1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_update.h"
5 #include "btree_iter.h"
6 #include "btree_journal_iter.h"
7 #include "btree_locking.h"
8 #include "buckets.h"
9 #include "debug.h"
10 #include "errcode.h"
11 #include "error.h"
12 #include "extents.h"
13 #include "keylist.h"
14 #include "snapshot.h"
15 #include "trace.h"
16
btree_insert_entry_cmp(const struct btree_insert_entry * l,const struct btree_insert_entry * r)17 static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
18 const struct btree_insert_entry *r)
19 {
20 return cmp_int(l->sort_order, r->sort_order) ?:
21 cmp_int(l->cached, r->cached) ?:
22 -cmp_int(l->level, r->level) ?:
23 bpos_cmp(l->k->k.p, r->k->k.p);
24 }
25
26 static int __must_check
27 bch2_trans_update_by_path(struct btree_trans *, btree_path_idx_t,
28 struct bkey_i *, enum btree_iter_update_trigger_flags,
29 unsigned long ip);
30
extent_front_merge(struct btree_trans * trans,struct btree_iter * iter,struct bkey_s_c k,struct bkey_i ** insert,enum btree_iter_update_trigger_flags flags)31 static noinline int extent_front_merge(struct btree_trans *trans,
32 struct btree_iter *iter,
33 struct bkey_s_c k,
34 struct bkey_i **insert,
35 enum btree_iter_update_trigger_flags flags)
36 {
37 struct bch_fs *c = trans->c;
38 struct bkey_i *update;
39 int ret;
40
41 if (unlikely(trans->journal_replay_not_finished))
42 return 0;
43
44 update = bch2_bkey_make_mut_noupdate(trans, k);
45 ret = PTR_ERR_OR_ZERO(update);
46 if (ret)
47 return ret;
48
49 if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
50 return 0;
51
52 ret = bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p) ?:
53 bch2_key_has_snapshot_overwrites(trans, iter->btree_id, (*insert)->k.p);
54 if (ret < 0)
55 return ret;
56 if (ret)
57 return 0;
58
59 ret = bch2_btree_delete_at(trans, iter, flags);
60 if (ret)
61 return ret;
62
63 *insert = update;
64 return 0;
65 }
66
extent_back_merge(struct btree_trans * trans,struct btree_iter * iter,struct bkey_i * insert,struct bkey_s_c k)67 static noinline int extent_back_merge(struct btree_trans *trans,
68 struct btree_iter *iter,
69 struct bkey_i *insert,
70 struct bkey_s_c k)
71 {
72 struct bch_fs *c = trans->c;
73 int ret;
74
75 if (unlikely(trans->journal_replay_not_finished))
76 return 0;
77
78 ret = bch2_key_has_snapshot_overwrites(trans, iter->btree_id, insert->k.p) ?:
79 bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p);
80 if (ret < 0)
81 return ret;
82 if (ret)
83 return 0;
84
85 bch2_bkey_merge(c, bkey_i_to_s(insert), k);
86 return 0;
87 }
88
89 /*
90 * When deleting, check if we need to emit a whiteout (because we're overwriting
91 * something in an ancestor snapshot)
92 */
need_whiteout_for_snapshot(struct btree_trans * trans,enum btree_id btree_id,struct bpos pos)93 static int need_whiteout_for_snapshot(struct btree_trans *trans,
94 enum btree_id btree_id, struct bpos pos)
95 {
96 struct btree_iter iter;
97 struct bkey_s_c k;
98 u32 snapshot = pos.snapshot;
99 int ret;
100
101 if (!bch2_snapshot_parent(trans->c, pos.snapshot))
102 return 0;
103
104 pos.snapshot++;
105
106 for_each_btree_key_norestart(trans, iter, btree_id, pos,
107 BTREE_ITER_all_snapshots|
108 BTREE_ITER_nopreserve, k, ret) {
109 if (!bkey_eq(k.k->p, pos))
110 break;
111
112 if (bch2_snapshot_is_ancestor(trans->c, snapshot,
113 k.k->p.snapshot)) {
114 ret = !bkey_whiteout(k.k);
115 break;
116 }
117 }
118 bch2_trans_iter_exit(trans, &iter);
119
120 return ret;
121 }
122
__bch2_insert_snapshot_whiteouts(struct btree_trans * trans,enum btree_id id,struct bpos old_pos,struct bpos new_pos)123 int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
124 enum btree_id id,
125 struct bpos old_pos,
126 struct bpos new_pos)
