1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Primary bucket allocation code 4 * 5 * Copyright 2012 Google, Inc. 6 * 7 * Allocation in bcache is done in terms of buckets: 8 * 9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in 10 * btree pointers - they must match for the pointer to be considered valid. 11 * 12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a 13 * bucket simply by incrementing its gen. 14 * 15 * The gens (along with the priorities; it's really the gens are important but 16 * the code is named as if it's the priorities) are written in an arbitrary list 17 * of buckets on disk, with a pointer to them in the journal header. 18 * 19 * When we invalidate a bucket, we have to write its new gen to disk and wait 20 * for that write to complete before we use it - otherwise after a crash we 21 * could have pointers that appeared to be good but pointed to data that had 22 * been overwritten. 23 * 24 * Since the gens and priorities are all stored contiguously on disk, we can 25 * batch this up: We fill up the free_inc list with freshly invalidated buckets, 26 * call prio_write(), and when prio_write() finishes we pull buckets off the 27 * free_inc list. 28 * 29 * free_inc isn't the only freelist - if it was, we'd often to sleep while 30 * priorities and gens were being written before we could allocate. c->free is a 31 * smaller freelist, and buckets on that list are always ready to be used. 32 * 33 * There is another freelist, because sometimes we have buckets that we know 34 * have nothing pointing into them - these we can reuse without waiting for 35 * priorities to be rewritten. These come from freed btree nodes and buckets 36 * that garbage collection discovered no longer had valid keys pointing into 37 * them (because they were overwritten). That's the unused list - buckets on the 38 * unused list move to the free list. 39 * 40 * It's also important to ensure that gens don't wrap around - with respect to 41 * either the oldest gen in the btree or the gen on disk. This is quite 42 * difficult to do in practice, but we explicitly guard against it anyways - if 43 * a bucket is in danger of wrapping around we simply skip invalidating it that 44 * time around, and we garbage collect or rewrite the priorities sooner than we 45 * would have otherwise. 46 * 47 * bch_bucket_alloc() allocates a single bucket from a specific cache. 48 * 49 * bch_bucket_alloc_set() allocates one bucket from different caches 50 * out of a cache set. 51 * 52 * free_some_buckets() drives all the processes described above. It's called 53 * from bch_bucket_alloc() and a few other places that need to make sure free 54 * buckets are ready. 55 * 56 * invalidate_buckets_(lru|fifo)() find buckets that are available to be 57 * invalidated, and then invalidate them and stick them on the free_inc list - 58 * in either lru or fifo order. 59 */ 60 61 #include "bcache.h" 62 #include "btree.h" 63 64 #include <linux/blkdev.h> 65 #include <linux/kthread.h> 66 #include <linux/random.h> 67 #include <trace/events/bcache.h> 68 69 #define MAX_OPEN_BUCKETS 128 70 71 /* Bucket heap / gen */ 72 73 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) 74 { 75 uint8_t ret = ++b->gen; 76 77 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); 78 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); 79 80 return ret; 81 } 82 83 void bch_rescale_priorities(struct cache_set *c, int sectors) 84 { 85 struct cache *ca; 86 struct bucket *b; 87 unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024; 88 int r; 89 90 atomic_sub(sectors, &c->rescale); 91 92 do { 93 r = atomic_read(&c->rescale); 94 95 if (r >= 0) 96 return; 97 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); 98 99 mutex_lock(&c->bucket_lock); 100 101 c->min_prio = USHRT_MAX; 102 103 ca = c->cache; 104 for_each_bucket(b, ca) 105 if (b->prio && 106 b->prio != BTREE_PRIO && 107 !atomic_read(&b->pin)) { 108 b->prio--; 109 c->min_prio = min(c->min_prio, b->prio); 110 } 111 112 mutex_unlock(&c->bucket_lock); 113 } 114 115 /* 116 * Background allocation thread: scans for buckets to be invalidated, 117 * invalidates them, rewrites prios/gens (marking them as invalidated on disk), 118 * then puts them on the various freelists. 