xref: /linux/fs/bcachefs/btree_update_interior.c (revision 4a4b30ea80d8cb5e8c4c62bb86201f4ea0d9b030)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_buf.h"
6 #include "bkey_methods.h"
7 #include "btree_cache.h"
8 #include "btree_gc.h"
9 #include "btree_journal_iter.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
12 #include "btree_io.h"
13 #include "btree_iter.h"
14 #include "btree_locking.h"
15 #include "buckets.h"
16 #include "clock.h"
17 #include "error.h"
18 #include "extents.h"
19 #include "io_write.h"
20 #include "journal.h"
21 #include "journal_reclaim.h"
22 #include "keylist.h"
23 #include "recovery_passes.h"
24 #include "replicas.h"
25 #include "sb-members.h"
26 #include "super-io.h"
27 #include "trace.h"
28 
29 #include <linux/random.h>
30 
31 static const char * const bch2_btree_update_modes[] = {
32 #define x(t) #t,
33 	BTREE_UPDATE_MODES()
34 #undef x
35 	NULL
36 };
37 
38 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
39 				  btree_path_idx_t, struct btree *, struct keylist *);
40 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
41 
42 /*
43  * Verify that child nodes correctly span parent node's range:
44  */
bch2_btree_node_check_topology(struct btree_trans * trans,struct btree * b)45 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
46 {
47 	struct bch_fs *c = trans->c;
48 	struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
49 		? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key
50 		: b->data->min_key;
51 	struct btree_and_journal_iter iter;
52 	struct bkey_s_c k;
53 	struct printbuf buf = PRINTBUF;
54 	struct bkey_buf prev;
55 	int ret = 0;
56 
57 	BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
58 	       !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
59 			b->data->min_key));
60 
61 	bch2_bkey_buf_init(&prev);
62 	bkey_init(&prev.k->k);
63 	bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
64 
65 	if (b == btree_node_root(c, b)) {
66 		if (!bpos_eq(b->data->min_key, POS_MIN)) {
67 			printbuf_reset(&buf);
68 			bch2_bpos_to_text(&buf, b->data->min_key);
69 			log_fsck_err(trans, btree_root_bad_min_key,
70 				      "btree root with incorrect min_key: %s", buf.buf);
71 			goto topology_repair;
72 		}
73 
74 		if (!bpos_eq(b->data->max_key, SPOS_MAX)) {
75 			printbuf_reset(&buf);
76 			bch2_bpos_to_text(&buf, b->data->max_key);
77 			log_fsck_err(trans, btree_root_bad_max_key,
78 				      "btree root with incorrect max_key: %s", buf.buf);
79 			goto topology_repair;
80 		}
81 	}
82 
83 	if (!b->c.level)
84 		goto out;
85 
86 	while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
87 		if (k.k->type != KEY_TYPE_btree_ptr_v2)
88 			goto out;
89 
90 		struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
91 
92 		struct bpos expected_min = bkey_deleted(&prev.k->k)
93 			? node_min
94 			: bpos_successor(prev.k->k.p);
95 
96 		if (!bpos_eq(expected_min, bp.v->min_key)) {
97 			bch2_topology_error(c);
98 
99 			printbuf_reset(&buf);
100 			prt_str(&buf, "end of prev node doesn't match start of next node\n  in ");
101 			bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
102 			prt_str(&buf, " node ");
103 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
104 			prt_str(&buf, "\n  prev ");
105 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
106 			prt_str(&buf, "\n  next ");
107 			bch2_bkey_val_to_text(&buf, c, k);
108 
109 			log_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf);
110 			goto topology_repair;
111 		}
112 
113 		bch2_bkey_buf_reassemble(&prev, c, k);
114 		bch2_btree_and_journal_iter_advance(&iter);
115 	}
116 
117 	if (bkey_deleted(&prev.k->k)) {
118 		bch2_topology_error(c);
119 
120 		printbuf_reset(&buf);
121 		prt_str(&buf, "empty interior node\n  in ");
122 		bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
123 		prt_str(&buf, " node ");
124 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
125 
126 		log_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf);
127 		goto topology_repair;
128 	} else if (!bpos_eq(prev.k->k.p, b->key.k.p)) {
129 		bch2_topology_error(c);
130 
131 		printbuf_reset(&buf);
132 		prt_str(&buf, "last child node doesn't end at end of parent node\n  in ");
133 		bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
134 		prt_str(&buf, " node ");
135 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
136 		prt_str(&buf, "\n  last key ");
137 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
138 
139 		log_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf);
140 		goto topology_repair;
141 	}
142 out:
143 fsck_err:
144 	bch2_btree_and_journal_iter_exit(&iter);
145 	bch2_bkey_buf_exit(&prev, c);
146 	printbuf_exit(&buf);
147 	return ret;
148 topology_repair:
149 	ret = bch2_topology_error(c);
150 	goto out;
151 }
152 
153 /* Calculate ideal packed bkey format for new btree nodes: */
154 
__bch2_btree_calc_format(struct bkey_format_state * s,struct btree * b)155 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
156 {
157 	struct bkey_packed *k;
158 	struct bkey uk;
159 
160 	for_each_bset(b, t)
161 		bset_tree_for_each_key(b, t, k)
162 			if (!bkey_deleted(k)) {
163 				uk = bkey_unpack_key(b, k);
164 				bch2_bkey_format_add_key(s, &uk);
165 			}
166 }
167 
bch2_btree_calc_format(struct btree * b)168 static struct bkey_format bch2_btree_calc_format(struct btree *b)
169 {
170 	struct bkey_format_state s;
171 
172 	bch2_bkey_format_init(&s);
173 	bch2_bkey_format_add_pos(&s, b->data->min_key);
174 	bch2_bkey_format_add_pos(&s, b->data->max_key);
175 	__bch2_btree_calc_format(&s, b);
176 
177 	return bch2_bkey_format_done(&s);
178 }
179 
btree_node_u64s_with_format(struct btree_nr_keys nr,struct bkey_format * old_f,struct bkey_format * new_f)180 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
181 					  struct bkey_format *old_f,
182 					  struct bkey_format *new_f)
183 {
184 	/* stupid integer promotion rules */
185 	ssize_t delta =
186 	    (((int) new_f->key_u64s - old_f->key_u64s) *
187 	     (int) nr.packed_keys) +
188 	    (((int) new_f->key_u64s - BKEY_U64s) *
189 	     (int) nr.unpacked_keys);
190 
191 	BUG_ON(delta + nr.live_u64s < 0);
192 
193 	return nr.live_u64s + delta;
194 }
195 
196 /**
197  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
198  *
199  * @c:		filesystem handle
200  * @b:		btree node to rewrite
201  * @nr:		number of keys for new node (i.e. b->nr)
202  * @new_f:	bkey format to translate keys to
203  *
204  * Returns: true if all re-packed keys will be able to fit in a new node.
205  *
206  * Assumes all keys will successfully pack with the new format.
207  */
bch2_btree_node_format_fits(struct bch_fs * c,struct btree * b,struct btree_nr_keys nr,struct bkey_format * new_f)208 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
209 				 struct btree_nr_keys nr,
210 				 struct bkey_format *new_f)
211 {
212 	size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
213 
214 	return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
215 }
216 
217 /* Btree node freeing/allocation: */
218 
__btree_node_free(struct btree_trans * trans,struct btree * b)219 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
220 {
221 	struct bch_fs *c = trans->c;
222 
223 	trace_and_count(c, btree_node_free, trans, b);
224 
225 	BUG_ON(btree_node_write_blocked(b));
226 	BUG_ON(btree_node_dirty(b));
227 	BUG_ON(btree_node_need_write(b));
228 	BUG_ON(b == btree_node_root(c, b));
229 	BUG_ON(b->ob.nr);
230 	BUG_ON(!list_empty(&b->write_blocked));
231 	BUG_ON(b->will_make_reachable);
232 
233 	clear_btree_node_noevict(b);
234 }
235 
bch2_btree_node_free_inmem(struct btree_trans * trans,struct btree_path * path,struct btree * b)236 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
237 				       struct btree_path *path,
238 				       struct btree *b)
239 {
240 	struct bch_fs *c = trans->c;
241 
242 	bch2_btree_node_lock_write_nofail(trans, path, &b->c);
243 
244 	__btree_node_free(trans, b);
245 
246 	mutex_lock(&c->btree_cache.lock);
247 	bch2_btree_node_hash_remove(&c->btree_cache, b);
248 	mutex_unlock(&c->btree_cache.lock);
249 
250 	six_unlock_write(&b->c.lock);
251 	mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
252 
253 	bch2_trans_node_drop(trans, b);
254 }
255 
bch2_btree_node_free_never_used(struct btree_update * as,struct btree_trans * trans,struct btree * b)256 static void bch2_btree_node_free_never_used(struct btree_update *as,
257 					    struct btree_trans *trans,
258 					    struct btree *b)
259 {
260 	struct bch_fs *c = as->c;
261 	struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
262 
263 	BUG_ON(!list_empty(&b->write_blocked));
264 	BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
265 
266 	b->will_make_reachable = 0;
267 	closure_put(&as->cl);
268 
269 	clear_btree_node_will_make_reachable(b);
270 	clear_btree_node_accessed(b);
271 	clear_btree_node_dirty_acct(c, b);
272 	clear_btree_node_need_write(b);
273 
274 	mutex_lock(&c->btree_cache.lock);
275 	__bch2_btree_node_hash_remove(&c->btree_cache, b);
276 	mutex_unlock(&c->btree_cache.lock);
277 
278 	BUG_ON(p->nr >= ARRAY_SIZE(p->b));
279 	p->b[p->nr++] = b;
280 
281 	six_unlock_intent(&b->c.lock);
282 
283 	bch2_trans_node_drop(trans, b);
284 }
285 
__bch2_btree_node_alloc(struct btree_trans * trans,struct disk_reservation * res,struct closure * cl,bool interior_node,unsigned flags)286 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
287 					     struct disk_reservation *res,
288 					     struct closure *cl,
289 					     bool interior_node,
290 					     unsigned flags)
291 {
292 	struct bch_fs *c = trans->c;
293 	struct write_point *wp;
294 	struct btree *b;
295 	BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
296 	struct open_buckets obs = { .nr = 0 };
297 	struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
298 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
299 	unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
300 		? BTREE_NODE_RESERVE
301 		: 0;
302 	int ret;
303 
304 	b = bch2_btree_node_mem_alloc(trans, interior_node);
305 	if (IS_ERR(b))
306 		return b;
307 
308 	BUG_ON(b->ob.nr);
309 
310 	mutex_lock(&c->btree_reserve_cache_lock);
311 	if (c->btree_reserve_cache_nr > nr_reserve) {
312 		struct btree_alloc *a =
313 			&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
314 
315 		obs = a->ob;
316 		bkey_copy(&tmp.k, &a->k);
317 		mutex_unlock(&c->btree_reserve_cache_lock);
318 		goto out;
319 	}
320 	mutex_unlock(&c->btree_reserve_cache_lock);
321 retry:
322 	ret = bch2_alloc_sectors_start_trans(trans,
323 				      c->opts.metadata_target ?:
324 				      c->opts.foreground_target,
325 				      0,
326 				      writepoint_ptr(&c->btree_write_point),
327 				      &devs_have,
328 				      res->nr_replicas,
329 				      min(res->nr_replicas,
330 					  c->opts.metadata_replicas_required),
331 				      watermark, 0, cl, &wp);
332 	if (unlikely(ret))
333 		goto err;
334 
335 	if (wp->sectors_free < btree_sectors(c)) {
336 		struct open_bucket *ob;
337 		unsigned i;
338 
339 		open_bucket_for_each(c, &wp->ptrs, ob, i)
340 			if (ob->sectors_free < btree_sectors(c))
341 				ob->sectors_free = 0;
342 
343 		bch2_alloc_sectors_done(c, wp);
344 		goto retry;
345 	}
346 
347 	bkey_btree_ptr_v2_init(&tmp.k);
348 	bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
349 
350 	bch2_open_bucket_get(c, wp, &obs);
351 	bch2_alloc_sectors_done(c, wp);
352 out:
353 	bkey_copy(&b->key, &tmp.k);
354 	b->ob = obs;
355 	six_unlock_write(&b->c.lock);
