xref: /linux/drivers/md/bcache/alloc.c (revision cc25df3e2e22a956d3a0d427369367b4a901d203)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Primary bucket allocation code
4  *
5  * Copyright 2012 Google, Inc.
6  *
7  * Allocation in bcache is done in terms of buckets:
8  *
9  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
10  * btree pointers - they must match for the pointer to be considered valid.
11  *
12  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
13  * bucket simply by incrementing its gen.
14  *
15  * The gens (along with the priorities; it's really the gens are important but
16  * the code is named as if it's the priorities) are written in an arbitrary list
17  * of buckets on disk, with a pointer to them in the journal header.
18  *
19  * When we invalidate a bucket, we have to write its new gen to disk and wait
20  * for that write to complete before we use it - otherwise after a crash we
21  * could have pointers that appeared to be good but pointed to data that had
22  * been overwritten.
23  *
24  * Since the gens and priorities are all stored contiguously on disk, we can
25  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
26  * call prio_write(), and when prio_write() finishes we pull buckets off the
27  * free_inc list.
28  *
29  * free_inc isn't the only freelist - if it was, we'd often to sleep while
30  * priorities and gens were being written before we could allocate. c->free is a
31  * smaller freelist, and buckets on that list are always ready to be used.
32  *
33  * There is another freelist, because sometimes we have buckets that we know
34  * have nothing pointing into them - these we can reuse without waiting for
35  * priorities to be rewritten. These come from freed btree nodes and buckets
36  * that garbage collection discovered no longer had valid keys pointing into
37  * them (because they were overwritten). That's the unused list - buckets on the
38  * unused list move to the free list.
39  *
40  * It's also important to ensure that gens don't wrap around - with respect to
41  * either the oldest gen in the btree or the gen on disk. This is quite
42  * difficult to do in practice, but we explicitly guard against it anyways - if
43  * a bucket is in danger of wrapping around we simply skip invalidating it that
44  * time around, and we garbage collect or rewrite the priorities sooner than we
45  * would have otherwise.
46  *
47  * bch_bucket_alloc() allocates a single bucket from a specific cache.
48  *
49  * bch_bucket_alloc_set() allocates one  bucket from different caches
50  * out of a cache set.
51  *
52  * free_some_buckets() drives all the processes described above. It's called
53  * from bch_bucket_alloc() and a few other places that need to make sure free
54  * buckets are ready.
55  *
56  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
57  * invalidated, and then invalidate them and stick them on the free_inc list -
58  * in either lru or fifo order.
59  */
60 
61 #include "bcache.h"
62 #include "btree.h"
63 
64 #include <linux/blkdev.h>
65 #include <linux/kthread.h>
66 #include <linux/random.h>
67 #include <trace/events/bcache.h>
68 
69 #define MAX_OPEN_BUCKETS 128
70 
71 /* Bucket heap / gen */
72 
73 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
74 {
75 	uint8_t ret = ++b->gen;
76 
77 	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
78 	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
79 
80 	return ret;
81 }
82 
83 void bch_rescale_priorities(struct cache_set *c, int sectors)
84 {
85 	struct cache *ca;
86 	struct bucket *b;
87 	unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024;
88 	int r;
89 
90 	atomic_sub(sectors, &c->rescale);
91 
92 	do {
93 		r = atomic_read(&c->rescale);
94 
95 		if (r >= 0)
96 			return;
97 	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
98 
99 	mutex_lock(&c->bucket_lock);
100 
101 	c->min_prio = USHRT_MAX;
102 
103 	ca = c->cache;
104 	for_each_bucket(b, ca)
105 		if (b->prio &&
106 		    b->prio != BTREE_PRIO &&
107 		    !atomic_read(&b->pin)) {
108 			b->prio--;
109 			c->min_prio = min(c->min_prio, b->prio);
110 		}
111 
112 	mutex_unlock(&c->bucket_lock);
113 }
114 
115 /*
116  * Background allocation thread: scans for buckets to be invalidated,
117  * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
118  * then puts them on the various freelists.
