xref: /linux/fs/bcachefs/btree_update.c (revision 6f2a71a99ebd5dfaa7948a2e9c59eae94b741bd8)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_update.h"
5 #include "btree_iter.h"
6 #include "btree_journal_iter.h"
7 #include "btree_locking.h"
8 #include "buckets.h"
9 #include "debug.h"
10 #include "errcode.h"
11 #include "error.h"
12 #include "extents.h"
13 #include "keylist.h"
14 #include "snapshot.h"
15 #include "trace.h"
16 
17 #include <linux/string_helpers.h>
18 
btree_insert_entry_cmp(const struct btree_insert_entry * l,const struct btree_insert_entry * r)19 static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
20 					 const struct btree_insert_entry *r)
21 {
22 	return   cmp_int(l->sort_order,	r->sort_order) ?:
23 		 cmp_int(l->cached,	r->cached) ?:
24 		 -cmp_int(l->level,	r->level) ?:
25 		 bpos_cmp(l->k->k.p,	r->k->k.p);
26 }
27 
28 static int __must_check
29 bch2_trans_update_by_path(struct btree_trans *, btree_path_idx_t,
30 			  struct bkey_i *, enum btree_iter_update_trigger_flags,
31 			  unsigned long ip);
32 
extent_front_merge(struct btree_trans * trans,struct btree_iter * iter,struct bkey_s_c k,struct bkey_i ** insert,enum btree_iter_update_trigger_flags flags)33 static noinline int extent_front_merge(struct btree_trans *trans,
34 				       struct btree_iter *iter,
35 				       struct bkey_s_c k,
36 				       struct bkey_i **insert,
37 				       enum btree_iter_update_trigger_flags flags)
38 {
39 	struct bch_fs *c = trans->c;
40 	struct bkey_i *update;
41 	int ret;
42 
43 	if (unlikely(trans->journal_replay_not_finished))
44 		return 0;
45 
46 	update = bch2_bkey_make_mut_noupdate(trans, k);
47 	ret = PTR_ERR_OR_ZERO(update);
48 	if (ret)
49 		return ret;
50 
51 	if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
52 		return 0;
53 
54 	ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p) ?:
55 		bch2_key_has_snapshot_overwrites(trans, iter->btree_id, (*insert)->k.p);
56 	if (ret < 0)
57 		return ret;
58 	if (ret)
59 		return 0;
60 
61 	ret = bch2_btree_delete_at(trans, iter, flags);
62 	if (ret)
63 		return ret;
64 
65 	*insert = update;
66 	return 0;
67 }
68 
extent_back_merge(struct btree_trans * trans,struct btree_iter * iter,struct bkey_i * insert,struct bkey_s_c k)69 static noinline int extent_back_merge(struct btree_trans *trans,
70 				      struct btree_iter *iter,
71 				      struct bkey_i *insert,
72 				      struct bkey_s_c k)
73 {
74 	struct bch_fs *c = trans->c;
75 	int ret;
76 
77 	if (unlikely(trans->journal_replay_not_finished))
78 		return 0;
79 
80 	ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, insert->k.p) ?:
81 		bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p);
82 	if (ret < 0)
83 		return ret;
84 	if (ret)
85 		return 0;
86 
87 	bch2_bkey_merge(c, bkey_i_to_s(insert), k);
88 	return 0;
89 }
90 
91 /*
92  * When deleting, check if we need to emit a whiteout (because we're overwriting
93  * something in an ancestor snapshot)
94  */
need_whiteout_for_snapshot(struct btree_trans * trans,enum btree_id btree_id,struct bpos pos)95 static int need_whiteout_for_snapshot(struct btree_trans *trans,
96 				      enum btree_id btree_id, struct bpos pos)
97 {
98 	struct btree_iter iter;
99 	struct bkey_s_c k;
100 	u32 snapshot = pos.snapshot;
101 	int ret;
102 
103 	if (!bch2_snapshot_parent(trans->c, pos.snapshot))
104 		return 0;
105 
106 	pos.snapshot++;
107 
108 	for_each_btree_key_norestart(trans, iter, btree_id, pos,
109 			   BTREE_ITER_all_snapshots|
110 			   BTREE_ITER_nopreserve, k, ret) {
111 		if (!bkey_eq(k.k->p, pos))
112 			break;
113 
114 		if (bch2_snapshot_is_ancestor(trans->c, snapshot,
115 					      k.k->p.snapshot)) {
116 			ret = !bkey_whiteout(k.k);
117 			break;
118 		}
119 	}
