1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Code for managing the extent btree and dynamically updating the writeback
6 * dirty sector count.
7 */
8
9 #include "bcachefs.h"
10 #include "bkey_methods.h"
11 #include "btree_cache.h"
12 #include "btree_gc.h"
13 #include "btree_io.h"
14 #include "btree_iter.h"
15 #include "buckets.h"
16 #include "checksum.h"
17 #include "compress.h"
18 #include "debug.h"
19 #include "disk_groups.h"
20 #include "error.h"
21 #include "extents.h"
22 #include "inode.h"
23 #include "journal.h"
24 #include "rebalance.h"
25 #include "replicas.h"
26 #include "super.h"
27 #include "super-io.h"
28 #include "trace.h"
29 #include "util.h"
30
31 static const char * const bch2_extent_flags_strs[] = {
32 #define x(n, v) [BCH_EXTENT_FLAG_##n] = #n,
33 BCH_EXTENT_FLAGS()
34 #undef x
35 NULL,
36 };
37
38 static unsigned bch2_crc_field_size_max[] = {
39 [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX,
40 [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX,
41 [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX,
42 };
43
44 static void bch2_extent_crc_pack(union bch_extent_crc *,
45 struct bch_extent_crc_unpacked,
46 enum bch_extent_entry_type);
47
bch2_io_failures_to_text(struct printbuf * out,struct bch_fs * c,struct bch_io_failures * failed)48 void bch2_io_failures_to_text(struct printbuf *out,
49 struct bch_fs *c,
50 struct bch_io_failures *failed)
51 {
52 static const char * const error_types[] = {
53 "io", "checksum", "ec reconstruct", NULL
54 };
55
56 for (struct bch_dev_io_failures *f = failed->devs;
57 f < failed->devs + failed->nr;
58 f++) {
59 unsigned errflags =
60 ((!!f->failed_io) << 0) |
61 ((!!f->failed_csum_nr) << 1) |
62 ((!!f->failed_ec) << 2);
63
64 if (!errflags)
65 continue;
66
67 bch2_printbuf_make_room(out, 1024);
68 out->atomic++;
69 scoped_guard(rcu) {
70 struct bch_dev *ca = bch2_dev_rcu_noerror(c, f->dev);
71 if (ca)
72 prt_str(out, ca->name);
73 else
74 prt_printf(out, "(invalid device %u)", f->dev);
75 }
76 --out->atomic;
77
78 prt_char(out, ' ');
79
80 if (is_power_of_2(errflags)) {
81 prt_bitflags(out, error_types, errflags);
82 prt_str(out, " error");
83 } else {
84 prt_str(out, "errors: ");
85 prt_bitflags(out, error_types, errflags);
86 }
87 prt_newline(out);
88 }
89 }
90
bch2_dev_io_failures(struct bch_io_failures * f,unsigned dev)91 struct bch_dev_io_failures *bch2_dev_io_failures(struct bch_io_failures *f,
92 unsigned dev)
93 {
94 struct bch_dev_io_failures *i;
95
96 for (i = f->devs; i < f->devs + f->nr; i++)
97 if (i->dev == dev)
98 return i;
99
100 return NULL;
101 }
102
bch2_mark_io_failure(struct bch_io_failures * failed,struct extent_ptr_decoded * p,bool csum_error)103 void bch2_mark_io_failure(struct bch_io_failures *failed,
104 struct extent_ptr_decoded *p,
105 bool csum_error)
106 {
107 struct bch_dev_io_failures *f = bch2_dev_io_failures(failed, p->ptr.dev);
108
109 if (!f) {
110 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs));
111
112 f = &failed->devs[failed->nr++];
113 memset(f, 0, sizeof(*f));
114 f->dev = p->ptr.dev;
115 }
116
117 if (p->do_ec_reconstruct)
118 f->failed_ec = true;
119 else if (!csum_error)
120 f->failed_io = true;
121 else
122 f->failed_csum_nr++;
123 }
124
bch2_mark_btree_validate_failure(struct bch_io_failures * failed,unsigned dev)125 void bch2_mark_btree_validate_failure(struct bch_io_failures *failed,
126 unsigned dev)
127 {
128 struct bch_dev_io_failures *f = bch2_dev_io_failures(failed, dev);
129
130 if (!f) {
131 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs));
132
133 f = &failed->devs[failed->nr++];
134 memset(f, 0, sizeof(*f));
135 f->dev = dev;
136 }
137
138 f->failed_btree_validate = true;
139 }
140
dev_latency(struct bch_dev * ca)141 static inline u64 dev_latency(struct bch_dev *ca)
142 {
143 return ca ? atomic64_read(&ca->cur_latency[READ]) : S64_MAX;
144 }
145
dev_failed(struct bch_dev * ca)146 static inline int dev_failed(struct bch_dev *ca)
147 {
148 return !ca || ca->mi.state == BCH_MEMBER_STATE_failed;
149 }
150
151 /*
152 * returns true if p1 is better than p2:
153 */
ptr_better(struct bch_fs * c,const struct extent_ptr_decoded p1,u64 p1_latency,struct bch_dev * ca1,const struct extent_ptr_decoded p2,u64 p2_latency)154 static inline bool ptr_better(struct bch_fs *c,
155 const struct extent_ptr_decoded p1,
156 u64 p1_latency,
157 struct bch_dev *ca1,
158 const struct extent_ptr_decoded p2,
159 u64 p2_latency)
160 {
161 struct bch_dev *ca2 = bch2_dev_rcu(c, p2.ptr.dev);
162
163 int failed_delta = dev_failed(ca1) - dev_failed(ca2);
164 if (unlikely(failed_delta))
165 return failed_delta < 0;
166
167 if (static_branch_unlikely(&bch2_force_reconstruct_read))
168 return p1.do_ec_reconstruct > p2.do_ec_reconstruct;
169
170 if (unlikely(p1.do_ec_reconstruct || p2.do_ec_reconstruct))
171 return p1.do_ec_reconstruct < p2.do_ec_reconstruct;
172
173 int crc_retry_delta = (int) p1.crc_retry_nr - (int) p2.crc_retry_nr;
174 if (unlikely(crc_retry_delta))
175 return crc_retry_delta < 0;
176
177 /* Pick at random, biased in favor of the faster device: */
178
179 return bch2_get_random_u64_below(p1_latency + p2_latency) > p1_latency;
180 }
181
182 /*
183 * This picks a non-stale pointer, preferably from a device other than @avoid.
184 * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
185 * other devices, it will still pick a pointer from avoid.
