1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcachefs setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_node_scan.h"
19 #include "btree_update_interior.h"
20 #include "btree_io.h"
21 #include "btree_write_buffer.h"
22 #include "buckets_waiting_for_journal.h"
23 #include "chardev.h"
24 #include "checksum.h"
25 #include "clock.h"
26 #include "compress.h"
27 #include "debug.h"
28 #include "disk_accounting.h"
29 #include "disk_groups.h"
30 #include "ec.h"
31 #include "errcode.h"
32 #include "error.h"
33 #include "fs.h"
34 #include "fs-io.h"
35 #include "fs-io-buffered.h"
36 #include "fs-io-direct.h"
37 #include "fsck.h"
38 #include "inode.h"
39 #include "io_read.h"
40 #include "io_write.h"
41 #include "journal.h"
42 #include "journal_reclaim.h"
43 #include "journal_seq_blacklist.h"
44 #include "move.h"
45 #include "migrate.h"
46 #include "movinggc.h"
47 #include "nocow_locking.h"
48 #include "quota.h"
49 #include "rebalance.h"
50 #include "recovery.h"
51 #include "replicas.h"
52 #include "sb-clean.h"
53 #include "sb-counters.h"
54 #include "sb-errors.h"
55 #include "sb-members.h"
56 #include "snapshot.h"
57 #include "subvolume.h"
58 #include "super.h"
59 #include "super-io.h"
60 #include "sysfs.h"
61 #include "thread_with_file.h"
62 #include "trace.h"
63
64 #include <linux/backing-dev.h>
65 #include <linux/blkdev.h>
66 #include <linux/debugfs.h>
67 #include <linux/device.h>
68 #include <linux/idr.h>
69 #include <linux/module.h>
70 #include <linux/percpu.h>
71 #include <linux/random.h>
72 #include <linux/sysfs.h>
73 #include <crypto/hash.h>
74
75 MODULE_LICENSE("GPL");
76 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
77 MODULE_DESCRIPTION("bcachefs filesystem");
78 MODULE_SOFTDEP("pre: crc32c");
79 MODULE_SOFTDEP("pre: crc64");
80 MODULE_SOFTDEP("pre: sha256");
81 MODULE_SOFTDEP("pre: chacha20");
82 MODULE_SOFTDEP("pre: poly1305");
83 MODULE_SOFTDEP("pre: xxhash");
84
85 const char * const bch2_fs_flag_strs[] = {
86 #define x(n) #n,
87 BCH_FS_FLAGS()
88 #undef x
89 NULL
90 };
91
bch2_print_str(struct bch_fs * c,const char * str)92 void bch2_print_str(struct bch_fs *c, const char *str)
93 {
94 #ifdef __KERNEL__
95 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
96
97 if (unlikely(stdio)) {
98 bch2_stdio_redirect_printf(stdio, true, "%s", str);
99 return;
100 }
101 #endif
102 bch2_print_string_as_lines(KERN_ERR, str);
103 }
104
105 __printf(2, 0)
bch2_print_maybe_redirect(struct stdio_redirect * stdio,const char * fmt,va_list args)106 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
107 {
108 #ifdef __KERNEL__
109 if (unlikely(stdio)) {
110 if (fmt[0] == KERN_SOH[0])
111 fmt += 2;
112
113 bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
114 return;
115 }
116 #endif
117 vprintk(fmt, args);
118 }
119
bch2_print_opts(struct bch_opts * opts,const char * fmt,...)120 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
121 {
122 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
123
124 va_list args;
125 va_start(args, fmt);
126 bch2_print_maybe_redirect(stdio, fmt, args);
127 va_end(args);
128 }
129
__bch2_print(struct bch_fs * c,const char * fmt,...)130 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
131 {
132 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
133
134 va_list args;
135 va_start(args, fmt);
136 bch2_print_maybe_redirect(stdio, fmt, args);
137 va_end(args);
138 }
139
140 #define KTYPE(type) \
141 static const struct attribute_group type ## _group = { \
142 .attrs = type ## _files \
143 }; \
144 \
145 static const struct attribute_group *type ## _groups[] = { \
146 &type ## _group, \
147 NULL \
148 }; \
149 \
150 static const struct kobj_type type ## _ktype = { \
151 .release = type ## _release, \
152 .sysfs_ops = &type ## _sysfs_ops, \
153 .default_groups = type ## _groups \
154 }
155
156 static void bch2_fs_release(struct kobject *);
157 static void bch2_dev_release(struct kobject *);
bch2_fs_counters_release(struct kobject * k)158 static void bch2_fs_counters_release(struct kobject *k)
