xref: /linux/fs/bcachefs/btree_update_interior.c (revision 56770e24f678a84a21f21bcc1ae9cbc1364677bd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_buf.h"
6 #include "bkey_methods.h"
7 #include "btree_cache.h"
8 #include "btree_gc.h"
9 #include "btree_journal_iter.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
12 #include "btree_io.h"
13 #include "btree_iter.h"
14 #include "btree_locking.h"
15 #include "buckets.h"
16 #include "clock.h"
17 #include "error.h"
18 #include "extents.h"
19 #include "io_write.h"
20 #include "journal.h"
21 #include "journal_reclaim.h"
22 #include "keylist.h"
23 #include "recovery_passes.h"
24 #include "replicas.h"
25 #include "sb-members.h"
26 #include "super-io.h"
27 #include "trace.h"
28 
29 #include <linux/random.h>
30 
31 static const char * const bch2_btree_update_modes[] = {
32 #define x(t) #t,
33 	BTREE_UPDATE_MODES()
34 #undef x
35 	NULL
36 };
37 
38 static void bch2_btree_update_to_text(struct printbuf *, struct btree_update *);
39 
40 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
41 				  btree_path_idx_t, struct btree *, struct keylist *);
42 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
43 
44 /*
45  * Verify that child nodes correctly span parent node's range:
46  */
bch2_btree_node_check_topology(struct btree_trans * trans,struct btree * b)47 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
48 {
49 	struct bch_fs *c = trans->c;
50 	struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
51 		? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key
52 		: b->data->min_key;
53 	struct btree_and_journal_iter iter;
54 	struct bkey_s_c k;
55 	struct printbuf buf = PRINTBUF;
56 	struct bkey_buf prev;
57 	int ret = 0;
58 
59 	printbuf_indent_add_nextline(&buf, 2);
60 
61 	BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
62 	       !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
63 			b->data->min_key));
64 
65 	bch2_bkey_buf_init(&prev);
66 	bkey_init(&prev.k->k);
67 	bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
68 
69 	if (b == btree_node_root(c, b)) {
70 		if (!bpos_eq(b->data->min_key, POS_MIN)) {
71 			ret = __bch2_topology_error(c, &buf);
72 
73 			bch2_bpos_to_text(&buf, b->data->min_key);
74 			log_fsck_err(trans, btree_root_bad_min_key,
75 				      "btree root with incorrect min_key: %s", buf.buf);
76 			goto out;
77 		}
78 
79 		if (!bpos_eq(b->data->max_key, SPOS_MAX)) {
80 			ret = __bch2_topology_error(c, &buf);
81 			bch2_bpos_to_text(&buf, b->data->max_key);
82 			log_fsck_err(trans, btree_root_bad_max_key,
83 				      "btree root with incorrect max_key: %s", buf.buf);
84 			goto out;
85 		}
86 	}
87 
88 	if (!b->c.level)
89 		goto out;
90 
91 	while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
92 		if (k.k->type != KEY_TYPE_btree_ptr_v2)
93 			goto out;
94 
95 		struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
96 
97 		struct bpos expected_min = bkey_deleted(&prev.k->k)
98 			? node_min
99 			: bpos_successor(prev.k->k.p);
100 
101 		if (!bpos_eq(expected_min, bp.v->min_key)) {
102 			ret = __bch2_topology_error(c, &buf);
103 
104 			prt_str(&buf, "end of prev node doesn't match start of next node\nin ");
105 			bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
106 			prt_str(&buf, " node ");
107 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
108 			prt_str(&buf, "\nprev ");
109 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
110 			prt_str(&buf, "\nnext ");
111 			bch2_bkey_val_to_text(&buf, c, k);
112 
113 			log_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf);
114 			goto out;
115 		}
116 
117 		bch2_bkey_buf_reassemble(&prev, c, k);
118 		bch2_btree_and_journal_iter_advance(&iter);
119 	}
120 
121 	if (bkey_deleted(&prev.k->k)) {
122 		ret = __bch2_topology_error(c, &buf);
123 
124 		prt_str(&buf, "empty interior node\nin ");
125 		bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
126 		prt_str(&buf, " node ");
127 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
128 
129 		log_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf);
130 	} else if (!bpos_eq(prev.k->k.p, b->key.k.p)) {
131 		ret = __bch2_topology_error(c, &buf);
132 
133 		prt_str(&buf, "last child node doesn't end at end of parent node\nin ");
134 		bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
135 		prt_str(&buf, " node ");
136 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
137 		prt_str(&buf, "\nlast key ");
138 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
139 
140 		log_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf);
141 	}
142 out:
143 fsck_err:
144 	bch2_btree_and_journal_iter_exit(&iter);
145 	bch2_bkey_buf_exit(&prev, c);
146 	printbuf_exit(&buf);
147 	return ret;
148 }
149 
150 /* Calculate ideal packed bkey format for new btree nodes: */
151 
__bch2_btree_calc_format(struct bkey_format_state * s,struct btree * b)152 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
153 {
154 	struct bkey_packed *k;
155 	struct bkey uk;
156 
157 	for_each_bset(b, t)
158 		bset_tree_for_each_key(b, t, k)
159 			if (!bkey_deleted(k)) {
160 				uk = bkey_unpack_key(b, k);
161 				bch2_bkey_format_add_key(s, &uk);
162 			}
163 }
164 
bch2_btree_calc_format(struct btree * b)165 static struct bkey_format bch2_btree_calc_format(struct btree *b)
166 {
167 	struct bkey_format_state s;
168 
169 	bch2_bkey_format_init(&s);
170 	bch2_bkey_format_add_pos(&s, b->data->min_key);
171 	bch2_bkey_format_add_pos(&s, b->data->max_key);
172 	__bch2_btree_calc_format(&s, b);
173 
174 	return bch2_bkey_format_done(&s);
175 }
176 
btree_node_u64s_with_format(struct btree_nr_keys nr,struct bkey_format * old_f,struct bkey_format * new_f)177 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
178 					  struct bkey_format *old_f,
179 					  struct bkey_format *new_f)
180 {
181 	/* stupid integer promotion rules */
182 	ssize_t delta =
183 	    (((int) new_f->key_u64s - old_f->key_u64s) *
184 	     (int) nr.packed_keys) +
185 	    (((int) new_f->key_u64s - BKEY_U64s) *
186 	     (int) nr.unpacked_keys);
187 
188 	BUG_ON(delta + nr.live_u64s < 0);
189 
190 	return nr.live_u64s + delta;
191 }
192 
193 /**
194  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
195  *
196  * @c:		filesystem handle
197  * @b:		btree node to rewrite
198  * @nr:		number of keys for new node (i.e. b->nr)
199  * @new_f:	bkey format to translate keys to
200  *
201  * Returns: true if all re-packed keys will be able to fit in a new node.
202  *
203  * Assumes all keys will successfully pack with the new format.
204  */
bch2_btree_node_format_fits(struct bch_fs * c,struct btree * b,struct btree_nr_keys nr,struct bkey_format * new_f)205 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
206 				 struct btree_nr_keys nr,
207 				 struct bkey_format *new_f)
208 {
209 	size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
210 
211 	return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
212 }
213 
214 /* Btree node freeing/allocation: */
215 
__btree_node_free(struct btree_trans * trans,struct btree * b)216 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
217 {
218 	struct bch_fs *c = trans->c;
219 
220 	trace_and_count(c, btree_node_free, trans, b);
221 
222 	BUG_ON(btree_node_write_blocked(b));
223 	BUG_ON(btree_node_dirty(b));
224 	BUG_ON(btree_node_need_write(b));
225 	BUG_ON(b == btree_node_root(c, b));
226 	BUG_ON(b->ob.nr);
227 	BUG_ON(!list_empty(&b->write_blocked));
228 	BUG_ON(b->will_make_reachable);
229 
230 	clear_btree_node_noevict(b);
231 }
232 
bch2_btree_node_free_inmem(struct btree_trans * trans,struct btree_path * path,struct btree * b)233 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
234 				       struct btree_path *path,
235 				       struct btree *b)
236 {
237 	struct bch_fs *c = trans->c;
238 
239 	bch2_btree_node_lock_write_nofail(trans, path, &b->c);
240 
241 	__btree_node_free(trans, b);
242 
243 	mutex_lock(&c->btree_cache.lock);
244 	bch2_btree_node_hash_remove(&c->btree_cache, b);
245 	mutex_unlock(&c->btree_cache.lock);
246 
247 	six_unlock_write(&b->c.lock);
248 	mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
249 
250 	bch2_trans_node_drop(trans, b);
251 }
252 
bch2_btree_node_free_never_used(struct btree_update * as,struct btree_trans * trans,struct btree * b)253 static void bch2_btree_node_free_never_used(struct btree_update *as,
254 					    struct btree_trans *trans,
255 					    struct btree *b)
256 {
257 	struct bch_fs *c = as->c;
258 	struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
259 
260 	BUG_ON(!list_empty(&b->write_blocked));
261 	BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
262 
263 	b->will_make_reachable = 0;
264 	closure_put(&as->cl);
265 
266 	clear_btree_node_will_make_reachable(b);
267 	clear_btree_node_accessed(b);
268 	clear_btree_node_dirty_acct(c, b);
269 	clear_btree_node_need_write(b);
270 
271 	mutex_lock(&c->btree_cache.lock);
272 	__bch2_btree_node_hash_remove(&c->btree_cache, b);
273 	mutex_unlock(&c->btree_cache.lock);
274 
275 	BUG_ON(p->nr >= ARRAY_SIZE(p->b));
276 	p->b[p->nr++] = b;
277 
278 	six_unlock_intent(&b->c.lock);
279 
280 	bch2_trans_node_drop(trans, b);
281 }
282 
__bch2_btree_node_alloc(struct btree_trans * trans,struct disk_reservation * res,struct closure * cl,bool interior_node,unsigned flags)283 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
284 					     struct disk_reservation *res,
285 					     struct closure *cl,
286 					     bool interior_node,
287 					     unsigned flags)
288 {
289 	struct bch_fs *c = trans->c;
290 	struct write_point *wp;
291 	struct btree *b;
292 	BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
293 	struct open_buckets obs = { .nr = 0 };
294 	struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
295 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
296 	unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
297 		? BTREE_NODE_RESERVE
298 		: 0;
299 	int ret;
300 
301 	b = bch2_btree_node_mem_alloc(trans, interior_node);
302 	if (IS_ERR(b))
303 		return b;
304 
305 	BUG_ON(b->ob.nr);
306 
307 	mutex_lock(&c->btree_reserve_cache_lock);
308 	if (c->btree_reserve_cache_nr > nr_reserve) {
309 		struct btree_alloc *a =
310 			&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
311 
312 		obs = a->ob;
313 		bkey_copy(&tmp.k, &a->k);
314 		mutex_unlock(&c->btree_reserve_cache_lock);
315 		goto out;
316 	}
317 	mutex_unlock(&c->btree_reserve_cache_lock);
318 retry:
319 	ret = bch2_alloc_sectors_start_trans(trans,
320 				      c->opts.metadata_target ?:
321 				      c->opts.foreground_target,
322 				      0,
323 				      writepoint_ptr(&c->btree_write_point),
324 				      &devs_have,
325 				      res->nr_replicas,
326 				      min(res->nr_replicas,
327 					  c->opts.metadata_replicas_required),
328 				      watermark, 0, cl, &wp);
329 	if (unlikely(ret))
330 		goto err;
331 
332 	if (wp->sectors_free < btree_sectors(c)) {
333 		struct open_bucket *ob;
334 		unsigned i;
335 
336 		open_bucket_for_each(c, &wp->ptrs, ob, i)
337 			if (ob->sectors_free < btree_sectors(c))
338 				ob->sectors_free = 0;
339 
340 		bch2_alloc_sectors_done(c, wp);
341 		goto retry;
342 	}
343 
344 	bkey_btree_ptr_v2_init(&tmp.k);
345 	bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
346 
347 	bch2_open_bucket_get(c, wp, &obs);
348 	bch2_alloc_sectors_done(c, wp);
349 out:
350 	bkey_copy(&b->key, &tmp.k);
351 	b->ob = obs;
352 	six_unlock_write(&b->c.lock);
