xref: /linux/fs/bcachefs/btree_update_interior.c (revision 6f2a71a99ebd5dfaa7948a2e9c59eae94b741bd8)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_buf.h"
6 #include "bkey_methods.h"
7 #include "btree_cache.h"
8 #include "btree_gc.h"
9 #include "btree_journal_iter.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
12 #include "btree_io.h"
13 #include "btree_iter.h"
14 #include "btree_locking.h"
15 #include "buckets.h"
16 #include "clock.h"
17 #include "enumerated_ref.h"
18 #include "error.h"
19 #include "extents.h"
20 #include "io_write.h"
21 #include "journal.h"
22 #include "journal_reclaim.h"
23 #include "keylist.h"
24 #include "recovery_passes.h"
25 #include "replicas.h"
26 #include "sb-members.h"
27 #include "super-io.h"
28 #include "trace.h"
29 
30 #include <linux/random.h>
31 
32 static const char * const bch2_btree_update_modes[] = {
33 #define x(t) #t,
34 	BTREE_UPDATE_MODES()
35 #undef x
36 	NULL
37 };
38 
39 static void bch2_btree_update_to_text(struct printbuf *, struct btree_update *);
40 
41 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
42 				  btree_path_idx_t, struct btree *, struct keylist *);
43 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
44 
45 /*
46  * Verify that child nodes correctly span parent node's range:
47  */
bch2_btree_node_check_topology(struct btree_trans * trans,struct btree * b)48 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
49 {
50 	struct bch_fs *c = trans->c;
51 	struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
52 		? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key
53 		: b->data->min_key;
54 	struct btree_and_journal_iter iter;
55 	struct bkey_s_c k;
56 	struct printbuf buf = PRINTBUF;
57 	struct bkey_buf prev;
58 	int ret = 0;
59 
60 	BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
61 	       !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
62 			b->data->min_key));
63 
64 	bch2_bkey_buf_init(&prev);
65 	bkey_init(&prev.k->k);
66 	bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
67 
68 	if (b == btree_node_root(c, b)) {
69 		if (!bpos_eq(b->data->min_key, POS_MIN)) {
70 			bch2_log_msg_start(c, &buf);
71 			prt_printf(&buf, "btree root with incorrect min_key: ");
72 			bch2_bpos_to_text(&buf, b->data->min_key);
73 			prt_newline(&buf);
74 
75 			bch2_count_fsck_err(c, btree_root_bad_min_key, &buf);
76 			goto err;
77 		}
78 
79 		if (!bpos_eq(b->data->max_key, SPOS_MAX)) {
80 			bch2_log_msg_start(c, &buf);
81 			prt_printf(&buf, "btree root with incorrect max_key: ");
82 			bch2_bpos_to_text(&buf, b->data->max_key);
83 			prt_newline(&buf);
84 
85 			bch2_count_fsck_err(c, btree_root_bad_max_key, &buf);
86 			goto err;
87 		}
88 	}
89 
90 	if (!b->c.level)
91 		goto out;
92 
93 	while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
94 		if (k.k->type != KEY_TYPE_btree_ptr_v2)
95 			goto out;
96 
97 		struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
98 
99 		struct bpos expected_min = bkey_deleted(&prev.k->k)
100 			? node_min
101 			: bpos_successor(prev.k->k.p);
102 
103 		if (!bpos_eq(expected_min, bp.v->min_key)) {
104 			prt_str(&buf, "end of prev node doesn't match start of next node");
105 			prt_str(&buf, "\nprev ");
106 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
107 			prt_str(&buf, "\nnext ");
108 			bch2_bkey_val_to_text(&buf, c, k);
109 			prt_newline(&buf);
110 
111 			bch2_count_fsck_err(c, btree_node_topology_bad_min_key, &buf);
112 			goto err;
113 		}
114 
115 		bch2_bkey_buf_reassemble(&prev, c, k);
116 		bch2_btree_and_journal_iter_advance(&iter);
117 	}
118 
119 	if (bkey_deleted(&prev.k->k)) {
120 		prt_printf(&buf, "empty interior node\n");
121 		bch2_count_fsck_err(c, btree_node_topology_empty_interior_node, &buf);
122 		goto err;
123 	}
124 
125 	if (!bpos_eq(prev.k->k.p, b->key.k.p)) {
126 		prt_str(&buf, "last child node doesn't end at end of parent node\nchild: ");
127 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
128 		prt_newline(&buf);
129 
130 		bch2_count_fsck_err(c, btree_node_topology_bad_max_key, &buf);
131 		goto err;
132 	}
133 out:
134 	bch2_btree_and_journal_iter_exit(&iter);
135 	bch2_bkey_buf_exit(&prev, c);
136 	printbuf_exit(&buf);
137 	return ret;
138 err:
139 	bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
140 	prt_char(&buf, ' ');
141 	bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
142 	prt_newline(&buf);
143 
144 	ret = __bch2_topology_error(c, &buf);
145 	bch2_print_str(c, KERN_ERR, buf.buf);
146 	BUG_ON(!ret);
147 	goto out;
148 }
149 
150 /* Calculate ideal packed bkey format for new btree nodes: */
151 
__bch2_btree_calc_format(struct bkey_format_state * s,struct btree * b)152 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
153 {
154 	struct bkey_packed *k;
155 	struct bkey uk;
156 
157 	for_each_bset(b, t)
158 		bset_tree_for_each_key(b, t, k)
159 			if (!bkey_deleted(k)) {
160 				uk = bkey_unpack_key(b, k);
161 				bch2_bkey_format_add_key(s, &uk);
162 			}
163 }
164 
bch2_btree_calc_format(struct btree * b)165 static struct bkey_format bch2_btree_calc_format(struct btree *b)
166 {
167 	struct bkey_format_state s;
168 
169 	bch2_bkey_format_init(&s);
170 	bch2_bkey_format_add_pos(&s, b->data->min_key);
171 	bch2_bkey_format_add_pos(&s, b->data->max_key);
172 	__bch2_btree_calc_format(&s, b);
173 
174 	return bch2_bkey_format_done(&s);
175 }
176 
btree_node_u64s_with_format(struct btree_nr_keys nr,struct bkey_format * old_f,struct bkey_format * new_f)177 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
178 					  struct bkey_format *old_f,
179 					  struct bkey_format *new_f)
180 {
181 	/* stupid integer promotion rules */
182 	ssize_t delta =
183 	    (((int) new_f->key_u64s - old_f->key_u64s) *
184 	     (int) nr.packed_keys) +
185 	    (((int) new_f->key_u64s - BKEY_U64s) *
186 	     (int) nr.unpacked_keys);
187 
188 	BUG_ON(delta + nr.live_u64s < 0);
189 
190 	return nr.live_u64s + delta;
191 }
192 
193 /**
194  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
195  *
196  * @c:		filesystem handle
197  * @b:		btree node to rewrite
198  * @nr:		number of keys for new node (i.e. b->nr)
199  * @new_f:	bkey format to translate keys to
200  *
201  * Returns: true if all re-packed keys will be able to fit in a new node.
202  *
203  * Assumes all keys will successfully pack with the new format.
204  */
bch2_btree_node_format_fits(struct bch_fs * c,struct btree * b,struct btree_nr_keys nr,struct bkey_format * new_f)205 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
206 				 struct btree_nr_keys nr,
207 				 struct bkey_format *new_f)
208 {
209 	size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
210 
211 	return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
212 }
213 
214 /* Btree node freeing/allocation: */
215 
__btree_node_free(struct btree_trans * trans,struct btree * b)216 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
217 {
218 	struct bch_fs *c = trans->c;
219 
220 	trace_and_count(c, btree_node_free, trans, b);
221 
222 	BUG_ON(btree_node_write_blocked(b));
223 	BUG_ON(btree_node_dirty(b));
224 	BUG_ON(btree_node_need_write(b));
225 	BUG_ON(b == btree_node_root(c, b));
226 	BUG_ON(b->ob.nr);
227 	BUG_ON(!list_empty(&b->write_blocked));
228 	BUG_ON(b->will_make_reachable);
229 
230 	clear_btree_node_noevict(b);
231 }
232 
bch2_btree_node_free_inmem(struct btree_trans * trans,struct btree_path * path,struct btree * b)233 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
234 				       struct btree_path *path,
235 				       struct btree *b)
236 {
237 	struct bch_fs *c = trans->c;
238 
239 	bch2_btree_node_lock_write_nofail(trans, path, &b->c);
240 
241 	__btree_node_free(trans, b);
242 
243 	mutex_lock(&c->btree_cache.lock);
244 	bch2_btree_node_hash_remove(&c->btree_cache, b);
245 	mutex_unlock(&c->btree_cache.lock);
246 
247 	six_unlock_write(&b->c.lock);
248 	mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
249 
250 	bch2_trans_node_drop(trans, b);
251 }
252 
bch2_btree_node_free_never_used(struct btree_update * as,struct btree_trans * trans,struct btree * b)253 static void bch2_btree_node_free_never_used(struct btree_update *as,
254 					    struct btree_trans *trans,
255 					    struct btree *b)
256 {
257 	struct bch_fs *c = as->c;
258 	struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
259 
260 	BUG_ON(!list_empty(&b->write_blocked));
261 	BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
262 
263 	b->will_make_reachable = 0;
264 	closure_put(&as->cl);
265 
266 	clear_btree_node_will_make_reachable(b);
267 	clear_btree_node_accessed(b);
268 	clear_btree_node_dirty_acct(c, b);
269 	clear_btree_node_need_write(b);
270 
271 	mutex_lock(&c->btree_cache.lock);
272 	__bch2_btree_node_hash_remove(&c->btree_cache, b);
273 	mutex_unlock(&c->btree_cache.lock);
274 
275 	BUG_ON(p->nr >= ARRAY_SIZE(p->b));
276 	p->b[p->nr++] = b;
277 
278 	six_unlock_intent(&b->c.lock);
279 
280 	bch2_trans_node_drop(trans, b);
281 }
282 
__bch2_btree_node_alloc(struct btree_trans * trans,struct disk_reservation * res,struct closure * cl,bool interior_node,unsigned target,unsigned flags)283 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
284 					     struct disk_reservation *res,
285 					     struct closure *cl,
286 					     bool interior_node,
287 					     unsigned target,
288 					     unsigned flags)
289 {
290 	struct bch_fs *c = trans->c;
291 	struct write_point *wp;
292 	struct btree *b;
293 	BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
294 	struct open_buckets obs = { .nr = 0 };
295 	struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
296 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
297 	unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
298 		? BTREE_NODE_RESERVE
299 		: 0;
300 	int ret;
301 
302 	b = bch2_btree_node_mem_alloc(trans, interior_node);
303 	if (IS_ERR(b))
304 		return b;
305 
306 	BUG_ON(b->ob.nr);
307 
308 	mutex_lock(&c->btree_reserve_cache_lock);
309 	if (c->btree_reserve_cache_nr > nr_reserve) {
310 		struct btree_alloc *a =
311 			&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
312 
313 		obs = a->ob;
314 		bkey_copy(&tmp.k, &a->k);
315 		mutex_unlock(&c->btree_reserve_cache_lock);
316 		goto out;
317 	}
318 	mutex_unlock(&c->btree_reserve_cache_lock);
319 retry:
320 	ret = bch2_alloc_sectors_start_trans(trans,
321 				      target ?:
322 				      c->opts.metadata_target ?:
323 				      c->opts.foreground_target,
324 				      0,
325 				      writepoint_ptr(&c->btree_write_point),
326 				      &devs_have,
327 				      res->nr_replicas,
328 				      min(res->nr_replicas,
329 					  c->opts.metadata_replicas_required),
330 				      watermark,
331 				      target ? BCH_WRITE_only_specified_devs : 0,
332 				      cl, &wp);
333 	if (unlikely(ret))
334 		goto err;
335 
336 	if (wp->sectors_free < btree_sectors(c)) {
337 		struct open_bucket *ob;
338 		unsigned i;
339 
340 		open_bucket_for_each(c, &wp->ptrs, ob, i)
341 			if (ob->sectors_free < btree_sectors(c))
342 				ob->sectors_free = 0;
343 
344 		bch2_alloc_sectors_done(c, wp);
345 		goto retry;
346 	}
347 
348 	bkey_btree_ptr_v2_init(&tmp.k);
349 	bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
350 
351 	bch2_open_bucket_get(c, wp, &obs);
352 	bch2_alloc_sectors_done(c, wp);
353 out:
354 	bkey_copy(&b->key, &tmp.k);
355 	b->ob = obs;
356 	six_unlock_write(&b->c.lock);
357 	six_unlock_intent(&b->c.lock);
358 
359 	return b;
360 err:
361 	bch2_btree_node_to_freelist(c, b);
362 	return ERR_PTR(ret);
363 }
364 
bch2_btree_node_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)365 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
366 					   struct btree_trans *trans,
367 					   unsigned level)
368 {
369 	struct bch_fs *c = as->c;
370 	struct btree *b;
371 	struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
372 	int ret;
373 
374 	BUG_ON(level >= BTREE_MAX_DEPTH);
375 	BUG_ON(!p->nr);
376 
377 	b = p->b[--p->nr];
378 