120 	bch2_trans_iter_exit(trans, &iter);
121 
122 	return ret;
123 }
124 
__bch2_insert_snapshot_whiteouts(struct btree_trans * trans,enum btree_id btree,struct bpos pos,snapshot_id_list * s)125 int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
126 				     enum btree_id btree, struct bpos pos,
127 				     snapshot_id_list *s)
128 {
129 	int ret = 0;
130 
131 	darray_for_each(*s, id) {
132 		pos.snapshot = *id;
133 
134 		struct btree_iter iter;
135 		struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, btree, pos,
136 						       BTREE_ITER_not_extents|
137 						       BTREE_ITER_intent);
138 		ret = bkey_err(k);
139 		if (ret)
140 			break;
141 
142 		if (k.k->type == KEY_TYPE_deleted) {
143 			struct bkey_i *update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
144 			ret = PTR_ERR_OR_ZERO(update);
145 			if (ret) {
146 				bch2_trans_iter_exit(trans, &iter);
147 				break;
148 			}
149 
150 			bkey_init(&update->k);
151 			update->k.p		= pos;
152 			update->k.type		= KEY_TYPE_whiteout;
153 
154 			ret = bch2_trans_update(trans, &iter, update,
155 						BTREE_UPDATE_internal_snapshot_node);
156 		}
157 		bch2_trans_iter_exit(trans, &iter);
158 
159 		if (ret)
160 			break;
161 	}
162 
163 	darray_exit(s);
164 	return ret;
165 }
166 
bch2_trans_update_extent_overwrite(struct btree_trans * trans,struct btree_iter * iter,enum btree_iter_update_trigger_flags flags,struct bkey_s_c old,struct bkey_s_c new)167 int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
168 				       struct btree_iter *iter,
169 				       enum btree_iter_update_trigger_flags flags,
170 				       struct bkey_s_c old,
171 				       struct bkey_s_c new)
172 {
173 	enum btree_id btree_id = iter->btree_id;
174 	struct bkey_i *update;
175 	struct bpos new_start = bkey_start_pos(new.k);
176 	unsigned front_split = bkey_lt(bkey_start_pos(old.k), new_start);
177 	unsigned back_split  = bkey_gt(old.k->p, new.k->p);
178 	unsigned middle_split = (front_split || back_split) &&
179 		old.k->p.snapshot != new.k->p.snapshot;
180 	unsigned nr_splits = front_split + back_split + middle_split;
181 	int ret = 0, compressed_sectors;
182 
183 	/*
184 	 * If we're going to be splitting a compressed extent, note it
185 	 * so that __bch2_trans_commit() can increase our disk
186 	 * reservation:
187 	 */
188 	if (nr_splits > 1 &&
189 	    (compressed_sectors = bch2_bkey_sectors_compressed(old)))
190 		trans->extra_disk_res += compressed_sectors * (nr_splits - 1);
191 
192 	if (front_split) {
193 		update = bch2_bkey_make_mut_noupdate(trans, old);
194 		if ((ret = PTR_ERR_OR_ZERO(update)))
195 			return ret;
196 
197 		bch2_cut_back(new_start, update);
198 
199 		ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
200 					old.k->p, update->k.p) ?:
201 			bch2_btree_insert_nonextent(trans, btree_id, update,
202 					BTREE_UPDATE_internal_snapshot_node|flags);
203 		if (ret)
204 			return ret;
205 	}
206 
207 	/* If we're overwriting in a different snapshot - middle split: */
208 	if (middle_split) {
209 		update = bch2_bkey_make_mut_noupdate(trans, old);
210 		if ((ret = PTR_ERR_OR_ZERO(update)))
211 			return ret;
212 
213 		bch2_cut_front(new_start, update);
214 		bch2_cut_back(new.k->p, update);
215 
216 		ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
217 					old.k->p, update->k.p) ?:
218 			bch2_btree_insert_nonextent(trans, btree_id, update,
219 					  BTREE_UPDATE_internal_snapshot_node|flags);
220 		if (ret)
221 			return ret;
222 	}
223 
224 	if (bkey_le(old.k->p, new.k->p)) {
225 		update = bch2_trans_kmalloc(trans, sizeof(*update));
226 		if ((ret = PTR_ERR_OR_ZERO(update)))
227 			return ret;
228 
229 		bkey_init(&update->k);
230 		update->k.p = old.k->p;
231 		update->k.p.snapshot = new.k->p.snapshot;
