
2169 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2170 		goto err;
2171 
2172 	bch_debug_init_cache_set(c);
2173 
2174 	list_add(&c->list, &bch_cache_sets);
2175 found:
2176 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2177 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2178 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2179 		goto err;
2180 
2181 	kobject_get(&ca->kobj);
2182 	ca->set = c;
2183 	ca->set->cache = ca;
2184 
2185 	err = "failed to run cache set";
2186 	if (run_cache_set(c) < 0)
2187 		goto err;
2188 
2189 	return NULL;
2190 err:
2191 	bch_cache_set_unregister(c);
2192 	return err;
2193 }
2194 
2195 /* Cache device */
2196 
2197 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2198 void bch_cache_release(struct kobject *kobj)
2199 {
2200 	struct cache *ca = container_of(kobj, struct cache, kobj);
2201 	unsigned int i;
2202 
2203 	if (ca->set) {
2204 		BUG_ON(ca->set->cache != ca);
2205 		ca->set->cache = NULL;
2206 	}
2207 
2208 	free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2209 	kfree(ca->prio_buckets);
2210 	vfree(ca->buckets);
2211 
2212 	free_heap(&ca->heap);
2213 	free_fifo(&ca->free_inc);
2214 
2215 	for (i = 0; i < RESERVE_NR; i++)
2216 		free_fifo(&ca->free[i]);
2217 
2218 	if (ca->sb_disk)
2219 		put_page(virt_to_page(ca->sb_disk));
2220 
2221 	if (ca->bdev_file)
2222 		fput(ca->bdev_file);
2223 
2224 	kfree(ca);
2225 	module_put(THIS_MODULE);
2226 }
2227 
cache_alloc(struct cache * ca)2228 static int cache_alloc(struct cache *ca)
2229 {
2230 	size_t free;
2231 	size_t btree_buckets;
2232 	struct bucket *b;
2233 	int ret = -ENOMEM;
2234 	const char *err = NULL;
2235 
2236 	__module_get(THIS_MODULE);
2237 	kobject_init(&ca->kobj, &bch_cache_ktype);
2238 
2239 	bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0);
2240 
2241 	/*
2242 	 * When the cache disk is first registered, ca->sb.njournal_buckets
2243 	 * is zero, and it is assigned in run_cache_set().
2244 	 *
2245 	 * When ca->sb.njournal_buckets is not zero, journal exists,
2246 	 * and in bch_journal_replay(), tree node may split.
2247 	 * The worst situation is all journal buckets are valid journal,
2248 	 * and all the keys need to replay, so the number of RESERVE_BTREE
2249 	 * type buckets should be as much as journal buckets.
2250 	 *
2251 	 * If the number of RESERVE_BTREE type buckets is too few, the
2252 	 * bch_allocator_thread() may hang up and unable to allocate
2253 	 * bucket. The situation is roughly as follows:
2254 	 *
2255 	 * 1. In bch_data_insert_keys(), if the operation is not op->replace,
2256 	 *    it will call the bch_journal(), which increments the journal_ref
2257 	 *    counter. This counter is only decremented after bch_btree_insert
2258 	 *    completes.
2259 	 *
2260 	 * 2. When calling bch_btree_insert, if the btree needs to split,
2261 	 *    it will call btree_split() and btree_check_reserve() to check
2262 	 *    whether there are enough reserved buckets in the RESERVE_BTREE
2263 	 *    slot. If not enough, bcache_btree_root() will repeatedly retry.
2264 	 *
2265 	 * 3. Normally, the bch_allocator_thread is responsible for filling
2266 	 *    the reservation slots from the free_inc bucket list. When the
2267 	 *    free_inc bucket list is exhausted, the bch_allocator_thread
2268 	 *    will call invalidate_buckets() until free_inc is refilled.
2269 	 *    Then bch_allocator_thread calls bch_prio_write() once. and
2270 	 *    bch_prio_write() will call bch_journal_meta() and waits for
2271 	 *    the journal write to complete.
2272 	 *
2273 	 * 4. During journal_write, journal_write_unlocked() is be called.
2274 	 *    If journal full occurs, journal_reclaim() and btree_flush_write()
2275 	 *    will be called sequentially, then retry journal_write.
2276 	 *
2277 	 * 5. When 2 and 4 occur together, IO will hung up and cannot recover.
2278 	 *
2279 	 * Therefore, reserve more RESERVE_BTREE type buckets.