353 	six_unlock_intent(&b->c.lock);
354 
355 	return b;
356 err:
357 	bch2_btree_node_to_freelist(c, b);
358 	return ERR_PTR(ret);
359 }
360 
bch2_btree_node_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)361 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
362 					   struct btree_trans *trans,
363 					   unsigned level)
364 {
365 	struct bch_fs *c = as->c;
366 	struct btree *b;
367 	struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
368 	int ret;
369 
370 	BUG_ON(level >= BTREE_MAX_DEPTH);
371 	BUG_ON(!p->nr);
372 
373 	b = p->b[--p->nr];
374 
375 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
376 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
377 
378 	set_btree_node_accessed(b);
379 	set_btree_node_dirty_acct(c, b);
380 	set_btree_node_need_write(b);
381 
382 	bch2_bset_init_first(b, &b->data->keys);
383 	b->c.level	= level;
384 	b->c.btree_id	= as->btree_id;
385 	b->version_ondisk = c->sb.version;
386 
387 	memset(&b->nr, 0, sizeof(b->nr));
388 	b->data->magic = cpu_to_le64(bset_magic(c));
389 	memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
390 	b->data->flags = 0;
391 	SET_BTREE_NODE_ID(b->data, as->btree_id);
392 	SET_BTREE_NODE_LEVEL(b->data, level);
393 
394 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
395 		struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
396 
397 		bp->v.mem_ptr		= 0;
398 		bp->v.seq		= b->data->keys.seq;
399 		bp->v.sectors_written	= 0;
400 	}
401 
402 	SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
403 
404 	bch2_btree_build_aux_trees(b);
405 
406 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
407 	BUG_ON(ret);
408 
409 	trace_and_count(c, btree_node_alloc, trans, b);
410 	bch2_increment_clock(c, btree_sectors(c), WRITE);
411 	return b;
412 }
413 
btree_set_min(struct btree * b,struct bpos pos)414 static void btree_set_min(struct btree *b, struct bpos pos)
415 {
416 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
417 		bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
418 	b->data->min_key = pos;
419 }
420 
btree_set_max(struct btree * b,struct bpos pos)421 static void btree_set_max(struct btree *b, struct bpos pos)
422 {
423 	b->key.k.p = pos;
424 	b->data->max_key = pos;
425 }
426 
bch2_btree_node_alloc_replacement(struct btree_update * as,struct btree_trans * trans,struct btree * b)427 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
428 						       struct btree_trans *trans,
429 						       struct btree *b)
430 {
431 	struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
432 	struct bkey_format format = bch2_btree_calc_format(b);
433 
434 	/*
435 	 * The keys might expand with the new format - if they wouldn't fit in
436 	 * the btree node anymore, use the old format for now:
437 	 */
438 	if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
439 		format = b->format;
440 
441 	SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
442 
443 	btree_set_min(n, b->data->min_key);
444 	btree_set_max(n, b->data->max_key);
445 
446 	n->data->format		= format;
447 	btree_node_set_format(n, format);
448 
449 	bch2_btree_sort_into(as->c, n, b);
450 
451 	btree_node_reset_sib_u64s(n);
452 	return n;
453 }
454 
__btree_root_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)455 static struct btree *__btree_root_alloc(struct btree_update *as,
456 				struct btree_trans *trans, unsigned level)
457 {
458 	struct btree *b = bch2_btree_node_alloc(as, trans, level);
459 
460 	btree_set_min(b, POS_MIN);
461 	btree_set_max(b, SPOS_MAX);
462 	b->data->format = bch2_btree_calc_format(b);
463 
464 	btree_node_set_format(b, b->data->format);
465 	bch2_btree_build_aux_trees(b);
466 
467 	return b;
468 }
469 
bch2_btree_reserve_put(struct btree_update * as,struct btree_trans * trans)470 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
471 {
472 	struct bch_fs *c = as->c;
473 	struct prealloc_nodes *p;
474 
475 	for (p = as->prealloc_nodes;
476 	     p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
477 	     p++) {
478 		while (p->nr) {
479 			struct btree *b = p->b[--p->nr];
480 
481 			mutex_lock(&c->btree_reserve_cache_lock);
482 
483 			if (c->btree_reserve_cache_nr <
484 			    ARRAY_SIZE(c->btree_reserve_cache)) {
485 				struct btree_alloc *a =
486 					&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
487 
488 				a->ob = b->ob;
489 				b->ob.nr = 0;
490 				bkey_copy(&a->k, &b->key);
491 			} else {
492 				bch2_open_buckets_put(c, &b->ob);
493 			}
494 
495 			mutex_unlock(&c->btree_reserve_cache_lock);
496 
497 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
498 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
499 			__btree_node_free(trans, b);
500 			bch2_btree_node_to_freelist(c, b);
501 		}
502 	}
503 }
504 
bch2_btree_reserve_get(struct btree_trans * trans,struct btree_update * as,unsigned nr_nodes[2],unsigned flags,struct closure * cl)505 static int bch2_btree_reserve_get(struct btree_trans *trans,
506 				  struct btree_update *as,
507 				  unsigned nr_nodes[2],
508 				  unsigned flags,
509 				  struct closure *cl)
510 {
511 	struct btree *b;
512 	unsigned interior;
513 	int ret = 0;
514 
515 	BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
516 
517 	/*
518 	 * Protects reaping from the btree node cache and using the btree node
519 	 * open bucket reserve:
520 	 */
521 	ret = bch2_btree_cache_cannibalize_lock(trans, cl);
522 	if (ret)
523 		return ret;
524 
525 	for (interior = 0; interior < 2; interior++) {
526 		struct prealloc_nodes *p = as->prealloc_nodes + interior;
527 
528 		while (p->nr < nr_nodes[interior]) {
529 			b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
530 						    interior, flags);
531 			if (IS_ERR(b)) {
532 				ret = PTR_ERR(b);
533 				goto err;
534 			}
535 
536 			p->b[p->nr++] = b;
537 		}
538 	}
539 err:
540 	bch2_btree_cache_cannibalize_unlock(trans);
541 	return ret;
542 }
543 
544 /* Asynchronous interior node update machinery */
545 
bch2_btree_update_free(struct btree_update * as,struct btree_trans * trans)546 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
547 {
548 	struct bch_fs *c = as->c;
549 
550 	if (as->took_gc_lock)
551 		up_read(&c->gc_lock);
552 	as->took_gc_lock = false;
553 
554 	bch2_journal_pin_drop(&c->journal, &as->journal);
555 	bch2_journal_pin_flush(&c->journal, &as->journal);
556 	bch2_disk_reservation_put(c, &as->disk_res);
557 	bch2_btree_reserve_put(as, trans);
558 
559 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
560 			       as->start_time);
561 
562 	mutex_lock(&c->btree_interior_update_lock);
563 	list_del(&as->unwritten_list);
564 	list_del(&as->list);
565 
566 	closure_debug_destroy(&as->cl);
567 	mempool_free(as, &c->btree_interior_update_pool);
568 
569 	/*
570 	 * Have to do the wakeup with btree_interior_update_lock still held,
571 	 * since being on btree_interior_update_list is our ref on @c:
572 	 */
573 	closure_wake_up(&c->btree_interior_update_wait);
574 
575 	mutex_unlock(&c->btree_interior_update_lock);
576 }
577 
btree_update_add_key(struct btree_update * as,struct keylist * keys,struct btree * b)578 static void btree_update_add_key(struct btree_update *as,
579 				 struct keylist *keys, struct btree *b)
580 {
581 	struct bkey_i *k = &b->key;
582 
583 	BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
584 	       ARRAY_SIZE(as->_old_keys));
585 
586 	bkey_copy(keys->top, k);
587 	bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
588 
589 	bch2_keylist_push(keys);
590 }
591 
btree_update_new_nodes_marked_sb(struct btree_update * as)592 static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
593 {
594 	for_each_keylist_key(&as->new_keys, k)
595 		if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
596 			return false;
597 	return true;
598 }
599 
btree_update_new_nodes_mark_sb(struct btree_update * as)600 static void btree_update_new_nodes_mark_sb(struct btree_update *as)
601 {
602 	struct bch_fs *c = as->c;
603 
604 	mutex_lock(&c->sb_lock);
605 	for_each_keylist_key(&as->new_keys, k)
606 		bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
607 
608 	bch2_write_super(c);
609 	mutex_unlock(&c->sb_lock);
610 }
611 
612 /*
613  * The transactional part of an interior btree node update, where we journal the
614  * update we did to the interior node and update alloc info:
615  */
btree_update_nodes_written_trans(struct btree_trans * trans,struct btree_update * as)616 static int btree_update_nodes_written_trans(struct btree_trans *trans,
617 					    struct btree_update *as)
618 {
619 	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
620 	int ret = PTR_ERR_OR_ZERO(e);
621 	if (ret)
622 		return ret;
623 
624 	memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
625 
626 	trans->journal_pin = &as->journal;
627 
628 	for_each_keylist_key(&as->old_keys, k) {
629 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
630 
631 		ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
632 					   BTREE_TRIGGER_transactional);
633 		if (ret)
634 			return ret;
635 	}
636 
637 	for_each_keylist_key(&as->new_keys, k) {
638 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
639 
640 		ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
641 					   BTREE_TRIGGER_transactional);
642 		if (ret)
643 			return ret;
644 	}
645 
646 	return 0;
647 }
648 
649 /* If the node has been reused, we might be reading uninitialized memory - that's fine: */
btree_node_seq_matches(struct btree * b,__le64 seq)650 static noinline __no_kmsan_checks bool btree_node_seq_matches(struct btree *b, __le64 seq)
651 {
652 	struct btree_node *b_data = READ_ONCE(b->data);
653 
654 	return (b_data ? b_data->keys.seq : 0) == seq;
655 }
656 
btree_update_nodes_written(struct btree_update * as)657 static void btree_update_nodes_written(struct btree_update *as)
658 {
659 	struct bch_fs *c = as->c;
660 	struct btree *b;
661 	struct btree_trans *trans = bch2_trans_get(c);
662 	u64 journal_seq = 0;
663 	unsigned i;
664 	int ret;
665 
666 	/*
667 	 * If we're already in an error state, it might be because a btree node
668 	 * was never written, and we might be trying to free that same btree
669 	 * node here, but it won't have been marked as allocated and we'll see
670 	 * spurious disk usage inconsistencies in the transactional part below
671 	 * if we don't skip it:
672 	 */
673 	ret = bch2_journal_error(&c->journal);
674 	if (ret)
675 		goto err;
676 
677 	if (!btree_update_new_nodes_marked_sb(as))
678 		btree_update_new_nodes_mark_sb(as);
679 
680 	/*
681 	 * Wait for any in flight writes to finish before we free the old nodes
682 	 * on disk:
683 	 */
684 	for (i = 0; i < as->nr_old_nodes; i++) {
685 		b = as->old_nodes[i];
686 
687 		if (btree_node_seq_matches(b, as->old_nodes_seq[i]))
688 			wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
689 				       TASK_UNINTERRUPTIBLE);
690 	}
691 
692 	/*
693 	 * We did an update to a parent node where the pointers we added pointed
694 	 * to child nodes that weren't written yet: now, the child nodes have
695 	 * been written so we can write out the update to the interior node.
696 	 */
697 
698 	/*
699 	 * We can't call into journal reclaim here: we'd block on the journal
700 	 * reclaim lock, but we may need to release the open buckets we have
701 	 * pinned in order for other btree updates to make forward progress, and
702 	 * journal reclaim does btree updates when flushing bkey_cached entries,
703 	 * which may require allocations as well.