186 */
bch2_bkey_pick_read_device(struct bch_fs * c,struct bkey_s_c k,struct bch_io_failures * failed,struct extent_ptr_decoded * pick,int dev)187 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k,
188 struct bch_io_failures *failed,
189 struct extent_ptr_decoded *pick,
190 int dev)
191 {
192 bool have_csum_errors = false, have_io_errors = false, have_missing_devs = false;
193 bool have_dirty_ptrs = false, have_pick = false;
194
195 if (k.k->type == KEY_TYPE_error)
196 return bch_err_throw(c, key_type_error);
197
198 rcu_read_lock();
199 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
200 const union bch_extent_entry *entry;
201 struct extent_ptr_decoded p;
202 u64 pick_latency;
203
204 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
205 have_dirty_ptrs |= !p.ptr.cached;
206
207 /*
208 * Unwritten extent: no need to actually read, treat it as a
209 * hole and return 0s:
210 */
211 if (p.ptr.unwritten) {
212 rcu_read_unlock();
213 return 0;
214 }
215
216 /* Are we being asked to read from a specific device? */
217 if (dev >= 0 && p.ptr.dev != dev)
218 continue;
219
220 struct bch_dev *ca = bch2_dev_rcu_noerror(c, p.ptr.dev);
221
222 if (unlikely(!ca && p.ptr.dev != BCH_SB_MEMBER_INVALID)) {
223 rcu_read_unlock();
224 int ret = bch2_dev_missing_bkey(c, k, p.ptr.dev);
225 if (ret)
226 return ret;
227 rcu_read_lock();
228 }
229
230 if (p.ptr.cached && (!ca || dev_ptr_stale_rcu(ca, &p.ptr)))
231 continue;
232
233 struct bch_dev_io_failures *f =
234 unlikely(failed) ? bch2_dev_io_failures(failed, p.ptr.dev) : NULL;
235 if (unlikely(f)) {
236 p.crc_retry_nr = f->failed_csum_nr;
237 p.has_ec &= ~f->failed_ec;
238
239 if (ca && ca->mi.state != BCH_MEMBER_STATE_failed) {
240 have_io_errors |= f->failed_io;
241 have_io_errors |= f->failed_btree_validate;
242 have_io_errors |= f->failed_ec;
243 }
244 have_csum_errors |= !!f->failed_csum_nr;
245
246 if (p.has_ec && (f->failed_io || f->failed_csum_nr))
247 p.do_ec_reconstruct = true;
248 else if (f->failed_io ||
249 f->failed_btree_validate ||
250 f->failed_csum_nr > c->opts.checksum_err_retry_nr)
251 continue;
252 }
253
254 have_missing_devs |= ca && !bch2_dev_is_online(ca);
255
256 if (!ca || !bch2_dev_is_online(ca)) {
257 if (!p.has_ec)
258 continue;
259 p.do_ec_reconstruct = true;
260 }
261
262 if (static_branch_unlikely(&bch2_force_reconstruct_read) && p.has_ec)
263 p.do_ec_reconstruct = true;
264
265 u64 p_latency = dev_latency(ca);
266 /*
267 * Square the latencies, to bias more in favor of the faster
268 * device - we never want to stop issuing reads to the slower
269 * device altogether, so that we can update our latency numbers:
270 */
271 p_latency *= p_latency;
272
273 if (!have_pick ||
274 ptr_better(c,
275 p, p_latency, ca,
276 *pick, pick_latency)) {
277 *pick = p;
278 pick_latency = p_latency;
279 have_pick = true;
280 }
281 }
282 rcu_read_unlock();
283
284 if (have_pick)
285 return 1;
286 if (!have_dirty_ptrs)
287 return 0;
288 if (have_missing_devs)
289 return bch_err_throw(c, no_device_to_read_from);
290 if (have_csum_errors)
291 return bch_err_throw(c, data_read_csum_err);
292 if (have_io_errors)
293 return bch_err_throw(c, data_read_io_err);
294
295 /*
296 * If we get here, we have pointers (bkey_ptrs_validate() ensures that),
297 * but they don't point to valid devices:
298 */
299 return bch_err_throw(c, no_devices_valid);
300 }
301
302 /* KEY_TYPE_btree_ptr: */
303
bch2_btree_ptr_validate(struct bch_fs * c,struct bkey_s_c k,struct bkey_validate_context from)304 int bch2_btree_ptr_validate(struct bch_fs *c, struct bkey_s_c k,
305 struct bkey_validate_context from)
306 {
307 int ret = 0;
308
309 bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX,
310 c, btree_ptr_val_too_big,
311 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX);
312
313 ret = bch2_bkey_ptrs_validate(c, k, from);
314 fsck_err:
315 return ret;
316 }
317
bch2_btree_ptr_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)318 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c,
319 struct bkey_s_c k)
320 {
321 bch2_bkey_ptrs_to_text(out, c, k);
322 }
323
bch2_btree_ptr_v2_validate(struct bch_fs * c,struct bkey_s_c k,struct bkey_validate_context from)324 int bch2_btree_ptr_v2_validate(struct bch_fs *c, struct bkey_s_c k,
325 struct bkey_validate_context from)
326 {
327 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
328 int ret = 0;
329
330 bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX,
331 c, btree_ptr_v2_val_too_big,
332 "value too big (%zu > %zu)",
333 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX);
334
335 bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p),
336 c, btree_ptr_v2_min_key_bad,
337 "min_key > key");
338
339 if ((from.flags & BCH_VALIDATE_write) &&
340 c->sb.version_min >= bcachefs_metadata_version_btree_ptr_sectors_written)
341 bkey_fsck_err_on(!bp.v->sectors_written,
342 c, btree_ptr_v2_written_0,
343 "sectors_written == 0");
344
345 ret = bch2_bkey_ptrs_validate(c, k, from);
346 fsck_err:
347 return ret;
348 }
349
bch2_btree_ptr_v2_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)350 void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c,
351 struct bkey_s_c k)
352 {
353 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
354
355 prt_printf(out, "seq %llx written %u min_key %s",
356 le64_to_cpu(bp.v->seq),
357 le16_to_cpu(bp.v->sectors_written),
358 BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : "");
359
360 bch2_bpos_to_text(out, bp.v->min_key);
361 prt_printf(out, " ");
362 bch2_bkey_ptrs_to_text(out, c, k);
363 }
364
bch2_btree_ptr_v2_compat(enum btree_id btree_id,unsigned version,unsigned big_endian,int write,struct bkey_s k)365 void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version,
366 unsigned big_endian, int write,
367 struct bkey_s k)
368 {
369 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k);
370
371 compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key);
372
373 if (version < bcachefs_metadata_version_inode_btree_change &&
374 btree_id_is_extents(btree_id) &&
375 !bkey_eq(bp.v->min_key, POS_MIN))
376 bp.v->min_key = write
377 ? bpos_nosnap_predecessor(bp.v->min_key)
378 : bpos_nosnap_successor(bp.v->min_key);
379 }
380
381 /* KEY_TYPE_extent: */
382
bch2_extent_merge(struct bch_fs * c,struct bkey_s l,struct bkey_s_c r)383 bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r)
384 {
385 struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l);
386 struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r);
387 union bch_extent_entry *en_l;
388 const union bch_extent_entry *en_r;
389 struct extent_ptr_decoded lp, rp;
390 bool use_right_ptr;
391
392 en_l = l_ptrs.start;
393 en_r = r_ptrs.start;
394 while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
395 if (extent_entry_type(en_l) != extent_entry_type(en_r))
396 return false;
397
398 en_l = extent_entry_next(en_l);