379 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
380 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
381 
382 	set_btree_node_accessed(b);
383 	set_btree_node_dirty_acct(c, b);
384 	set_btree_node_need_write(b);
385 
386 	bch2_bset_init_first(b, &b->data->keys);
387 	b->c.level	= level;
388 	b->c.btree_id	= as->btree_id;
389 	b->version_ondisk = c->sb.version;
390 
391 	memset(&b->nr, 0, sizeof(b->nr));
392 	b->data->magic = cpu_to_le64(bset_magic(c));
393 	memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
394 	b->data->flags = 0;
395 	SET_BTREE_NODE_ID(b->data, as->btree_id);
396 	SET_BTREE_NODE_LEVEL(b->data, level);
397 
398 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
399 		struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
400 
401 		bp->v.mem_ptr		= 0;
402 		bp->v.seq		= b->data->keys.seq;
403 		bp->v.sectors_written	= 0;
404 	}
405 
406 	SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
407 
408 	bch2_btree_build_aux_trees(b);
409 
410 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
411 	BUG_ON(ret);
412 
413 	trace_and_count(c, btree_node_alloc, trans, b);
414 	bch2_increment_clock(c, btree_sectors(c), WRITE);
415 	return b;
416 }
417 
btree_set_min(struct btree * b,struct bpos pos)418 static void btree_set_min(struct btree *b, struct bpos pos)
419 {
420 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
421 		bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
422 	b->data->min_key = pos;
423 }
424 
btree_set_max(struct btree * b,struct bpos pos)425 static void btree_set_max(struct btree *b, struct bpos pos)
426 {
427 	b->key.k.p = pos;
428 	b->data->max_key = pos;
429 }
430 
bch2_btree_node_alloc_replacement(struct btree_update * as,struct btree_trans * trans,struct btree * b)431 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
432 						       struct btree_trans *trans,
433 						       struct btree *b)
434 {
435 	struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
436 	struct bkey_format format = bch2_btree_calc_format(b);
437 
438 	/*
439 	 * The keys might expand with the new format - if they wouldn't fit in
440 	 * the btree node anymore, use the old format for now:
441 	 */
442 	if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
443 		format = b->format;
444 
445 	SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
446 
447 	btree_set_min(n, b->data->min_key);
448 	btree_set_max(n, b->data->max_key);
449 
450 	n->data->format		= format;
451 	btree_node_set_format(n, format);
452 
453 	bch2_btree_sort_into(as->c, n, b);
454 
455 	btree_node_reset_sib_u64s(n);
456 	return n;
457 }
458 
__btree_root_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)459 static struct btree *__btree_root_alloc(struct btree_update *as,
460 				struct btree_trans *trans, unsigned level)
461 {
462 	struct btree *b = bch2_btree_node_alloc(as, trans, level);
463 
464 	btree_set_min(b, POS_MIN);
465 	btree_set_max(b, SPOS_MAX);
466 	b->data->format = bch2_btree_calc_format(b);
467 
468 	btree_node_set_format(b, b->data->format);
469 	bch2_btree_build_aux_trees(b);
470 
471 	return b;
472 }
473 
bch2_btree_reserve_put(struct btree_update * as,struct btree_trans * trans)474 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
475 {
476 	struct bch_fs *c = as->c;
477 	struct prealloc_nodes *p;
478 
479 	for (p = as->prealloc_nodes;
480 	     p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
481 	     p++) {
482 		while (p->nr) {
483 			struct btree *b = p->b[--p->nr];
484 
485 			mutex_lock(&c->btree_reserve_cache_lock);
486 
487 			if (c->btree_reserve_cache_nr <
488 			    ARRAY_SIZE(c->btree_reserve_cache)) {
489 				struct btree_alloc *a =
490 					&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
491 
492 				a->ob = b->ob;
493 				b->ob.nr = 0;
494 				bkey_copy(&a->k, &b->key);
495 			} else {
496 				bch2_open_buckets_put(c, &b->ob);
497 			}
498 
499 			mutex_unlock(&c->btree_reserve_cache_lock);
500 
501 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
502 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
503 			__btree_node_free(trans, b);
504 			bch2_btree_node_to_freelist(c, b);
505 		}
506 	}
507 }
508 
bch2_btree_reserve_get(struct btree_trans * trans,struct btree_update * as,unsigned nr_nodes[2],unsigned target,unsigned flags,struct closure * cl)509 static int bch2_btree_reserve_get(struct btree_trans *trans,
510 				  struct btree_update *as,
511 				  unsigned nr_nodes[2],
512 				  unsigned target,
513 				  unsigned flags,
514 				  struct closure *cl)
515 {
516 	struct btree *b;
517 	unsigned interior;
518 	int ret = 0;
519 
520 	BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
521 
522 	/*
523 	 * Protects reaping from the btree node cache and using the btree node
524 	 * open bucket reserve:
525 	 */
526 	ret = bch2_btree_cache_cannibalize_lock(trans, cl);
527 	if (ret)
528 		return ret;
529 
530 	for (interior = 0; interior < 2; interior++) {
531 		struct prealloc_nodes *p = as->prealloc_nodes + interior;
532 
533 		while (p->nr < nr_nodes[interior]) {
534 			b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
535 						    interior, target, flags);
536 			if (IS_ERR(b)) {
537 				ret = PTR_ERR(b);
538 				goto err;
539 			}
540 
541 			p->b[p->nr++] = b;
542 		}
543 	}
544 err:
545 	bch2_btree_cache_cannibalize_unlock(trans);
546 	return ret;
547 }
548 
549 /* Asynchronous interior node update machinery */
550 
bch2_btree_update_free(struct btree_update * as,struct btree_trans * trans)551 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
552 {
553 	struct bch_fs *c = as->c;
554 
555 	if (as->took_gc_lock)
556 		up_read(&c->gc_lock);
557 	as->took_gc_lock = false;
558 
559 	bch2_journal_pin_drop(&c->journal, &as->journal);
560 	bch2_journal_pin_flush(&c->journal, &as->journal);
561 	bch2_disk_reservation_put(c, &as->disk_res);
562 	bch2_btree_reserve_put(as, trans);
563 
564 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
565 			       as->start_time);
566 
567 	mutex_lock(&c->btree_interior_update_lock);
568 	list_del(&as->unwritten_list);
569 	list_del(&as->list);
570 
571 	closure_debug_destroy(&as->cl);
572 	mempool_free(as, &c->btree_interior_update_pool);
573 
574 	/*
575 	 * Have to do the wakeup with btree_interior_update_lock still held,
576 	 * since being on btree_interior_update_list is our ref on @c:
577 	 */
578 	closure_wake_up(&c->btree_interior_update_wait);
579 
580 	mutex_unlock(&c->btree_interior_update_lock);
581 }
582 
btree_update_add_key(struct btree_update * as,struct keylist * keys,struct btree * b)583 static void btree_update_add_key(struct btree_update *as,
584 				 struct keylist *keys, struct btree *b)
585 {
586 	struct bkey_i *k = &b->key;
587 
588 	BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
589 	       ARRAY_SIZE(as->_old_keys));
590 
591 	bkey_copy(keys->top, k);
592 	bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
593 
594 	bch2_keylist_push(keys);
595 }
596 
btree_update_new_nodes_marked_sb(struct btree_update * as)597 static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
598 {
599 	for_each_keylist_key(&as->new_keys, k)
600 		if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
601 			return false;
602 	return true;
603 }
604 
btree_update_new_nodes_mark_sb(struct btree_update * as)605 static void btree_update_new_nodes_mark_sb(struct btree_update *as)
606 {
607 	struct bch_fs *c = as->c;
608 
609 	mutex_lock(&c->sb_lock);
610 	for_each_keylist_key(&as->new_keys, k)
611 		bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
612 
613 	bch2_write_super(c);
614 	mutex_unlock(&c->sb_lock);
615 }
616 
617 /*
618  * The transactional part of an interior btree node update, where we journal the
619  * update we did to the interior node and update alloc info:
620  */
btree_update_nodes_written_trans(struct btree_trans * trans,struct btree_update * as)621 static int btree_update_nodes_written_trans(struct btree_trans *trans,
622 					    struct btree_update *as)
623 {
624 	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
625 	int ret = PTR_ERR_OR_ZERO(e);
626 	if (ret)
627 		return ret;
628 
629 	memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
630 
631 	trans->journal_pin = &as->journal;
632 
633 	for_each_keylist_key(&as->old_keys, k) {
634 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
635 
636 		ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
637 					   BTREE_TRIGGER_transactional);
638 		if (ret)
639 			return ret;
640 	}
641 
642 	for_each_keylist_key(&as->new_keys, k) {
643 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
644 
645 		ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
646 					   BTREE_TRIGGER_transactional);
647 		if (ret)
648 			return ret;
649 	}
650 
651 	return 0;
652 }
653 
654 /* If the node has been reused, we might be reading uninitialized memory - that's fine: */
btree_node_seq_matches(struct btree * b,__le64 seq)655 static noinline __no_kmsan_checks bool btree_node_seq_matches(struct btree *b, __le64 seq)
656 {
657 	struct btree_node *b_data = READ_ONCE(b->data);
658 
659 	return (b_data ? b_data->keys.seq : 0) == seq;
660 }
661 
btree_update_nodes_written(struct btree_update * as)662 static void btree_update_nodes_written(struct btree_update *as)
663 {
664 	struct bch_fs *c = as->c;
665 	struct btree *b;
666 	struct btree_trans *trans = bch2_trans_get(c);
667 	u64 journal_seq = 0;
668 	unsigned i;
669 	int ret;
670 
671 	/*
672 	 * If we're already in an error state, it might be because a btree node
673 	 * was never written, and we might be trying to free that same btree
674 	 * node here, but it won't have been marked as allocated and we'll see
675 	 * spurious disk usage inconsistencies in the transactional part below
676 	 * if we don't skip it:
677 	 */
678 	ret = bch2_journal_error(&c->journal);
679 	if (ret)
680 		goto err;
681 
682 	if (!btree_update_new_nodes_marked_sb(as))
683 		btree_update_new_nodes_mark_sb(as);
684 
685 	/*
686 	 * Wait for any in flight writes to finish before we free the old nodes
687 	 * on disk. But we haven't pinned those old nodes in the btree cache,
688 	 * they might have already been evicted.
689 	 *
690 	 * The update we're completing deleted references to those nodes from the
691 	 * btree, so we know if they've been evicted they can't be pulled back in.
692 	 * We just have to check if the nodes we have pointers to are still those
693 	 * old nodes, and haven't been reused.
694 	 *
695 	 * This can't be done locklessly because the data buffer might have been
696 	 * vmalloc allocated, and they're not RCU freed. We also need the
697 	 * __no_kmsan_checks annotation because even with the btree node read
698 	 * lock, nothing tells us that the data buffer has been initialized (if
699 	 * the btree node has been reused for a different node, and the data
700 	 * buffer swapped for a new data buffer).
701 	 */
702 	for (i = 0; i < as->nr_old_nodes; i++) {
703 		b = as->old_nodes[i];
704 
705 		bch2_trans_begin(trans);
706 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
707 		bool seq_matches = btree_node_seq_matches(b, as->old_nodes_seq[i]);
708 		six_unlock_read(&b->c.lock);
709 		bch2_trans_unlock_long(trans);
710 
711 		if (seq_matches)
712 			wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
713 				       TASK_UNINTERRUPTIBLE);
714 	}
715 
716 	/*
717 	 * We did an update to a parent node where the pointers we added pointed
718 	 * to child nodes that weren't written yet: now, the child nodes have
719 	 * been written so we can write out the update to the interior node.
720 	 */
721 
722 	/*
723 	 * We can't call into journal reclaim here: we'd block on the journal
724 	 * reclaim lock, but we may need to release the open buckets we have
725 	 * pinned in order for other btree updates to make forward progress, and
726 	 * journal reclaim does btree updates when flushing bkey_cached entries,
727 	 * which may require allocations as well.