704 	 */
705 	ret = commit_do(trans, &as->disk_res, &journal_seq,
706 			BCH_WATERMARK_interior_updates|
707 			BCH_TRANS_COMMIT_no_enospc|
708 			BCH_TRANS_COMMIT_no_check_rw|
709 			BCH_TRANS_COMMIT_journal_reclaim,
710 			btree_update_nodes_written_trans(trans, as));
711 	bch2_trans_unlock(trans);
712 
713 	bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
714 			     "%s", bch2_err_str(ret));
715 err:
716 	/*
717 	 * Ensure transaction is unlocked before using btree_node_lock_nopath()
718 	 * (the use of which is always suspect, we need to work on removing this
719 	 * in the future)
720 	 *
721 	 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get()
722 	 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may
723 	 * rarely end up with a locked path besides the one we have here:
724 	 */
725 	bch2_trans_unlock(trans);
726 	bch2_trans_begin(trans);
727 
728 	/*
729 	 * We have to be careful because another thread might be getting ready
730 	 * to free as->b and calling btree_update_reparent() on us - we'll
731 	 * recheck under btree_update_lock below:
732 	 */
733 	b = READ_ONCE(as->b);
734 	if (b) {
735 		/*
736 		 * @b is the node we did the final insert into:
737 		 *
738 		 * On failure to get a journal reservation, we still have to
739 		 * unblock the write and allow most of the write path to happen
740 		 * so that shutdown works, but the i->journal_seq mechanism
741 		 * won't work to prevent the btree write from being visible (we
742 		 * didn't get a journal sequence number) - instead
743 		 * __bch2_btree_node_write() doesn't do the actual write if
744 		 * we're in journal error state:
745 		 */
746 
747 		btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans,
748 						as->btree_id, b->c.level, b->key.k.p);
749 		struct btree_path *path = trans->paths + path_idx;
750 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
751 		mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
752 		path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
753 		path->l[b->c.level].b = b;
754 
755 		bch2_btree_node_lock_write_nofail(trans, path, &b->c);
756 
757 		mutex_lock(&c->btree_interior_update_lock);
758 
759 		list_del(&as->write_blocked_list);
760 		if (list_empty(&b->write_blocked))
761 			clear_btree_node_write_blocked(b);
762 
763 		/*
764 		 * Node might have been freed, recheck under
765 		 * btree_interior_update_lock:
766 		 */
767 		if (as->b == b) {
768 			BUG_ON(!b->c.level);
769 			BUG_ON(!btree_node_dirty(b));
770 
771 			if (!ret) {
772 				struct bset *last = btree_bset_last(b);
773 
774 				last->journal_seq = cpu_to_le64(
775 							     max(journal_seq,
776 								 le64_to_cpu(last->journal_seq)));
777 
778 				bch2_btree_add_journal_pin(c, b, journal_seq);
779 			} else {
780 				/*
781 				 * If we didn't get a journal sequence number we
782 				 * can't write this btree node, because recovery
783 				 * won't know to ignore this write:
784 				 */
785 				set_btree_node_never_write(b);
786 			}
787 		}
788 
789 		mutex_unlock(&c->btree_interior_update_lock);
790 
791 		mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
792 		six_unlock_write(&b->c.lock);
793 
794 		btree_node_write_if_need(trans, b, SIX_LOCK_intent);
795 		btree_node_unlock(trans, path, b->c.level);
796 		bch2_path_put(trans, path_idx, true);
797 	}
798 
799 	bch2_journal_pin_drop(&c->journal, &as->journal);
800 
801 	mutex_lock(&c->btree_interior_update_lock);
802 	for (i = 0; i < as->nr_new_nodes; i++) {
803 		b = as->new_nodes[i];
804 
805 		BUG_ON(b->will_make_reachable != (unsigned long) as);
806 		b->will_make_reachable = 0;
807 		clear_btree_node_will_make_reachable(b);
808 	}
809 	mutex_unlock(&c->btree_interior_update_lock);
810 
811 	for (i = 0; i < as->nr_new_nodes; i++) {
812 		b = as->new_nodes[i];
813 
814 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
815 		btree_node_write_if_need(trans, b, SIX_LOCK_read);
816 		six_unlock_read(&b->c.lock);
817 	}
818 
819 	for (i = 0; i < as->nr_open_buckets; i++)
820 		bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
821 
822 	bch2_btree_update_free(as, trans);
823 	bch2_trans_put(trans);
824 }
825 
btree_interior_update_work(struct work_struct * work)826 static void btree_interior_update_work(struct work_struct *work)
827 {
828 	struct bch_fs *c =
829 		container_of(work, struct bch_fs, btree_interior_update_work);
830 	struct btree_update *as;
831 
832 	while (1) {
833 		mutex_lock(&c->btree_interior_update_lock);
834 		as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
835 					      struct btree_update, unwritten_list);
836 		if (as && !as->nodes_written)
837 			as = NULL;
838 		mutex_unlock(&c->btree_interior_update_lock);
839 
840 		if (!as)
841 			break;
842 
843 		btree_update_nodes_written(as);
844 	}
845 }
846 
CLOSURE_CALLBACK(btree_update_set_nodes_written)847 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
848 {
849 	closure_type(as, struct btree_update, cl);
850 	struct bch_fs *c = as->c;
851 
852 	mutex_lock(&c->btree_interior_update_lock);
853 	as->nodes_written = true;
854 	mutex_unlock(&c->btree_interior_update_lock);
855 
856 	queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
857 }
858 
859 /*
860  * We're updating @b with pointers to nodes that haven't finished writing yet:
861  * block @b from being written until @as completes
862  */
btree_update_updated_node(struct btree_update * as,struct btree * b)863 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
864 {
865 	struct bch_fs *c = as->c;
866 
867 	BUG_ON(as->mode != BTREE_UPDATE_none);
868 	BUG_ON(as->update_level_end < b->c.level);
869 	BUG_ON(!btree_node_dirty(b));
870 	BUG_ON(!b->c.level);
871 
872 	mutex_lock(&c->btree_interior_update_lock);
873 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
874 
875 	as->mode	= BTREE_UPDATE_node;
876 	as->b		= b;
877 	as->update_level_end = b->c.level;
878 
879 	set_btree_node_write_blocked(b);
880 	list_add(&as->write_blocked_list, &b->write_blocked);
881 
882 	mutex_unlock(&c->btree_interior_update_lock);
883 }
884 
bch2_update_reparent_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)885 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
886 				struct journal_entry_pin *_pin, u64 seq)
887 {
888 	return 0;
889 }
890 
btree_update_reparent(struct btree_update * as,struct btree_update * child)891 static void btree_update_reparent(struct btree_update *as,
892 				  struct btree_update *child)
893 {
894 	struct bch_fs *c = as->c;
895 
896 	lockdep_assert_held(&c->btree_interior_update_lock);
897 
898 	child->b = NULL;
899 	child->mode = BTREE_UPDATE_update;
900 
901 	bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
902 			      bch2_update_reparent_journal_pin_flush);
903 }
904 
btree_update_updated_root(struct btree_update * as,struct btree * b)905 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
906 {
907 	struct bkey_i *insert = &b->key;
908 	struct bch_fs *c = as->c;
909 
910 	BUG_ON(as->mode != BTREE_UPDATE_none);
911 
912 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
913 	       ARRAY_SIZE(as->journal_entries));
914 
915 	as->journal_u64s +=
916 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
917 				  BCH_JSET_ENTRY_btree_root,
918 				  b->c.btree_id, b->c.level,
919 				  insert, insert->k.u64s);
920 
921 	mutex_lock(&c->btree_interior_update_lock);
922 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
923 
924 	as->mode	= BTREE_UPDATE_root;
925 	mutex_unlock(&c->btree_interior_update_lock);
926 }
927 
928 /*
929  * bch2_btree_update_add_new_node:
930  *
931  * This causes @as to wait on @b to be written, before it gets to
932  * bch2_btree_update_nodes_written
933  *
934  * Additionally, it sets b->will_make_reachable to prevent any additional writes
935  * to @b from happening besides the first until @b is reachable on disk
936  *
937  * And it adds @b to the list of @as's new nodes, so that we can update sector
938  * counts in bch2_btree_update_nodes_written:
939  */
bch2_btree_update_add_new_node(struct btree_update * as,struct btree * b)940 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
941 {
942 	struct bch_fs *c = as->c;
943 
944 	closure_get(&as->cl);
945 
946 	mutex_lock(&c->btree_interior_update_lock);
947 	BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
948 	BUG_ON(b->will_make_reachable);
949 
950 	as->new_nodes[as->nr_new_nodes++] = b;
951 	b->will_make_reachable = 1UL|(unsigned long) as;
952 	set_btree_node_will_make_reachable(b);
953 
954 	mutex_unlock(&c->btree_interior_update_lock);
955 
956 	btree_update_add_key(as, &as->new_keys, b);
957 
958 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
959 		unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
960 		unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
961 
962 		bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
963 			cpu_to_le16(sectors);
964 	}
965 }
966 
967 /*
968  * returns true if @b was a new node
969  */
btree_update_drop_new_node(struct bch_fs * c,struct btree * b)970 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
971 {
972 	struct btree_update *as;
973 	unsigned long v;
974 	unsigned i;
975 
976 	mutex_lock(&c->btree_interior_update_lock);
977 	/*
978 	 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
979 	 * dropped when it gets written by bch2_btree_complete_write - the
980 	 * xchg() is for synchronization with bch2_btree_complete_write:
981 	 */
982 	v = xchg(&b->will_make_reachable, 0);
983 	clear_btree_node_will_make_reachable(b);
984 	as = (struct btree_update *) (v & ~1UL);
985 
986 	if (!as) {
987 		mutex_unlock(&c->btree_interior_update_lock);
988 		return;
989 	}
990 
991 	for (i = 0; i < as->nr_new_nodes; i++)
992 		if (as->new_nodes[i] == b)
993 			goto found;
994 
995 	BUG();
996 found:
997 	array_remove_item(as->new_nodes, as->nr_new_nodes, i);
998 	mutex_unlock(&c->btree_interior_update_lock);
999 
1000 	if (v & 1)
1001 		closure_put(&as->cl);
1002 }
1003 
bch2_btree_update_get_open_buckets(struct btree_update * as,struct btree * b)1004 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1005 {
1006 	while (b->ob.nr)
1007 		as->open_buckets[as->nr_open_buckets++] =
1008 			b->ob.v[--b->ob.nr];
1009 }
1010 
bch2_btree_update_will_free_node_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)1011 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1012 				struct journal_entry_pin *_pin, u64 seq)
1013 {
1014 	return 0;
1015 }
1016 
1017 /*
1018  * @b is being split/rewritten: it may have pointers to not-yet-written btree
1019  * nodes and thus outstanding btree_updates - redirect @b's
1020  * btree_updates to point to this btree_update:
1021  */
bch2_btree_interior_update_will_free_node(struct btree_update * as,struct btree * b)1022 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1023 						      struct btree *b)
1024 {
1025 	struct bch_fs *c = as->c;
1026 	struct btree_update *p, *n;
1027 	struct btree_write *w;
1028 
1029 	set_btree_node_dying(b);
1030 
1031 	if (btree_node_fake(b))
1032 		return;
1033 
1034 	mutex_lock(&c->btree_interior_update_lock);
1035 
1036 	/*
1037 	 * Does this node have any btree_update operations preventing
1038 	 * it from being written?
1039 	 *
1040 	 * If so, redirect them to point to this btree_update: we can
1041 	 * write out our new nodes, but we won't make them visible until those
1042 	 * operations complete
1043 	 */
1044 	list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1045 		list_del_init(&p->write_blocked_list);
1046 		btree_update_reparent(as, p);
1047 
1048 		/*
1049 		 * for flush_held_btree_writes() waiting on updates to flush or
1050 		 * nodes to be writeable:
1051 		 */
1052 		closure_wake_up(&c->btree_interior_update_wait);
1053 	}
1054 
1055 	clear_btree_node_dirty_acct(c, b);
1056 	clear_btree_node_need_write(b);
1057 	clear_btree_node_write_blocked(b);
1058 
1059 	/*
1060 	 * Does this node have unwritten data that has a pin on the journal?
1061 	 *
1062 	 * If so, transfer that pin to the btree_update operation -
1063 	 * note that if we're freeing multiple nodes, we only need to keep the
1064 	 * oldest pin of any of the nodes we're freeing. We'll release the pin
1065 	 * when the new nodes are persistent and reachable on disk:
1066 	 */
1067 	w = btree_current_write(b);
1068 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1069 			      bch2_btree_update_will_free_node_journal_pin_flush);
1070 	bch2_journal_pin_drop(&c->journal, &w->journal);
1071 
1072 	w = btree_prev_write(b);
1073 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1074 			      bch2_btree_update_will_free_node_journal_pin_flush);
1075 	bch2_journal_pin_drop(&c->journal, &w->journal);
1076 
1077 	mutex_unlock(&c->btree_interior_update_lock);
1078 
1079 	/*
1080 	 * Is this a node that isn't reachable on disk yet?