127 {
128 struct bch_fs *c = trans->c;
129 struct btree_iter old_iter, new_iter = { NULL };
130 struct bkey_s_c old_k, new_k;
131 snapshot_id_list s;
132 struct bkey_i *update;
133 int ret = 0;
134
135 if (!bch2_snapshot_has_children(c, old_pos.snapshot))
136 return 0;
137
138 darray_init(&s);
139
140 bch2_trans_iter_init(trans, &old_iter, id, old_pos,
141 BTREE_ITER_not_extents|
142 BTREE_ITER_all_snapshots);
143 while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
144 !(ret = bkey_err(old_k)) &&
145 bkey_eq(old_pos, old_k.k->p)) {
146 struct bpos whiteout_pos =
147 SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);
148
149 if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) ||
150 snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot))
151 continue;
152
153 new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos,
154 BTREE_ITER_not_extents|
155 BTREE_ITER_intent);
156 ret = bkey_err(new_k);
157 if (ret)
158 break;
159
160 if (new_k.k->type == KEY_TYPE_deleted) {
161 update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
162 ret = PTR_ERR_OR_ZERO(update);
163 if (ret)
164 break;
165
166 bkey_init(&update->k);
167 update->k.p = whiteout_pos;
168 update->k.type = KEY_TYPE_whiteout;
169
170 ret = bch2_trans_update(trans, &new_iter, update,
171 BTREE_UPDATE_internal_snapshot_node);
172 }
173 bch2_trans_iter_exit(trans, &new_iter);
174
175 ret = snapshot_list_add(c, &s, old_k.k->p.snapshot);
176 if (ret)
177 break;
178 }
179 bch2_trans_iter_exit(trans, &new_iter);
180 bch2_trans_iter_exit(trans, &old_iter);
181 darray_exit(&s);
182
183 return ret;
184 }
185
bch2_trans_update_extent_overwrite(struct btree_trans * trans,struct btree_iter * iter,enum btree_iter_update_trigger_flags flags,struct bkey_s_c old,struct bkey_s_c new)186 int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
187 struct btree_iter *iter,
188 enum btree_iter_update_trigger_flags flags,
189 struct bkey_s_c old,
190 struct bkey_s_c new)
191 {
192 enum btree_id btree_id = iter->btree_id;
193 struct bkey_i *update;
194 struct bpos new_start = bkey_start_pos(new.k);
195 unsigned front_split = bkey_lt(bkey_start_pos(old.k), new_start);
196 unsigned back_split = bkey_gt(old.k->p, new.k->p);
197 unsigned middle_split = (front_split || back_split) &&
198 old.k->p.snapshot != new.k->p.snapshot;
199 unsigned nr_splits = front_split + back_split + middle_split;
200 int ret = 0, compressed_sectors;
201
202 /*
203 * If we're going to be splitting a compressed extent, note it
204 * so that __bch2_trans_commit() can increase our disk
205 * reservation:
206 */
207 if (nr_splits > 1 &&
208 (compressed_sectors = bch2_bkey_sectors_compressed(old)))
209 trans->extra_disk_res += compressed_sectors * (nr_splits - 1);
210
211 if (front_split) {
212 update = bch2_bkey_make_mut_noupdate(trans, old);
213 if ((ret = PTR_ERR_OR_ZERO(update)))
214 return ret;
215
216 bch2_cut_back(new_start, update);
217
218 ret = bch2_insert_snapshot_whiteouts(trans, btree_id,
219 old.k->p, update->k.p) ?:
220 bch2_btree_insert_nonextent(trans, btree_id, update,
221 BTREE_UPDATE_internal_snapshot_node|flags);
222 if (ret)
223 return ret;
224 }
225
226 /* If we're overwriting in a different snapshot - middle split: */
227 if (middle_split) {
228 update = bch2_bkey_make_mut_noupdate(trans, old);
229 if ((ret = PTR_ERR_OR_ZERO(update)))
230 return ret;
231
232 bch2_cut_front(new_start, update);
233 bch2_cut_back(new.k->p, update);
234
235 ret = bch2_insert_snapshot_whiteouts(trans, btree_id,
236 old.k->p, update->k.p) ?:
237 bch2_btree_insert_nonextent(trans, btree_id, update,
238 BTREE_UPDATE_internal_snapshot_node|flags);
239 if (ret)
240 return ret;
241 }
242