399 en_r = extent_entry_next(en_r);
400 }
401
402 if (en_l < l_ptrs.end || en_r < r_ptrs.end)
403 return false;
404
405 en_l = l_ptrs.start;
406 en_r = r_ptrs.start;
407 lp.crc = bch2_extent_crc_unpack(l.k, NULL);
408 rp.crc = bch2_extent_crc_unpack(r.k, NULL);
409
410 guard(rcu)();
411
412 while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) &&
413 __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) {
414 if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size !=
415 rp.ptr.offset + rp.crc.offset ||
416 lp.ptr.dev != rp.ptr.dev ||
417 lp.ptr.gen != rp.ptr.gen ||
418 lp.ptr.unwritten != rp.ptr.unwritten ||
419 lp.has_ec != rp.has_ec)
420 return false;
421
422 /* Extents may not straddle buckets: */
423 struct bch_dev *ca = bch2_dev_rcu(c, lp.ptr.dev);
424 bool same_bucket = ca && PTR_BUCKET_NR(ca, &lp.ptr) == PTR_BUCKET_NR(ca, &rp.ptr);
425
426 if (!same_bucket)
427 return false;
428
429 if (lp.has_ec != rp.has_ec ||
430 (lp.has_ec &&
431 (lp.ec.block != rp.ec.block ||
432 lp.ec.redundancy != rp.ec.redundancy ||
433 lp.ec.idx != rp.ec.idx)))
434 return false;
435
436 if (lp.crc.compression_type != rp.crc.compression_type ||
437 lp.crc.nonce != rp.crc.nonce)
438 return false;
439
440 if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <=
441 lp.crc.uncompressed_size) {
442 /* can use left extent's crc entry */
443 } else if (lp.crc.live_size <= rp.crc.offset) {
444 /* can use right extent's crc entry */
445 } else {
446 /* check if checksums can be merged: */
447 if (lp.crc.csum_type != rp.crc.csum_type ||
448 lp.crc.nonce != rp.crc.nonce ||
449 crc_is_compressed(lp.crc) ||
450 !bch2_checksum_mergeable(lp.crc.csum_type))
451 return false;
452
453 if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size ||
454 rp.crc.offset)
455 return false;
456
457 if (lp.crc.csum_type &&
458 lp.crc.uncompressed_size +
459 rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9))
460 return false;
461 }
462
463 en_l = extent_entry_next(en_l);
464 en_r = extent_entry_next(en_r);
465 }
466
467 en_l = l_ptrs.start;
468 en_r = r_ptrs.start;
469 while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
470 if (extent_entry_is_crc(en_l)) {
471 struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
472 struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
473
474 if (crc_l.uncompressed_size + crc_r.uncompressed_size >
475 bch2_crc_field_size_max[extent_entry_type(en_l)])
476 return false;
477 }
478
479 en_l = extent_entry_next(en_l);
480 en_r = extent_entry_next(en_r);
481 }
482
483 use_right_ptr = false;
484 en_l = l_ptrs.start;
485 en_r = r_ptrs.start;
486 while (en_l < l_ptrs.end) {
487 if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr &&
488 use_right_ptr)
489 en_l->ptr = en_r->ptr;
490
491 if (extent_entry_is_crc(en_l)) {
492 struct bch_extent_crc_unpacked crc_l =
493 bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
494 struct bch_extent_crc_unpacked crc_r =
495 bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
496
497 use_right_ptr = false;
498
499 if (crc_l.offset + crc_l.live_size + crc_r.live_size <=
500 crc_l.uncompressed_size) {
501 /* can use left extent's crc entry */
502 } else if (crc_l.live_size <= crc_r.offset) {
503 /* can use right extent's crc entry */
504 crc_r.offset -= crc_l.live_size;
505 bch2_extent_crc_pack(entry_to_crc(en_l), crc_r,
506 extent_entry_type(en_l));
507 use_right_ptr = true;
508 } else {
509 crc_l.csum = bch2_checksum_merge(crc_l.csum_type,
510 crc_l.csum,
511 crc_r.csum,
512 crc_r.uncompressed_size << 9);
513
514 crc_l.uncompressed_size += crc_r.uncompressed_size;
515 crc_l.compressed_size += crc_r.compressed_size;
516 bch2_extent_crc_pack(entry_to_crc(en_l), crc_l,
517 extent_entry_type(en_l));
518 }
519 }
520
521 en_l = extent_entry_next(en_l);
522 en_r = extent_entry_next(en_r);
523 }
524
525 bch2_key_resize(l.k, l.k->size + r.k->size);
526 return true;
527 }
528
529 /* KEY_TYPE_reservation: */
530
bch2_reservation_validate(struct bch_fs * c,struct bkey_s_c k,struct bkey_validate_context from)531 int bch2_reservation_validate(struct bch_fs *c, struct bkey_s_c k,
532 struct bkey_validate_context from)
533 {
534 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
535 int ret = 0;
536
537 bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX,
538 c, reservation_key_nr_replicas_invalid,
539 "invalid nr_replicas (%u)", r.v->nr_replicas);
540 fsck_err:
541 return ret;
542 }
543
bch2_reservation_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)544 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c,
545 struct bkey_s_c k)
546 {
547 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
548
549 prt_printf(out, "generation %u replicas %u",
550 le32_to_cpu(r.v->generation),
551 r.v->nr_replicas);
552 }
553
bch2_reservation_merge(struct bch_fs * c,struct bkey_s _l,struct bkey_s_c _r)554 bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r)
555 {
556 struct bkey_s_reservation l = bkey_s_to_reservation(_l);
557 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r);
558
559 if (l.v->generation != r.v->generation ||
560 l.v->nr_replicas != r.v->nr_replicas)
561 return false;
562
563 bch2_key_resize(l.k, l.k->size + r.k->size);
564 return true;
565 }
566
567 /* Extent checksum entries: */
568
569 /* returns true if not equal */
bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,struct bch_extent_crc_unpacked r)570 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
571 struct bch_extent_crc_unpacked r)
572 {
573 return (l.csum_type != r.csum_type ||
574 l.compression_type != r.compression_type ||
575 l.compressed_size != r.compressed_size ||
576 l.uncompressed_size != r.uncompressed_size ||
577 l.offset != r.offset ||
578 l.live_size != r.live_size ||
579 l.nonce != r.nonce ||
580 bch2_crc_cmp(l.csum, r.csum));
581 }
582
can_narrow_crc(struct bch_extent_crc_unpacked u,struct bch_extent_crc_unpacked n)583 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
584 struct bch_extent_crc_unpacked n)
585 {
586 return !crc_is_compressed(u) &&
587 u.csum_type &&
588 u.uncompressed_size > u.live_size &&
589 bch2_csum_type_is_encryption(u.csum_type) ==
590 bch2_csum_type_is_encryption(n.csum_type);
591 }
592
bch2_can_narrow_extent_crcs(struct bkey_s_c k,struct bch_extent_crc_unpacked n)593 bool bch2_can_narrow_extent_crcs(struct bkey_s_c k,
594 struct bch_extent_crc_unpacked n)
595 {
596 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
597 struct bch_extent_crc_unpacked crc;
598 const union bch_extent_entry *i;
599
600 if (!n.csum_type)
601 return false;
602
603 bkey_for_each_crc(k.k, ptrs, crc, i)
604 if (can_narrow_crc(crc, n))
605 return true;
606
607 return false;
608 }
609
610 /*
611 * We're writing another replica for this extent, so while we've got the data in
612 * memory we'll be computing a new checksum for the currently live data.