356 	six_unlock_intent(&b->c.lock);
357 
358 	return b;
359 err:
360 	bch2_btree_node_to_freelist(c, b);
361 	return ERR_PTR(ret);
362 }
363 
bch2_btree_node_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)364 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
365 					   struct btree_trans *trans,
366 					   unsigned level)
367 {
368 	struct bch_fs *c = as->c;
369 	struct btree *b;
370 	struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
371 	int ret;
372 
373 	BUG_ON(level >= BTREE_MAX_DEPTH);
374 	BUG_ON(!p->nr);
375 
376 	b = p->b[--p->nr];
377 
378 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
379 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
380 
381 	set_btree_node_accessed(b);
382 	set_btree_node_dirty_acct(c, b);
383 	set_btree_node_need_write(b);
384 
385 	bch2_bset_init_first(b, &b->data->keys);
386 	b->c.level	= level;
387 	b->c.btree_id	= as->btree_id;
388 	b->version_ondisk = c->sb.version;
389 
390 	memset(&b->nr, 0, sizeof(b->nr));
391 	b->data->magic = cpu_to_le64(bset_magic(c));
392 	memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
393 	b->data->flags = 0;
394 	SET_BTREE_NODE_ID(b->data, as->btree_id);
395 	SET_BTREE_NODE_LEVEL(b->data, level);
396 
397 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
398 		struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
399 
400 		bp->v.mem_ptr		= 0;
401 		bp->v.seq		= b->data->keys.seq;
402 		bp->v.sectors_written	= 0;
403 	}
404 
405 	SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
406 
407 	bch2_btree_build_aux_trees(b);
408 
409 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
410 	BUG_ON(ret);
411 
412 	trace_and_count(c, btree_node_alloc, trans, b);
413 	bch2_increment_clock(c, btree_sectors(c), WRITE);
414 	return b;
415 }
416 
btree_set_min(struct btree * b,struct bpos pos)417 static void btree_set_min(struct btree *b, struct bpos pos)
418 {
419 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
420 		bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
421 	b->data->min_key = pos;
422 }
423 
btree_set_max(struct btree * b,struct bpos pos)424 static void btree_set_max(struct btree *b, struct bpos pos)
425 {
426 	b->key.k.p = pos;
427 	b->data->max_key = pos;
428 }
429 
bch2_btree_node_alloc_replacement(struct btree_update * as,struct btree_trans * trans,struct btree * b)430 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
431 						       struct btree_trans *trans,
432 						       struct btree *b)
433 {
434 	struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
435 	struct bkey_format format = bch2_btree_calc_format(b);
436 
437 	/*
438 	 * The keys might expand with the new format - if they wouldn't fit in
439 	 * the btree node anymore, use the old format for now:
440 	 */
441 	if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
442 		format = b->format;
443 
444 	SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
445 
446 	btree_set_min(n, b->data->min_key);
447 	btree_set_max(n, b->data->max_key);
448 
449 	n->data->format		= format;
450 	btree_node_set_format(n, format);
451 
452 	bch2_btree_sort_into(as->c, n, b);
453 
454 	btree_node_reset_sib_u64s(n);
455 	return n;
456 }
457 
__btree_root_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)458 static struct btree *__btree_root_alloc(struct btree_update *as,
459 				struct btree_trans *trans, unsigned level)
460 {
461 	struct btree *b = bch2_btree_node_alloc(as, trans, level);
462 
463 	btree_set_min(b, POS_MIN);
464 	btree_set_max(b, SPOS_MAX);
465 	b->data->format = bch2_btree_calc_format(b);
466 
467 	btree_node_set_format(b, b->data->format);
468 	bch2_btree_build_aux_trees(b);
469 
470 	return b;
471 }
472 
bch2_btree_reserve_put(struct btree_update * as,struct btree_trans * trans)473 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
474 {
475 	struct bch_fs *c = as->c;
476 	struct prealloc_nodes *p;
477 
478 	for (p = as->prealloc_nodes;
479 	     p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
480 	     p++) {
481 		while (p->nr) {
482 			struct btree *b = p->b[--p->nr];
483 
484 			mutex_lock(&c->btree_reserve_cache_lock);
485 
486 			if (c->btree_reserve_cache_nr <
487 			    ARRAY_SIZE(c->btree_reserve_cache)) {
488 				struct btree_alloc *a =
489 					&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
490 
491 				a->ob = b->ob;
492 				b->ob.nr = 0;
493 				bkey_copy(&a->k, &b->key);
494 			} else {
495 				bch2_open_buckets_put(c, &b->ob);
496 			}
497 
498 			mutex_unlock(&c->btree_reserve_cache_lock);
499 
500 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
501 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
502 			__btree_node_free(trans, b);
503 			bch2_btree_node_to_freelist(c, b);
504 		}
505 	}
506 }
507 
bch2_btree_reserve_get(struct btree_trans * trans,struct btree_update * as,unsigned nr_nodes[2],unsigned flags,struct closure * cl)508 static int bch2_btree_reserve_get(struct btree_trans *trans,
509 				  struct btree_update *as,
510 				  unsigned nr_nodes[2],
511 				  unsigned flags,
512 				  struct closure *cl)
513 {
514 	struct btree *b;
515 	unsigned interior;
516 	int ret = 0;
517 
518 	BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
519 
520 	/*
521 	 * Protects reaping from the btree node cache and using the btree node
522 	 * open bucket reserve:
523 	 */
524 	ret = bch2_btree_cache_cannibalize_lock(trans, cl);
525 	if (ret)
526 		return ret;
527 
528 	for (interior = 0; interior < 2; interior++) {
529 		struct prealloc_nodes *p = as->prealloc_nodes + interior;
530 
531 		while (p->nr < nr_nodes[interior]) {
532 			b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
533 						    interior, flags);
534 			if (IS_ERR(b)) {
535 				ret = PTR_ERR(b);
536 				goto err;
537 			}
538 
539 			p->b[p->nr++] = b;
540 		}
541 	}
542 err:
543 	bch2_btree_cache_cannibalize_unlock(trans);
544 	return ret;
545 }
546 
547 /* Asynchronous interior node update machinery */
548 
bch2_btree_update_free(struct btree_update * as,struct btree_trans * trans)549 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
550 {
551 	struct bch_fs *c = as->c;
552 
553 	if (as->took_gc_lock)
554 		up_read(&c->gc_lock);
555 	as->took_gc_lock = false;
556 
557 	bch2_journal_pin_drop(&c->journal, &as->journal);
558 	bch2_journal_pin_flush(&c->journal, &as->journal);
559 	bch2_disk_reservation_put(c, &as->disk_res);
560 	bch2_btree_reserve_put(as, trans);
561 
562 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
563 			       as->start_time);
564 
565 	mutex_lock(&c->btree_interior_update_lock);
566 	list_del(&as->unwritten_list);
567 	list_del(&as->list);
568 
569 	closure_debug_destroy(&as->cl);
570 	mempool_free(as, &c->btree_interior_update_pool);
571 
572 	/*
573 	 * Have to do the wakeup with btree_interior_update_lock still held,
574 	 * since being on btree_interior_update_list is our ref on @c:
575 	 */
576 	closure_wake_up(&c->btree_interior_update_wait);
577 
578 	mutex_unlock(&c->btree_interior_update_lock);
579 }
580 
btree_update_add_key(struct btree_update * as,struct keylist * keys,struct btree * b)581 static void btree_update_add_key(struct btree_update *as,
582 				 struct keylist *keys, struct btree *b)
583 {
584 	struct bkey_i *k = &b->key;
585 
586 	BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
587 	       ARRAY_SIZE(as->_old_keys));
588 
589 	bkey_copy(keys->top, k);
590 	bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
591 
592 	bch2_keylist_push(keys);
593 }
594 
btree_update_new_nodes_marked_sb(struct btree_update * as)595 static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
596 {
597 	for_each_keylist_key(&as->new_keys, k)
598 		if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
599 			return false;
600 	return true;
601 }
602 
btree_update_new_nodes_mark_sb(struct btree_update * as)603 static void btree_update_new_nodes_mark_sb(struct btree_update *as)
604 {
605 	struct bch_fs *c = as->c;
606 
607 	mutex_lock(&c->sb_lock);
608 	for_each_keylist_key(&as->new_keys, k)
609 		bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
610 
611 	bch2_write_super(c);
612 	mutex_unlock(&c->sb_lock);
613 }
614 
615 /*
616  * The transactional part of an interior btree node update, where we journal the
617  * update we did to the interior node and update alloc info:
618  */
btree_update_nodes_written_trans(struct btree_trans * trans,struct btree_update * as)619 static int btree_update_nodes_written_trans(struct btree_trans *trans,
620 					    struct btree_update *as)
621 {
622 	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
623 	int ret = PTR_ERR_OR_ZERO(e);
624 	if (ret)
625 		return ret;
626 
627 	memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
628 
629 	trans->journal_pin = &as->journal;
630 
631 	for_each_keylist_key(&as->old_keys, k) {
632 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
633 
634 		ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
635 					   BTREE_TRIGGER_transactional);
636 		if (ret)
637 			return ret;
638 	}
639 
640 	for_each_keylist_key(&as->new_keys, k) {
641 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
642 
643 		ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
644 					   BTREE_TRIGGER_transactional);
645 		if (ret)
646 			return ret;
647 	}
648 
649 	return 0;
650 }
651 
652 /* If the node has been reused, we might be reading uninitialized memory - that's fine: */
btree_node_seq_matches(struct btree * b,__le64 seq)653 static noinline __no_kmsan_checks bool btree_node_seq_matches(struct btree *b, __le64 seq)
654 {
655 	struct btree_node *b_data = READ_ONCE(b->data);
656 
657 	return (b_data ? b_data->keys.seq : 0) == seq;
658 }
659 
btree_update_nodes_written(struct btree_update * as)660 static void btree_update_nodes_written(struct btree_update *as)
661 {
662 	struct bch_fs *c = as->c;
663 	struct btree *b;
664 	struct btree_trans *trans = bch2_trans_get(c);
665 	u64 journal_seq = 0;
666 	unsigned i;
667 	int ret;
668 
669 	/*
670 	 * If we're already in an error state, it might be because a btree node
671 	 * was never written, and we might be trying to free that same btree
672 	 * node here, but it won't have been marked as allocated and we'll see
673 	 * spurious disk usage inconsistencies in the transactional part below
674 	 * if we don't skip it:
675 	 */
676 	ret = bch2_journal_error(&c->journal);
677 	if (ret)
678 		goto err;
679 
680 	if (!btree_update_new_nodes_marked_sb(as))
681 		btree_update_new_nodes_mark_sb(as);
682 
683 	/*
684 	 * Wait for any in flight writes to finish before we free the old nodes
685 	 * on disk:
686 	 */
687 	for (i = 0; i < as->nr_old_nodes; i++) {
688 		b = as->old_nodes[i];
689 
690 		if (btree_node_seq_matches(b, as->old_nodes_seq[i]))
691 			wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
692 				       TASK_UNINTERRUPTIBLE);
693 	}
694 
695 	/*
696 	 * We did an update to a parent node where the pointers we added pointed
697 	 * to child nodes that weren't written yet: now, the child nodes have
698 	 * been written so we can write out the update to the interior node.
699 	 */
700 
701 	/*
702 	 * We can't call into journal reclaim here: we'd block on the journal
703 	 * reclaim lock, but we may need to release the open buckets we have
704 	 * pinned in order for other btree updates to make forward progress, and
705 	 * journal reclaim does btree updates when flushing bkey_cached entries,
706 	 * which may require allocations as well.