728 	 */
729 	ret = commit_do(trans, &as->disk_res, &journal_seq,
730 			BCH_WATERMARK_interior_updates|
731 			BCH_TRANS_COMMIT_no_enospc|
732 			BCH_TRANS_COMMIT_no_check_rw|
733 			BCH_TRANS_COMMIT_journal_reclaim,
734 			btree_update_nodes_written_trans(trans, as));
735 	bch2_trans_unlock(trans);
736 
737 	bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
738 			     "%s", bch2_err_str(ret));
739 err:
740 	/*
741 	 * Ensure transaction is unlocked before using btree_node_lock_nopath()
742 	 * (the use of which is always suspect, we need to work on removing this
743 	 * in the future)
744 	 *
745 	 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get()
746 	 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may
747 	 * rarely end up with a locked path besides the one we have here:
748 	 */
749 	bch2_trans_unlock(trans);
750 	bch2_trans_begin(trans);
751 
752 	/*
753 	 * We have to be careful because another thread might be getting ready
754 	 * to free as->b and calling btree_update_reparent() on us - we'll
755 	 * recheck under btree_update_lock below:
756 	 */
757 	b = READ_ONCE(as->b);
758 	if (b) {
759 		/*
760 		 * @b is the node we did the final insert into:
761 		 *
762 		 * On failure to get a journal reservation, we still have to
763 		 * unblock the write and allow most of the write path to happen
764 		 * so that shutdown works, but the i->journal_seq mechanism
765 		 * won't work to prevent the btree write from being visible (we
766 		 * didn't get a journal sequence number) - instead
767 		 * __bch2_btree_node_write() doesn't do the actual write if
768 		 * we're in journal error state:
769 		 */
770 
771 		btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans,
772 						as->btree_id, b->c.level, b->key.k.p);
773 		struct btree_path *path = trans->paths + path_idx;
774 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
775 		mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
776 		path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
777 		path->l[b->c.level].b = b;
778 
779 		bch2_btree_node_lock_write_nofail(trans, path, &b->c);
780 
781 		mutex_lock(&c->btree_interior_update_lock);
782 
783 		list_del(&as->write_blocked_list);
784 		if (list_empty(&b->write_blocked))
785 			clear_btree_node_write_blocked(b);
786 
787 		/*
788 		 * Node might have been freed, recheck under
789 		 * btree_interior_update_lock:
790 		 */
791 		if (as->b == b) {
792 			BUG_ON(!b->c.level);
793 			BUG_ON(!btree_node_dirty(b));
794 
795 			if (!ret) {
796 				struct bset *last = btree_bset_last(b);
797 
798 				last->journal_seq = cpu_to_le64(
799 							     max(journal_seq,
800 								 le64_to_cpu(last->journal_seq)));
801 
802 				bch2_btree_add_journal_pin(c, b, journal_seq);
803 			} else {
804 				/*
805 				 * If we didn't get a journal sequence number we
806 				 * can't write this btree node, because recovery
807 				 * won't know to ignore this write:
808 				 */
809 				set_btree_node_never_write(b);
810 			}
811 		}
812 
813 		mutex_unlock(&c->btree_interior_update_lock);
814 
815 		mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
816 		six_unlock_write(&b->c.lock);
817 
818 		btree_node_write_if_need(trans, b, SIX_LOCK_intent);
819 		btree_node_unlock(trans, path, b->c.level);
820 		bch2_path_put(trans, path_idx, true);
821 	}
822 
823 	bch2_journal_pin_drop(&c->journal, &as->journal);
824 
825 	mutex_lock(&c->btree_interior_update_lock);
826 	for (i = 0; i < as->nr_new_nodes; i++) {
827 		b = as->new_nodes[i];
828 
829 		BUG_ON(b->will_make_reachable != (unsigned long) as);
830 		b->will_make_reachable = 0;
831 		clear_btree_node_will_make_reachable(b);
832 	}
833 	mutex_unlock(&c->btree_interior_update_lock);
834 
835 	for (i = 0; i < as->nr_new_nodes; i++) {
836 		b = as->new_nodes[i];
837 
838 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
839 		btree_node_write_if_need(trans, b, SIX_LOCK_read);
840 		six_unlock_read(&b->c.lock);
841 	}
842 
843 	for (i = 0; i < as->nr_open_buckets; i++)
844 		bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
845 
846 	bch2_btree_update_free(as, trans);
847 	bch2_trans_put(trans);
848 }
849 
btree_interior_update_work(struct work_struct * work)850 static void btree_interior_update_work(struct work_struct *work)
851 {
852 	struct bch_fs *c =
853 		container_of(work, struct bch_fs, btree_interior_update_work);
854 	struct btree_update *as;
855 
856 	while (1) {
857 		mutex_lock(&c->btree_interior_update_lock);
858 		as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
859 					      struct btree_update, unwritten_list);
860 		if (as && !as->nodes_written)
861 			as = NULL;
862 		mutex_unlock(&c->btree_interior_update_lock);
863 
864 		if (!as)
865 			break;
866 
867 		btree_update_nodes_written(as);
868 	}
869 }
870 
CLOSURE_CALLBACK(btree_update_set_nodes_written)871 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
872 {
873 	closure_type(as, struct btree_update, cl);
874 	struct bch_fs *c = as->c;
875 
876 	mutex_lock(&c->btree_interior_update_lock);
877 	as->nodes_written = true;
878 	mutex_unlock(&c->btree_interior_update_lock);
879 
880 	queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
881 }
882 
883 /*
884  * We're updating @b with pointers to nodes that haven't finished writing yet:
885  * block @b from being written until @as completes
886  */
btree_update_updated_node(struct btree_update * as,struct btree * b)887 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
888 {
889 	struct bch_fs *c = as->c;
890 
891 	BUG_ON(as->mode != BTREE_UPDATE_none);
892 	BUG_ON(as->update_level_end < b->c.level);
893 	BUG_ON(!btree_node_dirty(b));
894 	BUG_ON(!b->c.level);
895 
896 	mutex_lock(&c->btree_interior_update_lock);
897 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
898 
899 	as->mode	= BTREE_UPDATE_node;
900 	as->b		= b;
901 	as->update_level_end = b->c.level;
902 
903 	set_btree_node_write_blocked(b);
904 	list_add(&as->write_blocked_list, &b->write_blocked);
905 
906 	mutex_unlock(&c->btree_interior_update_lock);
907 }
908 
bch2_update_reparent_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)909 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
910 				struct journal_entry_pin *_pin, u64 seq)
911 {
912 	return 0;
913 }
914 
btree_update_reparent(struct btree_update * as,struct btree_update * child)915 static void btree_update_reparent(struct btree_update *as,
916 				  struct btree_update *child)
917 {
918 	struct bch_fs *c = as->c;
919 
920 	lockdep_assert_held(&c->btree_interior_update_lock);
921 
922 	child->b = NULL;
923 	child->mode = BTREE_UPDATE_update;
924 
925 	bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
926 			      bch2_update_reparent_journal_pin_flush);
927 }
928 
btree_update_updated_root(struct btree_update * as,struct btree * b)929 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
930 {
931 	struct bkey_i *insert = &b->key;
932 	struct bch_fs *c = as->c;
933 
934 	BUG_ON(as->mode != BTREE_UPDATE_none);
935 
936 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
937 	       ARRAY_SIZE(as->journal_entries));
938 
939 	as->journal_u64s +=
940 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
941 				  BCH_JSET_ENTRY_btree_root,
942 				  b->c.btree_id, b->c.level,
943 				  insert, insert->k.u64s);
944 
945 	mutex_lock(&c->btree_interior_update_lock);
946 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
947 
948 	as->mode	= BTREE_UPDATE_root;
949 	mutex_unlock(&c->btree_interior_update_lock);
950 }
951 
952 /*
953  * bch2_btree_update_add_new_node:
954  *
955  * This causes @as to wait on @b to be written, before it gets to
956  * bch2_btree_update_nodes_written
957  *
958  * Additionally, it sets b->will_make_reachable to prevent any additional writes
959  * to @b from happening besides the first until @b is reachable on disk
960  *
961  * And it adds @b to the list of @as's new nodes, so that we can update sector
962  * counts in bch2_btree_update_nodes_written:
963  */
bch2_btree_update_add_new_node(struct btree_update * as,struct btree * b)964 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
965 {
966 	struct bch_fs *c = as->c;
967 
968 	closure_get(&as->cl);
969 
970 	mutex_lock(&c->btree_interior_update_lock);
971 	BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
972 	BUG_ON(b->will_make_reachable);
973 
974 	as->new_nodes[as->nr_new_nodes++] = b;
975 	b->will_make_reachable = 1UL|(unsigned long) as;
976 	set_btree_node_will_make_reachable(b);
977 
978 	mutex_unlock(&c->btree_interior_update_lock);
979 
980 	btree_update_add_key(as, &as->new_keys, b);
981 
982 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
983 		unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
984 		unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
985 
986 		bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
987 			cpu_to_le16(sectors);
988 	}
989 }
990 
991 /*
992  * returns true if @b was a new node
993  */
btree_update_drop_new_node(struct bch_fs * c,struct btree * b)994 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
995 {
996 	struct btree_update *as;
997 	unsigned long v;
998 	unsigned i;
999 
1000 	mutex_lock(&c->btree_interior_update_lock);
1001 	/*
1002 	 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
1003 	 * dropped when it gets written by bch2_btree_complete_write - the
1004 	 * xchg() is for synchronization with bch2_btree_complete_write:
1005 	 */
1006 	v = xchg(&b->will_make_reachable, 0);
1007 	clear_btree_node_will_make_reachable(b);
1008 	as = (struct btree_update *) (v & ~1UL);
1009 
1010 	if (!as) {
1011 		mutex_unlock(&c->btree_interior_update_lock);
1012 		return;
1013 	}
1014 
1015 	for (i = 0; i < as->nr_new_nodes; i++)
1016 		if (as->new_nodes[i] == b)
1017 			goto found;
1018 
1019 	BUG();
1020 found:
1021 	array_remove_item(as->new_nodes, as->nr_new_nodes, i);
1022 	mutex_unlock(&c->btree_interior_update_lock);
1023 
1024 	if (v & 1)
1025 		closure_put(&as->cl);
1026 }
1027 
bch2_btree_update_get_open_buckets(struct btree_update * as,struct btree * b)1028 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1029 {
1030 	while (b->ob.nr)
1031 		as->open_buckets[as->nr_open_buckets++] =
1032 			b->ob.v[--b->ob.nr];
1033 }
1034 
bch2_btree_update_will_free_node_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)1035 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1036 				struct journal_entry_pin *_pin, u64 seq)
1037 {
1038 	return 0;
1039 }
1040 
1041 /*
1042  * @b is being split/rewritten: it may have pointers to not-yet-written btree
1043  * nodes and thus outstanding btree_updates - redirect @b's
1044  * btree_updates to point to this btree_update:
1045  */
bch2_btree_interior_update_will_free_node(struct btree_update * as,struct btree * b)1046 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1047 						      struct btree *b)
1048 {
1049 	struct bch_fs *c = as->c;
1050 	struct btree_update *p, *n;
1051 	struct btree_write *w;
1052 
1053 	set_btree_node_dying(b);
1054 
1055 	if (btree_node_fake(b))
1056 		return;
1057 
1058 	mutex_lock(&c->btree_interior_update_lock);
1059 
1060 	/*
1061 	 * Does this node have any btree_update operations preventing
1062 	 * it from being written?
1063 	 *
1064 	 * If so, redirect them to point to this btree_update: we can
1065 	 * write out our new nodes, but we won't make them visible until those
1066 	 * operations complete
1067 	 */
1068 	list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1069 		list_del_init(&p->write_blocked_list);
1070 		btree_update_reparent(as, p);
1071 
1072 		/*
1073 		 * for flush_held_btree_writes() waiting on updates to flush or
1074 		 * nodes to be writeable:
1075 		 */
1076 		closure_wake_up(&c->btree_interior_update_wait);
1077 	}
1078 
1079 	clear_btree_node_dirty_acct(c, b);
1080 	clear_btree_node_need_write(b);
1081 	clear_btree_node_write_blocked(b);
1082 
1083 	/*
1084 	 * Does this node have unwritten data that has a pin on the journal?
1085 	 *
1086 	 * If so, transfer that pin to the btree_update operation -
1087 	 * note that if we're freeing multiple nodes, we only need to keep the
1088 	 * oldest pin of any of the nodes we're freeing. We'll release the pin
1089 	 * when the new nodes are persistent and reachable on disk:
1090 	 */
1091 	w = btree_current_write(b);
1092 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1093 			      bch2_btree_update_will_free_node_journal_pin_flush);
1094 	bch2_journal_pin_drop(&c->journal, &w->journal);
1095 
1096 	w = btree_prev_write(b);
1097 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1098 			      bch2_btree_update_will_free_node_journal_pin_flush);
1099 	bch2_journal_pin_drop(&c->journal, &w->journal);
1100 
1101 	mutex_unlock(&c->btree_interior_update_lock);
1102 
1103 	/*
1104 	 * Is this a node that isn't reachable on disk yet?