159 {
160 }
161
bch2_fs_internal_release(struct kobject * k)162 static void bch2_fs_internal_release(struct kobject *k)
163 {
164 }
165
bch2_fs_opts_dir_release(struct kobject * k)166 static void bch2_fs_opts_dir_release(struct kobject *k)
167 {
168 }
169
bch2_fs_time_stats_release(struct kobject * k)170 static void bch2_fs_time_stats_release(struct kobject *k)
171 {
172 }
173
174 KTYPE(bch2_fs);
175 KTYPE(bch2_fs_counters);
176 KTYPE(bch2_fs_internal);
177 KTYPE(bch2_fs_opts_dir);
178 KTYPE(bch2_fs_time_stats);
179 KTYPE(bch2_dev);
180
181 static struct kset *bcachefs_kset;
182 static LIST_HEAD(bch_fs_list);
183 static DEFINE_MUTEX(bch_fs_list_lock);
184
185 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
186
187 static void bch2_dev_unlink(struct bch_dev *);
188 static void bch2_dev_free(struct bch_dev *);
189 static int bch2_dev_alloc(struct bch_fs *, unsigned);
190 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
191 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
192
bch2_dev_to_fs(dev_t dev)193 struct bch_fs *bch2_dev_to_fs(dev_t dev)
194 {
195 struct bch_fs *c;
196
197 mutex_lock(&bch_fs_list_lock);
198 rcu_read_lock();
199
200 list_for_each_entry(c, &bch_fs_list, list)
201 for_each_member_device_rcu(c, ca, NULL)
202 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
203 closure_get(&c->cl);
204 goto found;
205 }
206 c = NULL;
207 found:
208 rcu_read_unlock();
209 mutex_unlock(&bch_fs_list_lock);
210
211 return c;
212 }
213
__bch2_uuid_to_fs(__uuid_t uuid)214 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
215 {
216 struct bch_fs *c;
217
218 lockdep_assert_held(&bch_fs_list_lock);
219
220 list_for_each_entry(c, &bch_fs_list, list)
221 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
222 return c;
223
224 return NULL;
225 }
226
bch2_uuid_to_fs(__uuid_t uuid)227 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
228 {
229 struct bch_fs *c;
230
231 mutex_lock(&bch_fs_list_lock);
232 c = __bch2_uuid_to_fs(uuid);
233 if (c)
234 closure_get(&c->cl);
235 mutex_unlock(&bch_fs_list_lock);
236
237 return c;
238 }
239
240 /* Filesystem RO/RW: */
241
242 /*
243 * For startup/shutdown of RW stuff, the dependencies are:
244 *
245 * - foreground writes depend on copygc and rebalance (to free up space)
246 *
247 * - copygc and rebalance depend on mark and sweep gc (they actually probably
248 * don't because they either reserve ahead of time or don't block if
249 * allocations fail, but allocations can require mark and sweep gc to run
250 * because of generation number wraparound)
251 *
252 * - all of the above depends on the allocator threads
253 *
254 * - allocator depends on the journal (when it rewrites prios and gens)
255 */
256
__bch2_fs_read_only(struct bch_fs * c)257 static void __bch2_fs_read_only(struct bch_fs *c)
258 {
259 unsigned clean_passes = 0;
260 u64 seq = 0;
261
262 bch2_fs_ec_stop(c);
263 bch2_open_buckets_stop(c, NULL, true);
264 bch2_rebalance_stop(c);
265 bch2_copygc_stop(c);
266 bch2_fs_ec_flush(c);
267
268 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
269 journal_cur_seq(&c->journal));
270
271 do {
272 clean_passes++;
273
274 if (bch2_btree_interior_updates_flush(c) ||
275 bch2_btree_write_buffer_flush_going_ro(c) ||
276 bch2_journal_flush_all_pins(&c->journal) ||
277 bch2_btree_flush_all_writes(c) ||
278 seq != atomic64_read(&c->journal.seq)) {
279 seq = atomic64_read(&c->journal.seq);
280 clean_passes = 0;
281 }
282 } while (clean_passes < 2);
283
284 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
285 journal_cur_seq(&c->journal));
286
287 if (test_bit(JOURNAL_replay_done, &c->journal.flags) &&
288 !test_bit(BCH_FS_emergency_ro, &c->flags))
289 set_bit(BCH_FS_clean_shutdown, &c->flags);
290
291 bch2_fs_journal_stop(&c->journal);
292
293 bch_info(c, "%sshutdown complete, journal seq %llu",
294 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un",
295 c->journal.seq_ondisk);
296
297 /*
298 * After stopping journal:
299 */