707 	 */
708 	ret = commit_do(trans, &as->disk_res, &journal_seq,
709 			BCH_WATERMARK_interior_updates|
710 			BCH_TRANS_COMMIT_no_enospc|
711 			BCH_TRANS_COMMIT_no_check_rw|
712 			BCH_TRANS_COMMIT_journal_reclaim,
713 			btree_update_nodes_written_trans(trans, as));
714 	bch2_trans_unlock(trans);
715 
716 	bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
717 			     "%s", bch2_err_str(ret));
718 err:
719 	/*
720 	 * Ensure transaction is unlocked before using btree_node_lock_nopath()
721 	 * (the use of which is always suspect, we need to work on removing this
722 	 * in the future)
723 	 *
724 	 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get()
725 	 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may
726 	 * rarely end up with a locked path besides the one we have here:
727 	 */
728 	bch2_trans_unlock(trans);
729 	bch2_trans_begin(trans);
730 
731 	/*
732 	 * We have to be careful because another thread might be getting ready
733 	 * to free as->b and calling btree_update_reparent() on us - we'll
734 	 * recheck under btree_update_lock below:
735 	 */
736 	b = READ_ONCE(as->b);
737 	if (b) {
738 		/*
739 		 * @b is the node we did the final insert into:
740 		 *
741 		 * On failure to get a journal reservation, we still have to
742 		 * unblock the write and allow most of the write path to happen
743 		 * so that shutdown works, but the i->journal_seq mechanism
744 		 * won't work to prevent the btree write from being visible (we
745 		 * didn't get a journal sequence number) - instead
746 		 * __bch2_btree_node_write() doesn't do the actual write if
747 		 * we're in journal error state:
748 		 */
749 
750 		btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans,
751 						as->btree_id, b->c.level, b->key.k.p);
752 		struct btree_path *path = trans->paths + path_idx;
753 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
754 		mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
755 		path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
756 		path->l[b->c.level].b = b;
757 
758 		bch2_btree_node_lock_write_nofail(trans, path, &b->c);
759 
760 		mutex_lock(&c->btree_interior_update_lock);
761 
762 		list_del(&as->write_blocked_list);
763 		if (list_empty(&b->write_blocked))
764 			clear_btree_node_write_blocked(b);
765 
766 		/*
767 		 * Node might have been freed, recheck under
768 		 * btree_interior_update_lock:
769 		 */
770 		if (as->b == b) {
771 			BUG_ON(!b->c.level);
772 			BUG_ON(!btree_node_dirty(b));
773 
774 			if (!ret) {
775 				struct bset *last = btree_bset_last(b);
776 
777 				last->journal_seq = cpu_to_le64(
778 							     max(journal_seq,
779 								 le64_to_cpu(last->journal_seq)));
780 
781 				bch2_btree_add_journal_pin(c, b, journal_seq);
782 			} else {
783 				/*
784 				 * If we didn't get a journal sequence number we
785 				 * can't write this btree node, because recovery
786 				 * won't know to ignore this write:
787 				 */
788 				set_btree_node_never_write(b);
789 			}
790 		}
791 
792 		mutex_unlock(&c->btree_interior_update_lock);
793 
794 		mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
795 		six_unlock_write(&b->c.lock);
796 
797 		btree_node_write_if_need(trans, b, SIX_LOCK_intent);
798 		btree_node_unlock(trans, path, b->c.level);
799 		bch2_path_put(trans, path_idx, true);
800 	}
801 
802 	bch2_journal_pin_drop(&c->journal, &as->journal);
803 
804 	mutex_lock(&c->btree_interior_update_lock);
805 	for (i = 0; i < as->nr_new_nodes; i++) {
806 		b = as->new_nodes[i];
807 
808 		BUG_ON(b->will_make_reachable != (unsigned long) as);
809 		b->will_make_reachable = 0;
810 		clear_btree_node_will_make_reachable(b);
811 	}
812 	mutex_unlock(&c->btree_interior_update_lock);
813 
814 	for (i = 0; i < as->nr_new_nodes; i++) {
815 		b = as->new_nodes[i];
816 
817 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
818 		btree_node_write_if_need(trans, b, SIX_LOCK_read);
819 		six_unlock_read(&b->c.lock);
820 	}
821 
822 	for (i = 0; i < as->nr_open_buckets; i++)
823 		bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
824 
825 	bch2_btree_update_free(as, trans);
826 	bch2_trans_put(trans);
827 }
828 
btree_interior_update_work(struct work_struct * work)829 static void btree_interior_update_work(struct work_struct *work)
830 {
831 	struct bch_fs *c =
832 		container_of(work, struct bch_fs, btree_interior_update_work);
833 	struct btree_update *as;
834 
835 	while (1) {
836 		mutex_lock(&c->btree_interior_update_lock);
837 		as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
838 					      struct btree_update, unwritten_list);
839 		if (as && !as->nodes_written)
840 			as = NULL;
841 		mutex_unlock(&c->btree_interior_update_lock);
842 
843 		if (!as)
844 			break;
845 
846 		btree_update_nodes_written(as);
847 	}
848 }
849 
CLOSURE_CALLBACK(btree_update_set_nodes_written)850 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
851 {
852 	closure_type(as, struct btree_update, cl);
853 	struct bch_fs *c = as->c;
854 
855 	mutex_lock(&c->btree_interior_update_lock);
856 	as->nodes_written = true;
857 	mutex_unlock(&c->btree_interior_update_lock);
858 
859 	queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
860 }
861 
862 /*
863  * We're updating @b with pointers to nodes that haven't finished writing yet:
864  * block @b from being written until @as completes
865  */
btree_update_updated_node(struct btree_update * as,struct btree * b)866 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
867 {
868 	struct bch_fs *c = as->c;
869 
870 	BUG_ON(as->mode != BTREE_UPDATE_none);
871 	BUG_ON(as->update_level_end < b->c.level);
872 	BUG_ON(!btree_node_dirty(b));
873 	BUG_ON(!b->c.level);
874 
875 	mutex_lock(&c->btree_interior_update_lock);
876 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
877 
878 	as->mode	= BTREE_UPDATE_node;
879 	as->b		= b;
880 	as->update_level_end = b->c.level;
881 
882 	set_btree_node_write_blocked(b);
883 	list_add(&as->write_blocked_list, &b->write_blocked);
884 
885 	mutex_unlock(&c->btree_interior_update_lock);
886 }
887 
bch2_update_reparent_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)888 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
889 				struct journal_entry_pin *_pin, u64 seq)
890 {
891 	return 0;
892 }
893 
btree_update_reparent(struct btree_update * as,struct btree_update * child)894 static void btree_update_reparent(struct btree_update *as,
895 				  struct btree_update *child)
896 {
897 	struct bch_fs *c = as->c;
898 
899 	lockdep_assert_held(&c->btree_interior_update_lock);
900 
901 	child->b = NULL;
902 	child->mode = BTREE_UPDATE_update;
903 
904 	bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
905 			      bch2_update_reparent_journal_pin_flush);
906 }
907 
btree_update_updated_root(struct btree_update * as,struct btree * b)908 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
909 {
910 	struct bkey_i *insert = &b->key;
911 	struct bch_fs *c = as->c;
912 
913 	BUG_ON(as->mode != BTREE_UPDATE_none);
914 
915 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
916 	       ARRAY_SIZE(as->journal_entries));
917 
918 	as->journal_u64s +=
919 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
920 				  BCH_JSET_ENTRY_btree_root,
921 				  b->c.btree_id, b->c.level,
922 				  insert, insert->k.u64s);
923 
924 	mutex_lock(&c->btree_interior_update_lock);
925 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
926 
927 	as->mode	= BTREE_UPDATE_root;
928 	mutex_unlock(&c->btree_interior_update_lock);
929 }
930 
931 /*
932  * bch2_btree_update_add_new_node:
933  *
934  * This causes @as to wait on @b to be written, before it gets to
935  * bch2_btree_update_nodes_written
936  *
937  * Additionally, it sets b->will_make_reachable to prevent any additional writes
938  * to @b from happening besides the first until @b is reachable on disk
939  *
940  * And it adds @b to the list of @as's new nodes, so that we can update sector
941  * counts in bch2_btree_update_nodes_written:
942  */
bch2_btree_update_add_new_node(struct btree_update * as,struct btree * b)943 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
944 {
945 	struct bch_fs *c = as->c;
946 
947 	closure_get(&as->cl);
948 
949 	mutex_lock(&c->btree_interior_update_lock);
950 	BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
951 	BUG_ON(b->will_make_reachable);
952 
953 	as->new_nodes[as->nr_new_nodes++] = b;
954 	b->will_make_reachable = 1UL|(unsigned long) as;
955 	set_btree_node_will_make_reachable(b);
956 
957 	mutex_unlock(&c->btree_interior_update_lock);
958 
959 	btree_update_add_key(as, &as->new_keys, b);
960 
961 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
962 		unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
963 		unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
964 
965 		bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
966 			cpu_to_le16(sectors);
967 	}
968 }
969 
970 /*
971  * returns true if @b was a new node
972  */
btree_update_drop_new_node(struct bch_fs * c,struct btree * b)973 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
974 {
975 	struct btree_update *as;
976 	unsigned long v;
977 	unsigned i;
978 
979 	mutex_lock(&c->btree_interior_update_lock);
980 	/*
981 	 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
982 	 * dropped when it gets written by bch2_btree_complete_write - the
983 	 * xchg() is for synchronization with bch2_btree_complete_write:
984 	 */
985 	v = xchg(&b->will_make_reachable, 0);
986 	clear_btree_node_will_make_reachable(b);
987 	as = (struct btree_update *) (v & ~1UL);
988 
989 	if (!as) {
990 		mutex_unlock(&c->btree_interior_update_lock);
991 		return;
992 	}
993 
994 	for (i = 0; i < as->nr_new_nodes; i++)
995 		if (as->new_nodes[i] == b)
996 			goto found;
997 
998 	BUG();
999 found:
1000 	array_remove_item(as->new_nodes, as->nr_new_nodes, i);
1001 	mutex_unlock(&c->btree_interior_update_lock);
1002 
1003 	if (v & 1)
1004 		closure_put(&as->cl);
1005 }
1006 
bch2_btree_update_get_open_buckets(struct btree_update * as,struct btree * b)1007 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1008 {
1009 	while (b->ob.nr)
1010 		as->open_buckets[as->nr_open_buckets++] =
1011 			b->ob.v[--b->ob.nr];
1012 }
1013 
bch2_btree_update_will_free_node_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)1014 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1015 				struct journal_entry_pin *_pin, u64 seq)
1016 {
1017 	return 0;
1018 }
1019 
1020 /*
1021  * @b is being split/rewritten: it may have pointers to not-yet-written btree
1022  * nodes and thus outstanding btree_updates - redirect @b's
1023  * btree_updates to point to this btree_update:
1024  */
bch2_btree_interior_update_will_free_node(struct btree_update * as,struct btree * b)1025 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1026 						      struct btree *b)
1027 {
1028 	struct bch_fs *c = as->c;
1029 	struct btree_update *p, *n;
1030 	struct btree_write *w;
1031 
1032 	set_btree_node_dying(b);
1033 
1034 	if (btree_node_fake(b))
1035 		return;
1036 
1037 	mutex_lock(&c->btree_interior_update_lock);
1038 
1039 	/*
1040 	 * Does this node have any btree_update operations preventing
1041 	 * it from being written?
1042 	 *
1043 	 * If so, redirect them to point to this btree_update: we can
1044 	 * write out our new nodes, but we won't make them visible until those
1045 	 * operations complete
1046 	 */
1047 	list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1048 		list_del_init(&p->write_blocked_list);
1049 		btree_update_reparent(as, p);
1050 
1051 		/*
1052 		 * for flush_held_btree_writes() waiting on updates to flush or
1053 		 * nodes to be writeable:
1054 		 */
1055 		closure_wake_up(&c->btree_interior_update_wait);
1056 	}
1057 
1058 	clear_btree_node_dirty_acct(c, b);
1059 	clear_btree_node_need_write(b);
1060 	clear_btree_node_write_blocked(b);
1061 
1062 	/*
1063 	 * Does this node have unwritten data that has a pin on the journal?
1064 	 *
1065 	 * If so, transfer that pin to the btree_update operation -
1066 	 * note that if we're freeing multiple nodes, we only need to keep the
1067 	 * oldest pin of any of the nodes we're freeing. We'll release the pin
1068 	 * when the new nodes are persistent and reachable on disk:
1069 	 */
1070 	w = btree_current_write(b);
1071 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1072 			      bch2_btree_update_will_free_node_journal_pin_flush);
1073 	bch2_journal_pin_drop(&c->journal, &w->journal);
1074 
1075 	w = btree_prev_write(b);
1076 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1077 			      bch2_btree_update_will_free_node_journal_pin_flush);
1078 	bch2_journal_pin_drop(&c->journal, &w->journal);
1079 
1080 	mutex_unlock(&c->btree_interior_update_lock);
1081 
1082 	/*
1083 	 * Is this a node that isn't reachable on disk yet?