243 if (bkey_le(old.k->p, new.k->p)) {
244 update = bch2_trans_kmalloc(trans, sizeof(*update));
245 if ((ret = PTR_ERR_OR_ZERO(update)))
246 return ret;
247
248 bkey_init(&update->k);
249 update->k.p = old.k->p;
250 update->k.p.snapshot = new.k->p.snapshot;
251
252 if (new.k->p.snapshot != old.k->p.snapshot) {
253 update->k.type = KEY_TYPE_whiteout;
254 } else if (btree_type_has_snapshots(btree_id)) {
255 ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
256 if (ret < 0)
257 return ret;
258 if (ret)
259 update->k.type = KEY_TYPE_whiteout;
260 }
261
262 ret = bch2_btree_insert_nonextent(trans, btree_id, update,
263 BTREE_UPDATE_internal_snapshot_node|flags);
264 if (ret)
265 return ret;
266 }
267
268 if (back_split) {
269 update = bch2_bkey_make_mut_noupdate(trans, old);
270 if ((ret = PTR_ERR_OR_ZERO(update)))
271 return ret;
272
273 bch2_cut_front(new.k->p, update);
274
275 ret = bch2_trans_update_by_path(trans, iter->path, update,
276 BTREE_UPDATE_internal_snapshot_node|
277 flags, _RET_IP_);
278 if (ret)
279 return ret;
280 }
281
282 return 0;
283 }
284
bch2_trans_update_extent(struct btree_trans * trans,struct btree_iter * orig_iter,struct bkey_i * insert,enum btree_iter_update_trigger_flags flags)285 static int bch2_trans_update_extent(struct btree_trans *trans,
286 struct btree_iter *orig_iter,
287 struct bkey_i *insert,
288 enum btree_iter_update_trigger_flags flags)
289 {
290 struct btree_iter iter;
291 struct bkey_s_c k;
292 enum btree_id btree_id = orig_iter->btree_id;
293 int ret = 0;
294
295 bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k),
296 BTREE_ITER_intent|
297 BTREE_ITER_with_updates|
298 BTREE_ITER_not_extents);
299 k = bch2_btree_iter_peek_max(&iter, POS(insert->k.p.inode, U64_MAX));
300 if ((ret = bkey_err(k)))
301 goto err;
302 if (!k.k)
303 goto out;
304
305 if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
306 if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
307 ret = extent_front_merge(trans, &iter, k, &insert, flags);
308 if (ret)
309 goto err;
310 }
311
312 goto next;
313 }
314
315 while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
316 bool done = bkey_lt(insert->k.p, k.k->p);
317
318 ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert));
319 if (ret)
320 goto err;
321
322 if (done)
323 goto out;
324 next:
325 bch2_btree_iter_advance(&iter);
326 k = bch2_btree_iter_peek_max(&iter, POS(insert->k.p.inode, U64_MAX));
327 if ((ret = bkey_err(k)))
328 goto err;
329 if (!k.k)
330 goto out;
331 }
332
333 if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
334 ret = extent_back_merge(trans, &iter, insert, k);
335 if (ret)
336 goto err;
337 }
338 out:
339 if (!bkey_deleted(&insert->k))
340 ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
341 err:
342 bch2_trans_iter_exit(trans, &iter);
343
344 return ret;
345 }
346
flush_new_cached_update(struct btree_trans * trans,struct btree_insert_entry * i,enum btree_iter_update_trigger_flags flags,unsigned long ip)347 static noinline int flush_new_cached_update(struct btree_trans *trans,
348 struct btree_insert_entry *i,
349 enum btree_iter_update_trigger_flags flags,
350 unsigned long ip)
351 {
352 struct bkey k;
353 int ret;
354
355 btree_path_idx_t path_idx =
356 bch2_path_get(trans, i->btree_id, i->old_k.p, 1, 0,
357 BTREE_ITER_intent, _THIS_IP_);
358 ret = bch2_btree_path_traverse(trans, path_idx, 0);
359 if (ret)
360 goto out;
361
362 struct btree_path *btree_path = trans->paths + path_idx;
363
364 /*
365 * The old key in the insert entry might actually refer to an existing
366 * key in the btree that has been deleted from cache and not yet
367 * flushed. Check for this and skip the flush so we don't run triggers
368 * against a stale key.