300 for_each_member_device(c, ca)
301 bch2_dev_allocator_remove(c, ca);
302 }
303
304 #ifndef BCH_WRITE_REF_DEBUG
bch2_writes_disabled(struct percpu_ref * writes)305 static void bch2_writes_disabled(struct percpu_ref *writes)
306 {
307 struct bch_fs *c = container_of(writes, struct bch_fs, writes);
308
309 set_bit(BCH_FS_write_disable_complete, &c->flags);
310 wake_up(&bch2_read_only_wait);
311 }
312 #endif
313
bch2_fs_read_only(struct bch_fs * c)314 void bch2_fs_read_only(struct bch_fs *c)
315 {
316 if (!test_bit(BCH_FS_rw, &c->flags)) {
317 bch2_journal_reclaim_stop(&c->journal);
318 return;
319 }
320
321 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
322
323 bch_verbose(c, "going read-only");
324
325 /*
326 * Block new foreground-end write operations from starting - any new
327 * writes will return -EROFS:
328 */
329 set_bit(BCH_FS_going_ro, &c->flags);
330 #ifndef BCH_WRITE_REF_DEBUG
331 percpu_ref_kill(&c->writes);
332 #else
333 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
334 bch2_write_ref_put(c, i);
335 #endif
336
337 /*
338 * If we're not doing an emergency shutdown, we want to wait on
339 * outstanding writes to complete so they don't see spurious errors due
340 * to shutting down the allocator:
341 *
342 * If we are doing an emergency shutdown outstanding writes may
343 * hang until we shutdown the allocator so we don't want to wait
344 * on outstanding writes before shutting everything down - but
345 * we do need to wait on them before returning and signalling
346 * that going RO is complete:
347 */
348 wait_event(bch2_read_only_wait,
349 test_bit(BCH_FS_write_disable_complete, &c->flags) ||
350 test_bit(BCH_FS_emergency_ro, &c->flags));
351
352 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
353 if (writes_disabled)
354 bch_verbose(c, "finished waiting for writes to stop");
355
356 __bch2_fs_read_only(c);
357
358 wait_event(bch2_read_only_wait,
359 test_bit(BCH_FS_write_disable_complete, &c->flags));
360
361 if (!writes_disabled)
362 bch_verbose(c, "finished waiting for writes to stop");
363
364 clear_bit(BCH_FS_write_disable_complete, &c->flags);
365 clear_bit(BCH_FS_going_ro, &c->flags);
366 clear_bit(BCH_FS_rw, &c->flags);
367
368 if (!bch2_journal_error(&c->journal) &&
369 !test_bit(BCH_FS_error, &c->flags) &&
370 !test_bit(BCH_FS_emergency_ro, &c->flags) &&
371 test_bit(BCH_FS_started, &c->flags) &&
372 test_bit(BCH_FS_clean_shutdown, &c->flags) &&
373 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) {
374 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
375 BUG_ON(atomic_long_read(&c->btree_cache.nr_dirty));
376 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
377 BUG_ON(c->btree_write_buffer.inc.keys.nr);
378 BUG_ON(c->btree_write_buffer.flushing.keys.nr);
379 bch2_verify_accounting_clean(c);
380
381 bch_verbose(c, "marking filesystem clean");
382 bch2_fs_mark_clean(c);
383 } else {
384 bch_verbose(c, "done going read-only, filesystem not clean");
385 }
386 }
387
bch2_fs_read_only_work(struct work_struct * work)388 static void bch2_fs_read_only_work(struct work_struct *work)
389 {
390 struct bch_fs *c =
391 container_of(work, struct bch_fs, read_only_work);
392
393 down_write(&c->state_lock);
394 bch2_fs_read_only(c);
395 up_write(&c->state_lock);
396 }
397
bch2_fs_read_only_async(struct bch_fs * c)398 static void bch2_fs_read_only_async(struct bch_fs *c)
399 {
400 queue_work(system_long_wq, &c->read_only_work);
401 }
402
bch2_fs_emergency_read_only(struct bch_fs * c)403 bool bch2_fs_emergency_read_only(struct bch_fs *c)
404 {
405 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
406
407 bch2_journal_halt(&c->journal);
408 bch2_fs_read_only_async(c);
409
410 wake_up(&bch2_read_only_wait);
411 return ret;
412 }
413
bch2_fs_read_write_late(struct bch_fs * c)414 static int bch2_fs_read_write_late(struct bch_fs *c)
415 {
416 int ret;
417
418 /*
419 * Data move operations can't run until after check_snapshots has
420 * completed, and bch2_snapshot_is_ancestor() is available.
