xref: /linux/fs/bcachefs/btree_update.c (revision 2622f290417001b0440f4a48dc6978f5f1e12a56)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_update.h"
5 #include "btree_iter.h"
6 #include "btree_journal_iter.h"
7 #include "btree_locking.h"
8 #include "buckets.h"
9 #include "debug.h"
10 #include "errcode.h"
11 #include "error.h"
12 #include "extents.h"
13 #include "keylist.h"
14 #include "snapshot.h"
15 #include "trace.h"
16 
btree_insert_entry_cmp(const struct btree_insert_entry * l,const struct btree_insert_entry * r)17 static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
18 					 const struct btree_insert_entry *r)
19 {
20 	return   cmp_int(l->btree_id,	r->btree_id) ?:
21 		 cmp_int(l->cached,	r->cached) ?:
22 		 -cmp_int(l->level,	r->level) ?:
23 		 bpos_cmp(l->k->k.p,	r->k->k.p);
24 }
25 
26 static int __must_check
27 bch2_trans_update_by_path(struct btree_trans *, btree_path_idx_t,
28 			  struct bkey_i *, enum btree_iter_update_trigger_flags,
29 			  unsigned long ip);
30 
extent_front_merge(struct btree_trans * trans,struct btree_iter * iter,struct bkey_s_c k,struct bkey_i ** insert,enum btree_iter_update_trigger_flags flags)31 static noinline int extent_front_merge(struct btree_trans *trans,
32 				       struct btree_iter *iter,
33 				       struct bkey_s_c k,
34 				       struct bkey_i **insert,
35 				       enum btree_iter_update_trigger_flags flags)
36 {
37 	struct bch_fs *c = trans->c;
38 	struct bkey_i *update;
39 	int ret;
40 
41 	if (unlikely(trans->journal_replay_not_finished))
42 		return 0;
43 
44 	update = bch2_bkey_make_mut_noupdate(trans, k);
45 	ret = PTR_ERR_OR_ZERO(update);
46 	if (ret)
47 		return ret;
48 
49 	if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
50 		return 0;
51 
52 	ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p) ?:
53 		bch2_key_has_snapshot_overwrites(trans, iter->btree_id, (*insert)->k.p);
54 	if (ret < 0)
55 		return ret;
56 	if (ret)
57 		return 0;
58 
59 	ret = bch2_btree_delete_at(trans, iter, flags);
60 	if (ret)
61 		return ret;
62 
63 	*insert = update;
64 	return 0;
65 }
66 
extent_back_merge(struct btree_trans * trans,struct btree_iter * iter,struct bkey_i * insert,struct bkey_s_c k)67 static noinline int extent_back_merge(struct btree_trans *trans,
68 				      struct btree_iter *iter,
69 				      struct bkey_i *insert,
70 				      struct bkey_s_c k)
71 {
72 	struct bch_fs *c = trans->c;
73 	int ret;
74 
75 	if (unlikely(trans->journal_replay_not_finished))
76 		return 0;
77 
78 	ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, insert->k.p) ?:
79 		bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p);
80 	if (ret < 0)
81 		return ret;
82 	if (ret)
83 		return 0;
84 
85 	bch2_bkey_merge(c, bkey_i_to_s(insert), k);
86 	return 0;
87 }
88 
89 /*
90  * When deleting, check if we need to emit a whiteout (because we're overwriting
91  * something in an ancestor snapshot)
92  */
need_whiteout_for_snapshot(struct btree_trans * trans,enum btree_id btree_id,struct bpos pos)93 static int need_whiteout_for_snapshot(struct btree_trans *trans,
94 				      enum btree_id btree_id, struct bpos pos)
95 {
96 	struct btree_iter iter;
97 	struct bkey_s_c k;
98 	u32 snapshot = pos.snapshot;
99 	int ret;
100 
101 	if (!bch2_snapshot_parent(trans->c, pos.snapshot))
102 		return 0;
103 
104 	pos.snapshot++;
105 
106 	for_each_btree_key_norestart(trans, iter, btree_id, pos,
107 			   BTREE_ITER_all_snapshots|
108 			   BTREE_ITER_nopreserve, k, ret) {
109 		if (!bkey_eq(k.k->p, pos))
110 			break;
111 
112 		if (bch2_snapshot_is_ancestor(trans->c, snapshot,
113 					      k.k->p.snapshot)) {
114 			ret = !bkey_whiteout(k.k);
115 			break;
116 		}
117 	}
118 	bch2_trans_iter_exit(trans, &iter);
119 
120 	return ret;
121 }
122 
__bch2_insert_snapshot_whiteouts(struct btree_trans * trans,enum btree_id id,struct bpos old_pos,struct bpos new_pos)123 int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
124 				   enum btree_id id,
125 				   struct bpos old_pos,