369 */
370 bch2_btree_path_peek_slot_exact(btree_path, &k);
371 if (!bkey_deleted(&k))
372 goto out;
373
374 i->key_cache_already_flushed = true;
375 i->flags |= BTREE_TRIGGER_norun;
376
377 btree_path_set_should_be_locked(trans, btree_path);
378 ret = bch2_trans_update_by_path(trans, path_idx, i->k, flags, ip);
379 out:
380 bch2_path_put(trans, path_idx, true);
381 return ret;
382 }
383
384 static int __must_check
bch2_trans_update_by_path(struct btree_trans * trans,btree_path_idx_t path_idx,struct bkey_i * k,enum btree_iter_update_trigger_flags flags,unsigned long ip)385 bch2_trans_update_by_path(struct btree_trans *trans, btree_path_idx_t path_idx,
386 struct bkey_i *k, enum btree_iter_update_trigger_flags flags,
387 unsigned long ip)
388 {
389 struct bch_fs *c = trans->c;
390 struct btree_insert_entry *i, n;
391 int cmp;
392
393 struct btree_path *path = trans->paths + path_idx;
394 EBUG_ON(!path->should_be_locked);
395 EBUG_ON(trans->nr_updates >= trans->nr_paths);
396 EBUG_ON(!bpos_eq(k->k.p, path->pos));
397
398 n = (struct btree_insert_entry) {
399 .flags = flags,
400 .sort_order = btree_trigger_order(path->btree_id),
401 .bkey_type = __btree_node_type(path->level, path->btree_id),
402 .btree_id = path->btree_id,
403 .level = path->level,
404 .cached = path->cached,
405 .path = path_idx,
406 .k = k,
407 .ip_allocated = ip,
408 };
409
410 #ifdef CONFIG_BCACHEFS_DEBUG
411 trans_for_each_update(trans, i)
412 BUG_ON(i != trans->updates &&
413 btree_insert_entry_cmp(i - 1, i) >= 0);
414 #endif
415
416 /*
417 * Pending updates are kept sorted: first, find position of new update,
418 * then delete/trim any updates the new update overwrites:
419 */
420 for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) {
421 cmp = btree_insert_entry_cmp(&n, i);
422 if (cmp <= 0)
423 break;
424 }
425
426 bool overwrite = !cmp && i < trans->updates + trans->nr_updates;
427
428 if (overwrite) {
429 EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
430
431 bch2_path_put(trans, i->path, true);
432 i->flags = n.flags;
433 i->cached = n.cached;
434 i->k = n.k;
435 i->path = n.path;
436 i->ip_allocated = n.ip_allocated;
437 } else {
438 array_insert_item(trans->updates, trans->nr_updates,
439 i - trans->updates, n);
440
441 i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
442 i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
443
444 if (unlikely(trans->journal_replay_not_finished)) {
445 struct bkey_i *j_k =
446 bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
447
448 if (j_k) {
449 i->old_k = j_k->k;
450 i->old_v = &j_k->v;
451 }
452 }
453 }
454
455 __btree_path_get(trans, trans->paths + i->path, true);
456
457 trace_update_by_path(trans, path, i, overwrite);
458
459 /*
460 * If a key is present in the key cache, it must also exist in the
461 * btree - this is necessary for cache coherency. When iterating over
462 * a btree that's cached in the key cache, the btree iter code checks
463 * the key cache - but the key has to exist in the btree for that to
464 * work:
465 */
466 if (path->cached && !i->old_btree_u64s)
467 return flush_new_cached_update(trans, i, flags, ip);
468
469 return 0;
470 }
471
bch2_trans_update_get_key_cache(struct btree_trans * trans,struct btree_iter * iter,struct btree_path * path)472 static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans,
473 struct btree_iter *iter,
474 struct btree_path *path)
475 {
476 struct btree_path *key_cache_path = btree_iter_key_cache_path(trans, iter);
477
478 if (!key_cache_path ||
479 !key_cache_path->should_be_locked ||