119 */ 120 121 static inline bool can_inc_bucket_gen(struct bucket *b) 122 { 123 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; 124 } 125 126 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) 127 { 128 return (ca->set->gc_mark_valid || b->reclaimable_in_gc) && 129 ((!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) && 130 !atomic_read(&b->pin) && can_inc_bucket_gen(b)); 131 } 132 133 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 134 { 135 lockdep_assert_held(&ca->set->bucket_lock); 136 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); 137 138 if (GC_SECTORS_USED(b)) 139 trace_bcache_invalidate(ca, b - ca->buckets); 140 141 bch_inc_gen(ca, b); 142 b->prio = INITIAL_PRIO; 143 atomic_inc(&b->pin); 144 b->reclaimable_in_gc = 0; 145 } 146 147 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 148 { 149 __bch_invalidate_one_bucket(ca, b); 150 151 fifo_push(&ca->free_inc, b - ca->buckets); 152 } 153 154 /* 155 * Determines what order we're going to reuse buckets, smallest bucket_prio() 156 * first: we also take into account the number of sectors of live data in that 157 * bucket, and in order for that multiply to make sense we have to scale bucket 158 * 159 * Thus, we scale the bucket priorities so that the bucket with the smallest 160 * prio is worth 1/8th of what INITIAL_PRIO is worth. 161 */ 162 163 #define bucket_prio(b) \ 164 ({ \ 165 unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ 166 \ 167 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ 168 }) 169 170 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) 171 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) 172 173 static void invalidate_buckets_lru(struct cache *ca) 174 { 175 struct bucket *b; 176 ssize_t i; 177 178 ca->heap.used = 0; 179 180 for_each_bucket(b, ca) { 181 if (!bch_can_invalidate_bucket(ca, b)) 182 continue; 183 184 if (!heap_full(&ca->heap)) 185 heap_add(&ca->heap, b, bucket_max_cmp); 186 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { 187 ca->heap.data[0] = b; 188 heap_sift(&ca->heap, 0, bucket_max_cmp); 189 } 190 } 191 192 for (i = ca->heap.used / 2 - 1; i >= 0; --i) 193 heap_sift(&ca->heap, i, bucket_min_cmp); 194 195 while (!fifo_full(&ca->free_inc)) { 196 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { 197 /* 198 * We don't want to be calling invalidate_buckets() 199 * multiple times when it can't do anything 200 */ 201 ca->invalidate_needs_gc = 1; 202 wake_up_gc(ca->set); 203 return; 204 } 205 206 bch_invalidate_one_bucket(ca, b); 207 } 208 } 209 210 static void invalidate_buckets_fifo(struct cache *ca) 211 { 212 struct bucket *b; 213 size_t checked = 0; 214 215 while (!fifo_full(&ca->free_inc)) { 216 if (ca->fifo_last_bucket < ca->sb.first_bucket || 217 ca->fifo_last_bucket >= ca->sb.nbuckets) 218 ca->fifo_last_bucket = ca->sb.first_bucket; 219 220 b = ca->buckets + ca->fifo_last_bucket++; 221 222 if (bch_can_invalidate_bucket(ca, b)) 223 bch_invalidate_one_bucket(ca, b); 224 225 if (++checked >= ca->sb.nbuckets) { 226 ca->invalidate_needs_gc = 1; 227 wake_up_gc(ca->set); 228 return; 229 } 230 } 231 } 232 233 static void invalidate_buckets_random(struct cache *ca) 234 { 235 struct bucket *b; 236 size_t checked = 0; 237 238 while (!fifo_full(&ca->free_inc)) { 239 size_t n; 240 241 get_random_bytes(&n, sizeof(n)); 242 243 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); 244 n += ca->sb.first_bucket; 245 246 b = ca->buckets + n; 247 248 if (bch_can_invalidate_bucket(ca, b)) 249 bch_invalidate_one_bucket(ca, b); 250 251 if (++checked >= ca->sb.nbuckets / 2) { 252 ca->invalidate_needs_gc = 1; 253 wake_up_gc(ca->set); 254 return; 255 } 256 } 257 } 258 259 static void invalidate_buckets(struct cache *ca) 260 { 261 BUG_ON(ca->invalidate_needs_gc); 262 263 switch (CACHE_REPLACEMENT(&ca->sb)) { 264 case CACHE_REPLACEMENT_LRU: 265 invalidate_buckets_lru(ca); 266 break; 267 case CACHE_REPLACEMENT_FIFO: 268 