1084 	 *
1085 	 * Nodes that aren't reachable yet have writes blocked until they're
1086 	 * reachable - now that we've cancelled any pending writes and moved
1087 	 * things waiting on that write to wait on this update, we can drop this
1088 	 * node from the list of nodes that the other update is making
1089 	 * reachable, prior to freeing it:
1090 	 */
1091 	btree_update_drop_new_node(c, b);
1092 
1093 	btree_update_add_key(as, &as->old_keys, b);
1094 
1095 	as->old_nodes[as->nr_old_nodes] = b;
1096 	as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1097 	as->nr_old_nodes++;
1098 }
1099 
bch2_btree_update_done(struct btree_update * as,struct btree_trans * trans)1100 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1101 {
1102 	struct bch_fs *c = as->c;
1103 	u64 start_time = as->start_time;
1104 
1105 	BUG_ON(as->mode == BTREE_UPDATE_none);
1106 
1107 	if (as->took_gc_lock)
1108 		up_read(&as->c->gc_lock);
1109 	as->took_gc_lock = false;
1110 
1111 	bch2_btree_reserve_put(as, trans);
1112 
1113 	continue_at(&as->cl, btree_update_set_nodes_written,
1114 		    as->c->btree_interior_update_worker);
1115 
1116 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1117 			       start_time);
1118 }
1119 
1120 static struct btree_update *
bch2_btree_update_start(struct btree_trans * trans,struct btree_path * path,unsigned level_start,bool split,unsigned flags)1121 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1122 			unsigned level_start, bool split, unsigned flags)
1123 {
1124 	struct bch_fs *c = trans->c;
1125 	struct btree_update *as;
1126 	u64 start_time = local_clock();
1127 	int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1128 		? BCH_DISK_RESERVATION_NOFAIL : 0;
1129 	unsigned nr_nodes[2] = { 0, 0 };
1130 	unsigned level_end = level_start;
1131 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1132 	int ret = 0;
1133 	u32 restart_count = trans->restart_count;
1134 
1135 	BUG_ON(!path->should_be_locked);
1136 
1137 	if (watermark == BCH_WATERMARK_copygc)
1138 		watermark = BCH_WATERMARK_btree_copygc;
1139 	if (watermark < BCH_WATERMARK_btree)
1140 		watermark = BCH_WATERMARK_btree;
1141 
1142 	flags &= ~BCH_WATERMARK_MASK;
1143 	flags |= watermark;
1144 
1145 	if (watermark < BCH_WATERMARK_reclaim &&
1146 	    test_bit(JOURNAL_space_low, &c->journal.flags)) {
1147 		if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1148 			return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock);
1149 
1150 		ret = drop_locks_do(trans,
1151 			({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; }));
1152 		if (ret)
1153 			return ERR_PTR(ret);
1154 	}
1155 
1156 	while (1) {
1157 		nr_nodes[!!level_end] += 1 + split;
1158 		level_end++;
1159 
1160 		ret = bch2_btree_path_upgrade(trans, path, level_end + 1);
1161 		if (ret)
1162 			return ERR_PTR(ret);
1163 
1164 		if (!btree_path_node(path, level_end)) {
1165 			/* Allocating new root? */
1166 			nr_nodes[1] += split;
1167 			level_end = BTREE_MAX_DEPTH;
1168 			break;
1169 		}
1170 
1171 		/*
1172 		 * Always check for space for two keys, even if we won't have to
1173 		 * split at prior level - it might have been a merge instead:
1174 		 */
1175 		if (bch2_btree_node_insert_fits(path->l[level_end].b,
1176 						BKEY_BTREE_PTR_U64s_MAX * 2))
1177 			break;
1178 
1179 		split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1180 	}
1181 
1182 	if (!down_read_trylock(&c->gc_lock)) {
1183 		ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1184 		if (ret) {
1185 			up_read(&c->gc_lock);
1186 			return ERR_PTR(ret);
1187 		}
1188 	}
1189 
1190 	as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1191 	memset(as, 0, sizeof(*as));
1192 	closure_init(&as->cl, NULL);
1193 	as->c			= c;
1194 	as->start_time		= start_time;
1195 	as->ip_started		= _RET_IP_;
1196 	as->mode		= BTREE_UPDATE_none;
1197 	as->flags		= flags;
1198 	as->took_gc_lock	= true;
1199 	as->btree_id		= path->btree_id;
1200 	as->update_level_start	= level_start;
1201 	as->update_level_end	= level_end;
1202 	INIT_LIST_HEAD(&as->list);
1203 	INIT_LIST_HEAD(&as->unwritten_list);
1204 	INIT_LIST_HEAD(&as->write_blocked_list);
1205 	bch2_keylist_init(&as->old_keys, as->_old_keys);
1206 	bch2_keylist_init(&as->new_keys, as->_new_keys);
1207 	bch2_keylist_init(&as->parent_keys, as->inline_keys);
1208 
1209 	mutex_lock(&c->btree_interior_update_lock);
1210 	list_add_tail(&as->list, &c->btree_interior_update_list);
1211 	mutex_unlock(&c->btree_interior_update_lock);
1212 
1213 	/*
1214 	 * We don't want to allocate if we're in an error state, that can cause
1215 	 * deadlock on emergency shutdown due to open buckets getting stuck in
1216 	 * the btree_reserve_cache after allocator shutdown has cleared it out.
1217 	 * This check needs to come after adding us to the btree_interior_update
1218 	 * list but before calling bch2_btree_reserve_get, to synchronize with
1219 	 * __bch2_fs_read_only().
1220 	 */
1221 	ret = bch2_journal_error(&c->journal);
1222 	if (ret)
1223 		goto err;
1224 
1225 	ret = bch2_disk_reservation_get(c, &as->disk_res,
1226 			(nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1227 			c->opts.metadata_replicas,
1228 			disk_res_flags);
1229 	if (ret)
1230 		goto err;
1231 
1232 	ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1233 	if (bch2_err_matches(ret, ENOSPC) ||
1234 	    bch2_err_matches(ret, ENOMEM)) {
1235 		struct closure cl;
1236 
1237 		/*
1238 		 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1239 		 * flag
1240 		 */
1241 		if (bch2_err_matches(ret, ENOSPC) &&
1242 		    (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1243 		    watermark < BCH_WATERMARK_reclaim) {
1244 			ret = -BCH_ERR_journal_reclaim_would_deadlock;
1245 			goto err;
1246 		}
1247 
1248 		closure_init_stack(&cl);
1249 
1250 		do {
1251 			ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1252 
1253 			bch2_trans_unlock(trans);
1254 			bch2_wait_on_allocator(c, &cl);
1255 		} while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1256 	}
1257 
1258 	if (ret) {
1259 		trace_and_count(c, btree_reserve_get_fail, trans->fn,
1260 				_RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1261 		goto err;
1262 	}
1263 
1264 	ret = bch2_trans_relock(trans);
1265 	if (ret)
1266 		goto err;
1267 
1268 	bch2_trans_verify_not_restarted(trans, restart_count);
1269 	return as;
1270 err:
1271 	bch2_btree_update_free(as, trans);
1272 	if (!bch2_err_matches(ret, ENOSPC) &&
1273 	    !bch2_err_matches(ret, EROFS) &&
1274 	    ret != -BCH_ERR_journal_reclaim_would_deadlock)
1275 		bch_err_fn_ratelimited(c, ret);
1276 	return ERR_PTR(ret);
1277 }
1278 
1279 /* Btree root updates: */
1280 
bch2_btree_set_root_inmem(struct bch_fs * c,struct btree * b)1281 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1282 {
1283 	/* Root nodes cannot be reaped */
1284 	mutex_lock(&c->btree_cache.lock);
1285 	list_del_init(&b->list);
1286 	mutex_unlock(&c->btree_cache.lock);
1287 
1288 	mutex_lock(&c->btree_root_lock);
1289 	bch2_btree_id_root(c, b->c.btree_id)->b = b;
1290 	mutex_unlock(&c->btree_root_lock);
1291 
1292 	bch2_recalc_btree_reserve(c);
1293 }
1294 
bch2_btree_set_root(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,bool nofail)1295 static int bch2_btree_set_root(struct btree_update *as,
1296 			       struct btree_trans *trans,
1297 			       struct btree_path *path,
1298 			       struct btree *b,
1299 			       bool nofail)
1300 {
1301 	struct bch_fs *c = as->c;
1302 
1303 	trace_and_count(c, btree_node_set_root, trans, b);
1304 
1305 	struct btree *old = btree_node_root(c, b);
1306 
1307 	/*
1308 	 * Ensure no one is using the old root while we switch to the
1309 	 * new root:
1310 	 */
1311 	if (nofail) {
1312 		bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1313 	} else {
1314 		int ret = bch2_btree_node_lock_write(trans, path, &old->c);
1315 		if (ret)
1316 			return ret;
1317 	}
1318 
1319 	bch2_btree_set_root_inmem(c, b);
1320 
1321 	btree_update_updated_root(as, b);
1322 
1323 	/*
1324 	 * Unlock old root after new root is visible:
1325 	 *
1326 	 * The new root isn't persistent, but that's ok: we still have
1327 	 * an intent lock on the new root, and any updates that would
1328 	 * depend on the new root would have to update the new root.