2280 	 */
2281 	btree_buckets = clamp_t(size_t, ca->sb.nbuckets >> 7,
2282 				32, SB_JOURNAL_BUCKETS);
2283 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2284 	if (!free) {
2285 		ret = -EPERM;
2286 		err = "ca->sb.nbuckets is too small";
2287 		goto err_free;
2288 	}
2289 
2290 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2291 						GFP_KERNEL)) {
2292 		err = "ca->free[RESERVE_BTREE] alloc failed";
2293 		goto err_btree_alloc;
2294 	}
2295 
2296 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2297 							GFP_KERNEL)) {
2298 		err = "ca->free[RESERVE_PRIO] alloc failed";
2299 		goto err_prio_alloc;
2300 	}
2301 
2302 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2303 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2304 		goto err_movinggc_alloc;
2305 	}
2306 
2307 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2308 		err = "ca->free[RESERVE_NONE] alloc failed";
2309 		goto err_none_alloc;
2310 	}
2311 
2312 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2313 		err = "ca->free_inc alloc failed";
2314 		goto err_free_inc_alloc;
2315 	}
2316 
2317 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2318 		err = "ca->heap alloc failed";
2319 		goto err_heap_alloc;
2320 	}
2321 
2322 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2323 			      ca->sb.nbuckets));
2324 	if (!ca->buckets) {
2325 		err = "ca->buckets alloc failed";
2326 		goto err_buckets_alloc;
2327 	}
2328 
2329 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2330 				   prio_buckets(ca), 2),
2331 				   GFP_KERNEL);
2332 	if (!ca->prio_buckets) {
2333 		err = "ca->prio_buckets alloc failed";
2334 		goto err_prio_buckets_alloc;
2335 	}
2336 
2337 	ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2338 	if (!ca->disk_buckets) {
2339 		err = "ca->disk_buckets alloc failed";
2340 		goto err_disk_buckets_alloc;
2341 	}
2342 
2343 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2344 
2345 	for_each_bucket(b, ca)
2346 		atomic_set(&b->pin, 0);
2347 	return 0;
2348 
2349 err_disk_buckets_alloc:
2350 	kfree(ca->prio_buckets);
2351 err_prio_buckets_alloc:
2352 	vfree(ca->buckets);
2353 err_buckets_alloc:
2354 	free_heap(&ca->heap);
2355 err_heap_alloc:
2356 	free_fifo(&ca->free_inc);
2357 err_free_inc_alloc:
2358 	free_fifo(&ca->free[RESERVE_NONE]);
2359 err_none_alloc:
2360 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2361 err_movinggc_alloc:
2362 	free_fifo(&ca->free[RESERVE_PRIO]);
2363 err_prio_alloc:
2364 	free_fifo(&ca->free[RESERVE_BTREE]);
2365 err_btree_alloc:
2366 err_free:
2367 	module_put(THIS_MODULE);
2368 	if (err)
2369 		pr_notice("error %pg: %s\n", ca->bdev, err);
2370 	return ret;
2371 }
2372 
register_cache(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct file * bdev_file,struct cache * ca)2373 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2374 				struct file *bdev_file,
2375 				struct cache *ca)
2376 {
2377 	const char *err = NULL; /* must be set for any error case */
2378 	int ret = 0;
2379 
2380 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2381 	ca->bdev_file = bdev_file;
2382 	ca->bdev = file_bdev(bdev_file);
2383 	ca->sb_disk = sb_disk;
2384 
2385 	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
2386 		ca->discard = CACHE_DISCARD(&ca->sb);
2387 
2388 	ret = cache_alloc(ca);
2389 	if (ret != 0) {
2390 		if (ret == -ENOMEM)
2391 			err = "cache_alloc(): -ENOMEM";
2392 		else if (ret == -EPERM)
2393 			err = "cache_alloc(): cache device is too small";
2394 		else
2395 			err = "cache_alloc(): unknown error";
2396 		pr_notice("error %pg: %s\n", file_bdev(bdev_file), err);
2397 		/*
2398 		 * If we failed here, it means ca->kobj is not initialized yet,
2399 		 * kobject_put() won't be called and there is no chance to
2400 		 * call fput() to bdev in bch_cache_release(). So
2401 		 * we explicitly call fput() on the block device here.