232 
233 		if (new.k->p.snapshot != old.k->p.snapshot) {
234 			update->k.type = KEY_TYPE_whiteout;
235 		} else if (btree_type_has_snapshots(btree_id)) {
236 			ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
237 			if (ret < 0)
238 				return ret;
239 			if (ret)
240 				update->k.type = KEY_TYPE_whiteout;
241 		}
242 
243 		ret = bch2_btree_insert_nonextent(trans, btree_id, update,
244 					  BTREE_UPDATE_internal_snapshot_node|flags);
245 		if (ret)
246 			return ret;
247 	}
248 
249 	if (back_split) {
250 		update = bch2_bkey_make_mut_noupdate(trans, old);
251 		if ((ret = PTR_ERR_OR_ZERO(update)))
252 			return ret;
253 
254 		bch2_cut_front(new.k->p, update);
255 
256 		ret = bch2_trans_update_by_path(trans, iter->path, update,
257 					  BTREE_UPDATE_internal_snapshot_node|
258 					  flags, _RET_IP_);
259 		if (ret)
260 			return ret;
261 	}
262 
263 	return 0;
264 }
265 
bch2_trans_update_extent(struct btree_trans * trans,struct btree_iter * orig_iter,struct bkey_i * insert,enum btree_iter_update_trigger_flags flags)266 static int bch2_trans_update_extent(struct btree_trans *trans,
267 				    struct btree_iter *orig_iter,
268 				    struct bkey_i *insert,
269 				    enum btree_iter_update_trigger_flags flags)
270 {
271 	struct btree_iter iter;
272 	struct bkey_s_c k;
273 	enum btree_id btree_id = orig_iter->btree_id;
274 	int ret = 0;
275 
276 	bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k),
277 			     BTREE_ITER_intent|
278 			     BTREE_ITER_with_updates|
279 			     BTREE_ITER_not_extents);
280 	k = bch2_btree_iter_peek_max(trans, &iter, POS(insert->k.p.inode, U64_MAX));
281 	if ((ret = bkey_err(k)))
282 		goto err;
283 	if (!k.k)
284 		goto out;
285 
286 	if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
287 		if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
288 			ret = extent_front_merge(trans, &iter, k, &insert, flags);
289 			if (ret)
290 				goto err;
291 		}
292 
293 		goto next;
294 	}
295 
296 	while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
297 		bool done = bkey_lt(insert->k.p, k.k->p);
298 
299 		ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert));
300 		if (ret)
301 			goto err;
302 
303 		if (done)
304 			goto out;
305 next:
306 		bch2_btree_iter_advance(trans, &iter);
307 		k = bch2_btree_iter_peek_max(trans, &iter, POS(insert->k.p.inode, U64_MAX));
308 		if ((ret = bkey_err(k)))
309 			goto err;
310 		if (!k.k)
311 			goto out;
312 	}
313 
314 	if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
315 		ret = extent_back_merge(trans, &iter, insert, k);
316 		if (ret)
317 			goto err;
318 	}
319 out:
320 	if (!bkey_deleted(&insert->k))
321 		ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
322 err:
323 	bch2_trans_iter_exit(trans, &iter);
324 
325 	return ret;
326 }
327 
flush_new_cached_update(struct btree_trans * trans,struct btree_insert_entry * i,enum btree_iter_update_trigger_flags flags,unsigned long ip)328 static noinline int flush_new_cached_update(struct btree_trans *trans,
329 					    struct btree_insert_entry *i,
330 					    enum btree_iter_update_trigger_flags flags,
331 					    unsigned long ip)
332 {
333 	struct bkey k;
334 	int ret;
335 
336 	btree_path_idx_t path_idx =
337 		bch2_path_get(trans, i->btree_id, i->old_k.p, 1, 0,
338 			      BTREE_ITER_intent, _THIS_IP_);
339 	ret = bch2_btree_path_traverse(trans, path_idx, 0);
340 	if (ret)
341 		goto out;
342 
343 	struct btree_path *btree_path = trans->paths + path_idx;
344 
345 	/*
346 	 * The old key in the insert entry might actually refer to an existing
347 	 * key in the btree that has been deleted from cache and not yet
348 	 * flushed. Check for this and skip the flush so we don't run triggers
349 	 * against a stale key.