1081 	 *
1082 	 * Nodes that aren't reachable yet have writes blocked until they're
1083 	 * reachable - now that we've cancelled any pending writes and moved
1084 	 * things waiting on that write to wait on this update, we can drop this
1085 	 * node from the list of nodes that the other update is making
1086 	 * reachable, prior to freeing it:
1087 	 */
1088 	btree_update_drop_new_node(c, b);
1089 
1090 	btree_update_add_key(as, &as->old_keys, b);
1091 
1092 	as->old_nodes[as->nr_old_nodes] = b;
1093 	as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1094 	as->nr_old_nodes++;
1095 }
1096 
bch2_btree_update_done(struct btree_update * as,struct btree_trans * trans)1097 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1098 {
1099 	struct bch_fs *c = as->c;
1100 	u64 start_time = as->start_time;
1101 
1102 	BUG_ON(as->mode == BTREE_UPDATE_none);
1103 
1104 	if (as->took_gc_lock)
1105 		up_read(&as->c->gc_lock);
1106 	as->took_gc_lock = false;
1107 
1108 	bch2_btree_reserve_put(as, trans);
1109 
1110 	continue_at(&as->cl, btree_update_set_nodes_written,
1111 		    as->c->btree_interior_update_worker);
1112 
1113 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1114 			       start_time);
1115 }
1116 
1117 static struct btree_update *
bch2_btree_update_start(struct btree_trans * trans,struct btree_path * path,unsigned level_start,bool split,unsigned flags)1118 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1119 			unsigned level_start, bool split, unsigned flags)
1120 {
1121 	struct bch_fs *c = trans->c;
1122 	struct btree_update *as;
1123 	u64 start_time = local_clock();
1124 	int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1125 		? BCH_DISK_RESERVATION_NOFAIL : 0;
1126 	unsigned nr_nodes[2] = { 0, 0 };
1127 	unsigned level_end = level_start;
1128 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1129 	int ret = 0;
1130 	u32 restart_count = trans->restart_count;
1131 
1132 	BUG_ON(!path->should_be_locked);
1133 
1134 	if (watermark == BCH_WATERMARK_copygc)
1135 		watermark = BCH_WATERMARK_btree_copygc;
1136 	if (watermark < BCH_WATERMARK_btree)
1137 		watermark = BCH_WATERMARK_btree;
1138 
1139 	flags &= ~BCH_WATERMARK_MASK;
1140 	flags |= watermark;
1141 
1142 	if (watermark < BCH_WATERMARK_reclaim &&
1143 	    test_bit(JOURNAL_space_low, &c->journal.flags)) {
1144 		if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1145 			return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock);
1146 
1147 		ret = drop_locks_do(trans,
1148 			({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; }));
1149 		if (ret)
1150 			return ERR_PTR(ret);
1151 	}
1152 
1153 	while (1) {
1154 		nr_nodes[!!level_end] += 1 + split;
1155 		level_end++;
1156 
1157 		ret = bch2_btree_path_upgrade(trans, path, level_end + 1);
1158 		if (ret)
1159 			return ERR_PTR(ret);
1160 
1161 		if (!btree_path_node(path, level_end)) {
1162 			/* Allocating new root? */
1163 			nr_nodes[1] += split;
1164 			level_end = BTREE_MAX_DEPTH;
1165 			break;
1166 		}
1167 
1168 		/*
1169 		 * Always check for space for two keys, even if we won't have to
1170 		 * split at prior level - it might have been a merge instead:
1171 		 */
1172 		if (bch2_btree_node_insert_fits(path->l[level_end].b,
1173 						BKEY_BTREE_PTR_U64s_MAX * 2))
1174 			break;
1175 
1176 		split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1177 	}
1178 
1179 	if (!down_read_trylock(&c->gc_lock)) {
1180 		ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1181 		if (ret) {
1182 			up_read(&c->gc_lock);
1183 			return ERR_PTR(ret);
1184 		}
1185 	}
1186 
1187 	as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1188 	memset(as, 0, sizeof(*as));
1189 	closure_init(&as->cl, NULL);
1190 	as->c			= c;
1191 	as->start_time		= start_time;
1192 	as->ip_started		= _RET_IP_;
1193 	as->mode		= BTREE_UPDATE_none;
1194 	as->flags		= flags;
1195 	as->took_gc_lock	= true;
1196 	as->btree_id		= path->btree_id;
1197 	as->update_level_start	= level_start;
1198 	as->update_level_end	= level_end;
1199 	INIT_LIST_HEAD(&as->list);
1200 	INIT_LIST_HEAD(&as->unwritten_list);
1201 	INIT_LIST_HEAD(&as->write_blocked_list);
1202 	bch2_keylist_init(&as->old_keys, as->_old_keys);
1203 	bch2_keylist_init(&as->new_keys, as->_new_keys);
1204 	bch2_keylist_init(&as->parent_keys, as->inline_keys);
1205 
1206 	mutex_lock(&c->btree_interior_update_lock);
1207 	list_add_tail(&as->list, &c->btree_interior_update_list);
1208 	mutex_unlock(&c->btree_interior_update_lock);
1209 
1210 	/*
1211 	 * We don't want to allocate if we're in an error state, that can cause
1212 	 * deadlock on emergency shutdown due to open buckets getting stuck in
1213 	 * the btree_reserve_cache after allocator shutdown has cleared it out.
1214 	 * This check needs to come after adding us to the btree_interior_update
1215 	 * list but before calling bch2_btree_reserve_get, to synchronize with
1216 	 * __bch2_fs_read_only().
1217 	 */
1218 	ret = bch2_journal_error(&c->journal);
1219 	if (ret)
1220 		goto err;
1221 
1222 	ret = bch2_disk_reservation_get(c, &as->disk_res,
1223 			(nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1224 			c->opts.metadata_replicas,
1225 			disk_res_flags);
1226 	if (ret)
1227 		goto err;
1228 
1229 	ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1230 	if (bch2_err_matches(ret, ENOSPC) ||
1231 	    bch2_err_matches(ret, ENOMEM)) {
1232 		struct closure cl;
1233 
1234 		/*
1235 		 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1236 		 * flag
1237 		 */
1238 		if (bch2_err_matches(ret, ENOSPC) &&
1239 		    (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1240 		    watermark < BCH_WATERMARK_reclaim) {
1241 			ret = -BCH_ERR_journal_reclaim_would_deadlock;
1242 			goto err;
1243 		}
1244 
1245 		closure_init_stack(&cl);
1246 
1247 		do {
1248 			ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1249 
1250 			bch2_trans_unlock(trans);
1251 			bch2_wait_on_allocator(c, &cl);
1252 		} while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1253 	}
1254 
1255 	if (ret) {
1256 		trace_and_count(c, btree_reserve_get_fail, trans->fn,
1257 				_RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1258 		goto err;
1259 	}
1260 
1261 	ret = bch2_trans_relock(trans);
1262 	if (ret)
1263 		goto err;
1264 
1265 	bch2_trans_verify_not_restarted(trans, restart_count);
1266 	return as;
1267 err:
1268 	bch2_btree_update_free(as, trans);
1269 	if (!bch2_err_matches(ret, ENOSPC) &&
1270 	    !bch2_err_matches(ret, EROFS) &&
1271 	    ret != -BCH_ERR_journal_reclaim_would_deadlock &&
1272 	    ret != -BCH_ERR_journal_shutdown)
1273 		bch_err_fn_ratelimited(c, ret);
1274 	return ERR_PTR(ret);
1275 }
1276 
1277 /* Btree root updates: */
1278 
bch2_btree_set_root_inmem(struct bch_fs * c,struct btree * b)1279 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1280 {
1281 	/* Root nodes cannot be reaped */
1282 	mutex_lock(&c->btree_cache.lock);
1283 	list_del_init(&b->list);
1284 	mutex_unlock(&c->btree_cache.lock);
1285 
1286 	mutex_lock(&c->btree_root_lock);
1287 	bch2_btree_id_root(c, b->c.btree_id)->b = b;
1288 	mutex_unlock(&c->btree_root_lock);
1289 
1290 	bch2_recalc_btree_reserve(c);
1291 }
1292 
bch2_btree_set_root(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,bool nofail)1293 static int bch2_btree_set_root(struct btree_update *as,
1294 			       struct btree_trans *trans,
1295 			       struct btree_path *path,
1296 			       struct btree *b,
1297 			       bool nofail)
1298 {
1299 	struct bch_fs *c = as->c;
1300 
1301 	trace_and_count(c, btree_node_set_root, trans, b);
1302 
1303 	struct btree *old = btree_node_root(c, b);
1304 
1305 	/*
1306 	 * Ensure no one is using the old root while we switch to the
1307 	 * new root:
1308 	 */
1309 	if (nofail) {
1310 		bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1311 	} else {
1312 		int ret = bch2_btree_node_lock_write(trans, path, &old->c);
1313 		if (ret)
1314 			return ret;
1315 	}
1316 
1317 	bch2_btree_set_root_inmem(c, b);
1318 
1319 	btree_update_updated_root(as, b);
1320 
1321 	/*
1322 	 * Unlock old root after new root is visible:
1323 	 *
1324 	 * The new root isn't persistent, but that's ok: we still have
1325 	 * an intent lock on the new root, and any updates that would
1326 	 * depend on the new root would have to update the new root.