1105 	 *
1106 	 * Nodes that aren't reachable yet have writes blocked until they're
1107 	 * reachable - now that we've cancelled any pending writes and moved
1108 	 * things waiting on that write to wait on this update, we can drop this
1109 	 * node from the list of nodes that the other update is making
1110 	 * reachable, prior to freeing it:
1111 	 */
1112 	btree_update_drop_new_node(c, b);
1113 
1114 	btree_update_add_key(as, &as->old_keys, b);
1115 
1116 	as->old_nodes[as->nr_old_nodes] = b;
1117 	as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1118 	as->nr_old_nodes++;
1119 }
1120 
bch2_btree_update_done(struct btree_update * as,struct btree_trans * trans)1121 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1122 {
1123 	struct bch_fs *c = as->c;
1124 	u64 start_time = as->start_time;
1125 
1126 	BUG_ON(as->mode == BTREE_UPDATE_none);
1127 
1128 	if (as->took_gc_lock)
1129 		up_read(&as->c->gc_lock);
1130 	as->took_gc_lock = false;
1131 
1132 	bch2_btree_reserve_put(as, trans);
1133 
1134 	continue_at(&as->cl, btree_update_set_nodes_written,
1135 		    as->c->btree_interior_update_worker);
1136 
1137 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1138 			       start_time);
1139 }
1140 
1141 static const char * const btree_node_reawrite_reason_strs[] = {
1142 #define x(n)	#n,
1143 	BTREE_NODE_REWRITE_REASON()
1144 #undef x
1145 	NULL,
1146 };
1147 
1148 static struct btree_update *
bch2_btree_update_start(struct btree_trans * trans,struct btree_path * path,unsigned level_start,bool split,unsigned target,unsigned flags)1149 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1150 			unsigned level_start, bool split,
1151 			unsigned target, unsigned flags)
1152 {
1153 	struct bch_fs *c = trans->c;
1154 	struct btree_update *as;
1155 	u64 start_time = local_clock();
1156 	int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1157 		? BCH_DISK_RESERVATION_NOFAIL : 0;
1158 	unsigned nr_nodes[2] = { 0, 0 };
1159 	unsigned level_end = level_start;
1160 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1161 	int ret = 0;
1162 	u32 restart_count = trans->restart_count;
1163 
1164 	BUG_ON(!path->should_be_locked);
1165 
1166 	if (watermark == BCH_WATERMARK_copygc)
1167 		watermark = BCH_WATERMARK_btree_copygc;
1168 	if (watermark < BCH_WATERMARK_btree)
1169 		watermark = BCH_WATERMARK_btree;
1170 
1171 	flags &= ~BCH_WATERMARK_MASK;
1172 	flags |= watermark;
1173 
1174 	if (watermark < BCH_WATERMARK_reclaim &&
1175 	    test_bit(JOURNAL_space_low, &c->journal.flags)) {
1176 		if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1177 			return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock);
1178 
1179 		ret = drop_locks_do(trans,
1180 			({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; }));
1181 		if (ret)
1182 			return ERR_PTR(ret);
1183 	}
1184 
1185 	while (1) {
1186 		nr_nodes[!!level_end] += 1 + split;
1187 		level_end++;
1188 
1189 		ret = bch2_btree_path_upgrade(trans, path, level_end + 1);
1190 		if (ret)
1191 			return ERR_PTR(ret);
1192 
1193 		if (!btree_path_node(path, level_end)) {
1194 			/* Allocating new root? */
1195 			nr_nodes[1] += split;
1196 			level_end = BTREE_MAX_DEPTH;
1197 			break;
1198 		}
1199 
1200 		/*
1201 		 * Always check for space for two keys, even if we won't have to
1202 		 * split at prior level - it might have been a merge instead:
1203 		 */
1204 		if (bch2_btree_node_insert_fits(path->l[level_end].b,
1205 						BKEY_BTREE_PTR_U64s_MAX * 2))
1206 			break;
1207 
1208 		split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1209 	}
1210 
1211 	if (!down_read_trylock(&c->gc_lock)) {
1212 		ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1213 		if (ret) {
1214 			up_read(&c->gc_lock);
1215 			return ERR_PTR(ret);
1216 		}
1217 	}
1218 
1219 	as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1220 	memset(as, 0, sizeof(*as));
1221 	closure_init(&as->cl, NULL);
1222 	as->c			= c;
1223 	as->start_time		= start_time;
1224 	as->ip_started		= _RET_IP_;
1225 	as->mode		= BTREE_UPDATE_none;
1226 	as->flags		= flags;
1227 	as->took_gc_lock	= true;
1228 	as->btree_id		= path->btree_id;
1229 	as->update_level_start	= level_start;
1230 	as->update_level_end	= level_end;
1231 	INIT_LIST_HEAD(&as->list);
1232 	INIT_LIST_HEAD(&as->unwritten_list);
1233 	INIT_LIST_HEAD(&as->write_blocked_list);
1234 	bch2_keylist_init(&as->old_keys, as->_old_keys);
1235 	bch2_keylist_init(&as->new_keys, as->_new_keys);
1236 	bch2_keylist_init(&as->parent_keys, as->inline_keys);
1237 
1238 	mutex_lock(&c->btree_interior_update_lock);
1239 	list_add_tail(&as->list, &c->btree_interior_update_list);
1240 	mutex_unlock(&c->btree_interior_update_lock);
1241 
1242 	struct btree *b = btree_path_node(path, path->level);
1243 	as->node_start	= b->data->min_key;
1244 	as->node_end	= b->data->max_key;
1245 	as->node_needed_rewrite = btree_node_rewrite_reason(b);
1246 	as->node_written = b->written;
1247 	as->node_sectors = btree_buf_bytes(b) >> 9;
1248 	as->node_remaining = __bch2_btree_u64s_remaining(b,
1249 				btree_bkey_last(b, bset_tree_last(b)));
1250 
1251 	/*
1252 	 * We don't want to allocate if we're in an error state, that can cause
1253 	 * deadlock on emergency shutdown due to open buckets getting stuck in
1254 	 * the btree_reserve_cache after allocator shutdown has cleared it out.
1255 	 * This check needs to come after adding us to the btree_interior_update
1256 	 * list but before calling bch2_btree_reserve_get, to synchronize with
1257 	 * __bch2_fs_read_only().
1258 	 */
1259 	ret = bch2_journal_error(&c->journal);
1260 	if (ret)
1261 		goto err;
1262 
1263 	ret = bch2_disk_reservation_get(c, &as->disk_res,
1264 			(nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1265 			READ_ONCE(c->opts.metadata_replicas),
1266 			disk_res_flags);
1267 	if (ret)
1268 		goto err;
1269 
1270 	ret = bch2_btree_reserve_get(trans, as, nr_nodes, target, flags, NULL);
1271 	if (bch2_err_matches(ret, ENOSPC) ||
1272 	    bch2_err_matches(ret, ENOMEM)) {
1273 		struct closure cl;
1274 
1275 		/*
1276 		 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1277 		 * flag
1278 		 */
1279 		if (bch2_err_matches(ret, ENOSPC) &&
1280 		    (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1281 		    watermark < BCH_WATERMARK_reclaim) {
1282 			ret = bch_err_throw(c, journal_reclaim_would_deadlock);
1283 			goto err;
1284 		}
1285 
1286 		closure_init_stack(&cl);
1287 
1288 		do {
1289 			ret = bch2_btree_reserve_get(trans, as, nr_nodes, target, flags, &cl);
1290 			if (!bch2_err_matches(ret, BCH_ERR_operation_blocked))
1291 				break;
1292 			bch2_trans_unlock(trans);
1293 			bch2_wait_on_allocator(c, &cl);
1294 		} while (1);
1295 	}
1296 
1297 	if (ret) {
1298 		trace_and_count(c, btree_reserve_get_fail, trans->fn,
1299 				_RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1300 		goto err;
1301 	}
1302 
1303 	ret = bch2_trans_relock(trans);
1304 	if (ret)
1305 		goto err;
1306 
1307 	bch2_trans_verify_not_restarted(trans, restart_count);
1308 	return as;
1309 err:
1310 	bch2_btree_update_free(as, trans);
1311 	if (!bch2_err_matches(ret, ENOSPC) &&
1312 	    !bch2_err_matches(ret, EROFS) &&
1313 	    ret != -BCH_ERR_journal_reclaim_would_deadlock &&
1314 	    ret != -BCH_ERR_journal_shutdown)
1315 		bch_err_fn_ratelimited(c, ret);
1316 	return ERR_PTR(ret);
1317 }
1318 
1319 /* Btree root updates: */
1320 
bch2_btree_set_root_inmem(struct bch_fs * c,struct btree * b)1321 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1322 {
1323 	/* Root nodes cannot be reaped */
1324 	mutex_lock(&c->btree_cache.lock);
1325 	list_del_init(&b->list);
1326 	mutex_unlock(&c->btree_cache.lock);
1327 
1328 	mutex_lock(&c->btree_root_lock);
1329 	bch2_btree_id_root(c, b->c.btree_id)->b = b;
1330 	mutex_unlock(&c->btree_root_lock);
1331 
1332 	bch2_recalc_btree_reserve(c);
1333 }
1334 
bch2_btree_set_root(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,bool nofail)1335 static int bch2_btree_set_root(struct btree_update *as,
1336 			       struct btree_trans *trans,
1337 			       struct btree_path *path,
1338 			       struct btree *b,
1339 			       bool nofail)
1340 {
1341 	struct bch_fs *c = as->c;
1342 
1343 	trace_and_count(c, btree_node_set_root, trans, b);
1344 
1345 	struct btree *old = btree_node_root(c, b);
1346 
1347 	/*
1348 	 * Ensure no one is using the old root while we switch to the
1349 	 * new root:
1350 	 */
1351 	if (nofail) {
1352 		bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1353 	} else {
1354 		int ret = bch2_btree_node_lock_write(trans, path, &old->c);
1355 		if (ret)
1356 			return ret;
1357 	}
1358 
1359 	bch2_btree_set_root_inmem(c, b);
1360 
1361 	btree_update_updated_root(as, b);
1362 
1363 	/*
1364 	 * Unlock old root after new root is visible:
1365 	 *
1366 	 * The new root isn't persistent, but that's ok: we still have
1367 	 * an intent lock on the new root, and any updates that would
1368 	 * depend on the new root would have to update the new root.