480 !bpos_eq(key_cache_path->pos, iter->pos)) {
481 struct bkey_cached *ck;
482 int ret;
483
484 if (!iter->key_cache_path)
485 iter->key_cache_path =
486 bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
487 BTREE_ITER_intent|
488 BTREE_ITER_cached, _THIS_IP_);
489
490 iter->key_cache_path =
491 bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
492 iter->flags & BTREE_ITER_intent,
493 _THIS_IP_);
494
495 ret = bch2_btree_path_traverse(trans, iter->key_cache_path, BTREE_ITER_cached);
496 if (unlikely(ret))
497 return ret;
498
499 ck = (void *) trans->paths[iter->key_cache_path].l[0].b;
500
501 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
502 trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
503 return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
504 }
505
506 btree_path_set_should_be_locked(trans, trans->paths + iter->key_cache_path);
507 }
508
509 return 0;
510 }
511
bch2_trans_update(struct btree_trans * trans,struct btree_iter * iter,struct bkey_i * k,enum btree_iter_update_trigger_flags flags)512 int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
513 struct bkey_i *k, enum btree_iter_update_trigger_flags flags)
514 {
515 kmsan_check_memory(k, bkey_bytes(&k->k));
516
517 btree_path_idx_t path_idx = iter->update_path ?: iter->path;
518 int ret;
519
520 if (iter->flags & BTREE_ITER_is_extents)
521 return bch2_trans_update_extent(trans, iter, k, flags);
522
523 if (bkey_deleted(&k->k) &&
524 !(flags & BTREE_UPDATE_key_cache_reclaim) &&
525 (iter->flags & BTREE_ITER_filter_snapshots)) {
526 ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
527 if (unlikely(ret < 0))
528 return ret;
529
530 if (ret)
531 k->k.type = KEY_TYPE_whiteout;
532 }
533
534 /*
535 * Ensure that updates to cached btrees go to the key cache:
536 */
537 struct btree_path *path = trans->paths + path_idx;
538 if (!(flags & BTREE_UPDATE_key_cache_reclaim) &&
539 !path->cached &&
540 !path->level &&
541 btree_id_cached(trans->c, path->btree_id)) {
542 ret = bch2_trans_update_get_key_cache(trans, iter, path);
543 if (ret)
544 return ret;
545
546 path_idx = iter->key_cache_path;
547 }
548
549 return bch2_trans_update_by_path(trans, path_idx, k, flags, _RET_IP_);
550 }
551
bch2_btree_insert_clone_trans(struct btree_trans * trans,enum btree_id btree,struct bkey_i * k)552 int bch2_btree_insert_clone_trans(struct btree_trans *trans,
553 enum btree_id btree,
554 struct bkey_i *k)
555 {
556 struct bkey_i *n = bch2_trans_kmalloc(trans, bkey_bytes(&k->k));
557 int ret = PTR_ERR_OR_ZERO(n);
558 if (ret)
559 return ret;
560
561 bkey_copy(n, k);
562 return bch2_btree_insert_trans(trans, btree, n, 0);
563 }
564
__bch2_trans_jset_entry_alloc(struct btree_trans * trans,unsigned u64s)565 struct jset_entry *__bch2_trans_jset_entry_alloc(struct btree_trans *trans, unsigned u64s)
566 {
567 unsigned new_top = trans->journal_entries_u64s + u64s;
568 unsigned old_size = trans->journal_entries_size;
569
570 if (new_top > trans->journal_entries_size) {
571 trans->journal_entries_size = roundup_pow_of_two(new_top);
572
573 btree_trans_stats(trans)->journal_entries_size = trans->journal_entries_size;
574 }
575
576 struct jset_entry *n =
577 bch2_trans_kmalloc_nomemzero(trans,
578 trans->journal_entries_size * sizeof(u64));
579 if (IS_ERR(n))
580 return ERR_CAST(n);
581
582 if (trans->journal_entries)
583 memcpy(n, trans->journal_entries, old_size * sizeof(u64));
584 trans->journal_entries = n;
585
586 struct jset_entry *e = btree_trans_journal_entries_top(trans);
587 trans->journal_entries_u64s = new_top;
588 return e;
589 }
590
