1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_DISK_ACCOUNTING_H
3 #define _BCACHEFS_DISK_ACCOUNTING_H
4
5 #include "eytzinger.h"
6 #include "sb-members.h"
7
bch2_u64s_neg(u64 * v,unsigned nr)8 static inline void bch2_u64s_neg(u64 *v, unsigned nr)
9 {
10 for (unsigned i = 0; i < nr; i++)
11 v[i] = -v[i];
12 }
13
bch2_accounting_counters(const struct bkey * k)14 static inline unsigned bch2_accounting_counters(const struct bkey *k)
15 {
16 return bkey_val_u64s(k) - offsetof(struct bch_accounting, d) / sizeof(u64);
17 }
18
bch2_accounting_neg(struct bkey_s_accounting a)19 static inline void bch2_accounting_neg(struct bkey_s_accounting a)
20 {
21 bch2_u64s_neg(a.v->d, bch2_accounting_counters(a.k));
22 }
23
bch2_accounting_key_is_zero(struct bkey_s_c_accounting a)24 static inline bool bch2_accounting_key_is_zero(struct bkey_s_c_accounting a)
25 {
26 for (unsigned i = 0; i < bch2_accounting_counters(a.k); i++)
27 if (a.v->d[i])
28 return false;
29 return true;
30 }
31
bch2_accounting_accumulate(struct bkey_i_accounting * dst,struct bkey_s_c_accounting src)32 static inline void bch2_accounting_accumulate(struct bkey_i_accounting *dst,
33 struct bkey_s_c_accounting src)
34 {
35 EBUG_ON(dst->k.u64s != src.k->u64s);
36
37 for (unsigned i = 0; i < bch2_accounting_counters(&dst->k); i++)
38 dst->v.d[i] += src.v->d[i];
39 if (bversion_cmp(dst->k.bversion, src.k->bversion) < 0)
40 dst->k.bversion = src.k->bversion;
41 }
42
fs_usage_data_type_to_base(struct bch_fs_usage_base * fs_usage,enum bch_data_type data_type,s64 sectors)43 static inline void fs_usage_data_type_to_base(struct bch_fs_usage_base *fs_usage,
44 enum bch_data_type data_type,
45 s64 sectors)
46 {
47 switch (data_type) {
48 case BCH_DATA_btree:
49 fs_usage->btree += sectors;
50 break;
51 case BCH_DATA_user:
52 case BCH_DATA_parity:
53 fs_usage->data += sectors;
54 break;
55 case BCH_DATA_cached:
56 fs_usage->cached += sectors;
57 break;
58 default:
59 break;
60 }
61 }
62
bpos_to_disk_accounting_pos(struct disk_accounting_pos * acc,struct bpos p)63 static inline void bpos_to_disk_accounting_pos(struct disk_accounting_pos *acc, struct bpos p)
64 {
65 acc->_pad = p;
66 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
67 bch2_bpos_swab(&acc->_pad);
68 #endif
69 }
70
disk_accounting_pos_to_bpos(struct disk_accounting_pos * k)71 static inline struct bpos disk_accounting_pos_to_bpos(struct disk_accounting_pos *k)
72 {
73 struct bpos ret = k->_pad;
74
75 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
76 bch2_bpos_swab(&ret);
77 #endif
78 return ret;
79 }
80
81 int bch2_disk_accounting_mod(struct btree_trans *, struct disk_accounting_pos *,
82 s64 *, unsigned, bool);
83 int bch2_mod_dev_cached_sectors(struct btree_trans *, unsigned, s64, bool);
84
85 int bch2_accounting_validate(struct bch_fs *, struct bkey_s_c, enum bch_validate_flags);
86 void bch2_accounting_key_to_text(struct printbuf *, struct disk_accounting_pos *);
87 void bch2_accounting_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c);
88 void bch2_accounting_swab(struct bkey_s);
89
90 #define bch2_bkey_ops_accounting ((struct bkey_ops) { \
91 .key_validate = bch2_accounting_validate, \
92 .val_to_text = bch2_accounting_to_text, \
93 .swab = bch2_accounting_swab, \
94 .min_val_size = 8, \
95 })
96
97 int bch2_accounting_update_sb(struct btree_trans *);
98
accounting_pos_cmp(const void * _l,const void * _r)99 static inline int accounting_pos_cmp(const void *_l, const void *_r)
100 {
101 const struct bpos *l = _l, *r = _r;
102
103 return bpos_cmp(*l, *r);
104 }
105
106 enum bch_accounting_mode {
107 BCH_ACCOUNTING_normal,
108 BCH_ACCOUNTING_gc,
109 BCH_ACCOUNTING_read,
110 };
111
112 int bch2_accounting_mem_insert(struct bch_fs *, struct bkey_s_c_accounting, enum bch_accounting_mode);
113 void bch2_accounting_mem_gc(struct bch_fs *);
114
115 /*
116 * Update in memory counters so they match the btree update we're doing; called
117 * from transaction commit path
118 */