1329 	 */
1330 	bch2_btree_node_unlock_write(trans, path, old);
1331 	return 0;
1332 }
1333 
1334 /* Interior node updates: */
1335 
bch2_insert_fixup_btree_ptr(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter * node_iter,struct bkey_i * insert)1336 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1337 					struct btree_trans *trans,
1338 					struct btree_path *path,
1339 					struct btree *b,
1340 					struct btree_node_iter *node_iter,
1341 					struct bkey_i *insert)
1342 {
1343 	struct bch_fs *c = as->c;
1344 	struct bkey_packed *k;
1345 	struct printbuf buf = PRINTBUF;
1346 	unsigned long old, new;
1347 
1348 	BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1349 	       !btree_ptr_sectors_written(bkey_i_to_s_c(insert)));
1350 
1351 	if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags)))
1352 		bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1353 
1354 	struct bkey_validate_context from = (struct bkey_validate_context) {
1355 		.from	= BKEY_VALIDATE_btree_node,
1356 		.level	= b->c.level,
1357 		.btree	= b->c.btree_id,
1358 		.flags	= BCH_VALIDATE_commit,
1359 	};
1360 	if (bch2_bkey_validate(c, bkey_i_to_s_c(insert), from) ?:
1361 	    bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), from)) {
1362 		bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__);
1363 		dump_stack();
1364 	}
1365 
1366 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1367 	       ARRAY_SIZE(as->journal_entries));
1368 
1369 	as->journal_u64s +=
1370 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1371 				  BCH_JSET_ENTRY_btree_keys,
1372 				  b->c.btree_id, b->c.level,
1373 				  insert, insert->k.u64s);
1374 
1375 	while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1376 	       bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1377 		bch2_btree_node_iter_advance(node_iter, b);
1378 
1379 	bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1380 	set_btree_node_dirty_acct(c, b);
1381 
1382 	old = READ_ONCE(b->flags);
1383 	do {
1384 		new = old;
1385 
1386 		new &= ~BTREE_WRITE_TYPE_MASK;
1387 		new |= BTREE_WRITE_interior;
1388 		new |= 1 << BTREE_NODE_need_write;
1389 	} while (!try_cmpxchg(&b->flags, &old, new));
1390 
1391 	printbuf_exit(&buf);
1392 }
1393 
1394 static void
bch2_btree_insert_keys_interior(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter node_iter,struct keylist * keys)1395 bch2_btree_insert_keys_interior(struct btree_update *as,
1396 				struct btree_trans *trans,
1397 				struct btree_path *path,
1398 				struct btree *b,
1399 				struct btree_node_iter node_iter,
1400 				struct keylist *keys)
1401 {
1402 	struct bkey_i *insert = bch2_keylist_front(keys);
1403 	struct bkey_packed *k;
1404 
1405 	BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1406 
1407 	while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1408 	       (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1409 		;
1410 
1411 	for (;
1412 	     insert != keys->top && bpos_le(insert->k.p, b->key.k.p);
1413 	     insert = bkey_next(insert))
1414 		bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1415 
1416 	if (bch2_btree_node_check_topology(trans, b)) {
1417 		struct printbuf buf = PRINTBUF;
1418 
1419 		for (struct bkey_i *k = keys->keys;
1420 		     k != insert;
1421 		     k = bkey_next(k)) {
1422 			bch2_bkey_val_to_text(&buf, trans->c, bkey_i_to_s_c(k));
1423 			prt_newline(&buf);
1424 		}
1425 
1426 		panic("%s(): check_topology error: inserted keys\n%s", __func__, buf.buf);
1427 	}
1428 
1429 	memmove_u64s_down(keys->keys, insert, keys->top_p - insert->_data);
1430 	keys->top_p -= insert->_data - keys->keys_p;
1431 }
1432 
key_deleted_in_insert(struct keylist * insert_keys,struct bpos pos)1433 static bool key_deleted_in_insert(struct keylist *insert_keys, struct bpos pos)
1434 {
1435 	if (insert_keys)
1436 		for_each_keylist_key(insert_keys, k)
1437 			if (bkey_deleted(&k->k) && bpos_eq(k->k.p, pos))
1438 				return true;
1439 	return false;
1440 }
1441 
1442 /*
1443  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1444  * node)
1445  */
__btree_split_node(struct btree_update * as,struct btree_trans * trans,struct btree * b,struct btree * n[2],struct keylist * insert_keys)1446 static void __btree_split_node(struct btree_update *as,
1447 			       struct btree_trans *trans,
1448 			       struct btree *b,
1449 			       struct btree *n[2],
1450 			       struct keylist *insert_keys)
1451 {
1452 	struct bkey_packed *k;
1453 	struct bpos n1_pos = POS_MIN;
1454 	struct btree_node_iter iter;
1455 	struct bset *bsets[2];
1456 	struct bkey_format_state format[2];
1457 	struct bkey_packed *out[2];
1458 	struct bkey uk;
1459 	unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1460 	struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1461 	int i;
1462 
1463 	memset(&nr_keys, 0, sizeof(nr_keys));
1464 
1465 	for (i = 0; i < 2; i++) {
1466 		BUG_ON(n[i]->nsets != 1);
1467 
1468 		bsets[i] = btree_bset_first(n[i]);
1469 		out[i] = bsets[i]->start;
1470 
1471 		SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1472 		bch2_bkey_format_init(&format[i]);
1473 	}
1474 
1475 	u64s = 0;
1476 	for_each_btree_node_key(b, k, &iter) {
1477 		if (bkey_deleted(k))
1478 			continue;
1479 
1480 		uk = bkey_unpack_key(b, k);
1481 
1482 		if (b->c.level &&
1483 		    u64s < n1_u64s &&
1484 		    u64s + k->u64s >= n1_u64s &&
1485 		    (bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p) ||
1486 		     key_deleted_in_insert(insert_keys, uk.p)))
1487 			n1_u64s += k->u64s;
1488 
1489 		i = u64s >= n1_u64s;
1490 		u64s += k->u64s;
1491 		if (!i)
1492 			n1_pos = uk.p;
1493 		bch2_bkey_format_add_key(&format[i], &uk);
1494 
1495 		nr_keys[i].nr_keys++;
1496 		nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1497 	}
1498 
1499 	btree_set_min(n[0], b->data->min_key);
1500 	btree_set_max(n[0], n1_pos);
1501 	btree_set_min(n[1], bpos_successor(n1_pos));
1502 	btree_set_max(n[1], b->data->max_key);
1503 
1504 	for (i = 0; i < 2; i++) {
1505 		bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1506 		bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1507 
1508 		n[i]->data->format = bch2_bkey_format_done(&format[i]);
1509 
1510 		unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1511 			nr_keys[i].val_u64s;
1512 		if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1513 			n[i]->data->format = b->format;
1514 
1515 		btree_node_set_format(n[i], n[i]->data->format);
1516 	}
1517 
1518 	u64s = 0;
1519 	for_each_btree_node_key(b, k, &iter) {
1520 		if (bkey_deleted(k))
1521 			continue;
1522 
1523 		i = u64s >= n1_u64s;
1524 		u64s += k->u64s;
1525 
1526 		if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1527 					? &b->format: &bch2_bkey_format_current, k))
1528 			out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1529 		else
1530 			bch2_bkey_unpack(b, (void *) out[i], k);
1531 
1532 		out[i]->needs_whiteout = false;
1533 
1534 		btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1535 		out[i] = bkey_p_next(out[i]);
1536 	}
1537 
1538 	for (i = 0; i < 2; i++) {
1539 		bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1540 
1541 		BUG_ON(!bsets[i]->u64s);
1542 
1543 		set_btree_bset_end(n[i], n[i]->set);
1544 
1545 		btree_node_reset_sib_u64s(n[i]);
1546 
1547 		bch2_verify_btree_nr_keys(n[i]);
1548 
1549 		BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1550 	}
1551 }
1552 
1553 /*
1554  * For updates to interior nodes, we've got to do the insert before we split
1555  * because the stuff we're inserting has to be inserted atomically. Post split,
1556  * the keys might have to go in different nodes and the split would no longer be
1557  * atomic.
1558  *
1559  * Worse, if the insert is from btree node coalescing, if we do the insert after
1560  * we do the split (and pick the pivot) - the pivot we pick might be between
1561  * nodes that were coalesced, and thus in the middle of a child node post
1562  * coalescing:
1563  */
btree_split_insert_keys(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1564 static void btree_split_insert_keys(struct btree_update *as,
1565 				    struct btree_trans *trans,
1566 				    btree_path_idx_t path_idx,
1567 				    struct btree *b,
1568 				    struct keylist *keys)
1569 {
1570 	struct btree_path *path = trans->paths + path_idx;
1571 
1572 	if (!bch2_keylist_empty(keys) &&
1573 	    bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1574 		struct btree_node_iter node_iter;
1575 
1576 		bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1577 
1578 		bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1579 	}
1580 }
1581 
btree_split(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path,struct btree * b,struct keylist * keys)1582 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1583 		       btree_path_idx_t path, struct btree *b,
1584 		       struct keylist *keys)
1585 {
1586 	struct bch_fs *c = as->c;
1587 	struct btree *parent = btree_node_parent(trans->paths + path, b);
1588 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1589 	btree_path_idx_t path1 = 0, path2 = 0;
1590 	u64 start_time = local_clock();
1591 	int ret = 0;
1592 
1593 	bch2_verify_btree_nr_keys(b);
1594 	BUG_ON(!parent && (b != btree_node_root(c, b)));
1595 	BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1596 
1597 	ret = bch2_btree_node_check_topology(trans, b);
1598 	if (ret)
1599 		return ret;
1600 
1601 	if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1602 		struct btree *n[2];
1603 
1604 		trace_and_count(c, btree_node_split, trans, b);
1605 
1606 		n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1607 		n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1608 
1609 		__btree_split_node(as, trans, b, n, keys);
1610 
1611 		if (keys) {
1612 			btree_split_insert_keys(as, trans, path, n1, keys);
1613 			btree_split_insert_keys(as, trans, path, n2, keys);
1614 			BUG_ON(!bch2_keylist_empty(keys));
1615 		}
1616 
1617 		bch2_btree_build_aux_trees(n2);
1618 		bch2_btree_build_aux_trees(n1);
1619 
1620 		bch2_btree_update_add_new_node(as, n1);
1621 		bch2_btree_update_add_new_node(as, n2);
1622 		six_unlock_write(&n2->c.lock);
1623 		six_unlock_write(&n1->c.lock);
1624 
1625 		path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1626 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1627 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1628 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1629 
1630 		path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p);
1631 		six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1632 		mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1633 		bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1634 
1635 		/*
1636 		 * Note that on recursive parent_keys == keys, so we
1637 		 * can't start adding new keys to parent_keys before emptying it
1638 		 * out (which we did with btree_split_insert_keys() above)
1639 		 */
1640 		bch2_keylist_add(&as->parent_keys, &n1->key);
1641 		bch2_keylist_add(&as->parent_keys, &n2->key);
1642 
1643 		if (!parent) {
1644 			/* Depth increases, make a new root */
1645 			n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1646 
1647 			bch2_btree_update_add_new_node(as, n3);
1648 			six_unlock_write(&n3->c.lock);
1649 
1650 			trans->paths[path2].locks_want++;
1651 			BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1652 			six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1653 			mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1654 			bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1655 
1656 			n3->sib_u64s[0] = U16_MAX;
1657 			n3->sib_u64s[1] = U16_MAX;
1658 
1659 			btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1660 		}
1661 	} else {
1662 		trace_and_count(c, btree_node_compact, trans, b);
1663 
1664 		n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1665 
1666 		if (keys) {
1667 			btree_split_insert_keys(as, trans, path, n1, keys);
1668 			BUG_ON(!bch2_keylist_empty(keys));
1669 		}
1670 
1671 		bch2_btree_build_aux_trees(n1);
1672 		bch2_btree_update_add_new_node(as, n1);
1673 		six_unlock_write(&n1->c.lock);
1674 
1675 		path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1676 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1677 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1678 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1679 
1680 		if (parent)
1681 			bch2_keylist_add(&as->parent_keys, &n1->key);
1682 	}
1683 
1684 	/* New nodes all written, now make them visible: */
1685 
1686 	if (parent) {
1687 		/* Split a non root node */
1688 		ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1689 	} else if (n3) {
1690 		ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false);
1691 	} else {
1692 		/* Root filled up but didn't need to be split */
1693 		ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false);
1694 	}
1695 
1696 	if (ret)
1697 		goto err;
1698 
1699 	bch2_btree_interior_update_will_free_node(as, b);
1700 
1701 	if (n3) {
1702 		bch2_btree_update_get_open_buckets(as, n3);
1703 		bch2_btree_node_write_trans(trans, n3, SIX_LOCK_intent, 0);
1704 	}
1705 	if (n2) {
1706 		bch2_btree_update_get_open_buckets(as, n2);
1707 		bch2_btree_node_write_trans(trans, n2, SIX_LOCK_intent, 0);
1708 	}
1709 	bch2_btree_update_get_open_buckets(as, n1);
1710 	bch2_btree_node_write_trans(trans, n1, SIX_LOCK_intent, 0);
1711 
1712 	/*
1713 	 * The old node must be freed (in memory) _before_ unlocking the new
1714 	 * nodes - else another thread could re-acquire a read lock on the old
1715 	 * node after another thread has locked and updated the new node, thus
1716 	 * seeing stale data:
1717 	 */
1718 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1719 
1720 	if (n3)
1721 		bch2_trans_node_add(trans, trans->paths + path, n3);
1722 	if (n2)
1723 		bch2_trans_node_add(trans, trans->paths + path2, n2);
1724 	bch2_trans_node_add(trans, trans->paths + path1, n1);
1725 
1726 	if (n3)
1727 		six_unlock_intent(&n3->c.lock);
1728 	if (n2)
1729 		six_unlock_intent(&n2->c.lock);
1730 	six_unlock_intent(&n1->c.lock);
1731 out:
1732 	if (path2) {
1733 		__bch2_btree_path_unlock(trans, trans->paths + path2);
1734 		bch2_path_put(trans, path2, true);
1735 	}
1736 	if (path1) {
1737 		__bch2_btree_path_unlock(trans, trans->paths + path1);
1738 		bch2_path_put(trans, path1, true);
1739 	}
1740 
1741 	bch2_trans_verify_locks(trans);
1742 
1743 	bch2_time_stats_update(&c->times[n2
1744 			       ? BCH_TIME_btree_node_split
1745 			       : BCH_TIME_btree_node_compact],
1746 			       start_time);
1747 	return ret;
1748 err:
1749 	if (n3)
1750 		bch2_btree_node_free_never_used(as, trans, n3);
1751 	if (n2)
1752 		bch2_btree_node_free_never_used(as, trans, n2);
1753 	bch2_btree_node_free_never_used(as, trans, n1);
1754 	goto out;
1755 }
1756 
1757 /**
1758  * bch2_btree_insert_node - insert bkeys into a given btree node
1759  *
1760  * @as:			btree_update object
1761  * @trans:		btree_trans object
1762  * @path_idx:		path that points to current node
1763  * @b:			node to insert keys into
1764  * @keys:		list of keys to insert
1765  *
1766  * Returns: 0 on success, typically transaction restart error on failure
1767  *
1768  * Inserts as many keys as it can into a given btree node, splitting it if full.