350 	 */
351 	bch2_btree_path_peek_slot_exact(btree_path, &k);
352 	if (!bkey_deleted(&k))
353 		goto out;
354 
355 	i->key_cache_already_flushed = true;
356 	i->flags |= BTREE_TRIGGER_norun;
357 
358 	btree_path_set_should_be_locked(trans, btree_path);
359 	ret = bch2_trans_update_by_path(trans, path_idx, i->k, flags, ip);
360 out:
361 	bch2_path_put(trans, path_idx, true);
362 	return ret;
363 }
364 
365 static int __must_check
bch2_trans_update_by_path(struct btree_trans * trans,btree_path_idx_t path_idx,struct bkey_i * k,enum btree_iter_update_trigger_flags flags,unsigned long ip)366 bch2_trans_update_by_path(struct btree_trans *trans, btree_path_idx_t path_idx,
367 			  struct bkey_i *k, enum btree_iter_update_trigger_flags flags,
368 			  unsigned long ip)
369 {
370 	struct bch_fs *c = trans->c;
371 	struct btree_insert_entry *i, n;
372 	int cmp;
373 
374 	struct btree_path *path = trans->paths + path_idx;
375 	EBUG_ON(!path->should_be_locked);
376 	EBUG_ON(trans->nr_updates >= trans->nr_paths);
377 	EBUG_ON(!bpos_eq(k->k.p, path->pos));
378 
379 	n = (struct btree_insert_entry) {
380 		.flags		= flags,
381 		.sort_order	= btree_trigger_order(path->btree_id),
382 		.bkey_type	= __btree_node_type(path->level, path->btree_id),
383 		.btree_id	= path->btree_id,
384 		.level		= path->level,
385 		.cached		= path->cached,
386 		.path		= path_idx,
387 		.k		= k,
388 		.ip_allocated	= ip,
389 	};
390 
391 #ifdef CONFIG_BCACHEFS_DEBUG
392 	trans_for_each_update(trans, i)
393 		BUG_ON(i != trans->updates &&
394 		       btree_insert_entry_cmp(i - 1, i) >= 0);
395 #endif
396 
397 	/*
398 	 * Pending updates are kept sorted: first, find position of new update,
399 	 * then delete/trim any updates the new update overwrites:
400 	 */
401 	for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) {
402 		cmp = btree_insert_entry_cmp(&n, i);
403 		if (cmp <= 0)
404 			break;
405 	}
406 
407 	bool overwrite = !cmp && i < trans->updates + trans->nr_updates;
408 
409 	if (overwrite) {
410 		EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
411 
412 		bch2_path_put(trans, i->path, true);
413 		i->flags	= n.flags;
414 		i->cached	= n.cached;
415 		i->k		= n.k;
416 		i->path		= n.path;
417 		i->ip_allocated	= n.ip_allocated;
418 	} else {
419 		array_insert_item(trans->updates, trans->nr_updates,
420 				  i - trans->updates, n);
421 
422 		i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
423 		i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
424 
425 		if (unlikely(trans->journal_replay_not_finished)) {
426 			struct bkey_i *j_k =
427 				bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
428 
429 			if (j_k) {
430 				i->old_k = j_k->k;
431 				i->old_v = &j_k->v;
432 			}
433 		}
434 	}
435 
436 	__btree_path_get(trans, trans->paths + i->path, true);
437 
438 	trace_update_by_path(trans, path, i, overwrite);
439 
440 	/*
441 	 * If a key is present in the key cache, it must also exist in the
442 	 * btree - this is necessary for cache coherency. When iterating over
443 	 * a btree that's cached in the key cache, the btree iter code checks
444 	 * the key cache - but the key has to exist in the btree for that to
445 	 * work:
446 	 */
447 	if (path->cached && !i->old_btree_u64s)
448 		return flush_new_cached_update(trans, i, flags, ip);
449 
450 	return 0;
451 }
452 
bch2_trans_update_get_key_cache(struct btree_trans * trans,struct btree_iter * iter,struct btree_path * path)453 static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans,
454 						    struct btree_iter *iter,
455 						    struct btree_path *path)
456 {
457 	struct btree_path *key_cache_path = btree_iter_key_cache_path(trans, iter);
458 
459 	if (!key_cache_path ||
460 	    !key_cache_path->should_be_locked ||
461 	    !bpos_eq(key_cache_path->pos, iter->pos)) {
462 		struct bkey_cached *ck;
463 		int ret;
464 
465 		if (!iter->key_cache_path)
466 			iter->key_cache_path =
467 				bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