1327 	 */
1328 	bch2_btree_node_unlock_write(trans, path, old);
1329 	return 0;
1330 }
1331 
1332 /* Interior node updates: */
1333 
bch2_insert_fixup_btree_ptr(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter * node_iter,struct bkey_i * insert)1334 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1335 					struct btree_trans *trans,
1336 					struct btree_path *path,
1337 					struct btree *b,
1338 					struct btree_node_iter *node_iter,
1339 					struct bkey_i *insert)
1340 {
1341 	struct bch_fs *c = as->c;
1342 	struct bkey_packed *k;
1343 	struct printbuf buf = PRINTBUF;
1344 	unsigned long old, new;
1345 
1346 	BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1347 	       !btree_ptr_sectors_written(bkey_i_to_s_c(insert)));
1348 
1349 	if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags)))
1350 		bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1351 
1352 	struct bkey_validate_context from = (struct bkey_validate_context) {
1353 		.from	= BKEY_VALIDATE_btree_node,
1354 		.level	= b->c.level,
1355 		.btree	= b->c.btree_id,
1356 		.flags	= BCH_VALIDATE_commit,
1357 	};
1358 	if (bch2_bkey_validate(c, bkey_i_to_s_c(insert), from) ?:
1359 	    bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), from)) {
1360 		bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__);
1361 		dump_stack();
1362 	}
1363 
1364 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1365 	       ARRAY_SIZE(as->journal_entries));
1366 
1367 	as->journal_u64s +=
1368 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1369 				  BCH_JSET_ENTRY_btree_keys,
1370 				  b->c.btree_id, b->c.level,
1371 				  insert, insert->k.u64s);
1372 
1373 	while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1374 	       bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1375 		bch2_btree_node_iter_advance(node_iter, b);
1376 
1377 	bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1378 	set_btree_node_dirty_acct(c, b);
1379 
1380 	old = READ_ONCE(b->flags);
1381 	do {
1382 		new = old;
1383 
1384 		new &= ~BTREE_WRITE_TYPE_MASK;
1385 		new |= BTREE_WRITE_interior;
1386 		new |= 1 << BTREE_NODE_need_write;
1387 	} while (!try_cmpxchg(&b->flags, &old, new));
1388 
1389 	printbuf_exit(&buf);
1390 }
1391 
1392 static void
bch2_btree_insert_keys_interior(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter node_iter,struct keylist * keys)1393 bch2_btree_insert_keys_interior(struct btree_update *as,
1394 				struct btree_trans *trans,
1395 				struct btree_path *path,
1396 				struct btree *b,
1397 				struct btree_node_iter node_iter,
1398 				struct keylist *keys)
1399 {
1400 	struct bkey_i *insert = bch2_keylist_front(keys);
1401 	struct bkey_packed *k;
1402 
1403 	BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1404 
1405 	while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1406 	       (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1407 		;
1408 
1409 	for (;
1410 	     insert != keys->top && bpos_le(insert->k.p, b->key.k.p);
1411 	     insert = bkey_next(insert))
1412 		bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1413 
1414 	if (bch2_btree_node_check_topology(trans, b)) {
1415 		struct printbuf buf = PRINTBUF;
1416 
1417 		for (struct bkey_i *k = keys->keys;
1418 		     k != insert;
1419 		     k = bkey_next(k)) {
1420 			bch2_bkey_val_to_text(&buf, trans->c, bkey_i_to_s_c(k));
1421 			prt_newline(&buf);
1422 		}
1423 
1424 		panic("%s(): check_topology error: inserted keys\n%s", __func__, buf.buf);
1425 	}
1426 
1427 	memmove_u64s_down(keys->keys, insert, keys->top_p - insert->_data);
1428 	keys->top_p -= insert->_data - keys->keys_p;
1429 }
1430 
key_deleted_in_insert(struct keylist * insert_keys,struct bpos pos)1431 static bool key_deleted_in_insert(struct keylist *insert_keys, struct bpos pos)
1432 {
1433 	if (insert_keys)
1434 		for_each_keylist_key(insert_keys, k)
1435 			if (bkey_deleted(&k->k) && bpos_eq(k->k.p, pos))
1436 				return true;
1437 	return false;
1438 }
1439 
1440 /*
1441  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1442  * node)
1443  */
__btree_split_node(struct btree_update * as,struct btree_trans * trans,struct btree * b,struct btree * n[2],struct keylist * insert_keys)1444 static void __btree_split_node(struct btree_update *as,
1445 			       struct btree_trans *trans,
1446 			       struct btree *b,
1447 			       struct btree *n[2],
1448 			       struct keylist *insert_keys)
1449 {
1450 	struct bkey_packed *k;
1451 	struct bpos n1_pos = POS_MIN;
1452 	struct btree_node_iter iter;
1453 	struct bset *bsets[2];
1454 	struct bkey_format_state format[2];
1455 	struct bkey_packed *out[2];
1456 	struct bkey uk;
1457 	unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1458 	struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1459 	int i;
1460 
1461 	memset(&nr_keys, 0, sizeof(nr_keys));
1462 
1463 	for (i = 0; i < 2; i++) {
1464 		BUG_ON(n[i]->nsets != 1);
1465 
1466 		bsets[i] = btree_bset_first(n[i]);
1467 		out[i] = bsets[i]->start;
1468 
1469 		SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1470 		bch2_bkey_format_init(&format[i]);
1471 	}
1472 
1473 	u64s = 0;
1474 	for_each_btree_node_key(b, k, &iter) {
1475 		if (bkey_deleted(k))
1476 			continue;
1477 
1478 		uk = bkey_unpack_key(b, k);
1479 
1480 		if (b->c.level &&
1481 		    u64s < n1_u64s &&
1482 		    u64s + k->u64s >= n1_u64s &&
1483 		    (bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p) ||
1484 		     key_deleted_in_insert(insert_keys, uk.p)))
1485 			n1_u64s += k->u64s;
1486 
1487 		i = u64s >= n1_u64s;
1488 		u64s += k->u64s;
1489 		if (!i)
1490 			n1_pos = uk.p;
1491 		bch2_bkey_format_add_key(&format[i], &uk);
1492 
1493 		nr_keys[i].nr_keys++;
1494 		nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1495 	}
1496 
1497 	btree_set_min(n[0], b->data->min_key);
1498 	btree_set_max(n[0], n1_pos);
1499 	btree_set_min(n[1], bpos_successor(n1_pos));
1500 	btree_set_max(n[1], b->data->max_key);
1501 
1502 	for (i = 0; i < 2; i++) {
1503 		bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1504 		bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1505 
1506 		n[i]->data->format = bch2_bkey_format_done(&format[i]);
1507 
1508 		unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1509 			nr_keys[i].val_u64s;
1510 		if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1511 			n[i]->data->format = b->format;
1512 
1513 		btree_node_set_format(n[i], n[i]->data->format);
1514 	}
1515 
1516 	u64s = 0;
1517 	for_each_btree_node_key(b, k, &iter) {
1518 		if (bkey_deleted(k))
1519 			continue;
1520 
1521 		i = u64s >= n1_u64s;
1522 		u64s += k->u64s;
1523 
1524 		if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1525 					? &b->format: &bch2_bkey_format_current, k))
1526 			out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1527 		else
1528 			bch2_bkey_unpack(b, (void *) out[i], k);
1529 
1530 		out[i]->needs_whiteout = false;
1531 
1532 		btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1533 		out[i] = bkey_p_next(out[i]);
1534 	}
1535 
1536 	for (i = 0; i < 2; i++) {
1537 		bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1538 
1539 		BUG_ON(!bsets[i]->u64s);
1540 
1541 		set_btree_bset_end(n[i], n[i]->set);
1542 
1543 		btree_node_reset_sib_u64s(n[i]);
1544 
1545 		bch2_verify_btree_nr_keys(n[i]);
1546 
1547 		BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1548 	}
1549 }
1550 
1551 /*
1552  * For updates to interior nodes, we've got to do the insert before we split
1553  * because the stuff we're inserting has to be inserted atomically. Post split,
1554  * the keys might have to go in different nodes and the split would no longer be
1555  * atomic.
1556  *
1557  * Worse, if the insert is from btree node coalescing, if we do the insert after
1558  * we do the split (and pick the pivot) - the pivot we pick might be between
1559  * nodes that were coalesced, and thus in the middle of a child node post
1560  * coalescing:
1561  */
btree_split_insert_keys(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1562 static void btree_split_insert_keys(struct btree_update *as,
1563 				    struct btree_trans *trans,
1564 				    btree_path_idx_t path_idx,
1565 				    struct btree *b,
1566 				    struct keylist *keys)
1567 {
1568 	struct btree_path *path = trans->paths + path_idx;
1569 
1570 	if (!bch2_keylist_empty(keys) &&
1571 	    bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1572 		struct btree_node_iter node_iter;
1573 
1574 		bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1575 
1576 		bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1577 	}
1578 }
1579 
btree_split(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path,struct btree * b,struct keylist * keys)1580 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1581 		       btree_path_idx_t path, struct btree *b,
1582 		       struct keylist *keys)
1583 {
1584 	struct bch_fs *c = as->c;
1585 	struct btree *parent = btree_node_parent(trans->paths + path, b);
1586 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1587 	btree_path_idx_t path1 = 0, path2 = 0;
1588 	u64 start_time = local_clock();
1589 	int ret = 0;
1590 
1591 	bch2_verify_btree_nr_keys(b);
1592 	BUG_ON(!parent && (b != btree_node_root(c, b)));
1593 	BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1594 
1595 	ret = bch2_btree_node_check_topology(trans, b);
1596 	if (ret)
1597 		return ret;
1598 
1599 	if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1600 		struct btree *n[2];
1601 
1602 		trace_and_count(c, btree_node_split, trans, b);
1603 
1604 		n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1605 		n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1606 
1607 		__btree_split_node(as, trans, b, n, keys);
1608 
1609 		if (keys) {
1610 			btree_split_insert_keys(as, trans, path, n1, keys);
1611 			btree_split_insert_keys(as, trans, path, n2, keys);
1612 			BUG_ON(!bch2_keylist_empty(keys));
1613 		}
1614 
1615 		bch2_btree_build_aux_trees(n2);
1616 		bch2_btree_build_aux_trees(n1);
1617 
1618 		bch2_btree_update_add_new_node(as, n1);
1619 		bch2_btree_update_add_new_node(as, n2);
1620 		six_unlock_write(&n2->c.lock);
1621 		six_unlock_write(&n1->c.lock);
1622 
1623 		path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1624 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1625 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1626 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1627 
1628 		path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p);
1629 		six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1630 		mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1631 		bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1632 
1633 		/*
1634 		 * Note that on recursive parent_keys == keys, so we
1635 		 * can't start adding new keys to parent_keys before emptying it
1636 		 * out (which we did with btree_split_insert_keys() above)
1637 		 */
1638 		bch2_keylist_add(&as->parent_keys, &n1->key);
1639 		bch2_keylist_add(&as->parent_keys, &n2->key);
1640 
1641 		if (!parent) {
1642 			/* Depth increases, make a new root */
1643 			n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1644 
1645 			bch2_btree_update_add_new_node(as, n3);
1646 			six_unlock_write(&n3->c.lock);
1647 
1648 			trans->paths[path2].locks_want++;
1649 			BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1650 			six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1651 			mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1652 			bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1653 
1654 			n3->sib_u64s[0] = U16_MAX;
1655 			n3->sib_u64s[1] = U16_MAX;
1656 
1657 			btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1658 		}
1659 	} else {
1660 		trace_and_count(c, btree_node_compact, trans, b);
1661 
1662 		n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1663 
1664 		if (keys) {
1665 			btree_split_insert_keys(as, trans, path, n1, keys);
1666 			BUG_ON(!bch2_keylist_empty(keys));
1667 		}
1668 
1669 		bch2_btree_build_aux_trees(n1);
1670 		bch2_btree_update_add_new_node(as, n1);
1671 		six_unlock_write(&n1->c.lock);
1672 
1673 		path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1674 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1675 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1676 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1677 
1678 		if (parent)
1679 			bch2_keylist_add(&as->parent_keys, &n1->key);
1680 	}
1681 
1682 	/* New nodes all written, now make them visible: */
1683 
1684 	if (parent) {
1685 		/* Split a non root node */
1686 		ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1687 	} else if (n3) {
1688 		ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false);
1689 	} else {
1690 		/* Root filled up but didn't need to be split */
1691 		ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false);
1692 	}
1693 
1694 	if (ret)
1695 		goto err;
1696 
1697 	bch2_btree_interior_update_will_free_node(as, b);
1698 
1699 	if (n3) {
1700 		bch2_btree_update_get_open_buckets(as, n3);
1701 		bch2_btree_node_write_trans(trans, n3, SIX_LOCK_intent, 0);
1702 	}
1703 	if (n2) {
1704 		bch2_btree_update_get_open_buckets(as, n2);
1705 		bch2_btree_node_write_trans(trans, n2, SIX_LOCK_intent, 0);
1706 	}
1707 	bch2_btree_update_get_open_buckets(as, n1);
1708 	bch2_btree_node_write_trans(trans, n1, SIX_LOCK_intent, 0);
1709 
1710 	/*
1711 	 * The old node must be freed (in memory) _before_ unlocking the new
1712 	 * nodes - else another thread could re-acquire a read lock on the old
1713 	 * node after another thread has locked and updated the new node, thus
1714 	 * seeing stale data:
1715 	 */
1716 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1717 
1718 	if (n3)
1719 		bch2_trans_node_add(trans, trans->paths + path, n3);
1720 	if (n2)
1721 		bch2_trans_node_add(trans, trans->paths + path2, n2);
1722 	bch2_trans_node_add(trans, trans->paths + path1, n1);
1723 
1724 	if (n3)
1725 		six_unlock_intent(&n3->c.lock);
1726 	if (n2)
1727 		six_unlock_intent(&n2->c.lock);
1728 	six_unlock_intent(&n1->c.lock);
1729 out:
1730 	if (path2) {
1731 		__bch2_btree_path_unlock(trans, trans->paths + path2);
1732 		bch2_path_put(trans, path2, true);
1733 	}
1734 	if (path1) {
1735 		__bch2_btree_path_unlock(trans, trans->paths + path1);
1736 		bch2_path_put(trans, path1, true);
1737 	}
1738 
1739 	bch2_trans_verify_locks(trans);
1740 
1741 	bch2_time_stats_update(&c->times[n2
1742 			       ? BCH_TIME_btree_node_split
1743 			       : BCH_TIME_btree_node_compact],
1744 			       start_time);
1745 	return ret;
1746 err:
1747 	if (n3)
1748 		bch2_btree_node_free_never_used(as, trans, n3);
1749 	if (n2)
1750 		bch2_btree_node_free_never_used(as, trans, n2);
1751 	bch2_btree_node_free_never_used(as, trans, n1);
1752 	goto out;
1753 }
1754 
1755 /**
1756  * bch2_btree_insert_node - insert bkeys into a given btree node
1757  *
1758  * @as:			btree_update object
1759  * @trans:		btree_trans object
1760  * @path_idx:		path that points to current node
1761  * @b:			node to insert keys into
1762  * @keys:		list of keys to insert
1763  *
1764  * Returns: 0 on success, typically transaction restart error on failure
1765  *
1766  * Inserts as many keys as it can into a given btree node, splitting it if full.
1767  * If a split occurred, this function will return early. This can only happen
1768  * for leaf nodes -- inserts into interior nodes have to be atomic.