613 *
614 * If there are other replicas we aren't moving, and they are checksummed but
615 * not compressed, we can modify them to point to only the data that is
616 * currently live (so that readers won't have to bounce) while we've got the
617 * checksum we need:
618 */
bch2_bkey_narrow_crcs(struct bkey_i * k,struct bch_extent_crc_unpacked n)619 bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n)
620 {
621 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
622 struct bch_extent_crc_unpacked u;
623 struct extent_ptr_decoded p;
624 union bch_extent_entry *i;
625 bool ret = false;
626
627 /* Find a checksum entry that covers only live data: */
628 if (!n.csum_type) {
629 bkey_for_each_crc(&k->k, ptrs, u, i)
630 if (!crc_is_compressed(u) &&
631 u.csum_type &&
632 u.live_size == u.uncompressed_size) {
633 n = u;
634 goto found;
635 }
636 return false;
637 }
638 found:
639 BUG_ON(crc_is_compressed(n));
640 BUG_ON(n.offset);
641 BUG_ON(n.live_size != k->k.size);
642
643 restart_narrow_pointers:
644 ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
645
646 bkey_for_each_ptr_decode(&k->k, ptrs, p, i)
647 if (can_narrow_crc(p.crc, n)) {
648 bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr);
649 p.ptr.offset += p.crc.offset;
650 p.crc = n;
651 bch2_extent_ptr_decoded_append(k, &p);
652 ret = true;
653 goto restart_narrow_pointers;
654 }
655
656 return ret;
657 }
658
bch2_extent_crc_pack(union bch_extent_crc * dst,struct bch_extent_crc_unpacked src,enum bch_extent_entry_type type)659 static void bch2_extent_crc_pack(union bch_extent_crc *dst,
660 struct bch_extent_crc_unpacked src,
661 enum bch_extent_entry_type type)
662 {
663 #define common_fields(_src) \
664 .type = BIT(type), \
665 .csum_type = _src.csum_type, \
666 .compression_type = _src.compression_type, \
667 ._compressed_size = _src.compressed_size - 1, \
668 ._uncompressed_size = _src.uncompressed_size - 1, \
669 .offset = _src.offset
670
671 switch (type) {
672 case BCH_EXTENT_ENTRY_crc32:
673 dst->crc32 = (struct bch_extent_crc32) {
674 common_fields(src),
675 .csum = (u32 __force) *((__le32 *) &src.csum.lo),
676 };
677 break;
678 case BCH_EXTENT_ENTRY_crc64:
679 dst->crc64 = (struct bch_extent_crc64) {
680 common_fields(src),
681 .nonce = src.nonce,
682 .csum_lo = (u64 __force) src.csum.lo,
683 .csum_hi = (u64 __force) *((__le16 *) &src.csum.hi),
684 };
685 break;
686 case BCH_EXTENT_ENTRY_crc128:
687 dst->crc128 = (struct bch_extent_crc128) {
688 common_fields(src),
689 .nonce = src.nonce,
690 .csum = src.csum,
691 };
692 break;
693 default:
694 BUG();
695 }
696 #undef set_common_fields
697 }
698
bch2_extent_crc_append(struct bkey_i * k,struct bch_extent_crc_unpacked new)699 void bch2_extent_crc_append(struct bkey_i *k,
700 struct bch_extent_crc_unpacked new)
701 {
702 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
703 union bch_extent_crc *crc = (void *) ptrs.end;
704 enum bch_extent_entry_type type;
705
706 if (bch_crc_bytes[new.csum_type] <= 4 &&
707 new.uncompressed_size <= CRC32_SIZE_MAX &&
708 new.nonce <= CRC32_NONCE_MAX)
709 type = BCH_EXTENT_ENTRY_crc32;
710 else if (bch_crc_bytes[new.csum_type] <= 10 &&
711 new.uncompressed_size <= CRC64_SIZE_MAX &&
712 new.nonce <= CRC64_NONCE_MAX)
713 type = BCH_EXTENT_ENTRY_crc64;
714 else if (bch_crc_bytes[new.csum_type] <= 16 &&
715 new.uncompressed_size <= CRC128_SIZE_MAX &&
716 new.nonce <= CRC128_NONCE_MAX)
717 type = BCH_EXTENT_ENTRY_crc128;
718 else
719 BUG();
720
721 bch2_extent_crc_pack(crc, new, type);
722
723 k->k.u64s += extent_entry_u64s(ptrs.end);
724
725 EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX);
726 }
727
728 /* Generic code for keys with pointers: */
729
bch2_bkey_nr_ptrs(struct bkey_s_c k)730 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k)
731 {
732 return bch2_bkey_devs(k).nr;
733 }
734
bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)735 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)
736 {
737 return k.k->type == KEY_TYPE_reservation
738 ? bkey_s_c_to_reservation(k).v->nr_replicas
739 : bch2_bkey_dirty_devs(k).nr;
740 }
741
bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k)742 unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k)
743 {
744 unsigned ret = 0;
745
746 if (k.k->type == KEY_TYPE_reservation) {
747 ret = bkey_s_c_to_reservation(k).v->nr_replicas;
748 } else {
749 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
750 const union bch_extent_entry *entry;
751 struct extent_ptr_decoded p;
752
753 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
754 ret += !p.ptr.cached && !crc_is_compressed(p.crc);
755 }
756
757 return ret;
758 }
759
bch2_bkey_sectors_compressed(struct bkey_s_c k)760 unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k)
761 {
762 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
763 const union bch_extent_entry *entry;
764 struct extent_ptr_decoded p;
765 unsigned ret = 0;
766
767 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
768 if (!p.ptr.cached && crc_is_compressed(p.crc))
769 ret += p.crc.compressed_size;
770
771 return ret;
772 }
773
bch2_bkey_is_incompressible(struct bkey_s_c k)774 bool bch2_bkey_is_incompressible(struct bkey_s_c k)
775 {
776 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
777 const union bch_extent_entry *entry;
778 struct bch_extent_crc_unpacked crc;
779
780 bkey_for_each_crc(k.k, ptrs, crc, entry)
781 if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible)
782 return true;
783 return false;
784 }
785
bch2_bkey_replicas(struct bch_fs * c,struct bkey_s_c k)786 unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k)
787 {
788 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
789 const union bch_extent_entry *entry;
790 struct extent_ptr_decoded p = { 0 };
791 unsigned replicas = 0;
792
793 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
794 if (p.ptr.cached)
795 continue;
796
797 if (p.has_ec)
798 replicas += p.ec.redundancy;
799
800 replicas++;
801
802 }
803
804 return replicas;
805 }
806
__extent_ptr_durability(struct bch_dev * ca,struct extent_ptr_decoded * p)807 static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p)
808 {
809 if (p->ptr.cached)
810 return 0;
811
812 return p->has_ec
813 ? p->ec.redundancy + 1
814 : ca->mi.durability;
815 }
816
bch2_extent_ptr_desired_durability(struct bch_fs * c,struct extent_ptr_decoded * p)817 unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
818 {
819 struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev);
820
821 return ca ? __extent_ptr_durability(ca, p) : 0;
822 }
823
bch2_extent_ptr_durability(struct bch_fs * c,struct extent_ptr_decoded * p)824 unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
825 {
826 struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev);
827
828 if (!ca || ca->mi.state == BCH_MEMBER_STATE_failed)
829 return 0;
830
831 return __extent_ptr_durability(ca, p);
832 }
833
bch2_bkey_durability(struct bch_fs * c,struct bkey_s_c k)834 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k)
835 {
836 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
837 const union bch_extent_entry *entry;
838 struct extent_ptr_decoded p;
839 unsigned durability = 0;
840
841 guard(rcu)();
842 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
843 durability += bch2_extent_ptr_durability(c, &p);
844 return durability;
845 }
846
bch2_bkey_durability_safe(struct bch_fs * c,struct bkey_s_c k)847 static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k)
848 {
849 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
850 const union bch_extent_entry *entry;
851 struct extent_ptr_decoded p;
852 unsigned durability = 0;
853
854 guard(rcu)();
855 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
856 if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev])
857 durability += bch2_extent_ptr_durability(c, &p);
858 return durability;
859 }
860
bch2_bkey_extent_entry_drop(struct bkey_i * k,union bch_extent_entry * entry)861 void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry)
862 {
863 union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k));
864 union bch_extent_entry *next = extent_entry_next(entry);
865
866 memmove_u64s(entry, next, (u64 *) end - (u64 *) next);
867 k->k.u64s -= extent_entry_u64s(entry);
868 }
869
bch2_extent_ptr_decoded_append(struct bkey_i * k,struct extent_ptr_decoded * p)870 void bch2_extent_ptr_decoded_append(struct bkey_i *k,
871 struct extent_ptr_decoded *p)
872 {
873 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
874 struct bch_extent_crc_unpacked crc =
875 bch2_extent_crc_unpack(&k->k, NULL);
876 union bch_extent_entry *pos;
877
878 if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