126 				   struct bpos new_pos)
127 {
128 	struct bch_fs *c = trans->c;
129 	struct btree_iter old_iter, new_iter = { NULL };
130 	struct bkey_s_c old_k, new_k;
131 	snapshot_id_list s;
132 	struct bkey_i *update;
133 	int ret = 0;
134 
135 	if (!bch2_snapshot_has_children(c, old_pos.snapshot))
136 		return 0;
137 
138 	darray_init(&s);
139 
140 	bch2_trans_iter_init(trans, &old_iter, id, old_pos,
141 			     BTREE_ITER_not_extents|
142 			     BTREE_ITER_all_snapshots);
143 	while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
144 	       !(ret = bkey_err(old_k)) &&
145 	       bkey_eq(old_pos, old_k.k->p)) {
146 		struct bpos whiteout_pos =
147 			SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);
148 
149 		if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) ||
150 		    snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot))
151 			continue;
152 
153 		new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos,
154 					   BTREE_ITER_not_extents|
155 					   BTREE_ITER_intent);
156 		ret = bkey_err(new_k);
157 		if (ret)
158 			break;
159 
160 		if (new_k.k->type == KEY_TYPE_deleted) {
161 			update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
162 			ret = PTR_ERR_OR_ZERO(update);
163 			if (ret)
164 				break;
165 
166 			bkey_init(&update->k);
167 			update->k.p		= whiteout_pos;
168 			update->k.type		= KEY_TYPE_whiteout;
169 
170 			ret = bch2_trans_update(trans, &new_iter, update,
171 						BTREE_UPDATE_internal_snapshot_node);
172 		}
173 		bch2_trans_iter_exit(trans, &new_iter);
174 
175 		ret = snapshot_list_add(c, &s, old_k.k->p.snapshot);
176 		if (ret)
177 			break;
178 	}
179 	bch2_trans_iter_exit(trans, &new_iter);
180 	bch2_trans_iter_exit(trans, &old_iter);
181 	darray_exit(&s);
182 
183 	return ret;
184 }
185 
bch2_trans_update_extent_overwrite(struct btree_trans * trans,struct btree_iter * iter,enum btree_iter_update_trigger_flags flags,struct bkey_s_c old,struct bkey_s_c new)186 int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
187 				       struct btree_iter *iter,
188 				       enum btree_iter_update_trigger_flags flags,
189 				       struct bkey_s_c old,
190 				       struct bkey_s_c new)
191 {
192 	enum btree_id btree_id = iter->btree_id;
193 	struct bkey_i *update;
194 	struct bpos new_start = bkey_start_pos(new.k);
195 	unsigned front_split = bkey_lt(bkey_start_pos(old.k), new_start);
196 	unsigned back_split  = bkey_gt(old.k->p, new.k->p);
197 	unsigned middle_split = (front_split || back_split) &&
198 		old.k->p.snapshot != new.k->p.snapshot;
199 	unsigned nr_splits = front_split + back_split + middle_split;
200 	int ret = 0, compressed_sectors;
201 
202 	/*
203 	 * If we're going to be splitting a compressed extent, note it
204 	 * so that __bch2_trans_commit() can increase our disk
205 	 * reservation:
206 	 */
207 	if (nr_splits > 1 &&
208 	    (compressed_sectors = bch2_bkey_sectors_compressed(old)))
209 		trans->extra_disk_res += compressed_sectors * (nr_splits - 1);
210 
211 	if (front_split) {
212 		update = bch2_bkey_make_mut_noupdate(trans, old);
213 		if ((ret = PTR_ERR_OR_ZERO(update)))
214 			return ret;
215 
216 		bch2_cut_back(new_start, update);
217 
218 		ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
219 					old.k->p, update->k.p) ?:
220 			bch2_btree_insert_nonextent(trans, btree_id, update,
221 					BTREE_UPDATE_internal_snapshot_node|flags);
222 		if (ret)
223 			return ret;
224 	}
225 
226 	/* If we're overwriting in a different snapshot - middle split: */
227 	if (middle_split) {
228 		update = bch2_bkey_make_mut_noupdate(trans, old);
229 		if ((ret = PTR_ERR_OR_ZERO(update)))
230 			return ret;
231 
232 		bch2_cut_front(new_start, update);
233 		bch2_cut_back(new.k->p, update);
234 
235 		ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
236 					old.k->p, update->k.p) ?:
237 			bch2_btree_insert_nonextent(trans, btree_id, update,
238 					  BTREE_UPDATE_internal_snapshot_node|flags);
239 		if (ret)
240 			return ret;
241 	}
242 
