xref: /linux/fs/bcachefs/clock.c (revision ff0905bbf991f4337b5ebc19c0d43525ebb0d96b)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "bcachefs.h"
3 #include "clock.h"
4 
5 #include <linux/freezer.h>
6 #include <linux/kthread.h>
7 #include <linux/preempt.h>
8 
io_timer_cmp(const void * l,const void * r,void __always_unused * args)9 static inline bool io_timer_cmp(const void *l, const void *r, void __always_unused *args)
10 {
11 	struct io_timer **_l = (struct io_timer **)l;
12 	struct io_timer **_r = (struct io_timer **)r;
13 
14 	return (*_l)->expire < (*_r)->expire;
15 }
16 
17 static const struct min_heap_callbacks callbacks = {
18 	.less = io_timer_cmp,
19 	.swp = NULL,
20 };
21 
bch2_io_timer_add(struct io_clock * clock,struct io_timer * timer)22 void bch2_io_timer_add(struct io_clock *clock, struct io_timer *timer)
23 {
24 	spin_lock(&clock->timer_lock);
25 
26 	if (time_after_eq64((u64) atomic64_read(&clock->now), timer->expire)) {
27 		spin_unlock(&clock->timer_lock);
28 		timer->fn(timer);
29 		return;
30 	}
31 
32 	for (size_t i = 0; i < clock->timers.nr; i++)
33 		if (clock->timers.data[i] == timer)
34 			goto out;
35 
36 	BUG_ON(!min_heap_push(&clock->timers, &timer, &callbacks, NULL));
37 out:
38 	spin_unlock(&clock->timer_lock);
39 }
40 
bch2_io_timer_del(struct io_clock * clock,struct io_timer * timer)41 void bch2_io_timer_del(struct io_clock *clock, struct io_timer *timer)
42 {
43 	spin_lock(&clock->timer_lock);
44 
45 	for (size_t i = 0; i < clock->timers.nr; i++)
46 		if (clock->timers.data[i] == timer) {
47 			min_heap_del(&clock->timers, i, &callbacks, NULL);
48 			break;
49 		}
50 
51 	spin_unlock(&clock->timer_lock);
52 }
53 
54 struct io_clock_wait {
55 	struct io_timer		io_timer;
56 	struct task_struct	*task;
57 	int			expired;
58 };
59 
io_clock_wait_fn(struct io_timer * timer)60 static void io_clock_wait_fn(struct io_timer *timer)
61 {
62 	struct io_clock_wait *wait = container_of(timer,
63 				struct io_clock_wait, io_timer);
64 
65 	wait->expired = 1;
66 	wake_up_process(wait->task);
67 }
68 
bch2_io_clock_schedule_timeout(struct io_clock * clock,u64 until)69 void bch2_io_clock_schedule_timeout(struct io_clock *clock, u64 until)
70 {
71 	struct io_clock_wait wait = {
72 		.io_timer.expire	= until,
73 		.io_timer.fn		= io_clock_wait_fn,
74 		.io_timer.fn2		= (void *) _RET_IP_,
75 		.task			= current,
76 	};
77 
78 	bch2_io_timer_add(clock, &wait.io_timer);
79 	schedule();
80 	bch2_io_timer_del(clock, &wait.io_timer);
81 }
82 
bch2_kthread_io_clock_wait_once(struct io_clock * clock,u64 io_until,unsigned long cpu_timeout)83 unsigned long bch2_kthread_io_clock_wait_once(struct io_clock *clock,
84 				     u64 io_until, unsigned long cpu_timeout)
85 {
86 	bool kthread = (current->flags & PF_KTHREAD) != 0;
87 	struct io_clock_wait wait = {
88 		.io_timer.expire	= io_until,
89 		.io_timer.fn		= io_clock_wait_fn,
90 		.io_timer.fn2		= (void *) _RET_IP_,
91 		.task			= current,
92 	};
93 