119  */
120 
121 static inline bool can_inc_bucket_gen(struct bucket *b)
122 {
123 	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
124 }
125 
126 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
127 {
128 	return (ca->set->gc_mark_valid || b->reclaimable_in_gc) &&
129 	       ((!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
130 	       !atomic_read(&b->pin) && can_inc_bucket_gen(b));
131 }
132 
133 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
134 {
135 	lockdep_assert_held(&ca->set->bucket_lock);
136 	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
137 
138 	if (GC_SECTORS_USED(b))
139 		trace_bcache_invalidate(ca, b - ca->buckets);
140 
141 	bch_inc_gen(ca, b);
142 	b->prio = INITIAL_PRIO;
143 	atomic_inc(&b->pin);
144 	b->reclaimable_in_gc = 0;
145 }
146 
147 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
148 {
149 	__bch_invalidate_one_bucket(ca, b);
150 
151 	fifo_push(&ca->free_inc, b - ca->buckets);
152 }
153 
154 /*
155  * Determines what order we're going to reuse buckets, smallest bucket_prio()
156  * first: we also take into account the number of sectors of live data in that
157  * bucket, and in order for that multiply to make sense we have to scale bucket
158  *
159  * Thus, we scale the bucket priorities so that the bucket with the smallest
160  * prio is worth 1/8th of what INITIAL_PRIO is worth.
161  */
162 
163 #define bucket_prio(b)							\
164 ({									\
165 	unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
166 									\
167 	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
168 })
169 
170 #define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
171 #define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
172 
173 static void invalidate_buckets_lru(struct cache *ca)
174 {
175 	struct bucket *b;
176 	ssize_t i;
177 
178 	ca->heap.used = 0;
179 
180 	for_each_bucket(b, ca) {
181 		if (!bch_can_invalidate_bucket(ca, b))
182 			continue;
183 
184 		if (!heap_full(&ca->heap))
185 			heap_add(&ca->heap, b, bucket_max_cmp);
186 		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
187 			ca->heap.data[0] = b;
188 			heap_sift(&ca->heap, 0, bucket_max_cmp);
189 		}
190 	}
191 
192 	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
193 		heap_sift(&ca->heap, i, bucket_min_cmp);
194 
195 	while (!fifo_full(&ca->free_inc)) {
196 		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
197 			/*
198 			 * We don't want to be calling invalidate_buckets()
199 			 * multiple times when it can't do anything
200 			 */
201 			ca->invalidate_needs_gc = 1;
202 			wake_up_gc(ca->set);
203 			return;
204 		}
205 
206 		bch_invalidate_one_bucket(ca, b);
207 	}
208 }
209 
210 static void invalidate_buckets_fifo(struct cache *ca)
211 {
212 	struct bucket *b;
213 	size_t checked = 0;
214 
215 	while (!fifo_full(&ca->free_inc)) {
216 		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
217 		    ca->fifo_last_bucket >= ca->sb.nbuckets)
218 			ca->fifo_last_bucket = ca->sb.first_bucket;
219 
220 		b = ca->buckets + ca->fifo_last_bucket++;
221 
222 		if (bch_can_invalidate_bucket(ca, b))
223 			bch_invalidate_one_bucket(ca, b);
224 
225 		if (++checked >= ca->sb.nbuckets) {
226 			ca->invalidate_needs_gc = 1;
227 			wake_up_gc(ca->set);
228 			return;
229 		}
230 	}
231 }
232 
233 static void invalidate_buckets_random(struct cache *ca)
234 {
235 	struct bucket *b;
236 	size_t checked = 0;
237 
238 	while (!fifo_full(&ca->free_inc)) {
239 		size_t n;
240 
241 		get_random_bytes(&n, sizeof(n));
242 
243 		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
244 		n += ca->sb.first_bucket;
245 
246 		b = ca->buckets + n;
247 
248 		if (bch_can_invalidate_bucket(ca, b))
249 			bch_invalidate_one_bucket(ca, b);
250 
251 		if (++checked >= ca->sb.nbuckets / 2) {
252 			ca->invalidate_needs_gc = 1;
253 			wake_up_gc(ca->set);
254 			return;
255 		}
256 	}
257 }
258 
259 static void invalidate_buckets(struct cache *ca)
260 {
261 	BUG_ON(ca->invalidate_needs_gc);
262 
263 	switch (CACHE_REPLACEMENT(&ca->sb)) {
264 	case CACHE_REPLACEMENT_LRU:
265 		invalidate_buckets_lru(ca);
266 		break;
267 	case CACHE_REPLACEMENT_FIFO:
268 		invalidate_buckets_fifo(ca);
269 		break;
270 	case CACHE_REPLACEMENT_RANDOM:
271 		invalidate_buckets_random(ca);
272 		break;
273 	}
274 }
275 
276 #define allocator_wait(ca, cond)					\
277 do {									\
278 	while (1) {							\
279 		set_current_state(TASK_INTERRUPTIBLE);			\
280 		if (cond)						\