243 	if (bkey_le(old.k->p, new.k->p)) {
244 		update = bch2_trans_kmalloc(trans, sizeof(*update));
245 		if ((ret = PTR_ERR_OR_ZERO(update)))
246 			return ret;
247 
248 		bkey_init(&update->k);
249 		update->k.p = old.k->p;
250 		update->k.p.snapshot = new.k->p.snapshot;
251 
252 		if (new.k->p.snapshot != old.k->p.snapshot) {
253 			update->k.type = KEY_TYPE_whiteout;
254 		} else if (btree_type_has_snapshots(btree_id)) {
255 			ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
256 			if (ret < 0)
257 				return ret;
258 			if (ret)
259 				update->k.type = KEY_TYPE_whiteout;
260 		}
261 
262 		ret = bch2_btree_insert_nonextent(trans, btree_id, update,
263 					  BTREE_UPDATE_internal_snapshot_node|flags);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	if (back_split) {
269 		update = bch2_bkey_make_mut_noupdate(trans, old);
270 		if ((ret = PTR_ERR_OR_ZERO(update)))
271 			return ret;
272 
273 		bch2_cut_front(new.k->p, update);
274 
275 		ret = bch2_trans_update_by_path(trans, iter->path, update,
276 					  BTREE_UPDATE_internal_snapshot_node|
277 					  flags, _RET_IP_);
278 		if (ret)
279 			return ret;
280 	}
281 
282 	return 0;
283 }
284 
bch2_trans_update_extent(struct btree_trans * trans,struct btree_iter * orig_iter,struct bkey_i * insert,enum btree_iter_update_trigger_flags flags)285 static int bch2_trans_update_extent(struct btree_trans *trans,
286 				    struct btree_iter *orig_iter,
287 				    struct bkey_i *insert,
288 				    enum btree_iter_update_trigger_flags flags)
289 {
290 	struct btree_iter iter;
291 	struct bkey_s_c k;
292 	enum btree_id btree_id = orig_iter->btree_id;
293 	int ret = 0;
294 
295 	bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k),
296 			     BTREE_ITER_intent|
297 			     BTREE_ITER_with_updates|
298 			     BTREE_ITER_not_extents);
299 	k = bch2_btree_iter_peek_max(&iter, POS(insert->k.p.inode, U64_MAX));
300 	if ((ret = bkey_err(k)))
301 		goto err;
302 	if (!k.k)
303 		goto out;
304 
305 	if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
306 		if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
307 			ret = extent_front_merge(trans, &iter, k, &insert, flags);
308 			if (ret)
309 				goto err;
310 		}
311 
312 		goto next;
313 	}
314 
315 	while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
316 		bool done = bkey_lt(insert->k.p, k.k->p);
317 
318 		ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert));
319 		if (ret)
320 			goto err;
321 
322 		if (done)
323 			goto out;
324 next:
325 		bch2_btree_iter_advance(&iter);
326 		k = bch2_btree_iter_peek_max(&iter, POS(insert->k.p.inode, U64_MAX));
327 		if ((ret = bkey_err(k)))
328 			goto err;
329 		if (!k.k)
330 			goto out;
331 	}
332 
333 	if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
334 		ret = extent_back_merge(trans, &iter, insert, k);
335 		if (ret)
336 			goto err;
337 	}
338 out:
339 	if (!bkey_deleted(&insert->k))
340 		ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
341 err:
342 	bch2_trans_iter_exit(trans, &iter);
343 
344 	return ret;
345 }
346 
flush_new_cached_update(struct btree_trans * trans,struct btree_insert_entry * i,enum btree_iter_update_trigger_flags flags,unsigned long ip)347 static noinline int flush_new_cached_update(struct btree_trans *trans,
348 					    struct btree_insert_entry *i,
349 					    enum btree_iter_update_trigger_flags flags,
350 					    unsigned long ip)
351 {
352 	struct bkey k;
353 	int ret;
354 
355 	btree_path_idx_t path_idx =
356 		bch2_path_get(trans, i->btree_id, i->old_k.p, 1, 0,
357 			      BTREE_ITER_intent, _THIS_IP_);
358 	ret = bch2_btree_path_traverse(trans, path_idx, 0);
359 	if (ret)
360 		goto out;
361 
362 	struct btree_path *btree_path = trans->paths + path_idx;
363 
364 	/*
365 	 * The old key in the insert entry might actually refer to an existing
366 	 * key in the btree that has been deleted from cache and not yet
367 	 * flushed. Check for this and skip the flush so we don't run triggers
368 	 * against a stale key.