1769  */
bch2_btree_insert_node(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1770 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1771 				  btree_path_idx_t path_idx, struct btree *b,
1772 				  struct keylist *keys)
1773 {
1774 	struct bch_fs *c = as->c;
1775 	struct btree_path *path = trans->paths + path_idx, *linked;
1776 	unsigned i;
1777 	int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1778 	int old_live_u64s = b->nr.live_u64s;
1779 	int live_u64s_added, u64s_added;
1780 	int ret;
1781 
1782 	lockdep_assert_held(&c->gc_lock);
1783 	BUG_ON(!b->c.level);
1784 	BUG_ON(!as || as->b);
1785 	bch2_verify_keylist_sorted(keys);
1786 
1787 	if (!btree_node_intent_locked(path, b->c.level)) {
1788 		struct printbuf buf = PRINTBUF;
1789 		bch2_log_msg_start(c, &buf);
1790 		prt_printf(&buf, "%s(): node not locked at level %u\n",
1791 			   __func__, b->c.level);
1792 		bch2_btree_update_to_text(&buf, as);
1793 		bch2_btree_path_to_text(&buf, trans, path_idx);
1794 
1795 		bch2_print_string_as_lines(KERN_ERR, buf.buf);
1796 		printbuf_exit(&buf);
1797 		bch2_fs_emergency_read_only(c);
1798 		return -EIO;
1799 	}
1800 
1801 	ret = bch2_btree_node_lock_write(trans, path, &b->c);
1802 	if (ret)
1803 		return ret;
1804 
1805 	bch2_btree_node_prep_for_write(trans, path, b);
1806 
1807 	if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1808 		bch2_btree_node_unlock_write(trans, path, b);
1809 		goto split;
1810 	}
1811 
1812 	ret = bch2_btree_node_check_topology(trans, b);
1813 	if (ret) {
1814 		bch2_btree_node_unlock_write(trans, path, b);
1815 		return ret;
1816 	}
1817 
1818 	bch2_btree_insert_keys_interior(as, trans, path, b,
1819 					path->l[b->c.level].iter, keys);
1820 
1821 	trans_for_each_path_with_node(trans, b, linked, i)
1822 		bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1823 
1824 	bch2_trans_verify_paths(trans);
1825 
1826 	live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1827 	u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1828 
1829 	if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1830 		b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1831 	if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1832 		b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1833 
1834 	if (u64s_added > live_u64s_added &&
1835 	    bch2_maybe_compact_whiteouts(c, b))
1836 		bch2_trans_node_reinit_iter(trans, b);
1837 
1838 	btree_update_updated_node(as, b);
1839 	bch2_btree_node_unlock_write(trans, path, b);
1840 	return 0;
1841 split:
1842 	/*
1843 	 * We could attempt to avoid the transaction restart, by calling
1844 	 * bch2_btree_path_upgrade() and allocating more nodes:
1845 	 */
1846 	if (b->c.level >= as->update_level_end) {
1847 		trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1848 		return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1849 	}
1850 
1851 	return btree_split(as, trans, path_idx, b, keys);
1852 }
1853 
bch2_btree_split_leaf(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1854 int bch2_btree_split_leaf(struct btree_trans *trans,
1855 			  btree_path_idx_t path,
1856 			  unsigned flags)
1857 {
1858 	/* btree_split & merge may both cause paths array to be reallocated */
1859 	struct btree *b = path_l(trans->paths + path)->b;
1860 	struct btree_update *as;
1861 	unsigned l;
1862 	int ret = 0;
1863 
1864 	as = bch2_btree_update_start(trans, trans->paths + path,
1865 				     trans->paths[path].level,
1866 				     true, flags);
1867 	if (IS_ERR(as))
1868 		return PTR_ERR(as);
1869 
1870 	ret = btree_split(as, trans, path, b, NULL);
1871 	if (ret) {
1872 		bch2_btree_update_free(as, trans);
1873 		return ret;
1874 	}
1875 
1876 	bch2_btree_update_done(as, trans);
1877 
1878 	for (l = trans->paths[path].level + 1;
1879 	     btree_node_intent_locked(&trans->paths[path], l) && !ret;
1880 	     l++)
1881 		ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1882 
1883 	return ret;
1884 }
1885 
__btree_increase_depth(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx)1886 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1887 				   btree_path_idx_t path_idx)
1888 {
1889 	struct bch_fs *c = as->c;
1890 	struct btree_path *path = trans->paths + path_idx;
1891 	struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1892 
1893 	BUG_ON(!btree_node_locked(path, b->c.level));
1894 
1895 	n = __btree_root_alloc(as, trans, b->c.level + 1);
1896 
1897 	bch2_btree_update_add_new_node(as, n);
1898 	six_unlock_write(&n->c.lock);
1899 
1900 	path->locks_want++;
1901 	BUG_ON(btree_node_locked(path, n->c.level));
1902 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1903 	mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1904 	bch2_btree_path_level_init(trans, path, n);
1905 
1906 	n->sib_u64s[0] = U16_MAX;
1907 	n->sib_u64s[1] = U16_MAX;
1908 
1909 	bch2_keylist_add(&as->parent_keys, &b->key);
1910 	btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1911 
1912 	int ret = bch2_btree_set_root(as, trans, path, n, true);
1913 	BUG_ON(ret);
1914 
1915 	bch2_btree_update_get_open_buckets(as, n);
1916 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
1917 	bch2_trans_node_add(trans, path, n);
1918 	six_unlock_intent(&n->c.lock);
1919 
1920 	mutex_lock(&c->btree_cache.lock);
1921 	list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list);
1922 	mutex_unlock(&c->btree_cache.lock);
1923 
1924 	bch2_trans_verify_locks(trans);
1925 }
1926 
bch2_btree_increase_depth(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1927 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1928 {
1929 	struct bch_fs *c = trans->c;
1930 	struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1931 
1932 	if (btree_node_fake(b))
1933 		return bch2_btree_split_leaf(trans, path, flags);
1934 
1935 	struct btree_update *as =
1936 		bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags);
1937 	if (IS_ERR(as))
1938 		return PTR_ERR(as);
1939 
1940 	__btree_increase_depth(as, trans, path);
1941 	bch2_btree_update_done(as, trans);
1942 	return 0;
1943 }
1944 
__bch2_foreground_maybe_merge(struct btree_trans * trans,btree_path_idx_t path,unsigned level,unsigned flags,enum btree_node_sibling sib)1945 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1946 				  btree_path_idx_t path,
1947 				  unsigned level,
1948 				  unsigned flags,
1949 				  enum btree_node_sibling sib)
1950 {
1951 	struct bch_fs *c = trans->c;
1952 	struct btree_update *as;
1953 	struct bkey_format_state new_s;
1954 	struct bkey_format new_f;
1955 	struct bkey_i delete;
1956 	struct btree *b, *m, *n, *prev, *next, *parent;
1957 	struct bpos sib_pos;
1958 	size_t sib_u64s;
1959 	enum btree_id btree = trans->paths[path].btree_id;
1960 	btree_path_idx_t sib_path = 0, new_path = 0;
1961 	u64 start_time = local_clock();
1962 	int ret = 0;
1963 
1964 	bch2_trans_verify_not_unlocked_or_in_restart(trans);
1965 	BUG_ON(!trans->paths[path].should_be_locked);
1966 	BUG_ON(!btree_node_locked(&trans->paths[path], level));
1967 
1968 	/*
1969 	 * Work around a deadlock caused by the btree write buffer not doing
1970 	 * merges and leaving tons of merges for us to do - we really don't need
1971 	 * to be doing merges at all from the interior update path, and if the
1972 	 * interior update path is generating too many new interior updates we
1973 	 * deadlock:
1974 	 */
1975 	if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
1976 		return 0;
1977 
1978 	if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
1979 		flags &= ~BCH_WATERMARK_MASK;
1980 		flags |= BCH_WATERMARK_btree;
1981 		flags |= BCH_TRANS_COMMIT_journal_reclaim;
1982 	}
1983 
1984 	b = trans->paths[path].l[level].b;
1985 
1986 	if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1987 	    (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1988 		b->sib_u64s[sib] = U16_MAX;
1989 		return 0;
1990 	}
1991 
1992 	sib_pos = sib == btree_prev_sib
1993 		? bpos_predecessor(b->data->min_key)
1994 		: bpos_successor(b->data->max_key);
1995 
1996 	sib_path = bch2_path_get(trans, btree, sib_pos,
1997 				 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_);
1998 	ret = bch2_btree_path_traverse(trans, sib_path, false);
1999 	if (ret)
2000 		goto err;
2001 
2002 	btree_path_set_should_be_locked(trans, trans->paths + sib_path);
2003 
2004 	m = trans->paths[sib_path].l[level].b;
2005 
2006 	if (btree_node_parent(trans->paths + path, b) !=
2007 	    btree_node_parent(trans->paths + sib_path, m)) {
2008 		b->sib_u64s[sib] = U16_MAX;
2009 		goto out;
2010 	}
2011 
2012 	if (sib == btree_prev_sib) {
2013 		prev = m;
2014 		next = b;
2015 	} else {
2016 		prev = b;
2017 		next = m;
2018 	}
2019 
2020 	if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
2021 		struct printbuf buf = PRINTBUF;
2022 
2023 		printbuf_indent_add_nextline(&buf, 2);
2024 		prt_printf(&buf, "%s(): ", __func__);
2025 		ret = __bch2_topology_error(c, &buf);
2026 		prt_newline(&buf);
2027 
2028 		prt_printf(&buf, "prev ends at   ");
2029 		bch2_bpos_to_text(&buf, prev->data->max_key);
2030 		prt_newline(&buf);
2031 
2032 		prt_printf(&buf, "next starts at ");
2033 		bch2_bpos_to_text(&buf, next->data->min_key);
2034 
2035 		bch_err(c, "%s", buf.buf);
2036 		printbuf_exit(&buf);
2037 		goto err;
2038 	}
2039 
2040 	bch2_bkey_format_init(&new_s);
2041 	bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2042 	__bch2_btree_calc_format(&new_s, prev);
2043 	__bch2_btree_calc_format(&new_s, next);
2044 	bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2045 	new_f = bch2_bkey_format_done(&new_s);
2046 
2047 	sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
2048 		btree_node_u64s_with_format(m->nr, &m->format, &new_f);
2049 
2050 	if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2051 		sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2052 		sib_u64s /= 2;
2053 		sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2054 	}
2055 
2056 	sib_u64s = min(sib_u64s, btree_max_u64s(c));
2057 	sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2058 	b->sib_u64s[sib] = sib_u64s;
2059 
2060 	if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2061 		goto out;
2062 
2063 	parent = btree_node_parent(trans->paths + path, b);
2064 	as = bch2_btree_update_start(trans, trans->paths + path, level, false,
2065 				     BCH_TRANS_COMMIT_no_enospc|flags);
2066 	ret = PTR_ERR_OR_ZERO(as);
2067 	if (ret)
2068 		goto err;
2069 
2070 	trace_and_count(c, btree_node_merge, trans, b);
2071 
2072 	n = bch2_btree_node_alloc(as, trans, b->c.level);
2073 
2074 	SET_BTREE_NODE_SEQ(n->data,
2075 			   max(BTREE_NODE_SEQ(b->data),
2076 			       BTREE_NODE_SEQ(m->data)) + 1);
2077 
2078 	btree_set_min(n, prev->data->min_key);
2079 	btree_set_max(n, next->data->max_key);
2080 
2081 	n->data->format	 = new_f;
2082 	btree_node_set_format(n, new_f);
2083 
2084 	bch2_btree_sort_into(c, n, prev);
2085 	bch2_btree_sort_into(c, n, next);
2086 
2087 	bch2_btree_build_aux_trees(n);
2088 	bch2_btree_update_add_new_node(as, n);
2089 	six_unlock_write(&n->c.lock);
2090 
2091 	new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p);
2092 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2093 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2094 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2095 
2096 	bkey_init(&delete.k);
2097 	delete.k.p = prev->key.k.p;
2098 	bch2_keylist_add(&as->parent_keys, &delete);
2099 	bch2_keylist_add(&as->parent_keys, &n->key);