bch2_bkey_get_empty_slot(struct btree_trans * trans,struct btree_iter * iter,enum btree_id btree,struct bpos end)591 int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
592 enum btree_id btree, struct bpos end)
593 {
594 bch2_trans_iter_init(trans, iter, btree, end, BTREE_ITER_intent);
595 struct bkey_s_c k = bch2_btree_iter_peek_prev(iter);
596 int ret = bkey_err(k);
597 if (ret)
598 goto err;
599
600 bch2_btree_iter_advance(iter);
601 k = bch2_btree_iter_peek_slot(iter);
602 ret = bkey_err(k);
603 if (ret)
604 goto err;
605
606 BUG_ON(k.k->type != KEY_TYPE_deleted);
607
608 if (bkey_gt(k.k->p, end)) {
609 ret = -BCH_ERR_ENOSPC_btree_slot;
610 goto err;
611 }
612
613 return 0;
614 err:
615 bch2_trans_iter_exit(trans, iter);
616 return ret;
617 }
618
bch2_trans_commit_hook(struct btree_trans * trans,struct btree_trans_commit_hook * h)619 void bch2_trans_commit_hook(struct btree_trans *trans,
620 struct btree_trans_commit_hook *h)
621 {
622 h->next = trans->hooks;
623 trans->hooks = h;
624 }
625
bch2_btree_insert_nonextent(struct btree_trans * trans,enum btree_id btree,struct bkey_i * k,enum btree_iter_update_trigger_flags flags)626 int bch2_btree_insert_nonextent(struct btree_trans *trans,
627 enum btree_id btree, struct bkey_i *k,
628 enum btree_iter_update_trigger_flags flags)
629 {
630 struct btree_iter iter;
631 int ret;
632
633 bch2_trans_iter_init(trans, &iter, btree, k->k.p,
634 BTREE_ITER_cached|
635 BTREE_ITER_not_extents|
636 BTREE_ITER_intent);
637 ret = bch2_btree_iter_traverse(&iter) ?:
638 bch2_trans_update(trans, &iter, k, flags);
639 bch2_trans_iter_exit(trans, &iter);
640 return ret;
641 }
642
bch2_btree_insert_trans(struct btree_trans * trans,enum btree_id id,struct bkey_i * k,enum btree_iter_update_trigger_flags flags)643 int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id,
644 struct bkey_i *k, enum btree_iter_update_trigger_flags flags)
645 {
646 struct btree_iter iter;
647 bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
648 BTREE_ITER_intent|flags);
649 int ret = bch2_btree_iter_traverse(&iter) ?:
650 bch2_trans_update(trans, &iter, k, flags);
651 bch2_trans_iter_exit(trans, &iter);
652 return ret;
653 }
654
655 /**
656 * bch2_btree_insert - insert keys into the extent btree
657 * @c: pointer to struct bch_fs
658 * @id: btree to insert into
659 * @k: key to insert
660 * @disk_res: must be non-NULL whenever inserting or potentially
661 * splitting data extents
662 * @flags: transaction commit flags
663 * @iter_flags: btree iter update trigger flags
664 *
665 * Returns: 0 on success, error code on failure
666 */
bch2_btree_insert(struct bch_fs * c,enum btree_id id,struct bkey_i * k,struct disk_reservation * disk_res,int flags,enum btree_iter_update_trigger_flags iter_flags)667 int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k,
668 struct disk_reservation *disk_res, int flags,
669 enum btree_iter_update_trigger_flags iter_flags)
670 {
671 return bch2_trans_commit_do(c, disk_res, NULL, flags,
672 bch2_btree_insert_trans(trans, id, k, iter_flags));
673 }
674
bch2_btree_delete_at(struct btree_trans * trans,struct btree_iter * iter,unsigned update_flags)675 int bch2_btree_delete_at(struct btree_trans *trans,
676 struct btree_iter *iter, unsigned update_flags)
677 {
678 struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
679 int ret = PTR_ERR_OR_ZERO(k);
680 if (ret)
681 return ret;
682
683 bkey_init(&k->k);
684 k->k.p = iter->pos;
685 return bch2_trans_update(trans, iter, k, update_flags);
686 }
687