1769  * If a split occurred, this function will return early. This can only happen
1770  * for leaf nodes -- inserts into interior nodes have to be atomic.
1771  */
bch2_btree_insert_node(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1772 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1773 				  btree_path_idx_t path_idx, struct btree *b,
1774 				  struct keylist *keys)
1775 {
1776 	struct bch_fs *c = as->c;
1777 	struct btree_path *path = trans->paths + path_idx, *linked;
1778 	unsigned i;
1779 	int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1780 	int old_live_u64s = b->nr.live_u64s;
1781 	int live_u64s_added, u64s_added;
1782 	int ret;
1783 
1784 	lockdep_assert_held(&c->gc_lock);
1785 	BUG_ON(!btree_node_intent_locked(path, b->c.level));
1786 	BUG_ON(!b->c.level);
1787 	BUG_ON(!as || as->b);
1788 	bch2_verify_keylist_sorted(keys);
1789 
1790 	ret = bch2_btree_node_lock_write(trans, path, &b->c);
1791 	if (ret)
1792 		return ret;
1793 
1794 	bch2_btree_node_prep_for_write(trans, path, b);
1795 
1796 	if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1797 		bch2_btree_node_unlock_write(trans, path, b);
1798 		goto split;
1799 	}
1800 
1801 	ret = bch2_btree_node_check_topology(trans, b);
1802 	if (ret) {
1803 		bch2_btree_node_unlock_write(trans, path, b);
1804 		return ret;
1805 	}
1806 
1807 	bch2_btree_insert_keys_interior(as, trans, path, b,
1808 					path->l[b->c.level].iter, keys);
1809 
1810 	trans_for_each_path_with_node(trans, b, linked, i)
1811 		bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1812 
1813 	bch2_trans_verify_paths(trans);
1814 
1815 	live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1816 	u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1817 
1818 	if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1819 		b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1820 	if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1821 		b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1822 
1823 	if (u64s_added > live_u64s_added &&
1824 	    bch2_maybe_compact_whiteouts(c, b))
1825 		bch2_trans_node_reinit_iter(trans, b);
1826 
1827 	btree_update_updated_node(as, b);
1828 	bch2_btree_node_unlock_write(trans, path, b);
1829 	return 0;
1830 split:
1831 	/*
1832 	 * We could attempt to avoid the transaction restart, by calling
1833 	 * bch2_btree_path_upgrade() and allocating more nodes:
1834 	 */
1835 	if (b->c.level >= as->update_level_end) {
1836 		trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1837 		return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1838 	}
1839 
1840 	return btree_split(as, trans, path_idx, b, keys);
1841 }
1842 
bch2_btree_split_leaf(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1843 int bch2_btree_split_leaf(struct btree_trans *trans,
1844 			  btree_path_idx_t path,
1845 			  unsigned flags)
1846 {
1847 	/* btree_split & merge may both cause paths array to be reallocated */
1848 	struct btree *b = path_l(trans->paths + path)->b;
1849 	struct btree_update *as;
1850 	unsigned l;
1851 	int ret = 0;
1852 
1853 	as = bch2_btree_update_start(trans, trans->paths + path,
1854 				     trans->paths[path].level,
1855 				     true, flags);
1856 	if (IS_ERR(as))
1857 		return PTR_ERR(as);
1858 
1859 	ret = btree_split(as, trans, path, b, NULL);
1860 	if (ret) {
1861 		bch2_btree_update_free(as, trans);
1862 		return ret;
1863 	}
1864 
1865 	bch2_btree_update_done(as, trans);
1866 
1867 	for (l = trans->paths[path].level + 1;
1868 	     btree_node_intent_locked(&trans->paths[path], l) && !ret;
1869 	     l++)
1870 		ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1871 
1872 	return ret;
1873 }
1874 
__btree_increase_depth(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx)1875 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1876 				   btree_path_idx_t path_idx)
1877 {
1878 	struct bch_fs *c = as->c;
1879 	struct btree_path *path = trans->paths + path_idx;
1880 	struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1881 
1882 	BUG_ON(!btree_node_locked(path, b->c.level));
1883 
1884 	n = __btree_root_alloc(as, trans, b->c.level + 1);
1885 
1886 	bch2_btree_update_add_new_node(as, n);
1887 	six_unlock_write(&n->c.lock);
1888 
1889 	path->locks_want++;
1890 	BUG_ON(btree_node_locked(path, n->c.level));
1891 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1892 	mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1893 	bch2_btree_path_level_init(trans, path, n);
1894 
1895 	n->sib_u64s[0] = U16_MAX;
1896 	n->sib_u64s[1] = U16_MAX;
1897 
1898 	bch2_keylist_add(&as->parent_keys, &b->key);
1899 	btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1900 
1901 	int ret = bch2_btree_set_root(as, trans, path, n, true);
1902 	BUG_ON(ret);
1903 
1904 	bch2_btree_update_get_open_buckets(as, n);
1905 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
1906 	bch2_trans_node_add(trans, path, n);
1907 	six_unlock_intent(&n->c.lock);
1908 
1909 	mutex_lock(&c->btree_cache.lock);
1910 	list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list);
1911 	mutex_unlock(&c->btree_cache.lock);
1912 
1913 	bch2_trans_verify_locks(trans);
1914 }
1915 
bch2_btree_increase_depth(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1916 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1917 {
1918 	struct bch_fs *c = trans->c;
1919 	struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1920 
1921 	if (btree_node_fake(b))
1922 		return bch2_btree_split_leaf(trans, path, flags);
1923 
1924 	struct btree_update *as =
1925 		bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags);
1926 	if (IS_ERR(as))
1927 		return PTR_ERR(as);
1928 
1929 	__btree_increase_depth(as, trans, path);
1930 	bch2_btree_update_done(as, trans);
1931 	return 0;
1932 }
1933 
__bch2_foreground_maybe_merge(struct btree_trans * trans,btree_path_idx_t path,unsigned level,unsigned flags,enum btree_node_sibling sib)1934 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1935 				  btree_path_idx_t path,
1936 				  unsigned level,
1937 				  unsigned flags,
1938 				  enum btree_node_sibling sib)
1939 {
1940 	struct bch_fs *c = trans->c;
1941 	struct btree_update *as;
1942 	struct bkey_format_state new_s;
1943 	struct bkey_format new_f;
1944 	struct bkey_i delete;
1945 	struct btree *b, *m, *n, *prev, *next, *parent;
1946 	struct bpos sib_pos;
1947 	size_t sib_u64s;
1948 	enum btree_id btree = trans->paths[path].btree_id;
1949 	btree_path_idx_t sib_path = 0, new_path = 0;
1950 	u64 start_time = local_clock();
1951 	int ret = 0;
1952 
1953 	bch2_trans_verify_not_unlocked_or_in_restart(trans);
1954 	BUG_ON(!trans->paths[path].should_be_locked);
1955 	BUG_ON(!btree_node_locked(&trans->paths[path], level));
1956 
1957 	/*
1958 	 * Work around a deadlock caused by the btree write buffer not doing
1959 	 * merges and leaving tons of merges for us to do - we really don't need
1960 	 * to be doing merges at all from the interior update path, and if the
1961 	 * interior update path is generating too many new interior updates we
1962 	 * deadlock:
1963 	 */
1964 	if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
1965 		return 0;
1966 
1967 	if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
1968 		flags &= ~BCH_WATERMARK_MASK;
1969 		flags |= BCH_WATERMARK_btree;
1970 		flags |= BCH_TRANS_COMMIT_journal_reclaim;
1971 	}
1972 
1973 	b = trans->paths[path].l[level].b;
1974 
1975 	if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1976 	    (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1977 		b->sib_u64s[sib] = U16_MAX;
1978 		return 0;
1979 	}
1980 
1981 	sib_pos = sib == btree_prev_sib
1982 		? bpos_predecessor(b->data->min_key)
1983 		: bpos_successor(b->data->max_key);
1984 
1985 	sib_path = bch2_path_get(trans, btree, sib_pos,
1986 				 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_);
1987 	ret = bch2_btree_path_traverse(trans, sib_path, false);
1988 	if (ret)
1989 		goto err;
1990 
1991 	btree_path_set_should_be_locked(trans, trans->paths + sib_path);
1992 
1993 	m = trans->paths[sib_path].l[level].b;
1994 
1995 	if (btree_node_parent(trans->paths + path, b) !=
1996 	    btree_node_parent(trans->paths + sib_path, m)) {
1997 		b->sib_u64s[sib] = U16_MAX;
1998 		goto out;
1999 	}
2000 
2001 	if (sib == btree_prev_sib) {
2002 		prev = m;
2003 		next = b;
2004 	} else {
2005 		prev = b;
2006 		next = m;
2007 	}
2008 
2009 	if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
2010 		struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
2011 
2012 		bch2_bpos_to_text(&buf1, prev->data->max_key);
2013 		bch2_bpos_to_text(&buf2, next->data->min_key);
2014 		bch_err(c,
2015 			"%s(): btree topology error:\n"
2016 			"  prev ends at   %s\n"
2017 			"  next starts at %s",
2018 			__func__, buf1.buf, buf2.buf);
2019 		printbuf_exit(&buf1);
2020 		printbuf_exit(&buf2);
2021 		ret = bch2_topology_error(c);
2022 		goto err;
2023 	}
2024 
2025 	bch2_bkey_format_init(&new_s);
2026 	bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2027 	__bch2_btree_calc_format(&new_s, prev);
2028 	__bch2_btree_calc_format(&new_s, next);
2029 	bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2030 	new_f = bch2_bkey_format_done(&new_s);
2031 
2032 	sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
2033 		btree_node_u64s_with_format(m->nr, &m->format, &new_f);
2034 
2035 	if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2036 		sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2037 		sib_u64s /= 2;
2038 		sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2039 	}
2040 
2041 	sib_u64s = min(sib_u64s, btree_max_u64s(c));
2042 	sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2043 	b->sib_u64s[sib] = sib_u64s;
2044 
2045 	if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2046 		goto out;
2047 
2048 	parent = btree_node_parent(trans->paths + path, b);
2049 	as = bch2_btree_update_start(trans, trans->paths + path, level, false,
2050 				     BCH_TRANS_COMMIT_no_enospc|flags);
2051 	ret = PTR_ERR_OR_ZERO(as);
2052 	if (ret)
2053 		goto err;
2054 
2055 	trace_and_count(c, btree_node_merge, trans, b);
2056 
2057 	n = bch2_btree_node_alloc(as, trans, b->c.level);
2058 
2059 	SET_BTREE_NODE_SEQ(n->data,
2060 			   max(BTREE_NODE_SEQ(b->data),
2061 			       BTREE_NODE_SEQ(m->data)) + 1);
2062 
2063 	btree_set_min(n, prev->data->min_key);
2064 	btree_set_max(n, next->data->max_key);
2065 
2066 	n->data->format	 = new_f;
2067 	btree_node_set_format(n, new_f);
2068 
2069 	bch2_btree_sort_into(c, n, prev);
2070 	bch2_btree_sort_into(c, n, next);
2071 
2072 	bch2_btree_build_aux_trees(n);
2073 	bch2_btree_update_add_new_node(as, n);
2074 	six_unlock_write(&n->c.lock);
2075 
2076 	new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p);
2077 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2078 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2079 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2080 
2081 	bkey_init(&delete.k);
2082 	delete.k.p = prev->key.k.p;
2083 	bch2_keylist_add(&as->parent_keys, &delete);
2084 	bch2_keylist_add(&as->parent_keys, &n->key);
2085 
2086 	bch2_trans_verify_paths(trans);
2087 
2088 	ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
2089 	if (ret)
2090 		goto err_free_update;
2091 