421 *
422 * Ideally we'd start copygc/rebalance earlier instead of waiting for
423 * all of recovery/fsck to complete:
424 */
425 ret = bch2_copygc_start(c);
426 if (ret) {
427 bch_err(c, "error starting copygc thread");
428 return ret;
429 }
430
431 ret = bch2_rebalance_start(c);
432 if (ret) {
433 bch_err(c, "error starting rebalance thread");
434 return ret;
435 }
436
437 return 0;
438 }
439
__bch2_fs_read_write(struct bch_fs * c,bool early)440 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
441 {
442 int ret;
443
444 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
445 bch_err(c, "cannot go rw, unfixed btree errors");
446 return -BCH_ERR_erofs_unfixed_errors;
447 }
448
449 if (test_bit(BCH_FS_rw, &c->flags))
450 return 0;
451
452 bch_info(c, "going read-write");
453
454 ret = bch2_sb_members_v2_init(c);
455 if (ret)
456 goto err;
457
458 ret = bch2_fs_mark_dirty(c);
459 if (ret)
460 goto err;
461
462 clear_bit(BCH_FS_clean_shutdown, &c->flags);
463
464 /*
465 * First journal write must be a flush write: after a clean shutdown we
466 * don't read the journal, so the first journal write may end up
467 * overwriting whatever was there previously, and there must always be
468 * at least one non-flush write in the journal or recovery will fail:
469 */
470 set_bit(JOURNAL_need_flush_write, &c->journal.flags);
471 set_bit(JOURNAL_running, &c->journal.flags);
472
473 for_each_rw_member(c, ca)
474 bch2_dev_allocator_add(c, ca);
475 bch2_recalc_capacity(c);
476
477 set_bit(BCH_FS_rw, &c->flags);
478 set_bit(BCH_FS_was_rw, &c->flags);
479
480 #ifndef BCH_WRITE_REF_DEBUG
481 percpu_ref_reinit(&c->writes);
482 #else
483 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
484 BUG_ON(atomic_long_read(&c->writes[i]));
485 atomic_long_inc(&c->writes[i]);
486 }
487 #endif
488
489 ret = bch2_journal_reclaim_start(&c->journal);
490 if (ret)
491 goto err;
492
493 if (!early) {
494 ret = bch2_fs_read_write_late(c);
495 if (ret)
496 goto err;
497 }
498
499 bch2_do_discards(c);
500 bch2_do_invalidates(c);
501 bch2_do_stripe_deletes(c);
502 bch2_do_pending_node_rewrites(c);
503 return 0;
504 err:
505 if (test_bit(BCH_FS_rw, &c->flags))
506 bch2_fs_read_only(c);
507 else
508 __bch2_fs_read_only(c);
509 return ret;
510 }
511
bch2_fs_read_write(struct bch_fs * c)512 int bch2_fs_read_write(struct bch_fs *c)
513 {
514 if (c->opts.recovery_pass_last &&
515 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay)
516 return -BCH_ERR_erofs_norecovery;
517
518 if (c->opts.nochanges)
519 return -BCH_ERR_erofs_nochanges;
520
521 return __bch2_fs_read_write(c, false);
522 }
523
bch2_fs_read_write_early(struct bch_fs * c)524 int bch2_fs_read_write_early(struct bch_fs *c)
525 {
526 lockdep_assert_held(&c->state_lock);
527
528 return __bch2_fs_read_write(c, true);
529 }
530
531 /* Filesystem startup/shutdown: */
532
__bch2_fs_free(struct bch_fs * c)533 static void __bch2_fs_free(struct bch_fs *c)
534 {
535 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++)
536 bch2_time_stats_exit(&c->times[i]);
537
538 bch2_find_btree_nodes_exit(&c->found_btree_nodes);
539 bch2_free_pending_node_rewrites(c);
540 bch2_fs_accounting_exit(c);
541 bch2_fs_sb_errors_exit(c);
542 bch2_fs_counters_exit(c);
543 bch2_fs_snapshots_exit(c);
544 bch2_fs_quota_exit(c);
545 bch2_fs_fs_io_direct_exit(c);
546 bch2_fs_fs_io_buffered_exit(c);
547 bch2_fs_fsio_exit(c);
548 bch2_fs_vfs_exit(c);
549 bch2_fs_ec_exit(c);
550 bch2_fs_encryption_exit(c);
551 bch2_fs_nocow_locking_exit(c);
552 bch2_fs_io_write_exit(c);
553 bch2_fs_io_read_exit(c);