369 	 */
370 	bch2_btree_path_peek_slot_exact(btree_path, &k);
371 	if (!bkey_deleted(&k))
372 		goto out;
373 
374 	i->key_cache_already_flushed = true;
375 	i->flags |= BTREE_TRIGGER_norun;
376 
377 	btree_path_set_should_be_locked(trans, btree_path);
378 	ret = bch2_trans_update_by_path(trans, path_idx, i->k, flags, ip);
379 out:
380 	bch2_path_put(trans, path_idx, true);
381 	return ret;
382 }
383 
384 static int __must_check
bch2_trans_update_by_path(struct btree_trans * trans,btree_path_idx_t path_idx,struct bkey_i * k,enum btree_iter_update_trigger_flags flags,unsigned long ip)385 bch2_trans_update_by_path(struct btree_trans *trans, btree_path_idx_t path_idx,
386 			  struct bkey_i *k, enum btree_iter_update_trigger_flags flags,
387 			  unsigned long ip)
388 {
389 	struct bch_fs *c = trans->c;
390 	struct btree_insert_entry *i, n;
391 	int cmp;
392 
393 	struct btree_path *path = trans->paths + path_idx;
394 	EBUG_ON(!path->should_be_locked);
395 	EBUG_ON(trans->nr_updates >= trans->nr_paths);
396 	EBUG_ON(!bpos_eq(k->k.p, path->pos));
397 
398 	n = (struct btree_insert_entry) {
399 		.flags		= flags,
400 		.bkey_type	= __btree_node_type(path->level, path->btree_id),
401 		.btree_id	= path->btree_id,
402 		.level		= path->level,
403 		.cached		= path->cached,
404 		.path		= path_idx,
405 		.k		= k,
406 		.ip_allocated	= ip,
407 	};
408 
409 #ifdef CONFIG_BCACHEFS_DEBUG
410 	trans_for_each_update(trans, i)
411 		BUG_ON(i != trans->updates &&
412 		       btree_insert_entry_cmp(i - 1, i) >= 0);
413 #endif
414 
415 	/*
416 	 * Pending updates are kept sorted: first, find position of new update,
417 	 * then delete/trim any updates the new update overwrites:
418 	 */
419 	for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) {
420 		cmp = btree_insert_entry_cmp(&n, i);
421 		if (cmp <= 0)
422 			break;
423 	}
424 
425 	bool overwrite = !cmp && i < trans->updates + trans->nr_updates;
426 
427 	if (overwrite) {
428 		EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
429 
430 		bch2_path_put(trans, i->path, true);
431 		i->flags	= n.flags;
432 		i->cached	= n.cached;
433 		i->k		= n.k;
434 		i->path		= n.path;
435 		i->ip_allocated	= n.ip_allocated;
436 	} else {
437 		array_insert_item(trans->updates, trans->nr_updates,
438 				  i - trans->updates, n);
439 
440 		i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
441 		i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
442 
443 		if (unlikely(trans->journal_replay_not_finished)) {
444 			struct bkey_i *j_k =
445 				bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
446 
447 			if (j_k) {
448 				i->old_k = j_k->k;
449 				i->old_v = &j_k->v;
450 			}
451 		}
452 	}
453 
454 	__btree_path_get(trans, trans->paths + i->path, true);
455 
456 	trace_update_by_path(trans, path, i, overwrite);
457 
458 	/*
459 	 * If a key is present in the key cache, it must also exist in the
460 	 * btree - this is necessary for cache coherency. When iterating over
461 	 * a btree that's cached in the key cache, the btree iter code checks
462 	 * the key cache - but the key has to exist in the btree for that to
463 	 * work:
464 	 */
465 	if (path->cached && !i->old_btree_u64s)
466 		return flush_new_cached_update(trans, i, flags, ip);
467 
468 	return 0;
469 }
470 
bch2_trans_update_get_key_cache(struct btree_trans * trans,struct btree_iter * iter,struct btree_path * path)471 static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans,
472 						    struct btree_iter *iter,
473 						    struct btree_path *path)
474 {
475 	struct btree_path *key_cache_path = btree_iter_key_cache_path(trans, iter);
476 
477 	if (!key_cache_path ||
478 	    !key_cache_path->should_be_locked ||
479 	    !bpos_eq(key_cache_path->pos, iter->pos)) {