879 pos = ptrs.start;
880 goto found;
881 }
882
883 bkey_for_each_crc(&k->k, ptrs, crc, pos)
884 if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
885 pos = extent_entry_next(pos);
886 goto found;
887 }
888
889 bch2_extent_crc_append(k, p->crc);
890 pos = bkey_val_end(bkey_i_to_s(k));
891 found:
892 p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
893 __extent_entry_insert(k, pos, to_entry(&p->ptr));
894
895 if (p->has_ec) {
896 p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr;
897 __extent_entry_insert(k, pos, to_entry(&p->ec));
898 }
899 }
900
extent_entry_prev(struct bkey_ptrs ptrs,union bch_extent_entry * entry)901 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs,
902 union bch_extent_entry *entry)
903 {
904 union bch_extent_entry *i = ptrs.start;
905
906 if (i == entry)
907 return NULL;
908
909 while (extent_entry_next(i) != entry)
910 i = extent_entry_next(i);
911 return i;
912 }
913
914 /*
915 * Returns pointer to the next entry after the one being dropped:
916 */
bch2_bkey_drop_ptr_noerror(struct bkey_s k,struct bch_extent_ptr * ptr)917 void bch2_bkey_drop_ptr_noerror(struct bkey_s k, struct bch_extent_ptr *ptr)
918 {
919 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
920 union bch_extent_entry *entry = to_entry(ptr), *next;
921 bool drop_crc = true;
922
923 if (k.k->type == KEY_TYPE_stripe) {
924 ptr->dev = BCH_SB_MEMBER_INVALID;
925 return;
926 }
927
928 EBUG_ON(ptr < &ptrs.start->ptr ||
929 ptr >= &ptrs.end->ptr);
930 EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
931
932 for (next = extent_entry_next(entry);
933 next != ptrs.end;
934 next = extent_entry_next(next)) {
935 if (extent_entry_is_crc(next)) {
936 break;
937 } else if (extent_entry_is_ptr(next)) {
938 drop_crc = false;
939 break;
940 }
941 }
942
943 extent_entry_drop(k, entry);
944
945 while ((entry = extent_entry_prev(ptrs, entry))) {
946 if (extent_entry_is_ptr(entry))
947 break;
948
949 if ((extent_entry_is_crc(entry) && drop_crc) ||
950 extent_entry_is_stripe_ptr(entry))
951 extent_entry_drop(k, entry);
952 }
953 }
954
bch2_bkey_drop_ptr(struct bkey_s k,struct bch_extent_ptr * ptr)955 void bch2_bkey_drop_ptr(struct bkey_s k, struct bch_extent_ptr *ptr)
956 {
957 if (k.k->type != KEY_TYPE_stripe) {
958 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k.s_c);
959 const union bch_extent_entry *entry;
960 struct extent_ptr_decoded p;
961
962 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
963 if (p.ptr.dev == ptr->dev && p.has_ec) {
964 ptr->dev = BCH_SB_MEMBER_INVALID;
965 return;
966 }
967 }
968
969 bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr;
970
971 bch2_bkey_drop_ptr_noerror(k, ptr);
972
973 /*
974 * If we deleted all the dirty pointers and there's still cached
975 * pointers, we could set the cached pointers to dirty if they're not
976 * stale - but to do that correctly we'd need to grab an open_bucket
977 * reference so that we don't race with bucket reuse:
978 */
979 if (have_dirty &&
980 !bch2_bkey_dirty_devs(k.s_c).nr) {
981 k.k->type = KEY_TYPE_error;
982 set_bkey_val_u64s(k.k, 0);
983 } else if (!bch2_bkey_nr_ptrs(k.s_c)) {
984 k.k->type = KEY_TYPE_deleted;
985 set_bkey_val_u64s(k.k, 0);
986 }
987 }
988
bch2_bkey_drop_device(struct bkey_s k,unsigned dev)989 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev)
990 {
991 bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev);
992 }
993
bch2_bkey_drop_device_noerror(struct bkey_s k,unsigned dev)994 void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev)
995 {
996 bch2_bkey_drop_ptrs_noerror(k, ptr, ptr->dev == dev);
997 }
998
bch2_bkey_has_device_c(struct bkey_s_c k,unsigned dev)999 const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev)
1000 {
1001 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1002
1003 bkey_for_each_ptr(ptrs, ptr)
1004 if (ptr->dev == dev)
1005 return ptr;
1006
1007 return NULL;
1008 }
1009
bch2_bkey_has_target(struct bch_fs * c,struct bkey_s_c k,unsigned target)1010 bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target)
1011 {
1012 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1013 struct bch_dev *ca;
1014
1015 guard(rcu)();
1016 bkey_for_each_ptr(ptrs, ptr)
1017 if (bch2_dev_in_target(c, ptr->dev, target) &&
1018 (ca = bch2_dev_rcu(c, ptr->dev)) &&
1019 (!ptr->cached ||
1020 !dev_ptr_stale_rcu(ca, ptr)))
1021 return true;
1022
1023 return false;
1024 }
1025
bch2_bkey_matches_ptr(struct bch_fs * c,struct bkey_s_c k,struct bch_extent_ptr m,u64 offset)1026 bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k,
1027 struct bch_extent_ptr m, u64 offset)
1028 {
1029 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1030 const union bch_extent_entry *entry;
1031 struct extent_ptr_decoded p;
1032
1033 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
1034 if (p.ptr.dev == m.dev &&
1035 p.ptr.gen == m.gen &&
1036 (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) ==
1037 (s64) m.offset - offset)
1038 return true;
1039
1040 return false;
1041 }
1042
1043 /*
1044 * Returns true if two extents refer to the same data:
1045 */
bch2_extents_match(struct bkey_s_c k1,struct bkey_s_c k2)1046 bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2)
1047 {
1048 if (k1.k->type != k2.k->type)
1049 return false;
1050
1051 if (bkey_extent_is_direct_data(k1.k)) {
1052 struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1);
1053 struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2);
1054 const union bch_extent_entry *entry1, *entry2;
1055 struct extent_ptr_decoded p1, p2;
1056
1057 if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2))
1058 return false;
1059
1060 bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1)
1061 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
1062 if (p1.ptr.dev == p2.ptr.dev &&
1063 p1.ptr.gen == p2.ptr.gen &&
1064
1065 /*
1066 * This checks that the two pointers point
1067 * to the same region on disk - adjusting
1068 * for the difference in where the extents
1069 * start, since one may have been trimmed:
1070 */
1071 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
1072 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k) &&
1073
1074 /*
1075 * This additionally checks that the
1076 * extents overlap on disk, since the
1077 * previous check may trigger spuriously
1078 * when one extent is immediately partially
1079 * overwritten with another extent (so that
1080 * on disk they are adjacent) and
1081 * compression is in use:
1082 */
1083 ((p1.ptr.offset >= p2.ptr.offset &&
1084 p1.ptr.offset < p2.ptr.offset + p2.crc.compressed_size) ||
1085 (p2.ptr.offset >= p1.ptr.offset &&
1086 p2.ptr.offset < p1.ptr.offset + p1.crc.compressed_size)))
1087 return true;
1088
1089 return false;
1090 } else {
1091 /* KEY_TYPE_deleted, etc. */
1092 return true;
1093 }
1094 }
1095
1096 struct bch_extent_ptr *
bch2_extent_has_ptr(struct bkey_s_c k1,struct extent_ptr_decoded p1,struct bkey_s k2)1097 bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2)
1098 {
1099 struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2);
1100 union bch_extent_entry *entry2;
1101 struct extent_ptr_decoded p2;
1102
1103 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
1104 if (p1.ptr.dev == p2.ptr.dev &&
1105 p1.ptr.gen == p2.ptr.gen &&
1106 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
1107 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k))
1108 return &entry2->ptr;
1109
1110 return NULL;
1111 }
1112
want_cached_ptr(struct bch_fs * c,struct bch_io_opts * opts,struct bch_extent_ptr * ptr)1113 static bool want_cached_ptr(struct bch_fs *c, struct bch_io_opts *opts,
1114 struct bch_extent_ptr *ptr)
1115 {
1116 unsigned target = opts->promote_target ?: opts->foreground_target;
1117
1118 if (target && !bch2_dev_in_target(c, ptr->dev, target))
1119 return false;
1120
1121 struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev);
1122
1123 return ca && bch2_dev_is_healthy(ca) && !dev_ptr_stale_rcu(ca, ptr);
1124 }
1125
bch2_extent_ptr_set_cached(struct bch_fs * c,struct bch_io_opts * opts,struct bkey_s k,struct bch_extent_ptr * ptr)1126 void bch2_extent_ptr_set_cached(struct bch_fs *c,
1127 struct bch_io_opts *opts,
1128 struct bkey_s k,
1129 struct bch_extent_ptr *ptr)
1130 {
1131 struct bkey_ptrs ptrs;
1132 union bch_extent_entry *entry;
1133 struct extent_ptr_decoded p;
1134 bool have_cached_ptr;
1135 unsigned drop_dev = ptr->dev;
1136
1137 guard(rcu)();
1138 restart_drop_ptrs:
1139 ptrs = bch2_bkey_ptrs(k);
1140 have_cached_ptr = false;
1141
1142 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
1143 /*
1144 * Check if it's erasure coded - stripes can't contain cached
1145 * data. Possibly something we can fix in the future?