bch2_accounting_mem_mod_locked(struct btree_trans * trans,struct bkey_s_c_accounting a,enum bch_accounting_mode mode)119 static inline int bch2_accounting_mem_mod_locked(struct btree_trans *trans,
120 struct bkey_s_c_accounting a,
121 enum bch_accounting_mode mode)
122 {
123 struct bch_fs *c = trans->c;
124 struct bch_accounting_mem *acc = &c->accounting;
125 struct disk_accounting_pos acc_k;
126 bpos_to_disk_accounting_pos(&acc_k, a.k->p);
127 bool gc = mode == BCH_ACCOUNTING_gc;
128
129 EBUG_ON(gc && !acc->gc_running);
130
131 if (acc_k.type == BCH_DISK_ACCOUNTING_inum)
132 return 0;
133
134 if (mode == BCH_ACCOUNTING_normal) {
135 switch (acc_k.type) {
136 case BCH_DISK_ACCOUNTING_persistent_reserved:
137 trans->fs_usage_delta.reserved += acc_k.persistent_reserved.nr_replicas * a.v->d[0];
138 break;
139 case BCH_DISK_ACCOUNTING_replicas:
140 fs_usage_data_type_to_base(&trans->fs_usage_delta, acc_k.replicas.data_type, a.v->d[0]);
141 break;
142 case BCH_DISK_ACCOUNTING_dev_data_type:
143 rcu_read_lock();
144 struct bch_dev *ca = bch2_dev_rcu(c, acc_k.dev_data_type.dev);
145 if (ca) {
146 this_cpu_add(ca->usage->d[acc_k.dev_data_type.data_type].buckets, a.v->d[0]);
147 this_cpu_add(ca->usage->d[acc_k.dev_data_type.data_type].sectors, a.v->d[1]);
148 this_cpu_add(ca->usage->d[acc_k.dev_data_type.data_type].fragmented, a.v->d[2]);
149 }
150 rcu_read_unlock();
151 break;
152 }
153 }
154
155 unsigned idx;
156
157 while ((idx = eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
158 accounting_pos_cmp, &a.k->p)) >= acc->k.nr) {
159 int ret = bch2_accounting_mem_insert(c, a, mode);
160 if (ret)
161 return ret;
162 }
163
164 struct accounting_mem_entry *e = &acc->k.data[idx];
165
166 EBUG_ON(bch2_accounting_counters(a.k) != e->nr_counters);
167
168 for (unsigned i = 0; i < bch2_accounting_counters(a.k); i++)
169 this_cpu_add(e->v[gc][i], a.v->d[i]);
170 return 0;
171 }
172
bch2_accounting_mem_add(struct btree_trans * trans,struct bkey_s_c_accounting a,bool gc)173 static inline int bch2_accounting_mem_add(struct btree_trans *trans, struct bkey_s_c_accounting a, bool gc)
174 {
175 percpu_down_read(&trans->c->mark_lock);
176 int ret = bch2_accounting_mem_mod_locked(trans, a, gc ? BCH_ACCOUNTING_gc : BCH_ACCOUNTING_normal);
177 percpu_up_read(&trans->c->mark_lock);
178 return ret;
179 }
180
bch2_accounting_mem_read_counters(struct bch_accounting_mem * acc,unsigned idx,u64 * v,unsigned nr,bool gc)181 static inline void bch2_accounting_mem_read_counters(struct bch_accounting_mem *acc,
182 unsigned idx, u64 *v, unsigned nr, bool gc)
183 {
184 memset(v, 0, sizeof(*v) * nr);
185
186 if (unlikely(idx >= acc->k.nr))
187 return;
188
189 struct accounting_mem_entry *e = &acc->k.data[idx];
190
191 nr = min_t(unsigned, nr, e->nr_counters);
192
193 for (unsigned i = 0; i < nr; i++)
194 v[i] = percpu_u64_get(e->v[gc] + i);
195 }
196
bch2_accounting_mem_read(struct bch_fs * c,struct bpos p,u64 * v,unsigned nr)197 static inline void bch2_accounting_mem_read(struct bch_fs *c, struct bpos p,
198 u64 *v, unsigned nr)
199 {
200 struct bch_accounting_mem *acc = &c->accounting;
201 unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
202 accounting_pos_cmp, &p);
203
204 bch2_accounting_mem_read_counters(acc, idx, v, nr, false);
205 }
206
207 int bch2_fs_replicas_usage_read(struct bch_fs *, darray_char *);
208 int bch2_fs_accounting_read(struct bch_fs *, darray_char *, unsigned);
209 void bch2_fs_accounting_to_text(struct printbuf *, struct bch_fs *);
210
211 int bch2_gc_accounting_start(struct bch_fs *);
212 int bch2_gc_accounting_done(struct bch_fs *);
213
214 int bch2_accounting_read(struct bch_fs *);
215
216 int bch2_dev_usage_remove(struct bch_fs *, unsigned);
217 int bch2_dev_usage_init(struct bch_dev *, bool);
218
219 void bch2_verify_accounting_clean(struct bch_fs *c);
220
221 void bch2_accounting_gc_free(struct bch_fs *);
222 void bch2_fs_accounting_exit(struct bch_fs *);
223
224 #endif /* _BCACHEFS_DISK_ACCOUNTING_H */
225