1369 	 */
1370 	bch2_btree_node_unlock_write(trans, path, old);
1371 	return 0;
1372 }
1373 
1374 /* Interior node updates: */
1375 
bch2_insert_fixup_btree_ptr(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter * node_iter,struct bkey_i * insert)1376 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1377 					struct btree_trans *trans,
1378 					struct btree_path *path,
1379 					struct btree *b,
1380 					struct btree_node_iter *node_iter,
1381 					struct bkey_i *insert)
1382 {
1383 	struct bch_fs *c = as->c;
1384 	struct bkey_packed *k;
1385 	struct printbuf buf = PRINTBUF;
1386 	unsigned long old, new;
1387 
1388 	BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1389 	       !btree_ptr_sectors_written(bkey_i_to_s_c(insert)));
1390 
1391 	if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags)))
1392 		bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1393 
1394 	struct bkey_validate_context from = (struct bkey_validate_context) {
1395 		.from	= BKEY_VALIDATE_btree_node,
1396 		.level	= b->c.level,
1397 		.btree	= b->c.btree_id,
1398 		.flags	= BCH_VALIDATE_commit,
1399 	};
1400 	if (bch2_bkey_validate(c, bkey_i_to_s_c(insert), from) ?:
1401 	    bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), from)) {
1402 		bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__);
1403 		dump_stack();
1404 	}
1405 
1406 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1407 	       ARRAY_SIZE(as->journal_entries));
1408 
1409 	as->journal_u64s +=
1410 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1411 				  BCH_JSET_ENTRY_btree_keys,
1412 				  b->c.btree_id, b->c.level,
1413 				  insert, insert->k.u64s);
1414 
1415 	while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1416 	       bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1417 		bch2_btree_node_iter_advance(node_iter, b);
1418 
1419 	bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1420 	set_btree_node_dirty_acct(c, b);
1421 
1422 	old = READ_ONCE(b->flags);
1423 	do {
1424 		new = old;
1425 
1426 		new &= ~BTREE_WRITE_TYPE_MASK;
1427 		new |= BTREE_WRITE_interior;
1428 		new |= 1 << BTREE_NODE_need_write;
1429 	} while (!try_cmpxchg(&b->flags, &old, new));
1430 
1431 	printbuf_exit(&buf);
1432 }
1433 
1434 static int
bch2_btree_insert_keys_interior(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter node_iter,struct keylist * keys)1435 bch2_btree_insert_keys_interior(struct btree_update *as,
1436 				struct btree_trans *trans,
1437 				struct btree_path *path,
1438 				struct btree *b,
1439 				struct btree_node_iter node_iter,
1440 				struct keylist *keys)
1441 {
1442 	struct bkey_i *insert = bch2_keylist_front(keys);
1443 	struct bkey_packed *k;
1444 
1445 	BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1446 
1447 	while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1448 	       (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1449 		;
1450 
1451 	for (;
1452 	     insert != keys->top && bpos_le(insert->k.p, b->key.k.p);
1453 	     insert = bkey_next(insert))
1454 		bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1455 
1456 	int ret = bch2_btree_node_check_topology(trans, b);
1457 	if (ret) {
1458 		struct printbuf buf = PRINTBUF;
1459 
1460 		for (struct bkey_i *k = keys->keys;
1461 		     k != insert;
1462 		     k = bkey_next(k)) {
1463 			bch2_bkey_val_to_text(&buf, trans->c, bkey_i_to_s_c(k));
1464 			prt_newline(&buf);
1465 		}
1466 
1467 		bch2_fs_fatal_error(as->c, "%ps -> %s(): check_topology error %s: inserted keys\n%s",
1468 				    (void *) _RET_IP_, __func__, bch2_err_str(ret), buf.buf);
1469 		dump_stack();
1470 		return ret;
1471 	}
1472 
1473 	memmove_u64s_down(keys->keys, insert, keys->top_p - insert->_data);
1474 	keys->top_p -= insert->_data - keys->keys_p;
1475 	return 0;
1476 }
1477 
key_deleted_in_insert(struct keylist * insert_keys,struct bpos pos)1478 static bool key_deleted_in_insert(struct keylist *insert_keys, struct bpos pos)
1479 {
1480 	if (insert_keys)
1481 		for_each_keylist_key(insert_keys, k)
1482 			if (bkey_deleted(&k->k) && bpos_eq(k->k.p, pos))
1483 				return true;
1484 	return false;
1485 }
1486 
1487 /*
1488  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1489  * node)
1490  */
__btree_split_node(struct btree_update * as,struct btree_trans * trans,struct btree * b,struct btree * n[2],struct keylist * insert_keys)1491 static void __btree_split_node(struct btree_update *as,
1492 			       struct btree_trans *trans,
1493 			       struct btree *b,
1494 			       struct btree *n[2],
1495 			       struct keylist *insert_keys)
1496 {
1497 	struct bkey_packed *k;
1498 	struct bpos n1_pos = POS_MIN;
1499 	struct btree_node_iter iter;
1500 	struct bset *bsets[2];
1501 	struct bkey_format_state format[2];
1502 	struct bkey_packed *out[2];
1503 	struct bkey uk;
1504 	unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1505 	struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1506 	int i;
1507 
1508 	memset(&nr_keys, 0, sizeof(nr_keys));
1509 
1510 	for (i = 0; i < 2; i++) {
1511 		BUG_ON(n[i]->nsets != 1);
1512 
1513 		bsets[i] = btree_bset_first(n[i]);
1514 		out[i] = bsets[i]->start;
1515 
1516 		SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1517 		bch2_bkey_format_init(&format[i]);
1518 	}
1519 
1520 	u64s = 0;
1521 	for_each_btree_node_key(b, k, &iter) {
1522 		if (bkey_deleted(k))
1523 			continue;
1524 
1525 		uk = bkey_unpack_key(b, k);
1526 
1527 		if (b->c.level &&
1528 		    u64s < n1_u64s &&
1529 		    u64s + k->u64s >= n1_u64s &&
1530 		    (bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p) ||
1531 		     key_deleted_in_insert(insert_keys, uk.p)))
1532 			n1_u64s += k->u64s;
1533 
1534 		i = u64s >= n1_u64s;
1535 		u64s += k->u64s;
1536 		if (!i)
1537 			n1_pos = uk.p;
1538 		bch2_bkey_format_add_key(&format[i], &uk);
1539 
1540 		nr_keys[i].nr_keys++;
1541 		nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1542 	}
1543 
1544 	btree_set_min(n[0], b->data->min_key);
1545 	btree_set_max(n[0], n1_pos);
1546 	btree_set_min(n[1], bpos_successor(n1_pos));
1547 	btree_set_max(n[1], b->data->max_key);
1548 
1549 	for (i = 0; i < 2; i++) {
1550 		bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1551 		bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1552 
1553 		n[i]->data->format = bch2_bkey_format_done(&format[i]);
1554 
1555 		unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1556 			nr_keys[i].val_u64s;
1557 		if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1558 			n[i]->data->format = b->format;
1559 
1560 		btree_node_set_format(n[i], n[i]->data->format);
1561 	}
1562 
1563 	u64s = 0;
1564 	for_each_btree_node_key(b, k, &iter) {
1565 		if (bkey_deleted(k))
1566 			continue;
1567 
1568 		i = u64s >= n1_u64s;
1569 		u64s += k->u64s;
1570 
1571 		if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1572 					? &b->format: &bch2_bkey_format_current, k))
1573 			out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1574 		else
1575 			bch2_bkey_unpack(b, (void *) out[i], k);
1576 
1577 		out[i]->needs_whiteout = false;
1578 
1579 		btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1580 		out[i] = bkey_p_next(out[i]);
1581 	}
1582 
1583 	for (i = 0; i < 2; i++) {
1584 		bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1585 
1586 		BUG_ON(!bsets[i]->u64s);
1587 
1588 		set_btree_bset_end(n[i], n[i]->set);
1589 
1590 		btree_node_reset_sib_u64s(n[i]);
1591 
1592 		bch2_verify_btree_nr_keys(n[i]);
1593 
1594 		BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1595 	}
1596 }
1597 
1598 /*
1599  * For updates to interior nodes, we've got to do the insert before we split
1600  * because the stuff we're inserting has to be inserted atomically. Post split,
1601  * the keys might have to go in different nodes and the split would no longer be
1602  * atomic.
1603  *
1604  * Worse, if the insert is from btree node coalescing, if we do the insert after
1605  * we do the split (and pick the pivot) - the pivot we pick might be between
1606  * nodes that were coalesced, and thus in the middle of a child node post
1607  * coalescing:
1608  */
btree_split_insert_keys(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1609 static int btree_split_insert_keys(struct btree_update *as,
1610 				   struct btree_trans *trans,
1611 				   btree_path_idx_t path_idx,
1612 				   struct btree *b,
1613 				   struct keylist *keys)
1614 {
1615 	struct btree_path *path = trans->paths + path_idx;
1616 
1617 	if (!bch2_keylist_empty(keys) &&
1618 	    bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1619 		struct btree_node_iter node_iter;
1620 
1621 		bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1622 
1623 		int ret = bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1624 		if (ret)
1625 			return ret;
1626 	}
1627 
1628 	return 0;
1629 }
1630 
btree_split(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path,struct btree * b,struct keylist * keys)1631 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1632 		       btree_path_idx_t path, struct btree *b,
1633 		       struct keylist *keys)
1634 {
1635 	struct bch_fs *c = as->c;
1636 	struct btree *parent = btree_node_parent(trans->paths + path, b);
1637 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1638 	btree_path_idx_t path1 = 0, path2 = 0;
1639 	u64 start_time = local_clock();
1640 	int ret = 0;
1641 
1642 	bch2_verify_btree_nr_keys(b);
1643 	BUG_ON(!parent && (b != btree_node_root(c, b)));
1644 	BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1645 
1646 	ret = bch2_btree_node_check_topology(trans, b);
1647 	if (ret)
1648 		return ret;
1649 
1650 	if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1651 		struct btree *n[2];
1652 
1653 		trace_and_count(c, btree_node_split, trans, b);
1654 
1655 		n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1656 		n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1657 
1658 		__btree_split_node(as, trans, b, n, keys);
1659 
1660 		if (keys) {
1661 			ret =   btree_split_insert_keys(as, trans, path, n1, keys) ?:
1662 				btree_split_insert_keys(as, trans, path, n2, keys);
1663 			if (ret)
1664 				goto err;
1665 			BUG_ON(!bch2_keylist_empty(keys));
1666 		}
1667 
1668 		bch2_btree_build_aux_trees(n2);
1669 		bch2_btree_build_aux_trees(n1);
1670 
1671 		bch2_btree_update_add_new_node(as, n1);
1672 		bch2_btree_update_add_new_node(as, n2);
1673 		six_unlock_write(&n2->c.lock);
1674 		six_unlock_write(&n1->c.lock);
1675 
1676 		path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1677 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1678 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1679 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1680 
1681 		path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p);
1682 		six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1683 		mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1684 		bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1685 
1686 		/*
1687 		 * Note that on recursive parent_keys == keys, so we
1688 		 * can't start adding new keys to parent_keys before emptying it
1689 		 * out (which we did with btree_split_insert_keys() above)
1690 		 */
1691 		bch2_keylist_add(&as->parent_keys, &n1->key);
1692 		bch2_keylist_add(&as->parent_keys, &n2->key);
1693 
1694 		if (!parent) {
1695 			/* Depth increases, make a new root */
1696 			n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1697 
1698 			bch2_btree_update_add_new_node(as, n3);
1699 			six_unlock_write(&n3->c.lock);
1700 
1701 			trans->paths[path2].locks_want++;
1702 			BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1703 			six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1704 			mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1705 			bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1706 
1707 			n3->sib_u64s[0] = U16_MAX;
1708 			n3->sib_u64s[1] = U16_MAX;
1709 
1710 			ret = btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1711 			if (ret)
1712 				goto err;
1713 		}
1714 	} else {
1715 		trace_and_count(c, btree_node_compact, trans, b);
1716 
1717 		n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1718 
1719 		if (keys) {
1720 			ret = btree_split_insert_keys(as, trans, path, n1, keys);
1721 			if (ret)
1722 				goto err;
1723 			BUG_ON(!bch2_keylist_empty(keys));
1724 		}
1725 
1726 		bch2_btree_build_aux_trees(n1);
1727 		bch2_btree_update_add_new_node(as, n1);
1728 		six_unlock_write(&n1->c.lock);
1729 
1730 		path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1731 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1732 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1733 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1734 
1735 		if (parent)
1736 			bch2_keylist_add(&as->parent_keys, &n1->key);
1737 	}
1738 
1739 	/* New nodes all written, now make them visible: */
1740 
1741 	if (parent) {
1742 		/* Split a non root node */
1743 		ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1744 	} else if (n3) {
1745 		ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false);
1746 	} else {
1747 		/* Root filled up but didn't need to be split */
1748 		ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false);
1749 	}
1750 
1751 	if (ret)
1752 		goto err;
1753 
1754 	bch2_btree_interior_update_will_free_node(as, b);
1755 
1756 	if (n3) {
1757 		bch2_btree_update_get_open_buckets(as, n3);
1758 		bch2_btree_node_write_trans(trans, n3, SIX_LOCK_intent, 0);
1759 	}
1760 	if (n2) {
1761 		bch2_btree_update_get_open_buckets(as, n2);
1762 		bch2_btree_node_write_trans(trans, n2, SIX_LOCK_intent, 0);
1763 	}
1764 	bch2_btree_update_get_open_buckets(as, n1);
1765 	bch2_btree_node_write_trans(trans, n1, SIX_LOCK_intent, 0);
1766 
1767 	/*
1768 	 * The old node must be freed (in memory) _before_ unlocking the new
1769 	 * nodes - else another thread could re-acquire a read lock on the old
1770 	 * node after another thread has locked and updated the new node, thus
1771 	 * seeing stale data:
1772 	 */
1773 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1774 
1775 	if (n3)
1776 		bch2_trans_node_add(trans, trans->paths + path, n3);
1777 	if (n2)
1778 		bch2_trans_node_add(trans, trans->paths + path2, n2);
1779 	bch2_trans_node_add(trans, trans->paths + path1, n1);
1780 
1781 	if (n3)
1782 		six_unlock_intent(&n3->c.lock);
1783 	if (n2)
1784 		six_unlock_intent(&n2->c.lock);
1785 	six_unlock_intent(&n1->c.lock);
1786 out:
1787 	if (path2) {
1788 		__bch2_btree_path_unlock(trans, trans->paths + path2);
1789 		bch2_path_put(trans, path2, true);
1790 	}
1791 	if (path1) {
1792 		__bch2_btree_path_unlock(trans, trans->paths + path1);
1793 		bch2_path_put(trans, path1, true);
1794 	}
1795 
1796 	bch2_trans_verify_locks(trans);
1797 
1798 	bch2_time_stats_update(&c->times[n2
1799 			       ? BCH_TIME_btree_node_split
1800 			       : BCH_TIME_btree_node_compact],
1801 			       start_time);
1802 	return ret;
1803 err:
1804 	if (n3)
1805 		bch2_btree_node_free_never_used(as, trans, n3);
1806 	if (n2)
1807 		bch2_btree_node_free_never_used(as, trans, n2);
1808 	bch2_btree_node_free_never_used(as, trans, n1);
1809 	goto out;
1810 }
1811 
1812 /**
1813  * bch2_btree_insert_node - insert bkeys into a given btree node
1814  *
1815  * @as:			btree_update object
1816  * @trans:		btree_trans object
1817  * @path_idx:		path that points to current node
1818  * @b:			node to insert keys into
1819  * @keys:		list of keys to insert
1820  *
1821  * Returns: 0 on success, typically transaction restart error on failure
1822  *
1823  * Inserts as many keys as it can into a given btree node, splitting it if full.