480 		struct bkey_cached *ck;
481 		int ret;
482 
483 		if (!iter->key_cache_path)
484 			iter->key_cache_path =
485 				bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
486 					      BTREE_ITER_intent|
487 					      BTREE_ITER_cached, _THIS_IP_);
488 
489 		iter->key_cache_path =
490 			bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
491 						iter->flags & BTREE_ITER_intent,
492 						_THIS_IP_);
493 
494 		ret = bch2_btree_path_traverse(trans, iter->key_cache_path, BTREE_ITER_cached);
495 		if (unlikely(ret))
496 			return ret;
497 
498 		ck = (void *) trans->paths[iter->key_cache_path].l[0].b;
499 
500 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
501 			trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
502 			return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
503 		}
504 
505 		btree_path_set_should_be_locked(trans, trans->paths + iter->key_cache_path);
506 	}
507 
508 	return 0;
509 }
510 
bch2_trans_update(struct btree_trans * trans,struct btree_iter * iter,struct bkey_i * k,enum btree_iter_update_trigger_flags flags)511 int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
512 				   struct bkey_i *k, enum btree_iter_update_trigger_flags flags)
513 {
514 	btree_path_idx_t path_idx = iter->update_path ?: iter->path;
515 	int ret;
516 
517 	if (iter->flags & BTREE_ITER_is_extents)
518 		return bch2_trans_update_extent(trans, iter, k, flags);
519 
520 	if (bkey_deleted(&k->k) &&
521 	    !(flags & BTREE_UPDATE_key_cache_reclaim) &&
522 	    (iter->flags & BTREE_ITER_filter_snapshots)) {
523 		ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
524 		if (unlikely(ret < 0))
525 			return ret;
526 
527 		if (ret)
528 			k->k.type = KEY_TYPE_whiteout;
529 	}
530 
531 	/*
532 	 * Ensure that updates to cached btrees go to the key cache:
533 	 */
534 	struct btree_path *path = trans->paths + path_idx;
535 	if (!(flags & BTREE_UPDATE_key_cache_reclaim) &&
536 	    !path->cached &&
537 	    !path->level &&
538 	    btree_id_cached(trans->c, path->btree_id)) {
539 		ret = bch2_trans_update_get_key_cache(trans, iter, path);
540 		if (ret)
541 			return ret;
542 
543 		path_idx = iter->key_cache_path;
544 	}
545 
546 	return bch2_trans_update_by_path(trans, path_idx, k, flags, _RET_IP_);
547 }
548 
bch2_btree_insert_clone_trans(struct btree_trans * trans,enum btree_id btree,struct bkey_i * k)549 int bch2_btree_insert_clone_trans(struct btree_trans *trans,
550 				  enum btree_id btree,
551 				  struct bkey_i *k)
552 {
553 	struct bkey_i *n = bch2_trans_kmalloc(trans, bkey_bytes(&k->k));
554 	int ret = PTR_ERR_OR_ZERO(n);
555 	if (ret)
556 		return ret;
557 
558 	bkey_copy(n, k);
559 	return bch2_btree_insert_trans(trans, btree, n, 0);
560 }
561 
__bch2_trans_jset_entry_alloc(struct btree_trans * trans,unsigned u64s)562 struct jset_entry *__bch2_trans_jset_entry_alloc(struct btree_trans *trans, unsigned u64s)
563 {
564 	unsigned new_top = trans->journal_entries_u64s + u64s;
565 	unsigned old_size = trans->journal_entries_size;
566 
567 	if (new_top > trans->journal_entries_size) {
568 		trans->journal_entries_size = roundup_pow_of_two(new_top);
569 
570 		btree_trans_stats(trans)->journal_entries_size = trans->journal_entries_size;
571 	}
572 
573 	struct jset_entry *n =
574 		bch2_trans_kmalloc_nomemzero(trans,
575 				trans->journal_entries_size * sizeof(u64));
576 	if (IS_ERR(n))
577 		return ERR_CAST(n);
578 
579 	if (trans->journal_entries)
580 		memcpy(n, trans->journal_entries, old_size * sizeof(u64));
581 	trans->journal_entries = n;
582 
583 	struct jset_entry *e = btree_trans_journal_entries_top(trans);
584 	trans->journal_entries_u64s = new_top;
585 	return e;
586 }
587 