468 					      BTREE_ITER_intent|
469 					      BTREE_ITER_cached, _THIS_IP_);
470 
471 		iter->key_cache_path =
472 			bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
473 						iter->flags & BTREE_ITER_intent,
474 						_THIS_IP_);
475 
476 		ret = bch2_btree_path_traverse(trans, iter->key_cache_path, BTREE_ITER_cached);
477 		if (unlikely(ret))
478 			return ret;
479 
480 		ck = (void *) trans->paths[iter->key_cache_path].l[0].b;
481 
482 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
483 			trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
484 			return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
485 		}
486 
487 		btree_path_set_should_be_locked(trans, trans->paths + iter->key_cache_path);
488 	}
489 
490 	return 0;
491 }
492 
bch2_trans_update_ip(struct btree_trans * trans,struct btree_iter * iter,struct bkey_i * k,enum btree_iter_update_trigger_flags flags,unsigned long ip)493 int __must_check bch2_trans_update_ip(struct btree_trans *trans, struct btree_iter *iter,
494 				      struct bkey_i *k, enum btree_iter_update_trigger_flags flags,
495 				      unsigned long ip)
496 {
497 	kmsan_check_memory(k, bkey_bytes(&k->k));
498 
499 	btree_path_idx_t path_idx = iter->update_path ?: iter->path;
500 	int ret;
501 
502 	if (iter->flags & BTREE_ITER_is_extents)
503 		return bch2_trans_update_extent(trans, iter, k, flags);
504 
505 	if (bkey_deleted(&k->k) &&
506 	    !(flags & BTREE_UPDATE_key_cache_reclaim) &&
507 	    (iter->flags & BTREE_ITER_filter_snapshots)) {
508 		ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
509 		if (unlikely(ret < 0))
510 			return ret;
511 
512 		if (ret)
513 			k->k.type = KEY_TYPE_whiteout;
514 	}
515 
516 	/*
517 	 * Ensure that updates to cached btrees go to the key cache:
518 	 */
519 	struct btree_path *path = trans->paths + path_idx;
520 	if (!(flags & BTREE_UPDATE_key_cache_reclaim) &&
521 	    !path->cached &&
522 	    !path->level &&
523 	    btree_id_cached(trans->c, path->btree_id)) {
524 		ret = bch2_trans_update_get_key_cache(trans, iter, path);
525 		if (ret)
526 			return ret;
527 
528 		path_idx = iter->key_cache_path;
529 	}
530 
531 	return bch2_trans_update_by_path(trans, path_idx, k, flags, ip);
532 }
533 
bch2_btree_insert_clone_trans(struct btree_trans * trans,enum btree_id btree,struct bkey_i * k)534 int bch2_btree_insert_clone_trans(struct btree_trans *trans,
535 				  enum btree_id btree,
536 				  struct bkey_i *k)
537 {
538 	struct bkey_i *n = bch2_trans_kmalloc(trans, bkey_bytes(&k->k));
539 	int ret = PTR_ERR_OR_ZERO(n);
540 	if (ret)
541 		return ret;
542 
543 	bkey_copy(n, k);
544 	return bch2_btree_insert_trans(trans, btree, n, 0);
545 }
546 
__bch2_trans_subbuf_alloc(struct btree_trans * trans,struct btree_trans_subbuf * buf,unsigned u64s)547 void *__bch2_trans_subbuf_alloc(struct btree_trans *trans,
548 				struct btree_trans_subbuf *buf,
549 				unsigned u64s)
550 {
551 	unsigned new_top = buf->u64s + u64s;
552 	unsigned new_size = buf->size;
553 
554 	BUG_ON(roundup_pow_of_two(new_top) > U16_MAX);
555 
556 	if (new_top > new_size)
557 		new_size = roundup_pow_of_two(new_top);
558 
559 	void *n = bch2_trans_kmalloc_nomemzero(trans, new_size * sizeof(u64));
560 	if (IS_ERR(n))
561 		return n;
562 
563 	unsigned offset = (u64 *) n - (u64 *) trans->mem;
564 	BUG_ON(offset > U16_MAX);
565 
566 	if (buf->u64s)
567 		memcpy(n,
568 		       btree_trans_subbuf_base(trans, buf),
569 		       buf->size * sizeof(u64));
570 	buf->base = (u64 *) n - (u64 *) trans->mem;
571 	buf->size = new_size;
572 
573 	void *p = btree_trans_subbuf_top(trans, buf);
574 	buf->u64s = new_top;
575 	return p;
576 }
577 
bch2_bkey_get_empty_slot(struct btree_trans * trans,struct btree_iter * iter,enum btree_id btree,struct bpos end)578 int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
579 			     enum btree_id btree, struct bpos end)
580 {
581 	bch2_trans_iter_init(trans, iter, btree, end, BTREE_ITER_intent);