1824  * If a split occurred, this function will return early. This can only happen
1825  * for leaf nodes -- inserts into interior nodes have to be atomic.
1826  */
bch2_btree_insert_node(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1827 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1828 				  btree_path_idx_t path_idx, struct btree *b,
1829 				  struct keylist *keys)
1830 {
1831 	struct bch_fs *c = as->c;
1832 	struct btree_path *path = trans->paths + path_idx, *linked;
1833 	unsigned i;
1834 	int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1835 	int old_live_u64s = b->nr.live_u64s;
1836 	int live_u64s_added, u64s_added;
1837 	int ret;
1838 
1839 	lockdep_assert_held(&c->gc_lock);
1840 	BUG_ON(!b->c.level);
1841 	BUG_ON(!as || as->b);
1842 	bch2_verify_keylist_sorted(keys);
1843 
1844 	if (!btree_node_intent_locked(path, b->c.level)) {
1845 		struct printbuf buf = PRINTBUF;
1846 		bch2_log_msg_start(c, &buf);
1847 		prt_printf(&buf, "%s(): node not locked at level %u\n",
1848 			   __func__, b->c.level);
1849 		bch2_btree_update_to_text(&buf, as);
1850 		bch2_btree_path_to_text(&buf, trans, path_idx);
1851 		bch2_fs_emergency_read_only2(c, &buf);
1852 
1853 		bch2_print_str(c, KERN_ERR, buf.buf);
1854 		printbuf_exit(&buf);
1855 		return -EIO;
1856 	}
1857 
1858 	ret = bch2_btree_node_lock_write(trans, path, &b->c);
1859 	if (ret)
1860 		return ret;
1861 
1862 	bch2_btree_node_prep_for_write(trans, path, b);
1863 
1864 	if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1865 		bch2_btree_node_unlock_write(trans, path, b);
1866 		goto split;
1867 	}
1868 
1869 
1870 	ret =   bch2_btree_node_check_topology(trans, b) ?:
1871 		bch2_btree_insert_keys_interior(as, trans, path, b,
1872 					path->l[b->c.level].iter, keys);
1873 	if (ret) {
1874 		bch2_btree_node_unlock_write(trans, path, b);
1875 		return ret;
1876 	}
1877 
1878 	trans_for_each_path_with_node(trans, b, linked, i)
1879 		bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1880 
1881 	bch2_trans_verify_paths(trans);
1882 
1883 	live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1884 	u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1885 
1886 	if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1887 		b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1888 	if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1889 		b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1890 
1891 	if (u64s_added > live_u64s_added &&
1892 	    bch2_maybe_compact_whiteouts(c, b))
1893 		bch2_trans_node_reinit_iter(trans, b);
1894 
1895 	btree_update_updated_node(as, b);
1896 	bch2_btree_node_unlock_write(trans, path, b);
1897 	return 0;
1898 split:
1899 	/*
1900 	 * We could attempt to avoid the transaction restart, by calling
1901 	 * bch2_btree_path_upgrade() and allocating more nodes:
1902 	 */
1903 	if (b->c.level >= as->update_level_end) {
1904 		trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1905 		return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1906 	}
1907 
1908 	return btree_split(as, trans, path_idx, b, keys);
1909 }
1910 
bch2_btree_split_leaf(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1911 int bch2_btree_split_leaf(struct btree_trans *trans,
1912 			  btree_path_idx_t path,
1913 			  unsigned flags)
1914 {
1915 	/* btree_split & merge may both cause paths array to be reallocated */
1916 	struct btree *b = path_l(trans->paths + path)->b;
1917 	struct btree_update *as;
1918 	unsigned l;
1919 	int ret = 0;
1920 
1921 	as = bch2_btree_update_start(trans, trans->paths + path,
1922 				     trans->paths[path].level,
1923 				     true, 0, flags);
1924 	if (IS_ERR(as))
1925 		return PTR_ERR(as);
1926 
1927 	ret = btree_split(as, trans, path, b, NULL);
1928 	if (ret) {
1929 		bch2_btree_update_free(as, trans);
1930 		return ret;
1931 	}
1932 
1933 	bch2_btree_update_done(as, trans);
1934 
1935 	for (l = trans->paths[path].level + 1;
1936 	     btree_node_intent_locked(&trans->paths[path], l) && !ret;
1937 	     l++)
1938 		ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1939 
1940 	return ret;
1941 }
1942 
__btree_increase_depth(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx)1943 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1944 				   btree_path_idx_t path_idx)
1945 {
1946 	struct bch_fs *c = as->c;
1947 	struct btree_path *path = trans->paths + path_idx;
1948 	struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1949 
1950 	BUG_ON(!btree_node_locked(path, b->c.level));
1951 
1952 	n = __btree_root_alloc(as, trans, b->c.level + 1);
1953 
1954 	bch2_btree_update_add_new_node(as, n);
1955 	six_unlock_write(&n->c.lock);
1956 
1957 	path->locks_want++;
1958 	BUG_ON(btree_node_locked(path, n->c.level));
1959 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1960 	mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1961 	bch2_btree_path_level_init(trans, path, n);
1962 
1963 	n->sib_u64s[0] = U16_MAX;
1964 	n->sib_u64s[1] = U16_MAX;
1965 
1966 	bch2_keylist_add(&as->parent_keys, &b->key);
1967 	btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1968 
1969 	int ret = bch2_btree_set_root(as, trans, path, n, true);
1970 	BUG_ON(ret);
1971 
1972 	bch2_btree_update_get_open_buckets(as, n);
1973 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
1974 	bch2_trans_node_add(trans, path, n);
1975 	six_unlock_intent(&n->c.lock);
1976 
1977 	mutex_lock(&c->btree_cache.lock);
1978 	list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list);
1979 	mutex_unlock(&c->btree_cache.lock);
1980 
1981 	bch2_trans_verify_locks(trans);
1982 }
1983 
bch2_btree_increase_depth(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1984 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1985 {
1986 	struct bch_fs *c = trans->c;
1987 	struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1988 
1989 	if (btree_node_fake(b))
1990 		return bch2_btree_split_leaf(trans, path, flags);
1991 
1992 	struct btree_update *as =
1993 		bch2_btree_update_start(trans, trans->paths + path, b->c.level,
1994 					true, 0, flags);
1995 	if (IS_ERR(as))
1996 		return PTR_ERR(as);
1997 
1998 	__btree_increase_depth(as, trans, path);
1999 	bch2_btree_update_done(as, trans);
2000 	return 0;
2001 }
2002 
__bch2_foreground_maybe_merge(struct btree_trans * trans,btree_path_idx_t path,unsigned level,unsigned flags,enum btree_node_sibling sib)2003 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
2004 				  btree_path_idx_t path,
2005 				  unsigned level,
2006 				  unsigned flags,
2007 				  enum btree_node_sibling sib)
2008 {
2009 	struct bch_fs *c = trans->c;
2010 	struct btree_update *as;
2011 	struct bkey_format_state new_s;
2012 	struct bkey_format new_f;
2013 	struct bkey_i delete;
2014 	struct btree *b, *m, *n, *prev, *next, *parent;
2015 	struct bpos sib_pos;
2016 	size_t sib_u64s;
2017 	enum btree_id btree = trans->paths[path].btree_id;
2018 	btree_path_idx_t sib_path = 0, new_path = 0;
2019 	u64 start_time = local_clock();
2020 	int ret = 0;
2021 
2022 	bch2_trans_verify_not_unlocked_or_in_restart(trans);
2023 	BUG_ON(!trans->paths[path].should_be_locked);
2024 	BUG_ON(!btree_node_locked(&trans->paths[path], level));
2025 
2026 	/*
2027 	 * Work around a deadlock caused by the btree write buffer not doing
2028 	 * merges and leaving tons of merges for us to do - we really don't need
2029 	 * to be doing merges at all from the interior update path, and if the
2030 	 * interior update path is generating too many new interior updates we
2031 	 * deadlock:
2032 	 */
2033 	if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
2034 		return 0;
2035 
2036 	if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
2037 		flags &= ~BCH_WATERMARK_MASK;
2038 		flags |= BCH_WATERMARK_btree;
2039 		flags |= BCH_TRANS_COMMIT_journal_reclaim;
2040 	}
2041 
2042 	b = trans->paths[path].l[level].b;
2043 
2044 	if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
2045 	    (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
2046 		b->sib_u64s[sib] = U16_MAX;
2047 		return 0;
2048 	}
2049 
2050 	sib_pos = sib == btree_prev_sib
2051 		? bpos_predecessor(b->data->min_key)
2052 		: bpos_successor(b->data->max_key);
2053 
2054 	sib_path = bch2_path_get(trans, btree, sib_pos,
2055 				 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_);
2056 	ret = bch2_btree_path_traverse(trans, sib_path, false);
2057 	if (ret)
2058 		goto err;
2059 
2060 	btree_path_set_should_be_locked(trans, trans->paths + sib_path);
2061 
2062 	m = trans->paths[sib_path].l[level].b;
2063 
2064 	if (btree_node_parent(trans->paths + path, b) !=
2065 	    btree_node_parent(trans->paths + sib_path, m)) {
2066 		b->sib_u64s[sib] = U16_MAX;
2067 		goto out;
2068 	}
2069 
2070 	if (sib == btree_prev_sib) {
2071 		prev = m;
2072 		next = b;
2073 	} else {
2074 		prev = b;
2075 		next = m;
2076 	}
2077 
2078 	if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
2079 		struct printbuf buf = PRINTBUF;
2080 
2081 		printbuf_indent_add_nextline(&buf, 2);
2082 		prt_printf(&buf, "%s(): ", __func__);
2083 		ret = __bch2_topology_error(c, &buf);
2084 		prt_newline(&buf);
2085 
2086 		prt_printf(&buf, "prev ends at   ");
2087 		bch2_bpos_to_text(&buf, prev->data->max_key);
2088 		prt_newline(&buf);
2089 
2090 		prt_printf(&buf, "next starts at ");
2091 		bch2_bpos_to_text(&buf, next->data->min_key);
2092 
2093 		bch_err(c, "%s", buf.buf);
2094 		printbuf_exit(&buf);
2095 		goto err;
2096 	}
2097 
2098 	bch2_bkey_format_init(&new_s);
2099 	bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2100 	__bch2_btree_calc_format(&new_s, prev);
2101 	__bch2_btree_calc_format(&new_s, next);
2102 	bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2103 	new_f = bch2_bkey_format_done(&new_s);
2104 
2105 	sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
2106 		btree_node_u64s_with_format(m->nr, &m->format, &new_f);
2107 
2108 	if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2109 		sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2110 		sib_u64s /= 2;
2111 		sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2112 	}
2113 
2114 	sib_u64s = min(sib_u64s, btree_max_u64s(c));
2115 	sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2116 	b->sib_u64s[sib] = sib_u64s;
2117 
2118 	if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2119 		goto out;
2120 
2121 	parent = btree_node_parent(trans->paths + path, b);
2122 	as = bch2_btree_update_start(trans, trans->paths + path, level, false,
2123 				     0, BCH_TRANS_COMMIT_no_enospc|flags);
2124 	ret = PTR_ERR_OR_ZERO(as);
2125 	if (ret)
2126 		goto err;
2127 
2128 	as->node_start	= prev->data->min_key;
2129 	as->node_end	= next->data->max_key;
2130 
2131 	trace_and_count(c, btree_node_merge, trans, b);
2132 
2133 	n = bch2_btree_node_alloc(as, trans, b->c.level);
2134 
2135 	SET_BTREE_NODE_SEQ(n->data,
2136 			   max(BTREE_NODE_SEQ(b->data),
2137 			       BTREE_NODE_SEQ(m->data)) + 1);
2138 
2139 	btree_set_min(n, prev->data->min_key);
2140 	btree_set_max(n, next->data->max_key);
2141 
2142 	n->data->format	 = new_f;
2143 	btree_node_set_format(n, new_f);
2144 
2145 	bch2_btree_sort_into(c, n, prev);
2146 	bch2_btree_sort_into(c, n, next);
2147 
2148 	bch2_btree_build_aux_trees(n);
2149 	bch2_btree_update_add_new_node(as, n);
2150 	six_unlock_write(&n->c.lock);
2151 
2152 	new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p);
2153 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2154 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2155 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2156 
2157 	bkey_init(&delete.k);
2158 	delete.k.p = prev->key.k.p;
2159 	bch2_keylist_add(&as->parent_keys, &delete);
2160 	bch2_keylist_add(&as->parent_keys, &n->key);