1146 */
1147 if (&entry->ptr == ptr && p.has_ec)
1148 goto drop;
1149
1150 if (p.ptr.cached) {
1151 if (have_cached_ptr || !want_cached_ptr(c, opts, &p.ptr)) {
1152 bch2_bkey_drop_ptr_noerror(k, &entry->ptr);
1153 ptr = NULL;
1154 goto restart_drop_ptrs;
1155 }
1156
1157 have_cached_ptr = true;
1158 }
1159 }
1160
1161 if (!ptr)
1162 bkey_for_each_ptr(ptrs, ptr2)
1163 if (ptr2->dev == drop_dev)
1164 ptr = ptr2;
1165
1166 if (have_cached_ptr || !want_cached_ptr(c, opts, ptr))
1167 goto drop;
1168
1169 ptr->cached = true;
1170 return;
1171 drop:
1172 bch2_bkey_drop_ptr_noerror(k, ptr);
1173 }
1174
1175 /*
1176 * bch2_extent_normalize - clean up an extent, dropping stale pointers etc.
1177 *
1178 * Returns true if @k should be dropped entirely
1179 *
1180 * For existing keys, only called when btree nodes are being rewritten, not when
1181 * they're merely being compacted/resorted in memory.
1182 */
bch2_extent_normalize(struct bch_fs * c,struct bkey_s k)1183 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
1184 {
1185 struct bch_dev *ca;
1186
1187 guard(rcu)();
1188 bch2_bkey_drop_ptrs(k, ptr,
1189 ptr->cached &&
1190 (!(ca = bch2_dev_rcu(c, ptr->dev)) ||
1191 dev_ptr_stale_rcu(ca, ptr) > 0));
1192
1193 return bkey_deleted(k.k);
1194 }
1195
1196 /*
1197 * bch2_extent_normalize_by_opts - clean up an extent, dropping stale pointers etc.
1198 *
1199 * Like bch2_extent_normalize(), but also only keeps a single cached pointer on
1200 * the promote target.
1201 */
bch2_extent_normalize_by_opts(struct bch_fs * c,struct bch_io_opts * opts,struct bkey_s k)1202 bool bch2_extent_normalize_by_opts(struct bch_fs *c,
1203 struct bch_io_opts *opts,
1204 struct bkey_s k)
1205 {
1206 struct bkey_ptrs ptrs;
1207 bool have_cached_ptr;
1208
1209 guard(rcu)();
1210 restart_drop_ptrs:
1211 ptrs = bch2_bkey_ptrs(k);
1212 have_cached_ptr = false;
1213
1214 bkey_for_each_ptr(ptrs, ptr)
1215 if (ptr->cached) {
1216 if (have_cached_ptr || !want_cached_ptr(c, opts, ptr)) {
1217 bch2_bkey_drop_ptr(k, ptr);
1218 goto restart_drop_ptrs;
1219 }
1220 have_cached_ptr = true;
1221 }
1222
1223 return bkey_deleted(k.k);
1224 }
1225
bch2_extent_ptr_to_text(struct printbuf * out,struct bch_fs * c,const struct bch_extent_ptr * ptr)1226 void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr)
1227 {
1228 out->atomic++;
1229 guard(rcu)();
1230 struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev);
1231 if (!ca) {
1232 prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev,
1233 (u64) ptr->offset, ptr->gen,
1234 ptr->cached ? " cached" : "");
1235 } else {
1236 u32 offset;
1237 u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset);
1238
1239 prt_printf(out, "ptr: %u:%llu:%u gen %u",
1240 ptr->dev, b, offset, ptr->gen);
1241 if (ca->mi.durability != 1)
1242 prt_printf(out, " d=%u", ca->mi.durability);
1243 if (ptr->cached)
1244 prt_str(out, " cached");
1245 if (ptr->unwritten)
1246 prt_str(out, " unwritten");
1247 int stale = dev_ptr_stale_rcu(ca, ptr);
1248 if (stale > 0)
1249 prt_printf(out, " stale");
1250 else if (stale)
1251 prt_printf(out, " invalid");
1252 }
1253 --out->atomic;
1254 }
1255
bch2_extent_crc_unpacked_to_text(struct printbuf * out,struct bch_extent_crc_unpacked * crc)1256 void bch2_extent_crc_unpacked_to_text(struct printbuf *out, struct bch_extent_crc_unpacked *crc)
1257 {
1258 prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ",
1259 crc->compressed_size,
1260 crc->uncompressed_size,
1261 crc->offset, crc->nonce);
1262 bch2_prt_csum_type(out, crc->csum_type);
1263 prt_printf(out, " %0llx:%0llx ", crc->csum.hi, crc->csum.lo);
1264 prt_str(out, " compress ");
1265 bch2_prt_compression_type(out, crc->compression_type);
1266 }
1267
bch2_extent_rebalance_to_text(struct printbuf * out,struct bch_fs * c,const struct bch_extent_rebalance * r)1268 static void bch2_extent_rebalance_to_text(struct printbuf *out, struct bch_fs *c,
1269 const struct bch_extent_rebalance *r)
1270 {
1271 prt_str(out, "rebalance:");
1272
1273 prt_printf(out, " replicas=%u", r->data_replicas);
1274 if (r->data_replicas_from_inode)
1275 prt_str(out, " (inode)");
1276
1277 prt_str(out, " checksum=");
1278 bch2_prt_csum_opt(out, r->data_checksum);
1279 if (r->data_checksum_from_inode)
1280 prt_str(out, " (inode)");
1281
1282 if (r->background_compression || r->background_compression_from_inode) {
1283 prt_str(out, " background_compression=");
1284 bch2_compression_opt_to_text(out, r->background_compression);
1285
1286 if (r->background_compression_from_inode)
1287 prt_str(out, " (inode)");
1288 }
1289
1290 if (r->background_target || r->background_target_from_inode) {
1291 prt_str(out, " background_target=");
1292 if (c)
1293 bch2_target_to_text(out, c, r->background_target);
1294 else
1295 prt_printf(out, "%u", r->background_target);
1296
1297 if (r->background_target_from_inode)
1298 prt_str(out, " (inode)");
1299 }
1300
1301 if (r->promote_target || r->promote_target_from_inode) {
1302 prt_str(out, " promote_target=");
1303 if (c)
1304 bch2_target_to_text(out, c, r->promote_target);
1305 else
1306 prt_printf(out, "%u", r->promote_target);
1307
1308 if (r->promote_target_from_inode)
1309 prt_str(out, " (inode)");
1310 }
1311
1312 if (r->erasure_code || r->erasure_code_from_inode) {
1313 prt_printf(out, " ec=%u", r->erasure_code);
1314 if (r->erasure_code_from_inode)
1315 prt_str(out, " (inode)");
1316 }
1317 }
1318
bch2_bkey_ptrs_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)1319 void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c,
1320 struct bkey_s_c k)
1321 {
1322 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1323 const union bch_extent_entry *entry;
1324 bool first = true;
1325
1326 if (c)
1327 prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k));
1328
1329 bkey_extent_entry_for_each(ptrs, entry) {
1330 if (!first)
1331 prt_printf(out, " ");
1332
1333 switch (__extent_entry_type(entry)) {
1334 case BCH_EXTENT_ENTRY_ptr:
1335 bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry));
1336 break;
1337
1338 case BCH_EXTENT_ENTRY_crc32:
1339 case BCH_EXTENT_ENTRY_crc64:
1340 case BCH_EXTENT_ENTRY_crc128: {
1341 struct bch_extent_crc_unpacked crc =
1342 bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
1343
1344 bch2_extent_crc_unpacked_to_text(out, &crc);
1345 break;
1346 }
1347 case BCH_EXTENT_ENTRY_stripe_ptr: {
1348 const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr;
1349
1350 prt_printf(out, "ec: idx %llu block %u",
1351 (u64) ec->idx, ec->block);
1352 break;
1353 }
1354 case BCH_EXTENT_ENTRY_rebalance:
1355 bch2_extent_rebalance_to_text(out, c, &entry->rebalance);
1356 break;
1357
1358 case BCH_EXTENT_ENTRY_flags:
1359 prt_bitflags(out, bch2_extent_flags_strs, entry->flags.flags);
1360 break;
1361
1362 default:
1363 prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry));
1364 return;
1365 }
1366
1367 first = false;
1368 }
1369 }
1370
extent_ptr_validate(struct bch_fs * c,struct bkey_s_c k,struct bkey_validate_context from,const struct bch_extent_ptr * ptr,unsigned size_ondisk,bool metadata)1371 static int extent_ptr_validate(struct bch_fs *c,
1372 struct bkey_s_c k,
1373 struct bkey_validate_context from,
1374 const struct bch_extent_ptr *ptr,
1375 unsigned size_ondisk,
1376 bool metadata)
1377 {
1378 int ret = 0;
1379
1380 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1381 bkey_for_each_ptr(ptrs, ptr2)
1382 bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev,
1383 c, ptr_to_duplicate_device,
1384 "multiple pointers to same device (%u)", ptr->dev);
1385
1386 /* bad pointers are repaired by check_fix_ptrs(): */
1387 rcu_read_lock();
1388 struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev);
1389 if (!ca) {
1390 rcu_read_unlock();
1391 return 0;
1392 }
1393 u32 bucket_offset;
1394 u64 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset);
1395 unsigned first_bucket = ca->mi.first_bucket;
1396 u64 nbuckets = ca->mi.nbuckets;
1397 unsigned bucket_size = ca->mi.bucket_size;
1398 rcu_read_unlock();
1399
1400 bkey_fsck_err_on(bucket >= nbuckets,
1401 c, ptr_after_last_bucket,
1402 "pointer past last bucket (%llu > %llu)", bucket, nbuckets);
1403 bkey_fsck_err_on(bucket < first_bucket,
1404 c, ptr_before_first_bucket,
1405 "pointer before first bucket (%llu < %u)", bucket, first_bucket);
1406 bkey_fsck_err_on(bucket_offset + size_ondisk > bucket_size,
1407 c, ptr_spans_multiple_buckets,
1408 "pointer spans multiple buckets (%u + %u > %u)",
1409 bucket_offset, size_ondisk, bucket_size);
1410 fsck_err:
1411 return ret;
1412 }
1413
bch2_bkey_ptrs_validate(struct bch_fs * c,struct bkey_s_c k,struct bkey_validate_context from)1414 int bch2_bkey_ptrs_validate(struct bch_fs *c, struct bkey_s_c k,
1415 struct bkey_validate_context from)
1416 {
1417 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1418 const union bch_extent_entry *entry;
1419 struct bch_extent_crc_unpacked crc;
1420 unsigned size_ondisk = k.k->size;
1421 unsigned nonce = UINT_MAX;
1422 unsigned nr_ptrs = 0;
1423 bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false;
1424 int ret = 0;
1425
1426 if (bkey_is_btree_ptr(k.k))
1427 size_ondisk = btree_sectors(c);
1428
1429 bkey_extent_entry_for_each(ptrs, entry) {
1430 bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX,
1431 c, extent_ptrs_invalid_entry,
1432 "invalid extent entry type (got %u, max %u)",
1433 __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX);
1434
1435 bkey_fsck_err_on(bkey_is_btree_ptr(k.k) &&
1436 !extent_entry_is_ptr(entry),
1437 c, btree_ptr_has_non_ptr,
1438 "has non ptr field");
1439
1440 switch (extent_entry_type(entry)) {
1441 case BCH_EXTENT_ENTRY_ptr:
1442 ret = extent_ptr_validate(c, k, from, &entry->ptr, size_ondisk, false);
1443 if (ret)
1444 return ret;
1445
1446 bkey_fsck_err_on(entry->ptr.cached && have_ec,
1447 c, ptr_cached_and_erasure_coded,
1448 "cached, erasure coded ptr");
1449
1450 if (!entry->ptr.unwritten)
1451 have_written = true;
1452 else
1453 have_unwritten = true;
1454
1455 have_ec = false;
1456 crc_since_last_ptr = false;
1457 nr_ptrs++;
1458 break;
1459 case BCH_EXTENT_ENTRY_crc32:
1460 case BCH_EXTENT_ENTRY_crc64:
1461 case BCH_EXTENT_ENTRY_crc128:
1462 crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
1463
1464 bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type),
1465 c, ptr_crc_csum_type_unknown,
1466 "invalid checksum type");
1467 bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR,
1468 c, ptr_crc_compression_type_unknown,
1469 "invalid compression type");
1470
1471 bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size,
1472 c, ptr_crc_uncompressed_size_too_small,
1473 "checksum offset + key size > uncompressed size");
1474 bkey_fsck_err_on(crc_is_encoded(crc) &&
1475 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) &&
1476 (from.flags & (BCH_VALIDATE_write|BCH_VALIDATE_commit)),
1477 c, ptr_crc_uncompressed_size_too_big,
1478 "too large encoded extent");
1479 bkey_fsck_err_on(!crc_is_compressed(crc) &&
1480 crc.compressed_size != crc.uncompressed_size,
1481 c, ptr_crc_uncompressed_size_mismatch,
1482 "not compressed but compressed != uncompressed size");
1483
1484 if (bch2_csum_type_is_encryption(crc.csum_type)) {
1485 if (nonce == UINT_MAX)
1486 nonce = crc.offset + crc.nonce;
1487 else if (nonce != crc.offset + crc.nonce)
1488 bkey_fsck_err(c, ptr_crc_nonce_mismatch,
1489 "incorrect nonce");
1490 }
1491
1492 bkey_fsck_err_on(crc_since_last_ptr,
1493 c, ptr_crc_redundant,
1494 "redundant crc entry");
1495 crc_since_last_ptr = true;
1496
1497 size_ondisk = crc.compressed_size;
1498 break;
1499 case BCH_EXTENT_ENTRY_stripe_ptr:
1500 bkey_fsck_err_on(have_ec,
1501 c, ptr_stripe_redundant,
1502 "redundant stripe entry");
1503 have_ec = true;
1504 break;
1505 case BCH_EXTENT_ENTRY_rebalance: {
1506 /*
1507 * this shouldn't be a fsck error, for forward
1508 * compatibility; the rebalance code should just refetch
1509 * the compression opt if it's unknown
1510 */
1511 #if 0
1512 const struct bch_extent_rebalance *r = &entry->rebalance;
1513
1514 if (!bch2_compression_opt_valid(r->compression)) {
1515 struct bch_compression_opt opt = __bch2_compression_decode(r->compression);
1516 prt_printf(err, "invalid compression opt %u:%u",