554 bch2_fs_buckets_waiting_for_journal_exit(c);
555 bch2_fs_btree_interior_update_exit(c);
556 bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
557 bch2_fs_btree_cache_exit(c);
558 bch2_fs_btree_iter_exit(c);
559 bch2_fs_replicas_exit(c);
560 bch2_fs_journal_exit(&c->journal);
561 bch2_io_clock_exit(&c->io_clock[WRITE]);
562 bch2_io_clock_exit(&c->io_clock[READ]);
563 bch2_fs_compress_exit(c);
564 bch2_journal_keys_put_initial(c);
565 bch2_find_btree_nodes_exit(&c->found_btree_nodes);
566 BUG_ON(atomic_read(&c->journal_keys.ref));
567 bch2_fs_btree_write_buffer_exit(c);
568 percpu_free_rwsem(&c->mark_lock);
569 if (c->online_reserved) {
570 u64 v = percpu_u64_get(c->online_reserved);
571 WARN(v, "online_reserved not 0 at shutdown: %lli", v);
572 free_percpu(c->online_reserved);
573 }
574
575 darray_exit(&c->btree_roots_extra);
576 free_percpu(c->pcpu);
577 free_percpu(c->usage);
578 mempool_exit(&c->large_bkey_pool);
579 mempool_exit(&c->btree_bounce_pool);
580 bioset_exit(&c->btree_bio);
581 mempool_exit(&c->fill_iter);
582 #ifndef BCH_WRITE_REF_DEBUG
583 percpu_ref_exit(&c->writes);
584 #endif
585 kfree(rcu_dereference_protected(c->disk_groups, 1));
586 kfree(c->journal_seq_blacklist_table);
587 kfree(c->unused_inode_hints);
588
589 if (c->write_ref_wq)
590 destroy_workqueue(c->write_ref_wq);
591 if (c->btree_write_submit_wq)
592 destroy_workqueue(c->btree_write_submit_wq);
593 if (c->btree_read_complete_wq)
594 destroy_workqueue(c->btree_read_complete_wq);
595 if (c->copygc_wq)
596 destroy_workqueue(c->copygc_wq);
597 if (c->btree_io_complete_wq)
598 destroy_workqueue(c->btree_io_complete_wq);
599 if (c->btree_update_wq)
600 destroy_workqueue(c->btree_update_wq);
601
602 bch2_free_super(&c->disk_sb);
603 kvfree(c);
604 module_put(THIS_MODULE);
605 }
606
bch2_fs_release(struct kobject * kobj)607 static void bch2_fs_release(struct kobject *kobj)
608 {
609 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
610
611 __bch2_fs_free(c);
612 }
613
__bch2_fs_stop(struct bch_fs * c)614 void __bch2_fs_stop(struct bch_fs *c)
615 {
616 bch_verbose(c, "shutting down");
617
618 set_bit(BCH_FS_stopping, &c->flags);
619
620 down_write(&c->state_lock);
621 bch2_fs_read_only(c);
622 up_write(&c->state_lock);
623
624 for_each_member_device(c, ca)
625 bch2_dev_unlink(ca);
626
627 if (c->kobj.state_in_sysfs)
628 kobject_del(&c->kobj);
629
630 bch2_fs_debug_exit(c);
631 bch2_fs_chardev_exit(c);
632
633 bch2_ro_ref_put(c);
634 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
635
636 kobject_put(&c->counters_kobj);
637 kobject_put(&c->time_stats);
638 kobject_put(&c->opts_dir);
639 kobject_put(&c->internal);
640
641 /* btree prefetch might have kicked off reads in the background: */
642 bch2_btree_flush_all_reads(c);
643
644 for_each_member_device(c, ca)
645 cancel_work_sync(&ca->io_error_work);
646
647 cancel_work_sync(&c->read_only_work);
648 }
649
bch2_fs_free(struct bch_fs * c)650 void bch2_fs_free(struct bch_fs *c)
651 {
652 unsigned i;
653
654 mutex_lock(&bch_fs_list_lock);
655 list_del(&c->list);
656 mutex_unlock(&bch_fs_list_lock);
657
658 closure_sync(&c->cl);
659 closure_debug_destroy(&c->cl);
660
661 for (i = 0; i < c->sb.nr_devices; i++) {
662 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
663
664 if (ca) {
665 EBUG_ON(atomic_long_read(&ca->ref) != 1);
666 bch2_free_super(&ca->disk_sb);
667 bch2_dev_free(ca);
668 }
669 }
670
671 bch_verbose(c, "shutdown complete");
672
673 kobject_put(&c->kobj);
674 }
675
bch2_fs_stop(struct bch_fs * c)676 void bch2_fs_stop(struct bch_fs *c)
677 {
678 __bch2_fs_stop(c);