2161 
2162 	bch2_trans_verify_paths(trans);
2163 
2164 	ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
2165 	if (ret)
2166 		goto err_free_update;
2167 
2168 	bch2_btree_interior_update_will_free_node(as, b);
2169 	bch2_btree_interior_update_will_free_node(as, m);
2170 
2171 	bch2_trans_verify_paths(trans);
2172 
2173 	bch2_btree_update_get_open_buckets(as, n);
2174 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2175 
2176 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
2177 	bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
2178 
2179 	bch2_trans_node_add(trans, trans->paths + path, n);
2180 
2181 	bch2_trans_verify_paths(trans);
2182 
2183 	six_unlock_intent(&n->c.lock);
2184 
2185 	bch2_btree_update_done(as, trans);
2186 
2187 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
2188 out:
2189 err:
2190 	if (new_path)
2191 		bch2_path_put(trans, new_path, true);
2192 	bch2_path_put(trans, sib_path, true);
2193 	bch2_trans_verify_locks(trans);
2194 	if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2195 		ret = 0;
2196 	if (!ret)
2197 		ret = bch2_trans_relock(trans);
2198 	return ret;
2199 err_free_update:
2200 	bch2_btree_node_free_never_used(as, trans, n);
2201 	bch2_btree_update_free(as, trans);
2202 	goto out;
2203 }
2204 
get_iter_to_node(struct btree_trans * trans,struct btree_iter * iter,struct btree * b)2205 static int get_iter_to_node(struct btree_trans *trans, struct btree_iter *iter,
2206 			    struct btree *b)
2207 {
2208 	bch2_trans_node_iter_init(trans, iter, b->c.btree_id, b->key.k.p,
2209 				  BTREE_MAX_DEPTH, b->c.level,
2210 				  BTREE_ITER_intent);
2211 	int ret = bch2_btree_iter_traverse(trans, iter);
2212 	if (ret)
2213 		goto err;
2214 
2215 	/* has node been freed? */
2216 	if (btree_iter_path(trans, iter)->l[b->c.level].b != b) {
2217 		/* node has been freed: */
2218 		BUG_ON(!btree_node_dying(b));
2219 		ret = bch_err_throw(trans->c, btree_node_dying);
2220 		goto err;
2221 	}
2222 
2223 	BUG_ON(!btree_node_hashed(b));
2224 	return 0;
2225 err:
2226 	bch2_trans_iter_exit(trans, iter);
2227 	return ret;
2228 }
2229 
bch2_btree_node_rewrite(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,unsigned target,unsigned flags)2230 int bch2_btree_node_rewrite(struct btree_trans *trans,
2231 			    struct btree_iter *iter,
2232 			    struct btree *b,
2233 			    unsigned target,
2234 			    unsigned flags)
2235 {
2236 	struct bch_fs *c = trans->c;
2237 	struct btree *n, *parent;
2238 	struct btree_update *as;
2239 	btree_path_idx_t new_path = 0;
2240 	int ret;
2241 
2242 	flags |= BCH_TRANS_COMMIT_no_enospc;
2243 
2244 	struct btree_path *path = btree_iter_path(trans, iter);
2245 	parent = btree_node_parent(path, b);
2246 	as = bch2_btree_update_start(trans, path, b->c.level,
2247 				     false, target, flags);
2248 	ret = PTR_ERR_OR_ZERO(as);
2249 	if (ret)
2250 		goto out;
2251 
2252 	n = bch2_btree_node_alloc_replacement(as, trans, b);
2253 
2254 	bch2_btree_build_aux_trees(n);
2255 	bch2_btree_update_add_new_node(as, n);
2256 	six_unlock_write(&n->c.lock);
2257 
2258 	new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p);
2259 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2260 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2261 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2262 
2263 	trace_and_count(c, btree_node_rewrite, trans, b);
2264 
2265 	if (parent) {
2266 		bch2_keylist_add(&as->parent_keys, &n->key);
2267 		ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2268 	} else {
2269 		ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false);
2270 	}
2271 
2272 	if (ret)
2273 		goto err;
2274 
2275 	bch2_btree_interior_update_will_free_node(as, b);
2276 
2277 	bch2_btree_update_get_open_buckets(as, n);
2278 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2279 
2280 	bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2281 
2282 	bch2_trans_node_add(trans, trans->paths + iter->path, n);
2283 	six_unlock_intent(&n->c.lock);
2284 
2285 	bch2_btree_update_done(as, trans);
2286 out:
2287 	if (new_path)
2288 		bch2_path_put(trans, new_path, true);
2289 	bch2_trans_downgrade(trans);
2290 	return ret;
2291 err:
2292 	bch2_btree_node_free_never_used(as, trans, n);
2293 	bch2_btree_update_free(as, trans);
2294 	goto out;
2295 }
2296 
bch2_btree_node_rewrite_key(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bkey_i * k,unsigned flags)2297 int bch2_btree_node_rewrite_key(struct btree_trans *trans,
2298 				enum btree_id btree, unsigned level,
2299 				struct bkey_i *k, unsigned flags)
2300 {
2301 	struct btree_iter iter;
2302 	bch2_trans_node_iter_init(trans, &iter,
2303 				  btree, k->k.p,
2304 				  BTREE_MAX_DEPTH, level, 0);
2305 	struct btree *b = bch2_btree_iter_peek_node(trans, &iter);
2306 	int ret = PTR_ERR_OR_ZERO(b);
2307 	if (ret)
2308 		goto out;
2309 
2310 	bool found = b && btree_ptr_hash_val(&b->key) == btree_ptr_hash_val(k);
2311 	ret = found
2312 		? bch2_btree_node_rewrite(trans, &iter, b, 0, flags)
2313 		: -ENOENT;
2314 out:
2315 	bch2_trans_iter_exit(trans, &iter);
2316 	return ret;
2317 }
2318 
bch2_btree_node_rewrite_pos(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bpos pos,unsigned target,unsigned flags)2319 int bch2_btree_node_rewrite_pos(struct btree_trans *trans,
2320 				enum btree_id btree, unsigned level,
2321 				struct bpos pos,
2322 				unsigned target,
2323 				unsigned flags)
2324 {
2325 	BUG_ON(!level);
2326 
2327 	/* Traverse one depth lower to get a pointer to the node itself: */
2328 	struct btree_iter iter;
2329 	bch2_trans_node_iter_init(trans, &iter, btree, pos, 0, level - 1, 0);
2330 	struct btree *b = bch2_btree_iter_peek_node(trans, &iter);
2331 	int ret = PTR_ERR_OR_ZERO(b);
2332 	if (ret)
2333 		goto err;
2334 
2335 	ret = bch2_btree_node_rewrite(trans, &iter, b, target, flags);
2336 err:
2337 	bch2_trans_iter_exit(trans, &iter);
2338 	return ret;
2339 }
2340 
bch2_btree_node_rewrite_key_get_iter(struct btree_trans * trans,struct btree * b,unsigned flags)2341 int bch2_btree_node_rewrite_key_get_iter(struct btree_trans *trans,
2342 					 struct btree *b, unsigned flags)
2343 {
2344 	struct btree_iter iter;
2345 	int ret = get_iter_to_node(trans, &iter, b);
2346 	if (ret)
2347 		return ret == -BCH_ERR_btree_node_dying ? 0 : ret;
2348 
2349 	ret = bch2_btree_node_rewrite(trans, &iter, b, 0, flags);
2350 	bch2_trans_iter_exit(trans, &iter);
2351 	return ret;
2352 }
2353 
2354 struct async_btree_rewrite {
2355 	struct bch_fs		*c;
2356 	struct work_struct	work;
2357 	struct list_head	list;
2358 	enum btree_id		btree_id;
2359 	unsigned		level;
2360 	struct bkey_buf		key;
2361 };
2362 
async_btree_node_rewrite_work(struct work_struct * work)2363 static void async_btree_node_rewrite_work(struct work_struct *work)
2364 {
2365 	struct async_btree_rewrite *a =
2366 		container_of(work, struct async_btree_rewrite, work);
2367 	struct bch_fs *c = a->c;
2368 
2369 	int ret = bch2_trans_do(c, bch2_btree_node_rewrite_key(trans,
2370 						a->btree_id, a->level, a->key.k, 0));
2371 	if (!bch2_err_matches(ret, ENOENT) &&
2372 	    !bch2_err_matches(ret, EROFS))
2373 		bch_err_fn_ratelimited(c, ret);
2374 
2375 	spin_lock(&c->btree_node_rewrites_lock);
2376 	list_del(&a->list);
2377 	spin_unlock(&c->btree_node_rewrites_lock);
2378 
2379 	closure_wake_up(&c->btree_node_rewrites_wait);
2380 
2381 	bch2_bkey_buf_exit(&a->key, c);
2382 	enumerated_ref_put(&c->writes, BCH_WRITE_REF_node_rewrite);
2383 	kfree(a);
2384 }
2385 
bch2_btree_node_rewrite_async(struct bch_fs * c,struct btree * b)2386 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2387 {
2388 	struct async_btree_rewrite *a = kmalloc(sizeof(*a), GFP_NOFS);
2389 	if (!a)
2390 		return;
2391 
2392 	a->c		= c;
2393 	a->btree_id	= b->c.btree_id;
2394 	a->level	= b->c.level;
2395 	INIT_WORK(&a->work, async_btree_node_rewrite_work);
2396 
2397 	bch2_bkey_buf_init(&a->key);
2398 	bch2_bkey_buf_copy(&a->key, c, &b->key);
2399 
2400 	bool now = false, pending = false;
2401 
2402 	spin_lock(&c->btree_node_rewrites_lock);
2403 	if (c->recovery.passes_complete & BIT_ULL(BCH_RECOVERY_PASS_journal_replay) &&
2404 	    enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_node_rewrite)) {
2405 		list_add(&a->list, &c->btree_node_rewrites);
2406 		now = true;
2407 	} else if (!test_bit(BCH_FS_may_go_rw, &c->flags)) {
2408 		list_add(&a->list, &c->btree_node_rewrites_pending);
2409 		pending = true;
2410 	}
2411 	spin_unlock(&c->btree_node_rewrites_lock);
2412 
2413 	if (now) {
2414 		queue_work(c->btree_node_rewrite_worker, &a->work);
2415 	} else if (pending) {
2416 		/* bch2_do_pending_node_rewrites will execute */
2417 	} else {
2418 		bch2_bkey_buf_exit(&a->key, c);
2419 		kfree(a);
2420 	}
2421 }
2422 
bch2_async_btree_node_rewrites_flush(struct bch_fs * c)2423 void bch2_async_btree_node_rewrites_flush(struct bch_fs *c)
2424 {
2425 	closure_wait_event(&c->btree_node_rewrites_wait,
2426 			   list_empty(&c->btree_node_rewrites));
2427 }
2428 
bch2_do_pending_node_rewrites(struct bch_fs * c)2429 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2430 {
2431 	while (1) {
2432 		spin_lock(&c->btree_node_rewrites_lock);
2433 		struct async_btree_rewrite *a =
2434 			list_pop_entry(&c->btree_node_rewrites_pending,
2435 				       struct async_btree_rewrite, list);
2436 		if (a)
2437 			list_add(&a->list, &c->btree_node_rewrites);
2438 		spin_unlock(&c->btree_node_rewrites_lock);
2439 
2440 		if (!a)
2441 			break;
2442 
2443 		enumerated_ref_get(&c->writes, BCH_WRITE_REF_node_rewrite);
2444 		queue_work(c->btree_node_rewrite_worker, &a->work);
2445 	}
2446 }
2447 
bch2_free_pending_node_rewrites(struct bch_fs * c)2448 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2449 {
2450 	while (1) {
2451 		spin_lock(&c->btree_node_rewrites_lock);
2452 		struct async_btree_rewrite *a =
2453 			list_pop_entry(&c->btree_node_rewrites_pending,
2454 				       struct async_btree_rewrite, list);
2455 		spin_unlock(&c->btree_node_rewrites_lock);
2456 
2457 		if (!a)
2458 			break;
2459 
2460 		bch2_bkey_buf_exit(&a->key, c);
2461 		kfree(a);
2462 	}
2463 }
2464 
__bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct btree * new_hash,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2465 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2466 					struct btree_iter *iter,
2467 					struct btree *b, struct btree *new_hash,
2468 					struct bkey_i *new_key,
2469 					unsigned commit_flags,
2470 					bool skip_triggers)
2471 {
2472 	struct bch_fs *c = trans->c;
2473 	struct btree_iter iter2 = {};
2474 	struct btree *parent;
2475 	int ret;
2476 
2477 	if (!skip_triggers) {
2478 		ret   = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2479 					     bkey_i_to_s_c(&b->key),
2480 					     BTREE_TRIGGER_transactional) ?:
2481 			bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2482 					     bkey_i_to_s(new_key),
2483 					     BTREE_TRIGGER_transactional);
2484 		if (ret)
2485 			return ret;
2486 	}
2487 
2488 	if (new_hash) {
2489 		bkey_copy(&new_hash->key, new_key);
2490 		ret = bch2_btree_node_hash_insert(&c->btree_cache,
2491 				new_hash, b->c.level, b->c.btree_id);
2492 		BUG_ON(ret);
2493 	}
2494 
2495 	parent = btree_node_parent(btree_iter_path(trans, iter), b);
2496 	if (parent) {
2497 		bch2_trans_copy_iter(trans, &iter2, iter);
2498 
2499 		iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2500 				iter2.flags & BTREE_ITER_intent,
2501 				_THIS_IP_);
2502 
2503 		struct btree_path *path2 = btree_iter_path(trans, &iter2);
2504 		BUG_ON(path2->level != b->c.level);
2505 		BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2506 
2507 		btree_path_set_level_up(trans, path2);