2092 	bch2_btree_interior_update_will_free_node(as, b);
2093 	bch2_btree_interior_update_will_free_node(as, m);
2094 
2095 	bch2_trans_verify_paths(trans);
2096 
2097 	bch2_btree_update_get_open_buckets(as, n);
2098 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2099 
2100 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
2101 	bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
2102 
2103 	bch2_trans_node_add(trans, trans->paths + path, n);
2104 
2105 	bch2_trans_verify_paths(trans);
2106 
2107 	six_unlock_intent(&n->c.lock);
2108 
2109 	bch2_btree_update_done(as, trans);
2110 
2111 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
2112 out:
2113 err:
2114 	if (new_path)
2115 		bch2_path_put(trans, new_path, true);
2116 	bch2_path_put(trans, sib_path, true);
2117 	bch2_trans_verify_locks(trans);
2118 	if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2119 		ret = 0;
2120 	if (!ret)
2121 		ret = bch2_trans_relock(trans);
2122 	return ret;
2123 err_free_update:
2124 	bch2_btree_node_free_never_used(as, trans, n);
2125 	bch2_btree_update_free(as, trans);
2126 	goto out;
2127 }
2128 
get_iter_to_node(struct btree_trans * trans,struct btree_iter * iter,struct btree * b)2129 static int get_iter_to_node(struct btree_trans *trans, struct btree_iter *iter,
2130 			    struct btree *b)
2131 {
2132 	bch2_trans_node_iter_init(trans, iter, b->c.btree_id, b->key.k.p,
2133 				  BTREE_MAX_DEPTH, b->c.level,
2134 				  BTREE_ITER_intent);
2135 	int ret = bch2_btree_iter_traverse(iter);
2136 	if (ret)
2137 		goto err;
2138 
2139 	/* has node been freed? */
2140 	if (btree_iter_path(trans, iter)->l[b->c.level].b != b) {
2141 		/* node has been freed: */
2142 		BUG_ON(!btree_node_dying(b));
2143 		ret = -BCH_ERR_btree_node_dying;
2144 		goto err;
2145 	}
2146 
2147 	BUG_ON(!btree_node_hashed(b));
2148 	return 0;
2149 err:
2150 	bch2_trans_iter_exit(trans, iter);
2151 	return ret;
2152 }
2153 
bch2_btree_node_rewrite(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,unsigned flags)2154 int bch2_btree_node_rewrite(struct btree_trans *trans,
2155 			    struct btree_iter *iter,
2156 			    struct btree *b,
2157 			    unsigned flags)
2158 {
2159 	struct bch_fs *c = trans->c;
2160 	struct btree *n, *parent;
2161 	struct btree_update *as;
2162 	btree_path_idx_t new_path = 0;
2163 	int ret;
2164 
2165 	flags |= BCH_TRANS_COMMIT_no_enospc;
2166 
2167 	struct btree_path *path = btree_iter_path(trans, iter);
2168 	parent = btree_node_parent(path, b);
2169 	as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
2170 	ret = PTR_ERR_OR_ZERO(as);
2171 	if (ret)
2172 		goto out;
2173 
2174 	n = bch2_btree_node_alloc_replacement(as, trans, b);
2175 
2176 	bch2_btree_build_aux_trees(n);
2177 	bch2_btree_update_add_new_node(as, n);
2178 	six_unlock_write(&n->c.lock);
2179 
2180 	new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p);
2181 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2182 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2183 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2184 
2185 	trace_and_count(c, btree_node_rewrite, trans, b);
2186 
2187 	if (parent) {
2188 		bch2_keylist_add(&as->parent_keys, &n->key);
2189 		ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2190 	} else {
2191 		ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false);
2192 	}
2193 
2194 	if (ret)
2195 		goto err;
2196 
2197 	bch2_btree_interior_update_will_free_node(as, b);
2198 
2199 	bch2_btree_update_get_open_buckets(as, n);
2200 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2201 
2202 	bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2203 
2204 	bch2_trans_node_add(trans, trans->paths + iter->path, n);
2205 	six_unlock_intent(&n->c.lock);
2206 
2207 	bch2_btree_update_done(as, trans);
2208 out:
2209 	if (new_path)
2210 		bch2_path_put(trans, new_path, true);
2211 	bch2_trans_downgrade(trans);
2212 	return ret;
2213 err:
2214 	bch2_btree_node_free_never_used(as, trans, n);
2215 	bch2_btree_update_free(as, trans);
2216 	goto out;
2217 }
2218 
bch2_btree_node_rewrite_key(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bkey_i * k,unsigned flags)2219 static int bch2_btree_node_rewrite_key(struct btree_trans *trans,
2220 				       enum btree_id btree, unsigned level,
2221 				       struct bkey_i *k, unsigned flags)
2222 {
2223 	struct btree_iter iter;
2224 	bch2_trans_node_iter_init(trans, &iter,
2225 				  btree, k->k.p,
2226 				  BTREE_MAX_DEPTH, level, 0);
2227 	struct btree *b = bch2_btree_iter_peek_node(&iter);
2228 	int ret = PTR_ERR_OR_ZERO(b);
2229 	if (ret)
2230 		goto out;
2231 
2232 	bool found = b && btree_ptr_hash_val(&b->key) == btree_ptr_hash_val(k);
2233 	ret = found
2234 		? bch2_btree_node_rewrite(trans, &iter, b, flags)
2235 		: -ENOENT;
2236 out:
2237 	bch2_trans_iter_exit(trans, &iter);
2238 	return ret;
2239 }
2240 
bch2_btree_node_rewrite_pos(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bpos pos,unsigned flags)2241 int bch2_btree_node_rewrite_pos(struct btree_trans *trans,
2242 				enum btree_id btree, unsigned level,
2243 				struct bpos pos, unsigned flags)
2244 {
2245 	BUG_ON(!level);
2246 
2247 	/* Traverse one depth lower to get a pointer to the node itself: */
2248 	struct btree_iter iter;
2249 	bch2_trans_node_iter_init(trans, &iter, btree, pos, 0, level - 1, 0);
2250 	struct btree *b = bch2_btree_iter_peek_node(&iter);
2251 	int ret = PTR_ERR_OR_ZERO(b);
2252 	if (ret)
2253 		goto err;
2254 
2255 	ret = bch2_btree_node_rewrite(trans, &iter, b, flags);
2256 err:
2257 	bch2_trans_iter_exit(trans, &iter);
2258 	return ret;
2259 }
2260 
bch2_btree_node_rewrite_key_get_iter(struct btree_trans * trans,struct btree * b,unsigned flags)2261 int bch2_btree_node_rewrite_key_get_iter(struct btree_trans *trans,
2262 					 struct btree *b, unsigned flags)
2263 {
2264 	struct btree_iter iter;
2265 	int ret = get_iter_to_node(trans, &iter, b);
2266 	if (ret)
2267 		return ret == -BCH_ERR_btree_node_dying ? 0 : ret;
2268 
2269 	ret = bch2_btree_node_rewrite(trans, &iter, b, flags);
2270 	bch2_trans_iter_exit(trans, &iter);
2271 	return ret;
2272 }
2273 
2274 struct async_btree_rewrite {
2275 	struct bch_fs		*c;
2276 	struct work_struct	work;
2277 	struct list_head	list;
2278 	enum btree_id		btree_id;
2279 	unsigned		level;
2280 	struct bkey_buf		key;
2281 };
2282 
async_btree_node_rewrite_work(struct work_struct * work)2283 static void async_btree_node_rewrite_work(struct work_struct *work)
2284 {
2285 	struct async_btree_rewrite *a =
2286 		container_of(work, struct async_btree_rewrite, work);
2287 	struct bch_fs *c = a->c;
2288 
2289 	int ret = bch2_trans_do(c, bch2_btree_node_rewrite_key(trans,
2290 						a->btree_id, a->level, a->key.k, 0));
2291 	if (ret != -ENOENT)
2292 		bch_err_fn_ratelimited(c, ret);
2293 
2294 	spin_lock(&c->btree_node_rewrites_lock);
2295 	list_del(&a->list);
2296 	spin_unlock(&c->btree_node_rewrites_lock);
2297 
2298 	closure_wake_up(&c->btree_node_rewrites_wait);
2299 
2300 	bch2_bkey_buf_exit(&a->key, c);
2301 	bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2302 	kfree(a);
2303 }
2304 
bch2_btree_node_rewrite_async(struct bch_fs * c,struct btree * b)2305 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2306 {
2307 	struct async_btree_rewrite *a = kmalloc(sizeof(*a), GFP_NOFS);
2308 	if (!a)
2309 		return;
2310 
2311 	a->c		= c;
2312 	a->btree_id	= b->c.btree_id;
2313 	a->level	= b->c.level;
2314 	INIT_WORK(&a->work, async_btree_node_rewrite_work);
2315 
2316 	bch2_bkey_buf_init(&a->key);
2317 	bch2_bkey_buf_copy(&a->key, c, &b->key);
2318 
2319 	bool now = false, pending = false;
2320 
2321 	spin_lock(&c->btree_node_rewrites_lock);
2322 	if (c->curr_recovery_pass > BCH_RECOVERY_PASS_journal_replay &&
2323 	    bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2324 		list_add(&a->list, &c->btree_node_rewrites);
2325 		now = true;
2326 	} else if (!test_bit(BCH_FS_may_go_rw, &c->flags)) {
2327 		list_add(&a->list, &c->btree_node_rewrites_pending);
2328 		pending = true;
2329 	}
2330 	spin_unlock(&c->btree_node_rewrites_lock);
2331 
2332 	if (now) {
2333 		queue_work(c->btree_node_rewrite_worker, &a->work);
2334 	} else if (pending) {
2335 		/* bch2_do_pending_node_rewrites will execute */
2336 	} else {
2337 		bch2_bkey_buf_exit(&a->key, c);
2338 		kfree(a);
2339 	}
2340 }
2341 
bch2_async_btree_node_rewrites_flush(struct bch_fs * c)2342 void bch2_async_btree_node_rewrites_flush(struct bch_fs *c)
2343 {
2344 	closure_wait_event(&c->btree_node_rewrites_wait,
2345 			   list_empty(&c->btree_node_rewrites));
2346 }
2347 
bch2_do_pending_node_rewrites(struct bch_fs * c)2348 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2349 {
2350 	while (1) {
2351 		spin_lock(&c->btree_node_rewrites_lock);
2352 		struct async_btree_rewrite *a =
2353 			list_pop_entry(&c->btree_node_rewrites_pending,
2354 				       struct async_btree_rewrite, list);
2355 		if (a)
2356 			list_add(&a->list, &c->btree_node_rewrites);
2357 		spin_unlock(&c->btree_node_rewrites_lock);
2358 
2359 		if (!a)
2360 			break;
2361 
2362 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2363 		queue_work(c->btree_node_rewrite_worker, &a->work);
2364 	}
2365 }
2366 
bch2_free_pending_node_rewrites(struct bch_fs * c)2367 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2368 {
2369 	while (1) {
2370 		spin_lock(&c->btree_node_rewrites_lock);
2371 		struct async_btree_rewrite *a =
2372 			list_pop_entry(&c->btree_node_rewrites_pending,
2373 				       struct async_btree_rewrite, list);
2374 		spin_unlock(&c->btree_node_rewrites_lock);
2375 
2376 		if (!a)
2377 			break;
2378 
2379 		bch2_bkey_buf_exit(&a->key, c);
2380 		kfree(a);
2381 	}
2382 }
2383 
__bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct btree * new_hash,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2384 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2385 					struct btree_iter *iter,
2386 					struct btree *b, struct btree *new_hash,
2387 					struct bkey_i *new_key,
2388 					unsigned commit_flags,
2389 					bool skip_triggers)
2390 {
2391 	struct bch_fs *c = trans->c;
2392 	struct btree_iter iter2 = { NULL };
2393 	struct btree *parent;
2394 	int ret;
2395 
2396 	if (!skip_triggers) {
2397 		ret   = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2398 					     bkey_i_to_s_c(&b->key),
2399 					     BTREE_TRIGGER_transactional) ?:
2400 			bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2401 					     bkey_i_to_s(new_key),
2402 					     BTREE_TRIGGER_transactional);
2403 		if (ret)
2404 			return ret;
2405 	}
2406 
2407 	if (new_hash) {
2408 		bkey_copy(&new_hash->key, new_key);
2409 		ret = bch2_btree_node_hash_insert(&c->btree_cache,
2410 				new_hash, b->c.level, b->c.btree_id);
2411 		BUG_ON(ret);
2412 	}
2413 
2414 	parent = btree_node_parent(btree_iter_path(trans, iter), b);
2415 	if (parent) {
2416 		bch2_trans_copy_iter(&iter2, iter);
2417 
2418 		iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2419 				iter2.flags & BTREE_ITER_intent,
2420 				_THIS_IP_);
2421 
2422 		struct btree_path *path2 = btree_iter_path(trans, &iter2);
2423 		BUG_ON(path2->level != b->c.level);
2424 		BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2425 
2426 		btree_path_set_level_up(trans, path2);