invalidate_buckets_fifo(ca); 269 break; 270 case CACHE_REPLACEMENT_RANDOM: 271 invalidate_buckets_random(ca); 272 break; 273 } 274 } 275 276 #define allocator_wait(ca, cond) \ 277 do { \ 278 while (1) { \ 279 set_current_state(TASK_INTERRUPTIBLE); \ 280 if (cond) \ 281 break; \ 282 \ 283 mutex_unlock(&(ca)->set->bucket_lock); \ 284 if (kthread_should_stop() || \ 285 test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) { \ 286 set_current_state(TASK_RUNNING); \ 287 goto out; \ 288 } \ 289 \ 290 schedule(); \ 291 mutex_lock(&(ca)->set->bucket_lock); \ 292 } \ 293 __set_current_state(TASK_RUNNING); \ 294 } while (0) 295 296 static int bch_allocator_push(struct cache *ca, long bucket) 297 { 298 unsigned int i; 299 300 /* Prios/gens are actually the most important reserve */ 301 if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) 302 return true; 303 304 for (i = 0; i < RESERVE_NR; i++) 305 if (fifo_push(&ca->free[i], bucket)) 306 return true; 307 308 return false; 309 } 310 311 static int bch_allocator_thread(void *arg) 312 { 313 struct cache *ca = arg; 314 315 mutex_lock(&ca->set->bucket_lock); 316 317 while (1) { 318 /* 319 * First, we pull buckets off of the unused and free_inc lists, 320 * then we add the bucket to the free list: 321 */ 322 while (1) { 323 long bucket; 324 325 if (!fifo_pop(&ca->free_inc, bucket)) 326 break; 327 328 allocator_wait(ca, bch_allocator_push(ca, bucket)); 329 wake_up(&ca->set->btree_cache_wait); 330 wake_up(&ca->set->bucket_wait); 331 } 332 333 /* 334 * We've run out of free buckets, we need to find some buckets 335 * we can invalidate. First, invalidate them in memory and add 336 * them to the free_inc list: 337 */ 338 339 retry_invalidate: 340 allocator_wait(ca, !ca->invalidate_needs_gc); 341 invalidate_buckets(ca); 342 343 /* 344 * Now, we write their new gens to disk so we can start writing 345 * new stuff to them: 346 */ 347 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); 348 if (CACHE_SYNC(&ca->sb)) { 349 /* 350 * This could deadlock if an allocation with a btree 351 * node locked ever blocked - having the btree node 352 * locked would block garbage collection, but here we're 353 * waiting on garbage collection before we invalidate 354 * and free anything. 355 * 356 * But this should be safe since the btree code always 357 * uses btree_check_reserve() before allocating now, and 358 * if it fails it blocks without btree nodes locked. 359 */ 360 if (!fifo_full(&ca->free_inc)) 361 goto retry_invalidate; 362 363 if (bch_prio_write(ca, false) < 0) { 364 ca->invalidate_needs_gc = 1; 365 wake_up_gc(ca->set); 366 } 367 } 368 } 369 out: 370 wait_for_kthread_stop(); 371 return 0; 372 } 373 374 /* Allocation */ 375 376 long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait) 377 { 378 DEFINE_WAIT(w); 379 struct bucket *b; 380 long r; 381 382 383 /* No allocation if CACHE_SET_IO_DISABLE bit is set */ 384 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags))) 385 return -1; 386 387 /* fastpath */ 388 if (fifo_pop(&ca->free[RESERVE_NONE], r) || 389 fifo_pop(&ca->free[reserve], r)) 390 goto out; 391 392 if (!wait) { 393 trace_bcache_alloc_fail(ca, reserve); 394 return -1; 395 } 396 397 do { 398 prepare_to_wait(&ca->set->bucket_wait, &w, 399 TASK_UNINTERRUPTIBLE); 400 401 mutex_unlock(&ca->set->bucket_lock); 402 403 atomic_inc(&ca->set->bucket_wait_cnt); 404 schedule(); 405 atomic_dec(&ca->set->bucket_wait_cnt); 406 407 mutex_lock(&ca->set->bucket_lock); 408 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && 409 !fifo_pop(&ca->free[reserve], r)); 410 411 finish_wait(&ca->set->bucket_wait, &w); 412 out: 413 if (ca->alloc_thread) 414 wake_up_process(ca->alloc_thread); 415 416 trace_bcache_alloc(ca, reserve); 417 418 if (expensive_debug_checks(ca->set)) { 419 size_t iter; 420 long i; 421 unsigned int j; 422 423 for (iter = 0; iter < prio_buckets(ca) * 2; iter++) 424 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); 425 426 for (j = 0; j < RESERVE_NR; j++) 427 fifo_for_each(i, &ca->free[j], iter) 428 BUG_ON(i == r); 429 fifo_for_each(i, &ca->free_inc, iter) 