2402 		 */
2403 		fput(bdev_file);
2404 		return ret;
2405 	}
2406 
2407 	if (kobject_add(&ca->kobj, bdev_kobj(file_bdev(bdev_file)), "bcache")) {
2408 		pr_notice("error %pg: error calling kobject_add\n",
2409 			  file_bdev(bdev_file));
2410 		ret = -ENOMEM;
2411 		goto out;
2412 	}
2413 
2414 	mutex_lock(&bch_register_lock);
2415 	err = register_cache_set(ca);
2416 	mutex_unlock(&bch_register_lock);
2417 
2418 	if (err) {
2419 		ret = -ENODEV;
2420 		goto out;
2421 	}
2422 
2423 	pr_info("registered cache device %pg\n", file_bdev(ca->bdev_file));
2424 
2425 out:
2426 	kobject_put(&ca->kobj);
2427 	return ret;
2428 }
2429 
2430 /* Global interfaces/init */
2431 
2432 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2433 			       const char *buffer, size_t size);
2434 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2435 					 struct kobj_attribute *attr,
2436 					 const char *buffer, size_t size);
2437 
2438 kobj_attribute_write(register,		register_bcache);
2439 kobj_attribute_write(register_quiet,	register_bcache);
2440 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2441 
bch_is_open_backing(dev_t dev)2442 static bool bch_is_open_backing(dev_t dev)
2443 {
2444 	struct cache_set *c, *tc;
2445 	struct cached_dev *dc, *t;
2446 
2447 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2448 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2449 			if (dc->bdev->bd_dev == dev)
2450 				return true;
2451 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2452 		if (dc->bdev->bd_dev == dev)
2453 			return true;
2454 	return false;
2455 }
2456 
bch_is_open_cache(dev_t dev)2457 static bool bch_is_open_cache(dev_t dev)
2458 {
2459 	struct cache_set *c, *tc;
2460 
2461 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2462 		struct cache *ca = c->cache;
2463 
2464 		if (ca->bdev->bd_dev == dev)
2465 			return true;
2466 	}
2467 
2468 	return false;
2469 }
2470 
bch_is_open(dev_t dev)2471 static bool bch_is_open(dev_t dev)
2472 {
2473 	return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2474 }
2475 
2476 struct async_reg_args {
2477 	struct delayed_work reg_work;
2478 	char *path;
2479 	struct cache_sb *sb;
2480 	struct cache_sb_disk *sb_disk;
2481 	struct file *bdev_file;
2482 	void *holder;
2483 };
2484 
register_bdev_worker(struct work_struct * work)2485 static void register_bdev_worker(struct work_struct *work)
2486 {
2487 	int fail = false;
2488 	struct async_reg_args *args =
2489 		container_of(work, struct async_reg_args, reg_work.work);
2490 
2491 	mutex_lock(&bch_register_lock);
2492 	if (register_bdev(args->sb, args->sb_disk, args->bdev_file,
2493 			  args->holder) < 0)
2494 		fail = true;
2495 	mutex_unlock(&bch_register_lock);
2496 
2497 	if (fail)
2498 		pr_info("error %s: fail to register backing device\n",
2499 			args->path);
2500 	kfree(args->sb);
2501 	kfree(args->path);
2502 	kfree(args);
2503 	module_put(THIS_MODULE);
2504 }
2505 
register_cache_worker(struct work_struct * work)2506 static void register_cache_worker(struct work_struct *work)
2507 {
2508 	int fail = false;
2509 	struct async_reg_args *args =
2510 		container_of(work, struct async_reg_args, reg_work.work);
2511 
2512 	/* blkdev_put() will be called in bch_cache_release() */
2513 	if (register_cache(args->sb, args->sb_disk, args->bdev_file,
2514 			   args->holder))
2515 		fail = true;
2516 
2517 	if (fail)
2518 		pr_info("error %s: fail to register cache device\n",
2519 			args->path);
2520 	kfree(args->sb);
2521 	kfree(args->path);
2522 	kfree(args);
2523 	module_put(THIS_MODULE);
2524 }
2525 
register_device_async(struct async_reg_args * args)2526 static void register_device_async(struct async_reg_args *args)
2527 {
2528 	if (SB_IS_BDEV(args->sb))