2427 
2428 		trans->paths_sorted = false;
2429 
2430 		ret   = bch2_btree_iter_traverse(&iter2) ?:
2431 			bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun);
2432 		if (ret)
2433 			goto err;
2434 	} else {
2435 		BUG_ON(btree_node_root(c, b) != b);
2436 
2437 		struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2438 				       jset_u64s(new_key->k.u64s));
2439 		ret = PTR_ERR_OR_ZERO(e);
2440 		if (ret)
2441 			return ret;
2442 
2443 		journal_entry_set(e,
2444 				  BCH_JSET_ENTRY_btree_root,
2445 				  b->c.btree_id, b->c.level,
2446 				  new_key, new_key->k.u64s);
2447 	}
2448 
2449 	ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2450 	if (ret)
2451 		goto err;
2452 
2453 	bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2454 
2455 	if (new_hash) {
2456 		mutex_lock(&c->btree_cache.lock);
2457 		bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2458 
2459 		__bch2_btree_node_hash_remove(&c->btree_cache, b);
2460 
2461 		bkey_copy(&b->key, new_key);
2462 		ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2463 		BUG_ON(ret);
2464 		mutex_unlock(&c->btree_cache.lock);
2465 	} else {
2466 		bkey_copy(&b->key, new_key);
2467 	}
2468 
2469 	bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2470 out:
2471 	bch2_trans_iter_exit(trans, &iter2);
2472 	return ret;
2473 err:
2474 	if (new_hash) {
2475 		mutex_lock(&c->btree_cache.lock);
2476 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2477 		mutex_unlock(&c->btree_cache.lock);
2478 	}
2479 	goto out;
2480 }
2481 
bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2482 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2483 			       struct btree *b, struct bkey_i *new_key,
2484 			       unsigned commit_flags, bool skip_triggers)
2485 {
2486 	struct bch_fs *c = trans->c;
2487 	struct btree *new_hash = NULL;
2488 	struct btree_path *path = btree_iter_path(trans, iter);
2489 	struct closure cl;
2490 	int ret = 0;
2491 
2492 	ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2493 	if (ret)
2494 		return ret;
2495 
2496 	closure_init_stack(&cl);
2497 
2498 	/*
2499 	 * check btree_ptr_hash_val() after @b is locked by
2500 	 * btree_iter_traverse():
2501 	 */
2502 	if (btree_ptr_hash_val(new_key) != b->hash_val) {
2503 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2504 		if (ret) {
2505 			ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2506 			if (ret)
2507 				return ret;
2508 		}
2509 
2510 		new_hash = bch2_btree_node_mem_alloc(trans, false);
2511 		ret = PTR_ERR_OR_ZERO(new_hash);
2512 		if (ret)
2513 			goto err;
2514 	}
2515 
2516 	path->intent_ref++;
2517 	ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2518 					   commit_flags, skip_triggers);
2519 	--path->intent_ref;
2520 
2521 	if (new_hash)
2522 		bch2_btree_node_to_freelist(c, new_hash);
2523 err:
2524 	closure_sync(&cl);
2525 	bch2_btree_cache_cannibalize_unlock(trans);
2526 	return ret;
2527 }
2528 
bch2_btree_node_update_key_get_iter(struct btree_trans * trans,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2529 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2530 					struct btree *b, struct bkey_i *new_key,
2531 					unsigned commit_flags, bool skip_triggers)
2532 {
2533 	struct btree_iter iter;
2534 	int ret = get_iter_to_node(trans, &iter, b);
2535 	if (ret)
2536 		return ret == -BCH_ERR_btree_node_dying ? 0 : ret;
2537 
2538 	bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2539 			    !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2540 
2541 	ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2542 					 commit_flags, skip_triggers);
2543 	bch2_trans_iter_exit(trans, &iter);
2544 	return ret;
2545 }
2546 
2547 /* Init code: */
2548 
2549 /*
2550  * Only for filesystem bringup, when first reading the btree roots or allocating
2551  * btree roots when initializing a new filesystem:
2552  */
bch2_btree_set_root_for_read(struct bch_fs * c,struct btree * b)2553 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2554 {
2555 	BUG_ON(btree_node_root(c, b));
2556 
2557 	bch2_btree_set_root_inmem(c, b);
2558 }
2559 
bch2_btree_root_alloc_fake_trans(struct btree_trans * trans,enum btree_id id,unsigned level)2560 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level)
2561 {
2562 	struct bch_fs *c = trans->c;
2563 	struct closure cl;
2564 	struct btree *b;
2565 	int ret;
2566 
2567 	closure_init_stack(&cl);
2568 
2569 	do {
2570 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2571 		closure_sync(&cl);
2572 	} while (ret);
2573 
2574 	b = bch2_btree_node_mem_alloc(trans, false);
2575 	bch2_btree_cache_cannibalize_unlock(trans);
2576 
2577 	ret = PTR_ERR_OR_ZERO(b);
2578 	if (ret)
2579 		return ret;
2580 
2581 	set_btree_node_fake(b);
2582 	set_btree_node_need_rewrite(b);
2583 	b->c.level	= level;
2584 	b->c.btree_id	= id;
2585 
2586 	bkey_btree_ptr_init(&b->key);
2587 	b->key.k.p = SPOS_MAX;
2588 	*((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2589 
2590 	bch2_bset_init_first(b, &b->data->keys);
2591 	bch2_btree_build_aux_trees(b);
2592 
2593 	b->data->flags = 0;
2594 	btree_set_min(b, POS_MIN);
2595 	btree_set_max(b, SPOS_MAX);
2596 	b->data->format = bch2_btree_calc_format(b);
2597 	btree_node_set_format(b, b->data->format);
2598 
2599 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2600 					  b->c.level, b->c.btree_id);
2601 	BUG_ON(ret);
2602 
2603 	bch2_btree_set_root_inmem(c, b);
2604 
2605 	six_unlock_write(&b->c.lock);
2606 	six_unlock_intent(&b->c.lock);
2607 	return 0;
2608 }
2609 
bch2_btree_root_alloc_fake(struct bch_fs * c,enum btree_id id,unsigned level)2610 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2611 {
2612 	bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level)));
2613 }
2614 
bch2_btree_update_to_text(struct printbuf * out,struct btree_update * as)2615 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2616 {
2617 	prt_printf(out, "%ps: ", (void *) as->ip_started);
2618 	bch2_trans_commit_flags_to_text(out, as->flags);
2619 
2620 	prt_str(out, " ");
2621 	bch2_btree_id_to_text(out, as->btree_id);
2622 	prt_printf(out, " l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2623 		   as->update_level_start,
2624 		   as->update_level_end,
2625 		   bch2_btree_update_modes[as->mode],
2626 		   as->nodes_written,
2627 		   closure_nr_remaining(&as->cl),
2628 		   as->journal.seq);
2629 }
2630 
bch2_btree_updates_to_text(struct printbuf * out,struct bch_fs * c)2631 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2632 {
2633 	struct btree_update *as;
2634 
2635 	mutex_lock(&c->btree_interior_update_lock);
2636 	list_for_each_entry(as, &c->btree_interior_update_list, list)
2637 		bch2_btree_update_to_text(out, as);
2638 	mutex_unlock(&c->btree_interior_update_lock);
2639 }
2640 
bch2_btree_interior_updates_pending(struct bch_fs * c)2641 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2642 {
2643 	bool ret;
2644 
2645 	mutex_lock(&c->btree_interior_update_lock);
2646 	ret = !list_empty(&c->btree_interior_update_list);
2647 	mutex_unlock(&c->btree_interior_update_lock);
2648 
2649 	return ret;
2650 }
2651 
bch2_btree_interior_updates_flush(struct bch_fs * c)2652 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2653 {
2654 	bool ret = bch2_btree_interior_updates_pending(c);
2655 
2656 	if (ret)
2657 		closure_wait_event(&c->btree_interior_update_wait,
2658 				   !bch2_btree_interior_updates_pending(c));
2659 	return ret;
2660 }
2661 
bch2_journal_entry_to_btree_root(struct bch_fs * c,struct jset_entry * entry)2662 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2663 {
2664 	struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2665 
2666 	mutex_lock(&c->btree_root_lock);
2667 
2668 	r->level = entry->level;
2669 	r->alive = true;
2670 	bkey_copy(&r->key, (struct bkey_i *) entry->start);
2671 
2672 	mutex_unlock(&c->btree_root_lock);
2673 }
2674 
2675 struct jset_entry *
bch2_btree_roots_to_journal_entries(struct bch_fs * c,struct jset_entry * end,unsigned long skip)2676 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2677 				    struct jset_entry *end,
2678 				    unsigned long skip)
2679 {
2680 	unsigned i;
2681 
2682 	mutex_lock(&c->btree_root_lock);
2683 
2684 	for (i = 0; i < btree_id_nr_alive(c); i++) {
2685 		struct btree_root *r = bch2_btree_id_root(c, i);
2686 
2687 		if (r->alive && !test_bit(i, &skip)) {
2688 			journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2689 					  i, r->level, &r->key, r->key.k.u64s);
2690 			end = vstruct_next(end);
2691 		}
2692 	}
2693 
2694 	mutex_unlock(&c->btree_root_lock);
2695 
2696 	return end;
2697 }
2698 
bch2_btree_alloc_to_text(struct printbuf * out,struct bch_fs * c,struct btree_alloc * a)2699 static void bch2_btree_alloc_to_text(struct printbuf *out,
2700 				     struct bch_fs *c,
2701 				     struct btree_alloc *a)
2702 {
2703 	printbuf_indent_add(out, 2);
2704 	bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k));
2705 	prt_newline(out);
2706 
2707 	struct open_bucket *ob;
2708 	unsigned i;
2709 	open_bucket_for_each(c, &a->ob, ob, i)
2710 		bch2_open_bucket_to_text(out, c, ob);
2711 
2712 	printbuf_indent_sub(out, 2);
2713 }
2714 
bch2_btree_reserve_cache_to_text(struct printbuf * out,struct bch_fs * c)2715 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c)
2716 {
2717 	for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++)
2718 		bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]);
2719 }
2720 
bch2_fs_btree_interior_update_exit(struct bch_fs * c)2721 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2722 {
2723 	WARN_ON(!list_empty(&c->btree_node_rewrites));
2724 	WARN_ON(!list_empty(&c->btree_node_rewrites_pending));
2725 
2726 	if (c->btree_node_rewrite_worker)
2727 		destroy_workqueue(c->btree_node_rewrite_worker);
2728 	if (c->btree_interior_update_worker)
2729 		destroy_workqueue(c->btree_interior_update_worker);
2730 	mempool_exit(&c->btree_interior_update_pool);
2731 }
2732 
bch2_fs_btree_interior_update_init_early(struct bch_fs * c)2733 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2734 {
2735 	mutex_init(&c->btree_reserve_cache_lock);
2736 	INIT_LIST_HEAD(&c->btree_interior_update_list);
2737 	INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2738 	mutex_init(&c->btree_interior_update_lock);
2739 	INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2740 
2741 	INIT_LIST_HEAD(&c->btree_node_rewrites);
2742 	INIT_LIST_HEAD(&c->btree_node_rewrites_pending);
2743 	spin_lock_init(&c->btree_node_rewrites_lock);
2744 }
2745 
bch2_fs_btree_interior_update_init(struct bch_fs * c)2746 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2747 {
2748 	c->btree_interior_update_worker =
2749 		alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2750 	if (!c->btree_interior_update_worker)
2751 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2752 
2753 	c->btree_node_rewrite_worker =
2754 		alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2755 	if (!c->btree_node_rewrite_worker)
2756 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2757 
2758 	if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2759 				      sizeof(struct btree_update)))
2760 		return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2761 
2762 	return 0;
2763 }
2764