430 BUG_ON(i == r); 431 } 432 433 b = ca->buckets + r; 434 435 BUG_ON(atomic_read(&b->pin) != 1); 436 437 SET_GC_SECTORS_USED(b, ca->sb.bucket_size); 438 439 if (reserve <= RESERVE_PRIO) { 440 SET_GC_MARK(b, GC_MARK_METADATA); 441 SET_GC_MOVE(b, 0); 442 b->prio = BTREE_PRIO; 443 } else { 444 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 445 SET_GC_MOVE(b, 0); 446 b->prio = INITIAL_PRIO; 447 } 448 449 if (ca->set->avail_nbuckets > 0) { 450 ca->set->avail_nbuckets--; 451 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 452 } 453 454 return r; 455 } 456 457 void __bch_bucket_free(struct cache *ca, struct bucket *b) 458 { 459 SET_GC_MARK(b, 0); 460 SET_GC_SECTORS_USED(b, 0); 461 462 if (ca->set->avail_nbuckets < ca->set->nbuckets) { 463 ca->set->avail_nbuckets++; 464 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 465 } 466 } 467 468 void bch_bucket_free(struct cache_set *c, struct bkey *k) 469 { 470 unsigned int i; 471 472 for (i = 0; i < KEY_PTRS(k); i++) 473 __bch_bucket_free(c->cache, PTR_BUCKET(c, k, i)); 474 } 475 476 int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, 477 struct bkey *k, bool wait) 478 { 479 struct cache *ca; 480 long b; 481 482 /* No allocation if CACHE_SET_IO_DISABLE bit is set */ 483 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 484 return -1; 485 486 lockdep_assert_held(&c->bucket_lock); 487 488 bkey_init(k); 489 490 ca = c->cache; 491 b = bch_bucket_alloc(ca, reserve, wait); 492 if (b < 0) 493 return -1; 494 495 k->ptr[0] = MAKE_PTR(ca->buckets[b].gen, 496 bucket_to_sector(c, b), 497 ca->sb.nr_this_dev); 498 499 SET_KEY_PTRS(k, 1); 500 501 return 0; 502 } 503 504 int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, 505 struct bkey *k, bool wait) 506 { 507 int ret; 508 509 mutex_lock(&c->bucket_lock); 510 ret = __bch_bucket_alloc_set(c, reserve, k, wait); 511 mutex_unlock(&c->bucket_lock); 512 return ret; 513 } 514 515 /* Sector allocator */ 516 517 struct open_bucket { 518 struct list_head list; 519 unsigned int last_write_point; 520 unsigned int sectors_free; 521 BKEY_PADDED(key); 522 }; 523 524 /* 525 * We keep multiple buckets open for writes, and try to segregate different 526 * write streams for better cache utilization: first we try to segregate flash 527 * only volume write streams from cached devices, secondly we look for a bucket 528 * where the last write to it was sequential with the current write, and 529 * failing that we look for a bucket that was last used by the same task. 530 * 531 * The ideas is if you've got multiple tasks pulling data into the cache at the 532 * same time, you'll get better cache utilization if you try to segregate their 533 * data and preserve locality. 534 * 535 * For example, dirty sectors of flash only volume is not reclaimable, if their 536 * dirty sectors mixed with dirty sectors of cached device, such buckets will 537 * be marked as dirty and won't be reclaimed, though the dirty data of cached 538 * device have been written back to backend device. 539 * 540 * And say you've starting Firefox at the same time you're copying a 541 * bunch of files. Firefox will likely end up being fairly hot and stay in the 542 * cache awhile, but the data you copied might not be; if you wrote all that 543 * data to the same buckets it'd get invalidated at the same time. 544 * 545 * Both of those tasks will be doing fairly random IO so we can't rely on 546 * detecting sequential IO to segregate their data, but going off of the task 547 * should be a sane heuristic. 548 */ 549 static struct open_bucket *pick_data_bucket(struct cache_set *c, 550 const struct bkey *search, 551 unsigned int write_point, 552 struct bkey *alloc) 553 { 554 struct open_bucket *ret, *ret_task = NULL; 555 556 list_for_each_entry_reverse(ret, &c->data_buckets, list) 557 if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) != 558 UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)])) 559 continue; 560 else if (!bkey_cmp(&ret->key, search)) 561 goto found; 562 else if (ret->last_write_point == write_point) 563 ret_task = ret; 564 565 ret = ret_task ?: list_first_entry(&c->data_buckets, 566 struct open_bucket, list); 567 found: 568 if (!ret->sectors_free && KEY_PTRS(alloc)) { 569 ret->sectors_free = c->cache->sb.bucket_size; 570 bkey_copy(&ret->key, alloc); 571 bkey_init(alloc); 572 } 573 574 if (!ret->sectors_free) 575 ret = NULL; 576 577 return ret; 578 } 579 580 /* 581 * Allocates some space in the cache to write to, and k to point to the newly 582 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the 583 * end of the newly allocated space). 