2529 		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2530 	else
2531 		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2532 
2533 	/* 10 jiffies is enough for a delay */
2534 	queue_delayed_work(system_wq, &args->reg_work, 10);
2535 }
2536 
alloc_holder_object(struct cache_sb * sb)2537 static void *alloc_holder_object(struct cache_sb *sb)
2538 {
2539 	if (SB_IS_BDEV(sb))
2540 		return kzalloc(sizeof(struct cached_dev), GFP_KERNEL);
2541 	return kzalloc(sizeof(struct cache), GFP_KERNEL);
2542 }
2543 
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2544 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2545 			       const char *buffer, size_t size)
2546 {
2547 	const char *err;
2548 	char *path = NULL;
2549 	struct cache_sb *sb;
2550 	struct cache_sb_disk *sb_disk;
2551 	struct file *bdev_file, *bdev_file2;
2552 	void *holder = NULL;
2553 	ssize_t ret;
2554 	bool async_registration = false;
2555 	bool quiet = false;
2556 
2557 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2558 	async_registration = true;
2559 #endif
2560 
2561 	ret = -EBUSY;
2562 	err = "failed to reference bcache module";
2563 	if (!try_module_get(THIS_MODULE))
2564 		goto out;
2565 
2566 	/* For latest state of bcache_is_reboot */
2567 	smp_mb();
2568 	err = "bcache is in reboot";
2569 	if (bcache_is_reboot)
2570 		goto out_module_put;
2571 
2572 	ret = -ENOMEM;
2573 	err = "cannot allocate memory";
2574 	path = kstrndup(buffer, size, GFP_KERNEL);
2575 	if (!path)
2576 		goto out_module_put;
2577 
2578 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2579 	if (!sb)
2580 		goto out_free_path;
2581 
2582 	ret = -EINVAL;
2583 	err = "failed to open device";
2584 	bdev_file = bdev_file_open_by_path(strim(path), BLK_OPEN_READ, NULL, NULL);
2585 	if (IS_ERR(bdev_file))
2586 		goto out_free_sb;
2587 
2588 	err = read_super(sb, file_bdev(bdev_file), &sb_disk);
2589 	if (err)
2590 		goto out_blkdev_put;
2591 
2592 	holder = alloc_holder_object(sb);
2593 	if (!holder) {
2594 		ret = -ENOMEM;
2595 		err = "cannot allocate memory";
2596 		goto out_put_sb_page;
2597 	}
2598 
2599 	/* Now reopen in exclusive mode with proper holder */
2600 	bdev_file2 = bdev_file_open_by_dev(file_bdev(bdev_file)->bd_dev,
2601 			BLK_OPEN_READ | BLK_OPEN_WRITE, holder, NULL);
2602 	fput(bdev_file);
2603 	bdev_file = bdev_file2;
2604 	if (IS_ERR(bdev_file)) {
2605 		ret = PTR_ERR(bdev_file);
2606 		bdev_file = NULL;
2607 		if (ret == -EBUSY) {
2608 			dev_t dev;
2609 
2610 			mutex_lock(&bch_register_lock);
2611 			if (lookup_bdev(strim(path), &dev) == 0 &&
2612 			    bch_is_open(dev))
2613 				err = "device already registered";
2614 			else
2615 				err = "device busy";
2616 			mutex_unlock(&bch_register_lock);
2617 			if (attr == &ksysfs_register_quiet) {
2618 				quiet = true;
2619 				ret = size;
2620 			}
2621 		}
2622 		goto out_free_holder;
2623 	}
2624 
2625 	err = "failed to register device";
2626 
2627 	if (async_registration) {
2628 		/* register in asynchronous way */
2629 		struct async_reg_args *args =
2630 			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2631 
2632 		if (!args) {
2633 			ret = -ENOMEM;
2634 			err = "cannot allocate memory";
2635 			goto out_free_holder;
2636 		}
2637 
2638 		args->path	= path;
2639 		args->sb	= sb;
2640 		args->sb_disk	= sb_disk;
2641 		args->bdev_file	= bdev_file;
2642 		args->holder	= holder;
2643 		register_device_async(args);
2644 		/* No wait and returns to user space */
2645 		goto async_done;
2646 	}
2647 
2648 	if (SB_IS_BDEV(sb)) {
2649 		mutex_lock(&bch_register_lock);
2650 		ret = register_bdev(sb, sb_disk, bdev_file, holder);
2651 		mutex_unlock(&bch_register_lock);
2652 		/* blkdev_put() will be called in cached_dev_free() */
2653 		if (ret < 0)
2654 			goto out_free_sb;
2655 	} else {