94 	bch2_io_timer_add(clock, &wait.io_timer);
95 
96 	set_current_state(TASK_INTERRUPTIBLE);
97 	if (!(kthread && kthread_should_stop())) {
98 		cpu_timeout = schedule_timeout(cpu_timeout);
99 		try_to_freeze();
100 	}
101 
102 	__set_current_state(TASK_RUNNING);
103 	bch2_io_timer_del(clock, &wait.io_timer);
104 	return cpu_timeout;
105 }
106 
bch2_kthread_io_clock_wait(struct io_clock * clock,u64 io_until,unsigned long cpu_timeout)107 void bch2_kthread_io_clock_wait(struct io_clock *clock,
108 				u64 io_until, unsigned long cpu_timeout)
109 {
110 	bool kthread = (current->flags & PF_KTHREAD) != 0;
111 
112 	while (!(kthread && kthread_should_stop()) &&
113 	       cpu_timeout &&
114 	       atomic64_read(&clock->now) < io_until)
115 		cpu_timeout = bch2_kthread_io_clock_wait_once(clock, io_until, cpu_timeout);
116 }
117 
get_expired_timer(struct io_clock * clock,u64 now)118 static struct io_timer *get_expired_timer(struct io_clock *clock, u64 now)
119 {
120 	struct io_timer *ret = NULL;
121 
122 	if (clock->timers.nr &&
123 	    time_after_eq64(now, clock->timers.data[0]->expire)) {
124 		ret = *min_heap_peek(&clock->timers);
125 		min_heap_pop(&clock->timers, &callbacks, NULL);
126 	}
127 
128 	return ret;
129 }
130 
__bch2_increment_clock(struct io_clock * clock,u64 sectors)131 void __bch2_increment_clock(struct io_clock *clock, u64 sectors)
132 {
133 	struct io_timer *timer;
134 	u64 now = atomic64_add_return(sectors, &clock->now);
135 
136 	spin_lock(&clock->timer_lock);
137 	while ((timer = get_expired_timer(clock, now)))
138 		timer->fn(timer);
139 	spin_unlock(&clock->timer_lock);
140 }
141 
bch2_io_timers_to_text(struct printbuf * out,struct io_clock * clock)142 void bch2_io_timers_to_text(struct printbuf *out, struct io_clock *clock)
143 {
144 	out->atomic++;
145 	spin_lock(&clock->timer_lock);
146 	u64 now = atomic64_read(&clock->now);
147 
148 	printbuf_tabstop_push(out, 40);
149 	prt_printf(out, "current time:\t%llu\n", now);
150 
151 	for (unsigned i = 0; i < clock->timers.nr; i++)
152 		prt_printf(out, "%ps %ps:\t%llu\n",
153 		       clock->timers.data[i]->fn,
154 		       clock->timers.data[i]->fn2,
155 		       clock->timers.data[i]->expire);
156 	spin_unlock(&clock->timer_lock);
157 	--out->atomic;
158 }
159 
bch2_io_clock_exit(struct io_clock * clock)160 void bch2_io_clock_exit(struct io_clock *clock)
161 {
162 	free_heap(&clock->timers);
163 	free_percpu(clock->pcpu_buf);
164 }
165 
bch2_io_clock_init(struct io_clock * clock)166 int bch2_io_clock_init(struct io_clock *clock)
167 {
168 	atomic64_set(&clock->now, 0);
169 	spin_lock_init(&clock->timer_lock);
170 
171 	clock->max_slop = IO_CLOCK_PCPU_SECTORS * num_possible_cpus();
172 
173 	clock->pcpu_buf = alloc_percpu(*clock->pcpu_buf);
174 	if (!clock->pcpu_buf)
175 		return -BCH_ERR_ENOMEM_io_clock_init;
176 
177 	if (!init_heap(&clock->timers, NR_IO_TIMERS, GFP_KERNEL))
178 		return -BCH_ERR_ENOMEM_io_clock_init;
179 
180 	return 0;
181 }
182