bch2_bkey_get_empty_slot(struct btree_trans * trans,struct btree_iter * iter,enum btree_id btree,struct bpos end)588 int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
589 			     enum btree_id btree, struct bpos end)
590 {
591 	bch2_trans_iter_init(trans, iter, btree, end, BTREE_ITER_intent);
592 	struct bkey_s_c k = bch2_btree_iter_peek_prev(iter);
593 	int ret = bkey_err(k);
594 	if (ret)
595 		goto err;
596 
597 	bch2_btree_iter_advance(iter);
598 	k = bch2_btree_iter_peek_slot(iter);
599 	ret = bkey_err(k);
600 	if (ret)
601 		goto err;
602 
603 	BUG_ON(k.k->type != KEY_TYPE_deleted);
604 
605 	if (bkey_gt(k.k->p, end)) {
606 		ret = -BCH_ERR_ENOSPC_btree_slot;
607 		goto err;
608 	}
609 
610 	return 0;
611 err:
612 	bch2_trans_iter_exit(trans, iter);
613 	return ret;
614 }
615 
bch2_trans_commit_hook(struct btree_trans * trans,struct btree_trans_commit_hook * h)616 void bch2_trans_commit_hook(struct btree_trans *trans,
617 			    struct btree_trans_commit_hook *h)
618 {
619 	h->next = trans->hooks;
620 	trans->hooks = h;
621 }
622 
bch2_btree_insert_nonextent(struct btree_trans * trans,enum btree_id btree,struct bkey_i * k,enum btree_iter_update_trigger_flags flags)623 int bch2_btree_insert_nonextent(struct btree_trans *trans,
624 				enum btree_id btree, struct bkey_i *k,
625 				enum btree_iter_update_trigger_flags flags)
626 {
627 	struct btree_iter iter;
628 	int ret;
629 
630 	bch2_trans_iter_init(trans, &iter, btree, k->k.p,
631 			     BTREE_ITER_cached|
632 			     BTREE_ITER_not_extents|
633 			     BTREE_ITER_intent);
634 	ret   = bch2_btree_iter_traverse(&iter) ?:
635 		bch2_trans_update(trans, &iter, k, flags);
636 	bch2_trans_iter_exit(trans, &iter);
637 	return ret;
638 }
639 
bch2_btree_insert_trans(struct btree_trans * trans,enum btree_id id,struct bkey_i * k,enum btree_iter_update_trigger_flags flags)640 int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id,
641 			    struct bkey_i *k, enum btree_iter_update_trigger_flags flags)
642 {
643 	struct btree_iter iter;
644 	bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
645 			     BTREE_ITER_intent|flags);
646 	int ret = bch2_btree_iter_traverse(&iter) ?:
647 		  bch2_trans_update(trans, &iter, k, flags);
648 	bch2_trans_iter_exit(trans, &iter);
649 	return ret;
650 }
651 
652 /**
653  * bch2_btree_insert - insert keys into the extent btree
654  * @c:			pointer to struct bch_fs
655  * @id:			btree to insert into
656  * @k:			key to insert
657  * @disk_res:		must be non-NULL whenever inserting or potentially
658  *			splitting data extents
659  * @flags:		transaction commit flags
660  * @iter_flags:		btree iter update trigger flags
661  *
662  * Returns:		0 on success, error code on failure
663  */
bch2_btree_insert(struct bch_fs * c,enum btree_id id,struct bkey_i * k,struct disk_reservation * disk_res,int flags,enum btree_iter_update_trigger_flags iter_flags)664 int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k,
665 		      struct disk_reservation *disk_res, int flags,
666 		      enum btree_iter_update_trigger_flags iter_flags)
667 {
668 	return bch2_trans_commit_do(c, disk_res, NULL, flags,
669 			     bch2_btree_insert_trans(trans, id, k, iter_flags));
670 }
671 
bch2_btree_delete_at(struct btree_trans * trans,struct btree_iter * iter,unsigned update_flags)672 int bch2_btree_delete_at(struct btree_trans *trans,
673 			 struct btree_iter *iter, unsigned update_flags)
674 {
675 	struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
676 	int ret = PTR_ERR_OR_ZERO(k);
677 	if (ret)
678 		return ret;
679 
680 	bkey_init(&k->k);
681 	k->k.p = iter->pos;
682 	return bch2_trans_update(trans, iter, k, update_flags);
683 }
684 
bch2_btree_delete(struct btree_trans * trans,enum btree_id btree,struct bpos pos,unsigned update_flags)685 int bch2_btree_delete(struct btree_trans *trans,