2656 		/* blkdev_put() will be called in bch_cache_release() */
2657 		ret = register_cache(sb, sb_disk, bdev_file, holder);
2658 		if (ret)
2659 			goto out_free_sb;
2660 	}
2661 
2662 	kfree(sb);
2663 	kfree(path);
2664 	module_put(THIS_MODULE);
2665 async_done:
2666 	return size;
2667 
2668 out_free_holder:
2669 	kfree(holder);
2670 out_put_sb_page:
2671 	put_page(virt_to_page(sb_disk));
2672 out_blkdev_put:
2673 	if (bdev_file)
2674 		fput(bdev_file);
2675 out_free_sb:
2676 	kfree(sb);
2677 out_free_path:
2678 	kfree(path);
2679 	path = NULL;
2680 out_module_put:
2681 	module_put(THIS_MODULE);
2682 out:
2683 	if (!quiet)
2684 		pr_info("error %s: %s\n", path?path:"", err);
2685 	return ret;
2686 }
2687 
2688 
2689 struct pdev {
2690 	struct list_head list;
2691 	struct cached_dev *dc;
2692 };
2693 
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2694 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2695 					 struct kobj_attribute *attr,
2696 					 const char *buffer,
2697 					 size_t size)
2698 {
2699 	LIST_HEAD(pending_devs);
2700 	ssize_t ret = size;
2701 	struct cached_dev *dc, *tdc;
2702 	struct pdev *pdev, *tpdev;
2703 	struct cache_set *c, *tc;
2704 
2705 	mutex_lock(&bch_register_lock);
2706 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2707 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2708 		if (!pdev)
2709 			break;
2710 		pdev->dc = dc;
2711 		list_add(&pdev->list, &pending_devs);
2712 	}
2713 
2714 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2715 		char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2716 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2717 			char *set_uuid = c->set_uuid;
2718 
2719 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2720 				list_del(&pdev->list);
2721 				kfree(pdev);
2722 				break;
2723 			}
2724 		}
2725 	}
2726 	mutex_unlock(&bch_register_lock);
2727 
2728 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2729 		pr_info("delete pdev %p\n", pdev);
2730 		list_del(&pdev->list);
2731 		bcache_device_stop(&pdev->dc->disk);
2732 		kfree(pdev);
2733 	}
2734 
2735 	return ret;
2736 }
2737 
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2738 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2739 {
2740 	if (bcache_is_reboot)
2741 		return NOTIFY_DONE;
2742 
2743 	if (code == SYS_DOWN ||
2744 	    code == SYS_HALT ||
2745 	    code == SYS_POWER_OFF) {
2746 		DEFINE_WAIT(wait);
2747 		unsigned long start = jiffies;
2748 		bool stopped = false;
2749 
2750 		struct cache_set *c, *tc;
2751 		struct cached_dev *dc, *tdc;
2752 
2753 		mutex_lock(&bch_register_lock);
2754 
2755 		if (bcache_is_reboot)
2756 			goto out;
2757 
2758 		/* New registration is rejected since now */
2759 		bcache_is_reboot = true;
2760 		/*
2761 		 * Make registering caller (if there is) on other CPU
2762 		 * core know bcache_is_reboot set to true earlier
2763 		 */
2764 		smp_mb();
2765 
2766 		if (list_empty(&bch_cache_sets) &&
2767 		    list_empty(&uncached_devices))
2768 			goto out;
2769 
2770 		mutex_unlock(&bch_register_lock);
2771 
2772 		pr_info("Stopping all devices:\n");
2773 
2774 		/*
2775 		 * The reason bch_register_lock is not held to call
2776 		 * bch_cache_set_stop() and bcache_device_stop() is to
2777 		 * avoid potential deadlock during reboot, because cache
2778 		 * set or bcache device stopping process will acquire
2779 		 * bch_register_lock too.
2780 		 *
2781 		 * We are safe here because bcache_is_reboot sets to
2782 		 * true already, register_bcache() will reject new
2783 		 * registration now. bcache_is_reboot also makes sure
2784 		 * bcache_reboot() won't be re-entered on by other thread,
2785 		 * so there is no race in following list iteration by
2786 		 * list_for_each_entry_safe().