582 	struct bkey_s_c k = bch2_btree_iter_peek_prev(trans, iter);
583 	int ret = bkey_err(k);
584 	if (ret)
585 		goto err;
586 
587 	bch2_btree_iter_advance(trans, iter);
588 	k = bch2_btree_iter_peek_slot(trans, iter);
589 	ret = bkey_err(k);
590 	if (ret)
591 		goto err;
592 
593 	BUG_ON(k.k->type != KEY_TYPE_deleted);
594 
595 	if (bkey_gt(k.k->p, end)) {
596 		ret = bch_err_throw(trans->c, ENOSPC_btree_slot);
597 		goto err;
598 	}
599 
600 	return 0;
601 err:
602 	bch2_trans_iter_exit(trans, iter);
603 	return ret;
604 }
605 
bch2_trans_commit_hook(struct btree_trans * trans,struct btree_trans_commit_hook * h)606 void bch2_trans_commit_hook(struct btree_trans *trans,
607 			    struct btree_trans_commit_hook *h)
608 {
609 	h->next = trans->hooks;
610 	trans->hooks = h;
611 }
612 
bch2_btree_insert_nonextent(struct btree_trans * trans,enum btree_id btree,struct bkey_i * k,enum btree_iter_update_trigger_flags flags)613 int bch2_btree_insert_nonextent(struct btree_trans *trans,
614 				enum btree_id btree, struct bkey_i *k,
615 				enum btree_iter_update_trigger_flags flags)
616 {
617 	struct btree_iter iter;
618 	int ret;
619 
620 	bch2_trans_iter_init(trans, &iter, btree, k->k.p,
621 			     BTREE_ITER_cached|
622 			     BTREE_ITER_not_extents|
623 			     BTREE_ITER_intent);
624 	ret   = bch2_btree_iter_traverse(trans, &iter) ?:
625 		bch2_trans_update(trans, &iter, k, flags);
626 	bch2_trans_iter_exit(trans, &iter);
627 	return ret;
628 }
629 
bch2_btree_insert_trans(struct btree_trans * trans,enum btree_id id,struct bkey_i * k,enum btree_iter_update_trigger_flags flags)630 int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id,
631 			    struct bkey_i *k, enum btree_iter_update_trigger_flags flags)
632 {
633 	struct btree_iter iter;
634 	bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
635 			     BTREE_ITER_intent|flags);
636 	int ret = bch2_btree_iter_traverse(trans, &iter) ?:
637 		  bch2_trans_update(trans, &iter, k, flags);
638 	bch2_trans_iter_exit(trans, &iter);
639 	return ret;
640 }
641 
642 /**
643  * bch2_btree_insert - insert keys into the extent btree
644  * @c:			pointer to struct bch_fs
645  * @id:			btree to insert into
646  * @k:			key to insert
647  * @disk_res:		must be non-NULL whenever inserting or potentially
648  *			splitting data extents
649  * @flags:		transaction commit flags
650  * @iter_flags:		btree iter update trigger flags
651  *
652  * Returns:		0 on success, error code on failure
653  */
bch2_btree_insert(struct bch_fs * c,enum btree_id id,struct bkey_i * k,struct disk_reservation * disk_res,int flags,enum btree_iter_update_trigger_flags iter_flags)654 int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k,
655 		      struct disk_reservation *disk_res, int flags,
656 		      enum btree_iter_update_trigger_flags iter_flags)
657 {
658 	return bch2_trans_commit_do(c, disk_res, NULL, flags,
659 			     bch2_btree_insert_trans(trans, id, k, iter_flags));
660 }
661 
bch2_btree_delete_at(struct btree_trans * trans,struct btree_iter * iter,unsigned update_flags)662 int bch2_btree_delete_at(struct btree_trans *trans,
663 			 struct btree_iter *iter, unsigned update_flags)
664 {
665 	struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
666 	int ret = PTR_ERR_OR_ZERO(k);
667 	if (ret)
668 		return ret;
669 
670 	bkey_init(&k->k);
671 	k->k.p = iter->pos;
672 	return bch2_trans_update(trans, iter, k, update_flags);
673 }
674 
bch2_btree_delete(struct btree_trans * trans,enum btree_id btree,struct bpos pos,unsigned update_flags)675 int bch2_btree_delete(struct btree_trans *trans,
676 		      enum btree_id btree, struct bpos pos,
677 		      unsigned update_flags)
678 {
679 	struct btree_iter iter;
680 	int ret;
681 
682 	bch2_trans_iter_init(trans, &iter, btree, pos,
683 			     BTREE_ITER_cached|
684 			     BTREE_ITER_intent);
685 	ret   = bch2_btree_iter_traverse(trans, &iter) ?:
686 		bch2_btree_delete_at(trans, &iter, update_flags);