2100 
2101 	bch2_trans_verify_paths(trans);
2102 
2103 	ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
2104 	if (ret)
2105 		goto err_free_update;
2106 
2107 	bch2_btree_interior_update_will_free_node(as, b);
2108 	bch2_btree_interior_update_will_free_node(as, m);
2109 
2110 	bch2_trans_verify_paths(trans);
2111 
2112 	bch2_btree_update_get_open_buckets(as, n);
2113 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2114 
2115 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
2116 	bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
2117 
2118 	bch2_trans_node_add(trans, trans->paths + path, n);
2119 
2120 	bch2_trans_verify_paths(trans);
2121 
2122 	six_unlock_intent(&n->c.lock);
2123 
2124 	bch2_btree_update_done(as, trans);
2125 
2126 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
2127 out:
2128 err:
2129 	if (new_path)
2130 		bch2_path_put(trans, new_path, true);
2131 	bch2_path_put(trans, sib_path, true);
2132 	bch2_trans_verify_locks(trans);
2133 	if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2134 		ret = 0;
2135 	if (!ret)
2136 		ret = bch2_trans_relock(trans);
2137 	return ret;
2138 err_free_update:
2139 	bch2_btree_node_free_never_used(as, trans, n);
2140 	bch2_btree_update_free(as, trans);
2141 	goto out;
2142 }
2143 
get_iter_to_node(struct btree_trans * trans,struct btree_iter * iter,struct btree * b)2144 static int get_iter_to_node(struct btree_trans *trans, struct btree_iter *iter,
2145 			    struct btree *b)
2146 {
2147 	bch2_trans_node_iter_init(trans, iter, b->c.btree_id, b->key.k.p,
2148 				  BTREE_MAX_DEPTH, b->c.level,
2149 				  BTREE_ITER_intent);
2150 	int ret = bch2_btree_iter_traverse(trans, iter);
2151 	if (ret)
2152 		goto err;
2153 
2154 	/* has node been freed? */
2155 	if (btree_iter_path(trans, iter)->l[b->c.level].b != b) {
2156 		/* node has been freed: */
2157 		BUG_ON(!btree_node_dying(b));
2158 		ret = -BCH_ERR_btree_node_dying;
2159 		goto err;
2160 	}
2161 
2162 	BUG_ON(!btree_node_hashed(b));
2163 	return 0;
2164 err:
2165 	bch2_trans_iter_exit(trans, iter);
2166 	return ret;
2167 }
2168 
bch2_btree_node_rewrite(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,unsigned flags)2169 int bch2_btree_node_rewrite(struct btree_trans *trans,
2170 			    struct btree_iter *iter,
2171 			    struct btree *b,
2172 			    unsigned flags)
2173 {
2174 	struct bch_fs *c = trans->c;
2175 	struct btree *n, *parent;
2176 	struct btree_update *as;
2177 	btree_path_idx_t new_path = 0;
2178 	int ret;
2179 
2180 	flags |= BCH_TRANS_COMMIT_no_enospc;
2181 
2182 	struct btree_path *path = btree_iter_path(trans, iter);
2183 	parent = btree_node_parent(path, b);
2184 	as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
2185 	ret = PTR_ERR_OR_ZERO(as);
2186 	if (ret)
2187 		goto out;
2188 
2189 	n = bch2_btree_node_alloc_replacement(as, trans, b);
2190 
2191 	bch2_btree_build_aux_trees(n);
2192 	bch2_btree_update_add_new_node(as, n);
2193 	six_unlock_write(&n->c.lock);
2194 
2195 	new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p);
2196 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2197 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2198 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2199 
2200 	trace_and_count(c, btree_node_rewrite, trans, b);
2201 
2202 	if (parent) {
2203 		bch2_keylist_add(&as->parent_keys, &n->key);
2204 		ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2205 	} else {
2206 		ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false);
2207 	}
2208 
2209 	if (ret)
2210 		goto err;
2211 
2212 	bch2_btree_interior_update_will_free_node(as, b);
2213 
2214 	bch2_btree_update_get_open_buckets(as, n);
2215 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2216 
2217 	bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2218 
2219 	bch2_trans_node_add(trans, trans->paths + iter->path, n);
2220 	six_unlock_intent(&n->c.lock);
2221 
2222 	bch2_btree_update_done(as, trans);
2223 out:
2224 	if (new_path)
2225 		bch2_path_put(trans, new_path, true);
2226 	bch2_trans_downgrade(trans);
2227 	return ret;
2228 err:
2229 	bch2_btree_node_free_never_used(as, trans, n);
2230 	bch2_btree_update_free(as, trans);
2231 	goto out;
2232 }
2233 
bch2_btree_node_rewrite_key(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bkey_i * k,unsigned flags)2234 static int bch2_btree_node_rewrite_key(struct btree_trans *trans,
2235 				       enum btree_id btree, unsigned level,
2236 				       struct bkey_i *k, unsigned flags)
2237 {
2238 	struct btree_iter iter;
2239 	bch2_trans_node_iter_init(trans, &iter,
2240 				  btree, k->k.p,
2241 				  BTREE_MAX_DEPTH, level, 0);
2242 	struct btree *b = bch2_btree_iter_peek_node(trans, &iter);
2243 	int ret = PTR_ERR_OR_ZERO(b);
2244 	if (ret)
2245 		goto out;
2246 
2247 	bool found = b && btree_ptr_hash_val(&b->key) == btree_ptr_hash_val(k);
2248 	ret = found
2249 		? bch2_btree_node_rewrite(trans, &iter, b, flags)
2250 		: -ENOENT;
2251 out:
2252 	bch2_trans_iter_exit(trans, &iter);
2253 	return ret;
2254 }
2255 
bch2_btree_node_rewrite_pos(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bpos pos,unsigned flags)2256 int bch2_btree_node_rewrite_pos(struct btree_trans *trans,
2257 				enum btree_id btree, unsigned level,
2258 				struct bpos pos, unsigned flags)
2259 {
2260 	BUG_ON(!level);
2261 
2262 	/* Traverse one depth lower to get a pointer to the node itself: */
2263 	struct btree_iter iter;
2264 	bch2_trans_node_iter_init(trans, &iter, btree, pos, 0, level - 1, 0);
2265 	struct btree *b = bch2_btree_iter_peek_node(trans, &iter);
2266 	int ret = PTR_ERR_OR_ZERO(b);
2267 	if (ret)
2268 		goto err;
2269 
2270 	ret = bch2_btree_node_rewrite(trans, &iter, b, flags);
2271 err:
2272 	bch2_trans_iter_exit(trans, &iter);
2273 	return ret;
2274 }
2275 
bch2_btree_node_rewrite_key_get_iter(struct btree_trans * trans,struct btree * b,unsigned flags)2276 int bch2_btree_node_rewrite_key_get_iter(struct btree_trans *trans,
2277 					 struct btree *b, unsigned flags)
2278 {
2279 	struct btree_iter iter;
2280 	int ret = get_iter_to_node(trans, &iter, b);
2281 	if (ret)
2282 		return ret == -BCH_ERR_btree_node_dying ? 0 : ret;
2283 
2284 	ret = bch2_btree_node_rewrite(trans, &iter, b, flags);
2285 	bch2_trans_iter_exit(trans, &iter);
2286 	return ret;
2287 }
2288 
2289 struct async_btree_rewrite {
2290 	struct bch_fs		*c;
2291 	struct work_struct	work;
2292 	struct list_head	list;
2293 	enum btree_id		btree_id;
2294 	unsigned		level;
2295 	struct bkey_buf		key;
2296 };
2297 
async_btree_node_rewrite_work(struct work_struct * work)2298 static void async_btree_node_rewrite_work(struct work_struct *work)
2299 {
2300 	struct async_btree_rewrite *a =
2301 		container_of(work, struct async_btree_rewrite, work);
2302 	struct bch_fs *c = a->c;
2303 
2304 	int ret = bch2_trans_do(c, bch2_btree_node_rewrite_key(trans,
2305 						a->btree_id, a->level, a->key.k, 0));
2306 	if (ret != -ENOENT &&
2307 	    !bch2_err_matches(ret, EROFS) &&
2308 	    ret != -BCH_ERR_journal_shutdown)
2309 		bch_err_fn_ratelimited(c, ret);
2310 
2311 	spin_lock(&c->btree_node_rewrites_lock);
2312 	list_del(&a->list);
2313 	spin_unlock(&c->btree_node_rewrites_lock);
2314 
2315 	closure_wake_up(&c->btree_node_rewrites_wait);
2316 
2317 	bch2_bkey_buf_exit(&a->key, c);
2318 	bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2319 	kfree(a);
2320 }
2321 
bch2_btree_node_rewrite_async(struct bch_fs * c,struct btree * b)2322 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2323 {
2324 	struct async_btree_rewrite *a = kmalloc(sizeof(*a), GFP_NOFS);
2325 	if (!a)
2326 		return;
2327 
2328 	a->c		= c;
2329 	a->btree_id	= b->c.btree_id;
2330 	a->level	= b->c.level;
2331 	INIT_WORK(&a->work, async_btree_node_rewrite_work);
2332 
2333 	bch2_bkey_buf_init(&a->key);
2334 	bch2_bkey_buf_copy(&a->key, c, &b->key);
2335 
2336 	bool now = false, pending = false;
2337 
2338 	spin_lock(&c->btree_node_rewrites_lock);
2339 	if (c->curr_recovery_pass > BCH_RECOVERY_PASS_journal_replay &&
2340 	    bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2341 		list_add(&a->list, &c->btree_node_rewrites);
2342 		now = true;
2343 	} else if (!test_bit(BCH_FS_may_go_rw, &c->flags)) {
2344 		list_add(&a->list, &c->btree_node_rewrites_pending);
2345 		pending = true;
2346 	}
2347 	spin_unlock(&c->btree_node_rewrites_lock);
2348 
2349 	if (now) {
2350 		queue_work(c->btree_node_rewrite_worker, &a->work);
2351 	} else if (pending) {
2352 		/* bch2_do_pending_node_rewrites will execute */
2353 	} else {
2354 		bch2_bkey_buf_exit(&a->key, c);
2355 		kfree(a);
2356 	}
2357 }
2358 
bch2_async_btree_node_rewrites_flush(struct bch_fs * c)2359 void bch2_async_btree_node_rewrites_flush(struct bch_fs *c)
2360 {
2361 	closure_wait_event(&c->btree_node_rewrites_wait,
2362 			   list_empty(&c->btree_node_rewrites));
2363 }
2364 
bch2_do_pending_node_rewrites(struct bch_fs * c)2365 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2366 {
2367 	while (1) {
2368 		spin_lock(&c->btree_node_rewrites_lock);
2369 		struct async_btree_rewrite *a =
2370 			list_pop_entry(&c->btree_node_rewrites_pending,
2371 				       struct async_btree_rewrite, list);
2372 		if (a)
2373 			list_add(&a->list, &c->btree_node_rewrites);
2374 		spin_unlock(&c->btree_node_rewrites_lock);
2375 
2376 		if (!a)
2377 			break;
2378 
2379 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2380 		queue_work(c->btree_node_rewrite_worker, &a->work);
2381 	}
2382 }
2383 
bch2_free_pending_node_rewrites(struct bch_fs * c)2384 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2385 {
2386 	while (1) {
2387 		spin_lock(&c->btree_node_rewrites_lock);
2388 		struct async_btree_rewrite *a =
2389 			list_pop_entry(&c->btree_node_rewrites_pending,
2390 				       struct async_btree_rewrite, list);
2391 		spin_unlock(&c->btree_node_rewrites_lock);
2392 
2393 		if (!a)
2394 			break;
2395 
2396 		bch2_bkey_buf_exit(&a->key, c);
2397 		kfree(a);
2398 	}
2399 }
2400 
__bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct btree * new_hash,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2401 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2402 					struct btree_iter *iter,
2403 					struct btree *b, struct btree *new_hash,
2404 					struct bkey_i *new_key,
2405 					unsigned commit_flags,
2406 					bool skip_triggers)
2407 {
2408 	struct bch_fs *c = trans->c;
2409 	struct btree_iter iter2 = {};
2410 	struct btree *parent;
2411 	int ret;
2412 
2413 	if (!skip_triggers) {
2414 		ret   = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2415 					     bkey_i_to_s_c(&b->key),
2416 					     BTREE_TRIGGER_transactional) ?:
2417 			bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2418 					     bkey_i_to_s(new_key),
2419 					     BTREE_TRIGGER_transactional);
2420 		if (ret)
2421 			return ret;
2422 	}
2423 
2424 	if (new_hash) {
2425 		bkey_copy(&new_hash->key, new_key);
2426 		ret = bch2_btree_node_hash_insert(&c->btree_cache,
2427 				new_hash, b->c.level, b->c.btree_id);
2428 		BUG_ON(ret);
2429 	}
2430 
2431 	parent = btree_node_parent(btree_iter_path(trans, iter), b);
2432 	if (parent) {
2433 		bch2_trans_copy_iter(trans, &iter2, iter);
2434 
2435 		iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2436 				iter2.flags & BTREE_ITER_intent,
2437 				_THIS_IP_);
2438 
2439 		struct btree_path *path2 = btree_iter_path(trans, &iter2);