679 bch2_fs_free(c);
680 }
681
bch2_fs_online(struct bch_fs * c)682 static int bch2_fs_online(struct bch_fs *c)
683 {
684 int ret = 0;
685
686 lockdep_assert_held(&bch_fs_list_lock);
687
688 if (__bch2_uuid_to_fs(c->sb.uuid)) {
689 bch_err(c, "filesystem UUID already open");
690 return -EINVAL;
691 }
692
693 ret = bch2_fs_chardev_init(c);
694 if (ret) {
695 bch_err(c, "error creating character device");
696 return ret;
697 }
698
699 bch2_fs_debug_init(c);
700
701 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
702 kobject_add(&c->internal, &c->kobj, "internal") ?:
703 kobject_add(&c->opts_dir, &c->kobj, "options") ?:
704 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
705 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
706 #endif
707 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
708 bch2_opts_create_sysfs_files(&c->opts_dir);
709 if (ret) {
710 bch_err(c, "error creating sysfs objects");
711 return ret;
712 }
713
714 down_write(&c->state_lock);
715
716 for_each_member_device(c, ca) {
717 ret = bch2_dev_sysfs_online(c, ca);
718 if (ret) {
719 bch_err(c, "error creating sysfs objects");
720 bch2_dev_put(ca);
721 goto err;
722 }
723 }
724
725 BUG_ON(!list_empty(&c->list));
726 list_add(&c->list, &bch_fs_list);
727 err:
728 up_write(&c->state_lock);
729 return ret;
730 }
731
bch2_fs_alloc(struct bch_sb * sb,struct bch_opts opts)732 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
733 {
734 struct bch_fs *c;
735 struct printbuf name = PRINTBUF;
736 unsigned i, iter_size;
737 int ret = 0;
738
739 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
740 if (!c) {
741 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
742 goto out;
743 }
744
745 c->stdio = (void *)(unsigned long) opts.stdio;
746
747 __module_get(THIS_MODULE);
748
749 closure_init(&c->cl, NULL);
750
751 c->kobj.kset = bcachefs_kset;
752 kobject_init(&c->kobj, &bch2_fs_ktype);
753 kobject_init(&c->internal, &bch2_fs_internal_ktype);
754 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
755 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
756 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
757
758 c->minor = -1;
759 c->disk_sb.fs_sb = true;
760
761 init_rwsem(&c->state_lock);
762 mutex_init(&c->sb_lock);
763 mutex_init(&c->replicas_gc_lock);
764 mutex_init(&c->btree_root_lock);
765 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
766
767 refcount_set(&c->ro_ref, 1);
768 init_waitqueue_head(&c->ro_ref_wait);
769 sema_init(&c->online_fsck_mutex, 1);
770
771 init_rwsem(&c->gc_lock);
772 mutex_init(&c->gc_gens_lock);
773 atomic_set(&c->journal_keys.ref, 1);
774 c->journal_keys.initial_ref_held = true;
775
776 for (i = 0; i < BCH_TIME_STAT_NR; i++)
777 bch2_time_stats_init(&c->times[i]);
778
779 bch2_fs_gc_init(c);
780 bch2_fs_copygc_init(c);
781 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
782 bch2_fs_btree_iter_init_early(c);
783 bch2_fs_btree_interior_update_init_early(c);
784 bch2_fs_allocator_background_init(c);
785 bch2_fs_allocator_foreground_init(c);
786 bch2_fs_rebalance_init(c);
787 bch2_fs_quota_init(c);
788 bch2_fs_ec_init_early(c);
789 bch2_fs_move_init(c);
790 bch2_fs_sb_errors_init_early(c);
791
792 INIT_LIST_HEAD(&c->list);
793
794 mutex_init(&c->bio_bounce_pages_lock);
795 mutex_init(&c->snapshot_table_lock);
796 init_rwsem(&c->snapshot_create_lock);
797
798 spin_lock_init(&c->btree_write_error_lock);
799
800 INIT_LIST_HEAD(&c->journal_iters);
801
802 INIT_LIST_HEAD(&c->fsck_error_msgs);
803 mutex_init(&c->fsck_error_msgs_lock);
804
805 seqcount_init(&c->usage_lock);
806