281 			break;						\
282 									\
283 		mutex_unlock(&(ca)->set->bucket_lock);			\
284 		if (kthread_should_stop() ||				\
285 		    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {	\
286 			set_current_state(TASK_RUNNING);		\
287 			goto out;					\
288 		}							\
289 									\
290 		schedule();						\
291 		mutex_lock(&(ca)->set->bucket_lock);			\
292 	}								\
293 	__set_current_state(TASK_RUNNING);				\
294 } while (0)
295 
296 static int bch_allocator_push(struct cache *ca, long bucket)
297 {
298 	unsigned int i;
299 
300 	/* Prios/gens are actually the most important reserve */
301 	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
302 		return true;
303 
304 	for (i = 0; i < RESERVE_NR; i++)
305 		if (fifo_push(&ca->free[i], bucket))
306 			return true;
307 
308 	return false;
309 }
310 
311 static int bch_allocator_thread(void *arg)
312 {
313 	struct cache *ca = arg;
314 
315 	mutex_lock(&ca->set->bucket_lock);
316 
317 	while (1) {
318 		/*
319 		 * First, we pull buckets off of the unused and free_inc lists,
320 		 * then we add the bucket to the free list:
321 		 */
322 		while (1) {
323 			long bucket;
324 
325 			if (!fifo_pop(&ca->free_inc, bucket))
326 				break;
327 
328 			allocator_wait(ca, bch_allocator_push(ca, bucket));
329 			wake_up(&ca->set->btree_cache_wait);
330 			wake_up(&ca->set->bucket_wait);
331 		}
332 
333 		/*
334 		 * We've run out of free buckets, we need to find some buckets
335 		 * we can invalidate. First, invalidate them in memory and add
336 		 * them to the free_inc list:
337 		 */
338 
339 retry_invalidate:
340 		allocator_wait(ca, !ca->invalidate_needs_gc);
341 		invalidate_buckets(ca);
342 
343 		/*
344 		 * Now, we write their new gens to disk so we can start writing
345 		 * new stuff to them:
346 		 */
347 		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
348 		if (CACHE_SYNC(&ca->sb)) {
349 			/*
350 			 * This could deadlock if an allocation with a btree
351 			 * node locked ever blocked - having the btree node
352 			 * locked would block garbage collection, but here we're
353 			 * waiting on garbage collection before we invalidate
354 			 * and free anything.
355 			 *
356 			 * But this should be safe since the btree code always
357 			 * uses btree_check_reserve() before allocating now, and
358 			 * if it fails it blocks without btree nodes locked.
359 			 */
360 			if (!fifo_full(&ca->free_inc))
361 				goto retry_invalidate;
362 
363 			if (bch_prio_write(ca, false) < 0) {
364 				ca->invalidate_needs_gc = 1;
365 				wake_up_gc(ca->set);
366 			}
367 		}
368 	}
369 out:
370 	wait_for_kthread_stop();
371 	return 0;
372 }
373 
374 /* Allocation */
375 
376 long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
377 {
378 	DEFINE_WAIT(w);
379 	struct bucket *b;
380 	long r;
381 
382 
383 	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
384 	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
385 		return -1;
386 
387 	/* fastpath */
388 	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
389 	    fifo_pop(&ca->free[reserve], r))
390 		goto out;
391 
392 	if (!wait) {
393 		trace_bcache_alloc_fail(ca, reserve);
394 		return -1;
395 	}
396 
397 	do {
398 		prepare_to_wait(&ca->set->bucket_wait, &w,
399 				TASK_UNINTERRUPTIBLE);
400 
401 		mutex_unlock(&ca->set->bucket_lock);
402 
403 		atomic_inc(&ca->set->bucket_wait_cnt);
404 		schedule();
405 		atomic_dec(&ca->set->bucket_wait_cnt);
406 
407 		mutex_lock(&ca->set->bucket_lock);
408 	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
409 		 !fifo_pop(&ca->free[reserve], r));
410 
411 	finish_wait(&ca->set->bucket_wait, &w);
412 out:
413 	if (ca->alloc_thread)
414 		wake_up_process(ca->alloc_thread);
415 
416 	trace_bcache_alloc(ca, reserve);
417 
418 	if (expensive_debug_checks(ca->set)) {
419 		size_t iter;
420 		long i;
421 		unsigned int j;
422 
423 		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
424 			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
425 
426 		for (j = 0; j < RESERVE_NR; j++)
427 			fifo_for_each(i, &ca->free[j], iter)
428 				BUG_ON(i == r);
429 		fifo_for_each(i, &ca->free_inc, iter)
430 			BUG_ON(i == r);
431 	}
432 
433 	b = ca->buckets + r;
434 
435 	BUG_ON(atomic_read(&b->pin) != 1);
436 
437 	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
438 
439 	if (reserve <= RESERVE_PRIO) {
440 		SET_GC_MARK(b, GC_MARK_METADATA);
441 		SET_GC_MOVE(b, 0);
442 		b->prio = BTREE_PRIO;
443 	} else {