584 * 585 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many 586 * sectors were actually allocated. 587 * 588 * If s->writeback is true, will not fail. 589 */ 590 bool bch_alloc_sectors(struct cache_set *c, 591 struct bkey *k, 592 unsigned int sectors, 593 unsigned int write_point, 594 unsigned int write_prio, 595 bool wait) 596 { 597 struct open_bucket *b; 598 BKEY_PADDED(key) alloc; 599 unsigned int i; 600 601 /* 602 * We might have to allocate a new bucket, which we can't do with a 603 * spinlock held. So if we have to allocate, we drop the lock, allocate 604 * and then retry. KEY_PTRS() indicates whether alloc points to 605 * allocated bucket(s). 606 */ 607 608 bkey_init(&alloc.key); 609 spin_lock(&c->data_bucket_lock); 610 611 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { 612 unsigned int watermark = write_prio 613 ? RESERVE_MOVINGGC 614 : RESERVE_NONE; 615 616 spin_unlock(&c->data_bucket_lock); 617 618 if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait)) 619 return false; 620 621 spin_lock(&c->data_bucket_lock); 622 } 623 624 /* 625 * If we had to allocate, we might race and not need to allocate the 626 * second time we call pick_data_bucket(). If we allocated a bucket but 627 * didn't use it, drop the refcount bch_bucket_alloc_set() took: 628 */ 629 if (KEY_PTRS(&alloc.key)) 630 bkey_put(c, &alloc.key); 631 632 for (i = 0; i < KEY_PTRS(&b->key); i++) 633 EBUG_ON(ptr_stale(c, &b->key, i)); 634 635 /* Set up the pointer to the space we're allocating: */ 636 637 for (i = 0; i < KEY_PTRS(&b->key); i++) 638 k->ptr[i] = b->key.ptr[i]; 639 640 sectors = min(sectors, b->sectors_free); 641 642 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); 643 SET_KEY_SIZE(k, sectors); 644 SET_KEY_PTRS(k, KEY_PTRS(&b->key)); 645 646 /* 647 * Move b to the end of the lru, and keep track of what this bucket was 648 * last used for: 649 */ 650 list_move_tail(&b->list, &c->data_buckets); 651 bkey_copy_key(&b->key, k); 652 b->last_write_point = write_point; 653 654 b->sectors_free -= sectors; 655 656 for (i = 0; i < KEY_PTRS(&b->key); i++) { 657 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); 658 659 atomic_long_add(sectors, 660 &c->cache->sectors_written); 661 } 662 663 if (b->sectors_free < c->cache->sb.block_size) 664 b->sectors_free = 0; 665 666 /* 667 * k takes refcounts on the buckets it points to until it's inserted 668 * into the btree, but if we're done with this bucket we just transfer 669 * get_data_bucket()'s refcount. 670 */ 671 if (b->sectors_free) 672 for (i = 0; i < KEY_PTRS(&b->key); i++) 673 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); 674 675 spin_unlock(&c->data_bucket_lock); 676 return true; 677 } 678 679 /* Init */ 680 681 void bch_open_buckets_free(struct cache_set *c) 682 { 683 struct open_bucket *b; 684 685 while (!list_empty(&c->data_buckets)) { 686 b = list_first_entry(&c->data_buckets, 687 struct open_bucket, list); 688 list_del(&b->list); 689 kfree(b); 690 } 691 } 692 693 int bch_open_buckets_alloc(struct cache_set *c) 694 { 695 int i; 696 697 spin_lock_init(&c->data_bucket_lock); 698 699 for (i = 0; i < MAX_OPEN_BUCKETS; i++) { 700 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); 701 702 if (!b) 703 return -ENOMEM; 704 705 list_add(&b->list, &c->data_buckets); 706 } 707 708 return 0; 709 } 710 711 int bch_cache_allocator_start(struct cache *ca) 712 { 713 struct task_struct *k = kthread_run(bch_allocator_thread, 714 ca, "bcache_allocator"); 715 if (IS_ERR(k)) 716 return PTR_ERR(k); 717 718 ca->alloc_thread = k; 719 return 0; 720 } 721