686 		      enum btree_id btree, struct bpos pos,
687 		      unsigned update_flags)
688 {
689 	struct btree_iter iter;
690 	int ret;
691 
692 	bch2_trans_iter_init(trans, &iter, btree, pos,
693 			     BTREE_ITER_cached|
694 			     BTREE_ITER_intent);
695 	ret   = bch2_btree_iter_traverse(&iter) ?:
696 		bch2_btree_delete_at(trans, &iter, update_flags);
697 	bch2_trans_iter_exit(trans, &iter);
698 
699 	return ret;
700 }
701 
bch2_btree_delete_range_trans(struct btree_trans * trans,enum btree_id id,struct bpos start,struct bpos end,unsigned update_flags,u64 * journal_seq)702 int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
703 				  struct bpos start, struct bpos end,
704 				  unsigned update_flags,
705 				  u64 *journal_seq)
706 {
707 	u32 restart_count = trans->restart_count;
708 	struct btree_iter iter;
709 	struct bkey_s_c k;
710 	int ret = 0;
711 
712 	bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_intent);
713 	while ((k = bch2_btree_iter_peek_max(&iter, end)).k) {
714 		struct disk_reservation disk_res =
715 			bch2_disk_reservation_init(trans->c, 0);
716 		struct bkey_i delete;
717 
718 		ret = bkey_err(k);
719 		if (ret)
720 			goto err;
721 
722 		bkey_init(&delete.k);
723 
724 		/*
725 		 * This could probably be more efficient for extents:
726 		 */
727 
728 		/*
729 		 * For extents, iter.pos won't necessarily be the same as
730 		 * bkey_start_pos(k.k) (for non extents they always will be the
731 		 * same). It's important that we delete starting from iter.pos
732 		 * because the range we want to delete could start in the middle
733 		 * of k.
734 		 *
735 		 * (bch2_btree_iter_peek() does guarantee that iter.pos >=
736 		 * bkey_start_pos(k.k)).
737 		 */
738 		delete.k.p = iter.pos;
739 
740 		if (iter.flags & BTREE_ITER_is_extents)
741 			bch2_key_resize(&delete.k,
742 					bpos_min(end, k.k->p).offset -
743 					iter.pos.offset);
744 
745 		ret   = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
746 			bch2_trans_commit(trans, &disk_res, journal_seq,
747 					  BCH_TRANS_COMMIT_no_enospc);
748 		bch2_disk_reservation_put(trans->c, &disk_res);
749 err:
750 		/*
751 		 * the bch2_trans_begin() call is in a weird place because we
752 		 * need to call it after every transaction commit, to avoid path
753 		 * overflow, but don't want to call it if the delete operation
754 		 * is a no-op and we have no work to do:
755 		 */
756 		bch2_trans_begin(trans);
757 
758 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
759 			ret = 0;
760 		if (ret)
761 			break;
762 	}
763 	bch2_trans_iter_exit(trans, &iter);
764 
765 	return ret ?: trans_was_restarted(trans, restart_count);
766 }
767 
768 /*
769  * bch_btree_delete_range - delete everything within a given range
770  *
771  * Range is a half open interval - [start, end)
772  */
bch2_btree_delete_range(struct bch_fs * c,enum btree_id id,struct bpos start,struct bpos end,unsigned update_flags,u64 * journal_seq)773 int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
774 			    struct bpos start, struct bpos end,
775 			    unsigned update_flags,
776 			    u64 *journal_seq)
777 {
778 	int ret = bch2_trans_run(c,
779 			bch2_btree_delete_range_trans(trans, id, start, end,
780 						      update_flags, journal_seq));
781 	if (ret == -BCH_ERR_transaction_restart_nested)
782 		ret = 0;
783 	return ret;
784 }
785 
bch2_btree_bit_mod_iter(struct btree_trans * trans,struct btree_iter * iter,bool set)786 int bch2_btree_bit_mod_iter(struct btree_trans *trans, struct btree_iter *iter, bool set)
787 {
788 	struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
789 	int ret = PTR_ERR_OR_ZERO(k);
790 	if (ret)
791 		return ret;
792 