444 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
445 		SET_GC_MOVE(b, 0);
446 		b->prio = INITIAL_PRIO;
447 	}
448 
449 	if (ca->set->avail_nbuckets > 0) {
450 		ca->set->avail_nbuckets--;
451 		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
452 	}
453 
454 	return r;
455 }
456 
457 void __bch_bucket_free(struct cache *ca, struct bucket *b)
458 {
459 	SET_GC_MARK(b, 0);
460 	SET_GC_SECTORS_USED(b, 0);
461 
462 	if (ca->set->avail_nbuckets < ca->set->nbuckets) {
463 		ca->set->avail_nbuckets++;
464 		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
465 	}
466 }
467 
468 void bch_bucket_free(struct cache_set *c, struct bkey *k)
469 {
470 	unsigned int i;
471 
472 	for (i = 0; i < KEY_PTRS(k); i++)
473 		__bch_bucket_free(c->cache, PTR_BUCKET(c, k, i));
474 }
475 
476 int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
477 			   struct bkey *k, bool wait)
478 {
479 	struct cache *ca;
480 	long b;
481 
482 	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
483 	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
484 		return -1;
485 
486 	lockdep_assert_held(&c->bucket_lock);
487 
488 	bkey_init(k);
489 
490 	ca = c->cache;
491 	b = bch_bucket_alloc(ca, reserve, wait);
492 	if (b < 0)
493 		return -1;
494 
495 	k->ptr[0] = MAKE_PTR(ca->buckets[b].gen,
496 			     bucket_to_sector(c, b),
497 			     ca->sb.nr_this_dev);
498 
499 	SET_KEY_PTRS(k, 1);
500 
501 	return 0;
502 }
503 
504 int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
505 			 struct bkey *k, bool wait)
506 {
507 	int ret;
508 
509 	mutex_lock(&c->bucket_lock);
510 	ret = __bch_bucket_alloc_set(c, reserve, k, wait);
511 	mutex_unlock(&c->bucket_lock);
512 	return ret;
513 }
514 
515 /* Sector allocator */
516 
517 struct open_bucket {
518 	struct list_head	list;
519 	unsigned int		last_write_point;
520 	unsigned int		sectors_free;
521 	BKEY_PADDED(key);
522 };
523 
524 /*
525  * We keep multiple buckets open for writes, and try to segregate different
526  * write streams for better cache utilization: first we try to segregate flash
527  * only volume write streams from cached devices, secondly we look for a bucket
528  * where the last write to it was sequential with the current write, and
529  * failing that we look for a bucket that was last used by the same task.
530  *
531  * The ideas is if you've got multiple tasks pulling data into the cache at the
532  * same time, you'll get better cache utilization if you try to segregate their
533  * data and preserve locality.
534  *
535  * For example, dirty sectors of flash only volume is not reclaimable, if their
536  * dirty sectors mixed with dirty sectors of cached device, such buckets will
537  * be marked as dirty and won't be reclaimed, though the dirty data of cached
538  * device have been written back to backend device.
539  *
540  * And say you've starting Firefox at the same time you're copying a
541  * bunch of files. Firefox will likely end up being fairly hot and stay in the
542  * cache awhile, but the data you copied might not be; if you wrote all that
543  * data to the same buckets it'd get invalidated at the same time.
544  *
545  * Both of those tasks will be doing fairly random IO so we can't rely on
546  * detecting sequential IO to segregate their data, but going off of the task
547  * should be a sane heuristic.
548  */
549 static struct open_bucket *pick_data_bucket(struct cache_set *c,
550 					    const struct bkey *search,
551 					    unsigned int write_point,
552 					    struct bkey *alloc)
553 {
554 	struct open_bucket *ret, *ret_task = NULL;
555 
556 	list_for_each_entry_reverse(ret, &c->data_buckets, list)
557 		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
558 		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
559 			continue;
560 		else if (!bkey_cmp(&ret->key, search))
561 			goto found;
562 		else if (ret->last_write_point == write_point)
563 			ret_task = ret;
564 
565 	ret = ret_task ?: list_first_entry(&c->data_buckets,
566 					   struct open_bucket, list);
567 found:
568 	if (!ret->sectors_free && KEY_PTRS(alloc)) {
569 		ret->sectors_free = c->cache->sb.bucket_size;
570 		bkey_copy(&ret->key, alloc);
571 		bkey_init(alloc);
572 	}
573 
574 	if (!ret->sectors_free)
575 		ret = NULL;
576 
577 	return ret;
578 }
579 
580 /*
581  * Allocates some space in the cache to write to, and k to point to the newly
582  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
583  * end of the newly allocated space).