2787 		 */
2788 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2789 			bch_cache_set_stop(c);
2790 
2791 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2792 			bcache_device_stop(&dc->disk);
2793 
2794 
2795 		/*
2796 		 * Give an early chance for other kthreads and
2797 		 * kworkers to stop themselves
2798 		 */
2799 		schedule();
2800 
2801 		/* What's a condition variable? */
2802 		while (1) {
2803 			long timeout = start + 10 * HZ - jiffies;
2804 
2805 			mutex_lock(&bch_register_lock);
2806 			stopped = list_empty(&bch_cache_sets) &&
2807 				list_empty(&uncached_devices);
2808 
2809 			if (timeout < 0 || stopped)
2810 				break;
2811 
2812 			prepare_to_wait(&unregister_wait, &wait,
2813 					TASK_UNINTERRUPTIBLE);
2814 
2815 			mutex_unlock(&bch_register_lock);
2816 			schedule_timeout(timeout);
2817 		}
2818 
2819 		finish_wait(&unregister_wait, &wait);
2820 
2821 		if (stopped)
2822 			pr_info("All devices stopped\n");
2823 		else
2824 			pr_notice("Timeout waiting for devices to be closed\n");
2825 out:
2826 		mutex_unlock(&bch_register_lock);
2827 	}
2828 
2829 	return NOTIFY_DONE;
2830 }
2831 
2832 static struct notifier_block reboot = {
2833 	.notifier_call	= bcache_reboot,
2834 	.priority	= INT_MAX, /* before any real devices */
2835 };
2836 
bcache_exit(void)2837 static void bcache_exit(void)
2838 {
2839 	bch_debug_exit();
2840 	bch_request_exit();
2841 	if (bcache_kobj)
2842 		kobject_put(bcache_kobj);
2843 	if (bcache_wq)
2844 		destroy_workqueue(bcache_wq);
2845 	if (bch_journal_wq)
2846 		destroy_workqueue(bch_journal_wq);
2847 	if (bch_flush_wq)
2848 		destroy_workqueue(bch_flush_wq);
2849 	bch_btree_exit();
2850 
2851 	if (bcache_major)
2852 		unregister_blkdev(bcache_major, "bcache");
2853 	unregister_reboot_notifier(&reboot);
2854 	mutex_destroy(&bch_register_lock);
2855 }
2856 
2857 /* Check and fixup module parameters */
check_module_parameters(void)2858 static void check_module_parameters(void)
2859 {
2860 	if (bch_cutoff_writeback_sync == 0)
2861 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2862 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2863 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2864 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2865 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2866 	}
2867 
2868 	if (bch_cutoff_writeback == 0)
2869 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2870 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2871 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2872 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2873 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2874 	}
2875 
2876 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2877 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2878 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2879 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2880 	}
2881 }
2882 
bcache_init(void)2883 static int __init bcache_init(void)
2884 {
2885 	static const struct attribute *files[] = {
2886 		&ksysfs_register.attr,
2887 		&ksysfs_register_quiet.attr,
2888 		&ksysfs_pendings_cleanup.attr,
2889 		NULL
2890 	};
2891 
2892 	check_module_parameters();
2893 
2894 	mutex_init(&bch_register_lock);
2895 	init_waitqueue_head(&unregister_wait);
2896 	register_reboot_notifier(&reboot);
2897 
2898 	bcache_major = register_blkdev(0, "bcache");
2899 	if (bcache_major < 0) {
2900 		unregister_reboot_notifier(&reboot);
2901 		mutex_destroy(&bch_register_lock);
2902 		return bcache_major;
2903 	}
2904 
2905 	if (bch_btree_init())
2906 		goto err;
2907 
2908 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2909 	if (!bcache_wq)
2910 		goto err;
2911 
2912 	/*
2913 	 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2914 	 *
2915 	 * 1. It used `system_wq` before which also does no memory reclaim.
2916 	 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2917 	 *    reduced throughput can be observed.
2918 	 *
2919 	 * We still want to user our own queue to not congest the `system_wq`.
2920 	 */
2921 	bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2922 	if (!bch_flush_wq)
2923 		goto err;
2924 
2925 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2926 	if (!bch_journal_wq)
2927 		goto err;
2928 
2929 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2930 	if (!bcache_kobj)
2931 		goto err;
2932 
2933 	if (bch_request_init() ||
2934 	    sysfs_create_files(bcache_kobj, files))
2935 		goto err;
2936 
2937 	bch_debug_init();
2938 
2939 	bcache_is_reboot = false;
2940 
2941 	return 0;
2942 err:
2943 	bcache_exit();
2944 	return -ENOMEM;
2945 }
2946 
2947 /*
2948  * Module hooks
2949  */
2950 module_exit(bcache_exit);
2951 module_init(bcache_init);
2952 
2953 module_param(bch_cutoff_writeback, uint, 0);
2954 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2955 
2956 module_param(bch_cutoff_writeback_sync, uint, 0);
2957 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2958 
2959 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2960 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2961 MODULE_LICENSE("GPL");
2962