687 	bch2_trans_iter_exit(trans, &iter);
688 
689 	return ret;
690 }
691 
bch2_btree_delete_range_trans(struct btree_trans * trans,enum btree_id id,struct bpos start,struct bpos end,unsigned update_flags,u64 * journal_seq)692 int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
693 				  struct bpos start, struct bpos end,
694 				  unsigned update_flags,
695 				  u64 *journal_seq)
696 {
697 	u32 restart_count = trans->restart_count;
698 	struct btree_iter iter;
699 	struct bkey_s_c k;
700 	int ret = 0;
701 
702 	bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_intent);
703 	while ((k = bch2_btree_iter_peek_max(trans, &iter, end)).k) {
704 		struct disk_reservation disk_res =
705 			bch2_disk_reservation_init(trans->c, 0);
706 		struct bkey_i delete;
707 
708 		ret = bkey_err(k);
709 		if (ret)
710 			goto err;
711 
712 		bkey_init(&delete.k);
713 
714 		/*
715 		 * This could probably be more efficient for extents:
716 		 */
717 
718 		/*
719 		 * For extents, iter.pos won't necessarily be the same as
720 		 * bkey_start_pos(k.k) (for non extents they always will be the
721 		 * same). It's important that we delete starting from iter.pos
722 		 * because the range we want to delete could start in the middle
723 		 * of k.
724 		 *
725 		 * (bch2_btree_iter_peek() does guarantee that iter.pos >=
726 		 * bkey_start_pos(k.k)).
727 		 */
728 		delete.k.p = iter.pos;
729 
730 		if (iter.flags & BTREE_ITER_is_extents)
731 			bch2_key_resize(&delete.k,
732 					bpos_min(end, k.k->p).offset -
733 					iter.pos.offset);
734 
735 		ret   = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
736 			bch2_trans_commit(trans, &disk_res, journal_seq,
737 					  BCH_TRANS_COMMIT_no_enospc);
738 		bch2_disk_reservation_put(trans->c, &disk_res);
739 err:
740 		/*
741 		 * the bch2_trans_begin() call is in a weird place because we
742 		 * need to call it after every transaction commit, to avoid path
743 		 * overflow, but don't want to call it if the delete operation
744 		 * is a no-op and we have no work to do:
745 		 */
746 		bch2_trans_begin(trans);
747 
748 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
749 			ret = 0;
750 		if (ret)
751 			break;
752 	}
753 	bch2_trans_iter_exit(trans, &iter);
754 
755 	return ret ?: trans_was_restarted(trans, restart_count);
756 }
757 
758 /*
759  * bch_btree_delete_range - delete everything within a given range
760  *
761  * Range is a half open interval - [start, end)
762  */
bch2_btree_delete_range(struct bch_fs * c,enum btree_id id,struct bpos start,struct bpos end,unsigned update_flags,u64 * journal_seq)763 int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
764 			    struct bpos start, struct bpos end,
765 			    unsigned update_flags,
766 			    u64 *journal_seq)
767 {
768 	int ret = bch2_trans_run(c,
769 			bch2_btree_delete_range_trans(trans, id, start, end,
770 						      update_flags, journal_seq));
771 	if (ret == -BCH_ERR_transaction_restart_nested)
772 		ret = 0;
773 	return ret;
774 }
775 
bch2_btree_bit_mod_iter(struct btree_trans * trans,struct btree_iter * iter,bool set)776 int bch2_btree_bit_mod_iter(struct btree_trans *trans, struct btree_iter *iter, bool set)
777 {
778 	struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
779 	int ret = PTR_ERR_OR_ZERO(k);
780 	if (ret)
781 		return ret;
782 
783 	bkey_init(&k->k);
784 	k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
785 	k->k.p = iter->pos;
786 	if (iter->flags & BTREE_ITER_is_extents)
787 		bch2_key_resize(&k->k, 1);
788 
789 	return bch2_trans_update(trans, iter, k, 0);
790 }
791 
bch2_btree_bit_mod(struct btree_trans * trans,enum btree_id btree,struct bpos pos,bool set)792 int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
793 		       struct bpos pos, bool set)
794 {
795 	struct btree_iter iter;
796 	bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_intent);
797 
798 	int ret = bch2_btree_iter_traverse(trans, &iter) ?:
799 		  bch2_btree_bit_mod_iter(trans, &iter, set);