bch2_btree_delete(struct btree_trans * trans,enum btree_id btree,struct bpos pos,unsigned update_flags)688 int bch2_btree_delete(struct btree_trans *trans,
689 enum btree_id btree, struct bpos pos,
690 unsigned update_flags)
691 {
692 struct btree_iter iter;
693 int ret;
694
695 bch2_trans_iter_init(trans, &iter, btree, pos,
696 BTREE_ITER_cached|
697 BTREE_ITER_intent);
698 ret = bch2_btree_iter_traverse(&iter) ?:
699 bch2_btree_delete_at(trans, &iter, update_flags);
700 bch2_trans_iter_exit(trans, &iter);
701
702 return ret;
703 }
704
bch2_btree_delete_range_trans(struct btree_trans * trans,enum btree_id id,struct bpos start,struct bpos end,unsigned update_flags,u64 * journal_seq)705 int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
706 struct bpos start, struct bpos end,
707 unsigned update_flags,
708 u64 *journal_seq)
709 {
710 u32 restart_count = trans->restart_count;
711 struct btree_iter iter;
712 struct bkey_s_c k;
713 int ret = 0;
714
715 bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_intent);
716 while ((k = bch2_btree_iter_peek_max(&iter, end)).k) {
717 struct disk_reservation disk_res =
718 bch2_disk_reservation_init(trans->c, 0);
719 struct bkey_i delete;
720
721 ret = bkey_err(k);
722 if (ret)
723 goto err;
724
725 bkey_init(&delete.k);
726
727 /*
728 * This could probably be more efficient for extents:
729 */
730
731 /*
732 * For extents, iter.pos won't necessarily be the same as
733 * bkey_start_pos(k.k) (for non extents they always will be the
734 * same). It's important that we delete starting from iter.pos
735 * because the range we want to delete could start in the middle
736 * of k.
737 *
738 * (bch2_btree_iter_peek() does guarantee that iter.pos >=
739 * bkey_start_pos(k.k)).
740 */
741 delete.k.p = iter.pos;
742
743 if (iter.flags & BTREE_ITER_is_extents)
744 bch2_key_resize(&delete.k,
745 bpos_min(end, k.k->p).offset -
746 iter.pos.offset);
747
748 ret = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
749 bch2_trans_commit(trans, &disk_res, journal_seq,
750 BCH_TRANS_COMMIT_no_enospc);
751 bch2_disk_reservation_put(trans->c, &disk_res);
752 err:
753 /*
754 * the bch2_trans_begin() call is in a weird place because we
755 * need to call it after every transaction commit, to avoid path
756 * overflow, but don't want to call it if the delete operation
757 * is a no-op and we have no work to do:
758 */
759 bch2_trans_begin(trans);
760
761 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
762 ret = 0;
763 if (ret)
764 break;
765 }
766 bch2_trans_iter_exit(trans, &iter);
767
768 return ret ?: trans_was_restarted(trans, restart_count);
769 }
770
771 /*
772 * bch_btree_delete_range - delete everything within a given range
773 *
774 * Range is a half open interval - [start, end)
775 */
bch2_btree_delete_range(struct bch_fs * c,enum btree_id id,struct bpos start,struct bpos end,unsigned update_flags,u64 * journal_seq)776 int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
777 struct bpos start, struct bpos end,
778 unsigned update_flags,
779 u64 *journal_seq)
780 {
781 int ret = bch2_trans_run(c,
782 bch2_btree_delete_range_trans(trans, id, start, end,
783 update_flags, journal_seq));
784 if (ret == -BCH_ERR_transaction_restart_nested)
785 ret = 0;
786 return ret;
787 }
788
bch2_btree_bit_mod_iter(struct btree_trans * trans,struct btree_iter * iter,bool set)789 int bch2_btree_bit_mod_iter(struct btree_trans *trans, struct btree_iter *iter, bool set)
790 {
791 struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
792 int ret = PTR_ERR_OR_ZERO(k);
793 if (ret)
794 return ret;
795
796 bkey_init(&k->k);
797 k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