1517 opt.type, opt.level);
1518 return bch_err_throw(c, invalid_bkey);
1519 }
1520 #endif
1521 break;
1522 }
1523 case BCH_EXTENT_ENTRY_flags:
1524 bkey_fsck_err_on(entry != ptrs.start,
1525 c, extent_flags_not_at_start,
1526 "extent flags entry not at start");
1527 break;
1528 }
1529 }
1530
1531 bkey_fsck_err_on(!nr_ptrs,
1532 c, extent_ptrs_no_ptrs,
1533 "no ptrs");
1534 bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX,
1535 c, extent_ptrs_too_many_ptrs,
1536 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX);
1537 bkey_fsck_err_on(have_written && have_unwritten,
1538 c, extent_ptrs_written_and_unwritten,
1539 "extent with unwritten and written ptrs");
1540 bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten,
1541 c, extent_ptrs_unwritten,
1542 "has unwritten ptrs");
1543 bkey_fsck_err_on(crc_since_last_ptr,
1544 c, extent_ptrs_redundant_crc,
1545 "redundant crc entry");
1546 bkey_fsck_err_on(have_ec,
1547 c, extent_ptrs_redundant_stripe,
1548 "redundant stripe entry");
1549 fsck_err:
1550 return ret;
1551 }
1552
bch2_ptr_swab(struct bkey_s k)1553 void bch2_ptr_swab(struct bkey_s k)
1554 {
1555 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1556 union bch_extent_entry *entry;
1557 u64 *d;
1558
1559 for (d = (u64 *) ptrs.start;
1560 d != (u64 *) ptrs.end;
1561 d++)
1562 *d = swab64(*d);
1563
1564 for (entry = ptrs.start;
1565 entry < ptrs.end;
1566 entry = extent_entry_next(entry)) {
1567 switch (__extent_entry_type(entry)) {
1568 case BCH_EXTENT_ENTRY_ptr:
1569 break;
1570 case BCH_EXTENT_ENTRY_crc32:
1571 entry->crc32.csum = swab32(entry->crc32.csum);
1572 break;
1573 case BCH_EXTENT_ENTRY_crc64:
1574 entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
1575 entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
1576 break;
1577 case BCH_EXTENT_ENTRY_crc128:
1578 entry->crc128.csum.hi = (__force __le64)
1579 swab64((__force u64) entry->crc128.csum.hi);
1580 entry->crc128.csum.lo = (__force __le64)
1581 swab64((__force u64) entry->crc128.csum.lo);
1582 break;
1583 case BCH_EXTENT_ENTRY_stripe_ptr:
1584 break;
1585 case BCH_EXTENT_ENTRY_rebalance:
1586 break;
1587 default:
1588 /* Bad entry type: will be caught by validate() */
1589 return;
1590 }
1591 }
1592 }
1593
bch2_bkey_extent_flags_set(struct bch_fs * c,struct bkey_i * k,u64 flags)1594 int bch2_bkey_extent_flags_set(struct bch_fs *c, struct bkey_i *k, u64 flags)
1595 {
1596 int ret = bch2_request_incompat_feature(c, bcachefs_metadata_version_extent_flags);
1597 if (ret)
1598 return ret;
1599
1600 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
1601
1602 if (ptrs.start != ptrs.end &&
1603 extent_entry_type(ptrs.start) == BCH_EXTENT_ENTRY_flags) {
1604 ptrs.start->flags.flags = flags;
1605 } else {
1606 struct bch_extent_flags f = {
1607 .type = BIT(BCH_EXTENT_ENTRY_flags),
1608 .flags = flags,
1609 };
1610 __extent_entry_insert(k, ptrs.start, (union bch_extent_entry *) &f);
1611 }
1612
1613 return 0;
1614 }
1615
1616 /* Generic extent code: */
1617
bch2_cut_front_s(struct bpos where,struct bkey_s k)1618 int bch2_cut_front_s(struct bpos where, struct bkey_s k)
1619 {
1620 unsigned new_val_u64s = bkey_val_u64s(k.k);
1621 int val_u64s_delta;
1622 u64 sub;
1623
1624 if (bkey_le(where, bkey_start_pos(k.k)))
1625 return 0;
1626
1627 EBUG_ON(bkey_gt(where, k.k->p));
1628
1629 sub = where.offset - bkey_start_offset(k.k);
1630
1631 k.k->size -= sub;
1632
1633 if (!k.k->size) {
1634 k.k->type = KEY_TYPE_deleted;
1635 new_val_u64s = 0;
1636 }
1637
1638 switch (k.k->type) {
1639 case KEY_TYPE_extent:
1640 case KEY_TYPE_reflink_v: {
1641 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1642 union bch_extent_entry *entry;
1643 bool seen_crc = false;
1644
1645 bkey_extent_entry_for_each(ptrs, entry) {
1646 switch (extent_entry_type(entry)) {
1647 case BCH_EXTENT_ENTRY_ptr:
1648 if (!seen_crc)
1649 entry->ptr.offset += sub;
1650 break;
1651 case BCH_EXTENT_ENTRY_crc32:
1652 entry->crc32.offset += sub;
1653 break;
1654 case BCH_EXTENT_ENTRY_crc64:
1655 entry->crc64.offset += sub;
1656 break;
1657 case BCH_EXTENT_ENTRY_crc128:
1658 entry->crc128.offset += sub;
1659 break;
1660 case BCH_EXTENT_ENTRY_stripe_ptr:
1661 case BCH_EXTENT_ENTRY_rebalance:
1662 case BCH_EXTENT_ENTRY_flags:
1663 break;
1664 }
1665
1666 if (extent_entry_is_crc(entry))
1667 seen_crc = true;
1668 }
1669
1670 break;
1671 }
1672 case KEY_TYPE_reflink_p: {
1673 struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k);
1674
1675 SET_REFLINK_P_IDX(p.v, REFLINK_P_IDX(p.v) + sub);
1676 break;
1677 }
1678 case KEY_TYPE_inline_data:
1679 case KEY_TYPE_indirect_inline_data: {
1680 void *p = bkey_inline_data_p(k);
1681 unsigned bytes = bkey_inline_data_bytes(k.k);
1682
1683 sub = min_t(u64, sub << 9, bytes);
1684
1685 memmove(p, p + sub, bytes - sub);
1686
1687 new_val_u64s -= sub >> 3;
1688 break;
1689 }
1690 }
1691
1692 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1693 BUG_ON(val_u64s_delta < 0);
1694
1695 set_bkey_val_u64s(k.k, new_val_u64s);
1696 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1697 return -val_u64s_delta;
1698 }
1699
bch2_cut_back_s(struct bpos where,struct bkey_s k)1700 int bch2_cut_back_s(struct bpos where, struct bkey_s k)
1701 {
1702 unsigned new_val_u64s = bkey_val_u64s(k.k);
1703 int val_u64s_delta;
1704 u64 len = 0;
1705
1706 if (bkey_ge(where, k.k->p))
1707 return 0;
1708
1709 EBUG_ON(bkey_lt(where, bkey_start_pos(k.k)));
1710
1711 len = where.offset - bkey_start_offset(k.k);
1712
1713 k.k->p.offset = where.offset;
1714 k.k->size = len;
1715
1716 if (!len) {
1717 k.k->type = KEY_TYPE_deleted;
1718 new_val_u64s = 0;
1719 }
1720
1721 switch (k.k->type) {
1722 case KEY_TYPE_inline_data:
1723 case KEY_TYPE_indirect_inline_data:
1724 new_val_u64s = (bkey_inline_data_offset(k.k) +
1725 min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3;
1726 break;
1727 }
1728
1729 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1730 BUG_ON(val_u64s_delta < 0);
1731
1732 set_bkey_val_u64s(k.k, new_val_u64s);
1733 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1734 return -val_u64s_delta;
1735 }
1736