793 	bkey_init(&k->k);
794 	k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
795 	k->k.p = iter->pos;
796 	if (iter->flags & BTREE_ITER_is_extents)
797 		bch2_key_resize(&k->k, 1);
798 
799 	return bch2_trans_update(trans, iter, k, 0);
800 }
801 
bch2_btree_bit_mod(struct btree_trans * trans,enum btree_id btree,struct bpos pos,bool set)802 int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
803 		       struct bpos pos, bool set)
804 {
805 	struct btree_iter iter;
806 	bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_intent);
807 
808 	int ret = bch2_btree_iter_traverse(&iter) ?:
809 		  bch2_btree_bit_mod_iter(trans, &iter, set);
810 	bch2_trans_iter_exit(trans, &iter);
811 	return ret;
812 }
813 
bch2_btree_bit_mod_buffered(struct btree_trans * trans,enum btree_id btree,struct bpos pos,bool set)814 int bch2_btree_bit_mod_buffered(struct btree_trans *trans, enum btree_id btree,
815 				struct bpos pos, bool set)
816 {
817 	struct bkey_i k;
818 
819 	bkey_init(&k.k);
820 	k.k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
821 	k.k.p = pos;
822 
823 	return bch2_trans_update_buffered(trans, btree, &k);
824 }
825 
bch2_trans_log_msg(struct btree_trans * trans,struct printbuf * buf)826 int bch2_trans_log_msg(struct btree_trans *trans, struct printbuf *buf)
827 {
828 	unsigned u64s = DIV_ROUND_UP(buf->pos, sizeof(u64));
829 	prt_chars(buf, '\0', u64s * sizeof(u64) - buf->pos);
830 
831 	int ret = buf->allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
832 	if (ret)
833 		return ret;
834 
835 	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(u64s));
836 	ret = PTR_ERR_OR_ZERO(e);
837 	if (ret)
838 		return ret;
839 
840 	struct jset_entry_log *l = container_of(e, struct jset_entry_log, entry);
841 	journal_entry_init(e, BCH_JSET_ENTRY_log, 0, 1, u64s);
842 	memcpy(l->d, buf->buf, buf->pos);
843 	return 0;
844 }
845 
846 __printf(3, 0)
847 static int
__bch2_fs_log_msg(struct bch_fs * c,unsigned commit_flags,const char * fmt,va_list args)848 __bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
849 		  va_list args)
850 {
851 	struct printbuf buf = PRINTBUF;
852 	prt_vprintf(&buf, fmt, args);
853 
854 	unsigned u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
855 	prt_chars(&buf, '\0', u64s * sizeof(u64) - buf.pos);
856 
857 	int ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
858 	if (ret)
859 		goto err;
860 
861 	if (!test_bit(JOURNAL_running, &c->journal.flags)) {
862 		ret = darray_make_room(&c->journal.early_journal_entries, jset_u64s(u64s));
863 		if (ret)
864 			goto err;
865 
866 		struct jset_entry_log *l = (void *) &darray_top(c->journal.early_journal_entries);
867 		journal_entry_init(&l->entry, BCH_JSET_ENTRY_log, 0, 1, u64s);
868 		memcpy(l->d, buf.buf, buf.pos);
869 		c->journal.early_journal_entries.nr += jset_u64s(u64s);
870 	} else {
871 		ret = bch2_trans_commit_do(c, NULL, NULL, commit_flags,
872 			bch2_trans_log_msg(trans, &buf));
873 	}
874 err:
875 	printbuf_exit(&buf);
876 	return ret;
877 }
878 
879 __printf(2, 3)
bch2_fs_log_msg(struct bch_fs * c,const char * fmt,...)880 int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
881 {
882 	va_list args;
883 	int ret;
884 
885 	va_start(args, fmt);
886 	ret = __bch2_fs_log_msg(c, 0, fmt, args);
887 	va_end(args);
888 	return ret;
889 }
890 
891 /*
892  * Use for logging messages during recovery to enable reserved space and avoid
893  * blocking.
894  */
895 __printf(2, 3)
bch2_journal_log_msg(struct bch_fs * c,const char * fmt,...)896 int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
897 {
898 	va_list args;
899 	int ret;
900 
901 	va_start(args, fmt);
902 	ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
903 	va_end(args);
904 	return ret;
905 }
906