798 k->k.p = iter->pos;
799 if (iter->flags & BTREE_ITER_is_extents)
800 bch2_key_resize(&k->k, 1);
801
802 return bch2_trans_update(trans, iter, k, 0);
803 }
804
bch2_btree_bit_mod(struct btree_trans * trans,enum btree_id btree,struct bpos pos,bool set)805 int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
806 struct bpos pos, bool set)
807 {
808 struct btree_iter iter;
809 bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_intent);
810
811 int ret = bch2_btree_iter_traverse(&iter) ?:
812 bch2_btree_bit_mod_iter(trans, &iter, set);
813 bch2_trans_iter_exit(trans, &iter);
814 return ret;
815 }
816
bch2_btree_bit_mod_buffered(struct btree_trans * trans,enum btree_id btree,struct bpos pos,bool set)817 int bch2_btree_bit_mod_buffered(struct btree_trans *trans, enum btree_id btree,
818 struct bpos pos, bool set)
819 {
820 struct bkey_i k;
821
822 bkey_init(&k.k);
823 k.k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
824 k.k.p = pos;
825
826 return bch2_trans_update_buffered(trans, btree, &k);
827 }
828
bch2_trans_log_msg(struct btree_trans * trans,struct printbuf * buf)829 int bch2_trans_log_msg(struct btree_trans *trans, struct printbuf *buf)
830 {
831 unsigned u64s = DIV_ROUND_UP(buf->pos, sizeof(u64));
832 prt_chars(buf, '\0', u64s * sizeof(u64) - buf->pos);
833
834 int ret = buf->allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
835 if (ret)
836 return ret;
837
838 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(u64s));
839 ret = PTR_ERR_OR_ZERO(e);
840 if (ret)
841 return ret;
842
843 struct jset_entry_log *l = container_of(e, struct jset_entry_log, entry);
844 journal_entry_init(e, BCH_JSET_ENTRY_log, 0, 1, u64s);
845 memcpy(l->d, buf->buf, buf->pos);
846 return 0;
847 }
848
849 __printf(3, 0)
850 static int
__bch2_fs_log_msg(struct bch_fs * c,unsigned commit_flags,const char * fmt,va_list args)851 __bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
852 va_list args)
853 {
854 struct printbuf buf = PRINTBUF;
855 prt_vprintf(&buf, fmt, args);
856
857 unsigned u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
858 prt_chars(&buf, '\0', u64s * sizeof(u64) - buf.pos);
859
860 int ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
861 if (ret)
862 goto err;
863
864 if (!test_bit(JOURNAL_running, &c->journal.flags)) {
865 ret = darray_make_room(&c->journal.early_journal_entries, jset_u64s(u64s));
866 if (ret)
867 goto err;
868
869 struct jset_entry_log *l = (void *) &darray_top(c->journal.early_journal_entries);
870 journal_entry_init(&l->entry, BCH_JSET_ENTRY_log, 0, 1, u64s);
871 memcpy(l->d, buf.buf, buf.pos);
872 c->journal.early_journal_entries.nr += jset_u64s(u64s);
873 } else {
874 ret = bch2_trans_commit_do(c, NULL, NULL, commit_flags,
875 bch2_trans_log_msg(trans, &buf));
876 }
877 err:
878 printbuf_exit(&buf);
879 return ret;
880 }
881
882 __printf(2, 3)
bch2_fs_log_msg(struct bch_fs * c,const char * fmt,...)883 int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
884 {
885 va_list args;
886 int ret;
887
888 va_start(args, fmt);
889 ret = __bch2_fs_log_msg(c, 0, fmt, args);
890 va_end(args);
891 return ret;
892 }
893
894 /*
895 * Use for logging messages during recovery to enable reserved space and avoid
896 * blocking.
897 */
898 __printf(2, 3)
bch2_journal_log_msg(struct bch_fs * c,const char * fmt,...)899 int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
900 {
901 va_list args;
902 int ret;
903
904 va_start(args, fmt);
905 ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
906 va_end(args);
907 return ret;
908 }
909