2508 
2509 		trans->paths_sorted = false;
2510 
2511 		ret   = bch2_btree_iter_traverse(trans, &iter2) ?:
2512 			bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun);
2513 		if (ret)
2514 			goto err;
2515 	} else {
2516 		BUG_ON(btree_node_root(c, b) != b);
2517 
2518 		struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2519 				       jset_u64s(new_key->k.u64s));
2520 		ret = PTR_ERR_OR_ZERO(e);
2521 		if (ret)
2522 			return ret;
2523 
2524 		journal_entry_set(e,
2525 				  BCH_JSET_ENTRY_btree_root,
2526 				  b->c.btree_id, b->c.level,
2527 				  new_key, new_key->k.u64s);
2528 	}
2529 
2530 	ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2531 	if (ret)
2532 		goto err;
2533 
2534 	bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2535 
2536 	if (new_hash) {
2537 		mutex_lock(&c->btree_cache.lock);
2538 		bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2539 
2540 		__bch2_btree_node_hash_remove(&c->btree_cache, b);
2541 
2542 		bkey_copy(&b->key, new_key);
2543 		ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2544 		BUG_ON(ret);
2545 		mutex_unlock(&c->btree_cache.lock);
2546 	} else {
2547 		bkey_copy(&b->key, new_key);
2548 	}
2549 
2550 	bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2551 out:
2552 	bch2_trans_iter_exit(trans, &iter2);
2553 	return ret;
2554 err:
2555 	if (new_hash) {
2556 		mutex_lock(&c->btree_cache.lock);
2557 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2558 		mutex_unlock(&c->btree_cache.lock);
2559 	}
2560 	goto out;
2561 }
2562 
bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2563 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2564 			       struct btree *b, struct bkey_i *new_key,
2565 			       unsigned commit_flags, bool skip_triggers)
2566 {
2567 	struct bch_fs *c = trans->c;
2568 	struct btree *new_hash = NULL;
2569 	struct btree_path *path = btree_iter_path(trans, iter);
2570 	struct closure cl;
2571 	int ret = 0;
2572 
2573 	ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2574 	if (ret)
2575 		return ret;
2576 
2577 	closure_init_stack(&cl);
2578 
2579 	/*
2580 	 * check btree_ptr_hash_val() after @b is locked by
2581 	 * btree_iter_traverse():
2582 	 */
2583 	if (btree_ptr_hash_val(new_key) != b->hash_val) {
2584 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2585 		if (ret) {
2586 			ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2587 			if (ret)
2588 				return ret;
2589 		}
2590 
2591 		new_hash = bch2_btree_node_mem_alloc(trans, false);
2592 		ret = PTR_ERR_OR_ZERO(new_hash);
2593 		if (ret)
2594 			goto err;
2595 	}
2596 
2597 	path->intent_ref++;
2598 	ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2599 					   commit_flags, skip_triggers);
2600 	--path->intent_ref;
2601 
2602 	if (new_hash)
2603 		bch2_btree_node_to_freelist(c, new_hash);
2604 err:
2605 	closure_sync(&cl);
2606 	bch2_btree_cache_cannibalize_unlock(trans);
2607 	return ret;
2608 }
2609 
bch2_btree_node_update_key_get_iter(struct btree_trans * trans,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2610 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2611 					struct btree *b, struct bkey_i *new_key,
2612 					unsigned commit_flags, bool skip_triggers)
2613 {
2614 	struct btree_iter iter;
2615 	int ret = get_iter_to_node(trans, &iter, b);
2616 	if (ret)
2617 		return ret == -BCH_ERR_btree_node_dying ? 0 : ret;
2618 
2619 	bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2620 			    !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2621 
2622 	ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2623 					 commit_flags, skip_triggers);
2624 	bch2_trans_iter_exit(trans, &iter);
2625 	return ret;
2626 }
2627 
2628 /* Init code: */
2629 
2630 /*
2631  * Only for filesystem bringup, when first reading the btree roots or allocating
2632  * btree roots when initializing a new filesystem:
2633  */
bch2_btree_set_root_for_read(struct bch_fs * c,struct btree * b)2634 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2635 {
2636 	BUG_ON(btree_node_root(c, b));
2637 
2638 	bch2_btree_set_root_inmem(c, b);
2639 }
2640 
bch2_btree_root_alloc_fake_trans(struct btree_trans * trans,enum btree_id id,unsigned level)2641 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level)
2642 {
2643 	struct bch_fs *c = trans->c;
2644 	struct closure cl;
2645 	struct btree *b;
2646 	int ret;
2647 
2648 	closure_init_stack(&cl);
2649 
2650 	do {
2651 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2652 		closure_sync(&cl);
2653 	} while (ret);
2654 
2655 	b = bch2_btree_node_mem_alloc(trans, false);
2656 	bch2_btree_cache_cannibalize_unlock(trans);
2657 
2658 	ret = PTR_ERR_OR_ZERO(b);
2659 	if (ret)
2660 		return ret;
2661 
2662 	set_btree_node_fake(b);
2663 	set_btree_node_need_rewrite(b);
2664 	b->c.level	= level;
2665 	b->c.btree_id	= id;
2666 
2667 	bkey_btree_ptr_init(&b->key);
2668 	b->key.k.p = SPOS_MAX;
2669 	*((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2670 
2671 	bch2_bset_init_first(b, &b->data->keys);
2672 	bch2_btree_build_aux_trees(b);
2673 
2674 	b->data->flags = 0;
2675 	btree_set_min(b, POS_MIN);
2676 	btree_set_max(b, SPOS_MAX);
2677 	b->data->format = bch2_btree_calc_format(b);
2678 	btree_node_set_format(b, b->data->format);
2679 
2680 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2681 					  b->c.level, b->c.btree_id);
2682 	BUG_ON(ret);
2683 
2684 	bch2_btree_set_root_inmem(c, b);
2685 
2686 	six_unlock_write(&b->c.lock);
2687 	six_unlock_intent(&b->c.lock);
2688 	return 0;
2689 }
2690 
bch2_btree_root_alloc_fake(struct bch_fs * c,enum btree_id id,unsigned level)2691 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2692 {
2693 	bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level)));
2694 }
2695 
bch2_btree_update_to_text(struct printbuf * out,struct btree_update * as)2696 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2697 {
2698 	prt_printf(out, "%ps: ", (void *) as->ip_started);
2699 	bch2_trans_commit_flags_to_text(out, as->flags);
2700 
2701 	prt_str(out, " ");
2702 	bch2_btree_id_to_text(out, as->btree_id);
2703 	prt_printf(out, " l=%u-%u ",
2704 		   as->update_level_start,
2705 		   as->update_level_end);
2706 	bch2_bpos_to_text(out, as->node_start);
2707 	prt_char(out, ' ');
2708 	bch2_bpos_to_text(out, as->node_end);
2709 	prt_printf(out, "\nwritten %u/%u u64s_remaining %u need_rewrite %s",
2710 		   as->node_written,
2711 		   as->node_sectors,
2712 		   as->node_remaining,
2713 		   btree_node_reawrite_reason_strs[as->node_needed_rewrite]);
2714 
2715 	prt_printf(out, "\nmode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2716 		   bch2_btree_update_modes[as->mode],
2717 		   as->nodes_written,
2718 		   closure_nr_remaining(&as->cl),
2719 		   as->journal.seq);
2720 }
2721 
bch2_btree_updates_to_text(struct printbuf * out,struct bch_fs * c)2722 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2723 {
2724 	struct btree_update *as;
2725 
2726 	mutex_lock(&c->btree_interior_update_lock);
2727 	list_for_each_entry(as, &c->btree_interior_update_list, list)
2728 		bch2_btree_update_to_text(out, as);
2729 	mutex_unlock(&c->btree_interior_update_lock);
2730 }
2731 
bch2_btree_interior_updates_pending(struct bch_fs * c)2732 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2733 {
2734 	bool ret;
2735 
2736 	mutex_lock(&c->btree_interior_update_lock);
2737 	ret = !list_empty(&c->btree_interior_update_list);
2738 	mutex_unlock(&c->btree_interior_update_lock);
2739 
2740 	return ret;
2741 }
2742 
bch2_btree_interior_updates_flush(struct bch_fs * c)2743 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2744 {
2745 	bool ret = bch2_btree_interior_updates_pending(c);
2746 
2747 	if (ret)
2748 		closure_wait_event(&c->btree_interior_update_wait,
2749 				   !bch2_btree_interior_updates_pending(c));
2750 	return ret;
2751 }
2752 
bch2_journal_entry_to_btree_root(struct bch_fs * c,struct jset_entry * entry)2753 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2754 {
2755 	struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2756 
2757 	mutex_lock(&c->btree_root_lock);
2758 
2759 	r->level = entry->level;
2760 	r->alive = true;
2761 	bkey_copy(&r->key, (struct bkey_i *) entry->start);
2762 
2763 	mutex_unlock(&c->btree_root_lock);
2764 }
2765 
2766 struct jset_entry *
bch2_btree_roots_to_journal_entries(struct bch_fs * c,struct jset_entry * end,unsigned long skip)2767 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2768 				    struct jset_entry *end,
2769 				    unsigned long skip)
2770 {
2771 	unsigned i;
2772 
2773 	mutex_lock(&c->btree_root_lock);
2774 
2775 	for (i = 0; i < btree_id_nr_alive(c); i++) {
2776 		struct btree_root *r = bch2_btree_id_root(c, i);
2777 
2778 		if (r->alive && !test_bit(i, &skip)) {
2779 			journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2780 					  i, r->level, &r->key, r->key.k.u64s);
2781 			end = vstruct_next(end);
2782 		}
2783 	}
2784 
2785 	mutex_unlock(&c->btree_root_lock);
2786 
2787 	return end;
2788 }
2789 
bch2_btree_alloc_to_text(struct printbuf * out,struct bch_fs * c,struct btree_alloc * a)2790 static void bch2_btree_alloc_to_text(struct printbuf *out,
2791 				     struct bch_fs *c,
2792 				     struct btree_alloc *a)
2793 {
2794 	printbuf_indent_add(out, 2);
2795 	bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k));
2796 	prt_newline(out);
2797 
2798 	struct open_bucket *ob;
2799 	unsigned i;
2800 	open_bucket_for_each(c, &a->ob, ob, i)
2801 		bch2_open_bucket_to_text(out, c, ob);
2802 
2803 	printbuf_indent_sub(out, 2);
2804 }
2805 
bch2_btree_reserve_cache_to_text(struct printbuf * out,struct bch_fs * c)2806 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c)
2807 {
2808 	for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++)
2809 		bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]);
2810 }
2811 
bch2_fs_btree_interior_update_exit(struct bch_fs * c)2812 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2813 {
2814 	WARN_ON(!list_empty(&c->btree_node_rewrites));
2815 	WARN_ON(!list_empty(&c->btree_node_rewrites_pending));
2816 
2817 	if (c->btree_node_rewrite_worker)
2818 		destroy_workqueue(c->btree_node_rewrite_worker);
2819 	if (c->btree_interior_update_worker)
2820 		destroy_workqueue(c->btree_interior_update_worker);
2821 	mempool_exit(&c->btree_interior_update_pool);
2822 }
2823 
bch2_fs_btree_interior_update_init_early(struct bch_fs * c)2824 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2825 {
2826 	mutex_init(&c->btree_reserve_cache_lock);
2827 	INIT_LIST_HEAD(&c->btree_interior_update_list);
2828 	INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2829 	mutex_init(&c->btree_interior_update_lock);
2830 	INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2831 
2832 	INIT_LIST_HEAD(&c->btree_node_rewrites);
2833 	INIT_LIST_HEAD(&c->btree_node_rewrites_pending);
2834 	spin_lock_init(&c->btree_node_rewrites_lock);
2835 }
2836 
bch2_fs_btree_interior_update_init(struct bch_fs * c)2837 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2838 {
2839 	c->btree_interior_update_worker =
2840 		alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2841 	if (!c->btree_interior_update_worker)
2842 		return bch_err_throw(c, ENOMEM_btree_interior_update_worker_init);
2843 
2844 	c->btree_node_rewrite_worker =
2845 		alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2846 	if (!c->btree_node_rewrite_worker)
2847 		return bch_err_throw(c, ENOMEM_btree_interior_update_worker_init);
2848 
2849 	if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2850 				      sizeof(struct btree_update)))
2851 		return bch_err_throw(c, ENOMEM_btree_interior_update_pool_init);
2852 
2853 	return 0;
2854 }
2855