2440 		BUG_ON(path2->level != b->c.level);
2441 		BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2442 
2443 		btree_path_set_level_up(trans, path2);
2444 
2445 		trans->paths_sorted = false;
2446 
2447 		ret   = bch2_btree_iter_traverse(trans, &iter2) ?:
2448 			bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun);
2449 		if (ret)
2450 			goto err;
2451 	} else {
2452 		BUG_ON(btree_node_root(c, b) != b);
2453 
2454 		struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2455 				       jset_u64s(new_key->k.u64s));
2456 		ret = PTR_ERR_OR_ZERO(e);
2457 		if (ret)
2458 			return ret;
2459 
2460 		journal_entry_set(e,
2461 				  BCH_JSET_ENTRY_btree_root,
2462 				  b->c.btree_id, b->c.level,
2463 				  new_key, new_key->k.u64s);
2464 	}
2465 
2466 	ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2467 	if (ret)
2468 		goto err;
2469 
2470 	bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2471 
2472 	if (new_hash) {
2473 		mutex_lock(&c->btree_cache.lock);
2474 		bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2475 
2476 		__bch2_btree_node_hash_remove(&c->btree_cache, b);
2477 
2478 		bkey_copy(&b->key, new_key);
2479 		ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2480 		BUG_ON(ret);
2481 		mutex_unlock(&c->btree_cache.lock);
2482 	} else {
2483 		bkey_copy(&b->key, new_key);
2484 	}
2485 
2486 	bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2487 out:
2488 	bch2_trans_iter_exit(trans, &iter2);
2489 	return ret;
2490 err:
2491 	if (new_hash) {
2492 		mutex_lock(&c->btree_cache.lock);
2493 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2494 		mutex_unlock(&c->btree_cache.lock);
2495 	}
2496 	goto out;
2497 }
2498 
bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2499 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2500 			       struct btree *b, struct bkey_i *new_key,
2501 			       unsigned commit_flags, bool skip_triggers)
2502 {
2503 	struct bch_fs *c = trans->c;
2504 	struct btree *new_hash = NULL;
2505 	struct btree_path *path = btree_iter_path(trans, iter);
2506 	struct closure cl;
2507 	int ret = 0;
2508 
2509 	ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2510 	if (ret)
2511 		return ret;
2512 
2513 	closure_init_stack(&cl);
2514 
2515 	/*
2516 	 * check btree_ptr_hash_val() after @b is locked by
2517 	 * btree_iter_traverse():
2518 	 */
2519 	if (btree_ptr_hash_val(new_key) != b->hash_val) {
2520 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2521 		if (ret) {
2522 			ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2523 			if (ret)
2524 				return ret;
2525 		}
2526 
2527 		new_hash = bch2_btree_node_mem_alloc(trans, false);
2528 		ret = PTR_ERR_OR_ZERO(new_hash);
2529 		if (ret)
2530 			goto err;
2531 	}
2532 
2533 	path->intent_ref++;
2534 	ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2535 					   commit_flags, skip_triggers);
2536 	--path->intent_ref;
2537 
2538 	if (new_hash)
2539 		bch2_btree_node_to_freelist(c, new_hash);
2540 err:
2541 	closure_sync(&cl);
2542 	bch2_btree_cache_cannibalize_unlock(trans);
2543 	return ret;
2544 }
2545 
bch2_btree_node_update_key_get_iter(struct btree_trans * trans,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2546 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2547 					struct btree *b, struct bkey_i *new_key,
2548 					unsigned commit_flags, bool skip_triggers)
2549 {
2550 	struct btree_iter iter;
2551 	int ret = get_iter_to_node(trans, &iter, b);
2552 	if (ret)
2553 		return ret == -BCH_ERR_btree_node_dying ? 0 : ret;
2554 
2555 	bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2556 			    !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2557 
2558 	ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2559 					 commit_flags, skip_triggers);
2560 	bch2_trans_iter_exit(trans, &iter);
2561 	return ret;
2562 }
2563 
2564 /* Init code: */
2565 
2566 /*
2567  * Only for filesystem bringup, when first reading the btree roots or allocating
2568  * btree roots when initializing a new filesystem:
2569  */
bch2_btree_set_root_for_read(struct bch_fs * c,struct btree * b)2570 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2571 {
2572 	BUG_ON(btree_node_root(c, b));
2573 
2574 	bch2_btree_set_root_inmem(c, b);
2575 }
2576 
bch2_btree_root_alloc_fake_trans(struct btree_trans * trans,enum btree_id id,unsigned level)2577 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level)
2578 {
2579 	struct bch_fs *c = trans->c;
2580 	struct closure cl;
2581 	struct btree *b;
2582 	int ret;
2583 
2584 	closure_init_stack(&cl);
2585 
2586 	do {
2587 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2588 		closure_sync(&cl);
2589 	} while (ret);
2590 
2591 	b = bch2_btree_node_mem_alloc(trans, false);
2592 	bch2_btree_cache_cannibalize_unlock(trans);
2593 
2594 	ret = PTR_ERR_OR_ZERO(b);
2595 	if (ret)
2596 		return ret;
2597 
2598 	set_btree_node_fake(b);
2599 	set_btree_node_need_rewrite(b);
2600 	b->c.level	= level;
2601 	b->c.btree_id	= id;
2602 
2603 	bkey_btree_ptr_init(&b->key);
2604 	b->key.k.p = SPOS_MAX;
2605 	*((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2606 
2607 	bch2_bset_init_first(b, &b->data->keys);
2608 	bch2_btree_build_aux_trees(b);
2609 
2610 	b->data->flags = 0;
2611 	btree_set_min(b, POS_MIN);
2612 	btree_set_max(b, SPOS_MAX);
2613 	b->data->format = bch2_btree_calc_format(b);
2614 	btree_node_set_format(b, b->data->format);
2615 
2616 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2617 					  b->c.level, b->c.btree_id);
2618 	BUG_ON(ret);
2619 
2620 	bch2_btree_set_root_inmem(c, b);
2621 
2622 	six_unlock_write(&b->c.lock);
2623 	six_unlock_intent(&b->c.lock);
2624 	return 0;
2625 }
2626 
bch2_btree_root_alloc_fake(struct bch_fs * c,enum btree_id id,unsigned level)2627 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2628 {
2629 	bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level)));
2630 }
2631 
bch2_btree_update_to_text(struct printbuf * out,struct btree_update * as)2632 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2633 {
2634 	prt_printf(out, "%ps: ", (void *) as->ip_started);
2635 	bch2_trans_commit_flags_to_text(out, as->flags);
2636 
2637 	prt_str(out, " ");
2638 	bch2_btree_id_to_text(out, as->btree_id);
2639 	prt_printf(out, " l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2640 		   as->update_level_start,
2641 		   as->update_level_end,
2642 		   bch2_btree_update_modes[as->mode],
2643 		   as->nodes_written,
2644 		   closure_nr_remaining(&as->cl),
2645 		   as->journal.seq);
2646 }
2647 
bch2_btree_updates_to_text(struct printbuf * out,struct bch_fs * c)2648 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2649 {
2650 	struct btree_update *as;
2651 
2652 	mutex_lock(&c->btree_interior_update_lock);
2653 	list_for_each_entry(as, &c->btree_interior_update_list, list)
2654 		bch2_btree_update_to_text(out, as);
2655 	mutex_unlock(&c->btree_interior_update_lock);
2656 }
2657 
bch2_btree_interior_updates_pending(struct bch_fs * c)2658 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2659 {
2660 	bool ret;
2661 
2662 	mutex_lock(&c->btree_interior_update_lock);
2663 	ret = !list_empty(&c->btree_interior_update_list);
2664 	mutex_unlock(&c->btree_interior_update_lock);
2665 
2666 	return ret;
2667 }
2668 
bch2_btree_interior_updates_flush(struct bch_fs * c)2669 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2670 {
2671 	bool ret = bch2_btree_interior_updates_pending(c);
2672 
2673 	if (ret)
2674 		closure_wait_event(&c->btree_interior_update_wait,
2675 				   !bch2_btree_interior_updates_pending(c));
2676 	return ret;
2677 }
2678 
bch2_journal_entry_to_btree_root(struct bch_fs * c,struct jset_entry * entry)2679 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2680 {
2681 	struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2682 
2683 	mutex_lock(&c->btree_root_lock);
2684 
2685 	r->level = entry->level;
2686 	r->alive = true;
2687 	bkey_copy(&r->key, (struct bkey_i *) entry->start);
2688 
2689 	mutex_unlock(&c->btree_root_lock);
2690 }
2691 
2692 struct jset_entry *
bch2_btree_roots_to_journal_entries(struct bch_fs * c,struct jset_entry * end,unsigned long skip)2693 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2694 				    struct jset_entry *end,
2695 				    unsigned long skip)
2696 {
2697 	unsigned i;
2698 
2699 	mutex_lock(&c->btree_root_lock);
2700 
2701 	for (i = 0; i < btree_id_nr_alive(c); i++) {
2702 		struct btree_root *r = bch2_btree_id_root(c, i);
2703 
2704 		if (r->alive && !test_bit(i, &skip)) {
2705 			journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2706 					  i, r->level, &r->key, r->key.k.u64s);
2707 			end = vstruct_next(end);
2708 		}
2709 	}
2710 
2711 	mutex_unlock(&c->btree_root_lock);
2712 
2713 	return end;
2714 }
2715 
bch2_btree_alloc_to_text(struct printbuf * out,struct bch_fs * c,struct btree_alloc * a)2716 static void bch2_btree_alloc_to_text(struct printbuf *out,
2717 				     struct bch_fs *c,
2718 				     struct btree_alloc *a)
2719 {
2720 	printbuf_indent_add(out, 2);
2721 	bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k));
2722 	prt_newline(out);
2723 
2724 	struct open_bucket *ob;
2725 	unsigned i;
2726 	open_bucket_for_each(c, &a->ob, ob, i)
2727 		bch2_open_bucket_to_text(out, c, ob);
2728 
2729 	printbuf_indent_sub(out, 2);
2730 }
2731 
bch2_btree_reserve_cache_to_text(struct printbuf * out,struct bch_fs * c)2732 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c)
2733 {
2734 	for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++)
2735 		bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]);
2736 }
2737 
bch2_fs_btree_interior_update_exit(struct bch_fs * c)2738 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2739 {
2740 	WARN_ON(!list_empty(&c->btree_node_rewrites));
2741 	WARN_ON(!list_empty(&c->btree_node_rewrites_pending));
2742 
2743 	if (c->btree_node_rewrite_worker)
2744 		destroy_workqueue(c->btree_node_rewrite_worker);
2745 	if (c->btree_interior_update_worker)
2746 		destroy_workqueue(c->btree_interior_update_worker);
2747 	mempool_exit(&c->btree_interior_update_pool);
2748 }
2749 
bch2_fs_btree_interior_update_init_early(struct bch_fs * c)2750 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2751 {
2752 	mutex_init(&c->btree_reserve_cache_lock);
2753 	INIT_LIST_HEAD(&c->btree_interior_update_list);
2754 	INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2755 	mutex_init(&c->btree_interior_update_lock);
2756 	INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2757 
2758 	INIT_LIST_HEAD(&c->btree_node_rewrites);
2759 	INIT_LIST_HEAD(&c->btree_node_rewrites_pending);
2760 	spin_lock_init(&c->btree_node_rewrites_lock);
2761 }
2762 
bch2_fs_btree_interior_update_init(struct bch_fs * c)2763 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2764 {
2765 	c->btree_interior_update_worker =
2766 		alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2767 	if (!c->btree_interior_update_worker)
2768 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2769 
2770 	c->btree_node_rewrite_worker =
2771 		alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2772 	if (!c->btree_node_rewrite_worker)
2773 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2774 
2775 	if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2776 				      sizeof(struct btree_update)))
2777 		return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2778 
2779 	return 0;
2780 }
2781