800 	bch2_trans_iter_exit(trans, &iter);
801 	return ret;
802 }
803 
bch2_btree_bit_mod_buffered(struct btree_trans * trans,enum btree_id btree,struct bpos pos,bool set)804 int bch2_btree_bit_mod_buffered(struct btree_trans *trans, enum btree_id btree,
805 				struct bpos pos, bool set)
806 {
807 	struct bkey_i k;
808 
809 	bkey_init(&k.k);
810 	k.k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
811 	k.k.p = pos;
812 
813 	return bch2_trans_update_buffered(trans, btree, &k);
814 }
815 
__bch2_trans_log_str(struct btree_trans * trans,const char * str,unsigned len)816 static int __bch2_trans_log_str(struct btree_trans *trans, const char *str, unsigned len)
817 {
818 	unsigned u64s = DIV_ROUND_UP(len, sizeof(u64));
819 
820 	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(u64s));
821 	int ret = PTR_ERR_OR_ZERO(e);
822 	if (ret)
823 		return ret;
824 
825 	struct jset_entry_log *l = container_of(e, struct jset_entry_log, entry);
826 	journal_entry_init(e, BCH_JSET_ENTRY_log, 0, 1, u64s);
827 	memcpy_and_pad(l->d, u64s * sizeof(u64), str, len, 0);
828 	return 0;
829 }
830 
bch2_trans_log_str(struct btree_trans * trans,const char * str)831 int bch2_trans_log_str(struct btree_trans *trans, const char *str)
832 {
833 	return __bch2_trans_log_str(trans, str, strlen(str));
834 }
835 
bch2_trans_log_msg(struct btree_trans * trans,struct printbuf * buf)836 int bch2_trans_log_msg(struct btree_trans *trans, struct printbuf *buf)
837 {
838 	int ret = buf->allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
839 	if (ret)
840 		return ret;
841 
842 	return __bch2_trans_log_str(trans, buf->buf, buf->pos);
843 }
844 
bch2_trans_log_bkey(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bkey_i * k)845 int bch2_trans_log_bkey(struct btree_trans *trans, enum btree_id btree,
846 			unsigned level, struct bkey_i *k)
847 {
848 	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(k->k.u64s));
849 	int ret = PTR_ERR_OR_ZERO(e);
850 	if (ret)
851 		return ret;
852 
853 	journal_entry_init(e, BCH_JSET_ENTRY_log_bkey, btree, level, k->k.u64s);
854 	bkey_copy(e->start, k);
855 	return 0;
856 }
857 
858 __printf(3, 0)
859 static int
__bch2_fs_log_msg(struct bch_fs * c,unsigned commit_flags,const char * fmt,va_list args)860 __bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
861 		  va_list args)
862 {
863 	struct printbuf buf = PRINTBUF;
864 	prt_vprintf(&buf, fmt, args);
865 
866 	unsigned u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
867 
868 	int ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
869 	if (ret)
870 		goto err;
871 
872 	if (!test_bit(JOURNAL_running, &c->journal.flags)) {
873 		ret = darray_make_room(&c->journal.early_journal_entries, jset_u64s(u64s));
874 		if (ret)
875 			goto err;
876 
877 		struct jset_entry_log *l = (void *) &darray_top(c->journal.early_journal_entries);
878 		journal_entry_init(&l->entry, BCH_JSET_ENTRY_log, 0, 1, u64s);
879 		memcpy_and_pad(l->d, u64s * sizeof(u64), buf.buf, buf.pos, 0);
880 		c->journal.early_journal_entries.nr += jset_u64s(u64s);
881 	} else {
882 		ret = bch2_trans_commit_do(c, NULL, NULL, commit_flags,
883 			bch2_trans_log_msg(trans, &buf));
884 	}
885 err:
886 	printbuf_exit(&buf);
887 	return ret;
888 }
889 
890 __printf(2, 3)
bch2_fs_log_msg(struct bch_fs * c,const char * fmt,...)891 int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
892 {
893 	va_list args;
894 	int ret;
895 
896 	va_start(args, fmt);
897 	ret = __bch2_fs_log_msg(c, 0, fmt, args);
898 	va_end(args);
899 	return ret;
900 }
901 
902 /*
903  * Use for logging messages during recovery to enable reserved space and avoid
904  * blocking.
905  */
906 __printf(2, 3)
bch2_journal_log_msg(struct bch_fs * c,const char * fmt,...)907 int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
908 {
909 	va_list args;
910 	int ret;
911 
912 	va_start(args, fmt);
913 	ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
914 	va_end(args);
915 	return ret;
916 }
917