584  *
585  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
586  * sectors were actually allocated.
587  *
588  * If s->writeback is true, will not fail.
589  */
590 bool bch_alloc_sectors(struct cache_set *c,
591 		       struct bkey *k,
592 		       unsigned int sectors,
593 		       unsigned int write_point,
594 		       unsigned int write_prio,
595 		       bool wait)
596 {
597 	struct open_bucket *b;
598 	BKEY_PADDED(key) alloc;
599 	unsigned int i;
600 
601 	/*
602 	 * We might have to allocate a new bucket, which we can't do with a
603 	 * spinlock held. So if we have to allocate, we drop the lock, allocate
604 	 * and then retry. KEY_PTRS() indicates whether alloc points to
605 	 * allocated bucket(s).
606 	 */
607 
608 	bkey_init(&alloc.key);
609 	spin_lock(&c->data_bucket_lock);
610 
611 	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
612 		unsigned int watermark = write_prio
613 			? RESERVE_MOVINGGC
614 			: RESERVE_NONE;
615 
616 		spin_unlock(&c->data_bucket_lock);
617 
618 		if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait))
619 			return false;
620 
621 		spin_lock(&c->data_bucket_lock);
622 	}
623 
624 	/*
625 	 * If we had to allocate, we might race and not need to allocate the
626 	 * second time we call pick_data_bucket(). If we allocated a bucket but
627 	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
628 	 */
629 	if (KEY_PTRS(&alloc.key))
630 		bkey_put(c, &alloc.key);
631 
632 	for (i = 0; i < KEY_PTRS(&b->key); i++)
633 		EBUG_ON(ptr_stale(c, &b->key, i));
634 
635 	/* Set up the pointer to the space we're allocating: */
636 
637 	for (i = 0; i < KEY_PTRS(&b->key); i++)
638 		k->ptr[i] = b->key.ptr[i];
639 
640 	sectors = min(sectors, b->sectors_free);
641 
642 	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
643 	SET_KEY_SIZE(k, sectors);
644 	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
645 
646 	/*
647 	 * Move b to the end of the lru, and keep track of what this bucket was
648 	 * last used for:
649 	 */
650 	list_move_tail(&b->list, &c->data_buckets);
651 	bkey_copy_key(&b->key, k);
652 	b->last_write_point = write_point;
653 
654 	b->sectors_free	-= sectors;
655 
656 	for (i = 0; i < KEY_PTRS(&b->key); i++) {
657 		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
658 
659 		atomic_long_add(sectors,
660 				&c->cache->sectors_written);
661 	}
662 
663 	if (b->sectors_free < c->cache->sb.block_size)
664 		b->sectors_free = 0;
665 
666 	/*
667 	 * k takes refcounts on the buckets it points to until it's inserted
668 	 * into the btree, but if we're done with this bucket we just transfer
669 	 * get_data_bucket()'s refcount.
670 	 */
671 	if (b->sectors_free)
672 		for (i = 0; i < KEY_PTRS(&b->key); i++)
673 			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
674 
675 	spin_unlock(&c->data_bucket_lock);
676 	return true;
677 }
678 
679 /* Init */
680 
681 void bch_open_buckets_free(struct cache_set *c)
682 {
683 	struct open_bucket *b;
684 
685 	while (!list_empty(&c->data_buckets)) {
686 		b = list_first_entry(&c->data_buckets,
687 				     struct open_bucket, list);
688 		list_del(&b->list);
689 		kfree(b);
690 	}
691 }
692 
693 int bch_open_buckets_alloc(struct cache_set *c)
694 {
695 	int i;
696 
697 	spin_lock_init(&c->data_bucket_lock);
698 
699 	for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
700 		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
701 
702 		if (!b)
703 			return -ENOMEM;
704 
705 		list_add(&b->list, &c->data_buckets);
706 	}
707 
708 	return 0;
709 }
710 
711 int bch_cache_allocator_start(struct cache *ca)
712 {
713 	struct task_struct *k = kthread_run(bch_allocator_thread,
714 					    ca, "bcache_allocator");
715 	if (IS_ERR(k))
716 		return PTR_ERR(k);
717 
718 	ca->alloc_thread = k;
719 	return 0;
720 }
721