807 sema_init(&c->io_in_flight, 128);
808
809 INIT_LIST_HEAD(&c->vfs_inodes_list);
810 mutex_init(&c->vfs_inodes_lock);
811
812 c->copy_gc_enabled = 1;
813 c->rebalance.enabled = 1;
814
815 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write];
816 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write];
817 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
818
819 bch2_fs_btree_cache_init_early(&c->btree_cache);
820
821 mutex_init(&c->sectors_available_lock);
822
823 ret = percpu_init_rwsem(&c->mark_lock);
824 if (ret)
825 goto err;
826
827 mutex_lock(&c->sb_lock);
828 ret = bch2_sb_to_fs(c, sb);
829 mutex_unlock(&c->sb_lock);
830
831 if (ret)
832 goto err;
833
834 pr_uuid(&name, c->sb.user_uuid.b);
835 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
836 if (ret)
837 goto err;
838
839 strscpy(c->name, name.buf, sizeof(c->name));
840 printbuf_exit(&name);
841
842 /* Compat: */
843 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
844 !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
845 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
846
847 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
848 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
849 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
850
851 c->opts = bch2_opts_default;
852 ret = bch2_opts_from_sb(&c->opts, sb);
853 if (ret)
854 goto err;
855
856 bch2_opts_apply(&c->opts, opts);
857
858 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
859 if (c->opts.inodes_use_key_cache)
860 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
861 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
862
863 c->block_bits = ilog2(block_sectors(c));
864 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
865
866 if (bch2_fs_init_fault("fs_alloc")) {
867 bch_err(c, "fs_alloc fault injected");
868 ret = -EFAULT;
869 goto err;
870 }
871
872 iter_size = sizeof(struct sort_iter) +
873 (btree_blocks(c) + 1) * 2 *
874 sizeof(struct sort_iter_set);
875
876 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
877
878 if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
879 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
880 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
881 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
882 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
883 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
884 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete",
885 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
886 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit",
887 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
888 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
889 WQ_FREEZABLE, 0)) ||
890 #ifndef BCH_WRITE_REF_DEBUG
891 percpu_ref_init(&c->writes, bch2_writes_disabled,
892 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
893 #endif
894 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
895 bioset_init(&c->btree_bio, 1,
896 max(offsetof(struct btree_read_bio, bio),
897 offsetof(struct btree_write_bio, wbio.bio)),
898 BIOSET_NEED_BVECS) ||
899 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
900 !(c->usage = alloc_percpu(struct bch_fs_usage_base)) ||
901 !(c->online_reserved = alloc_percpu(u64)) ||
902 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
903 c->opts.btree_node_size) ||
904 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
905 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
906 sizeof(u64), GFP_KERNEL))) {
907 ret = -BCH_ERR_ENOMEM_fs_other_alloc;
908 goto err;
909 }
910
911 ret = bch2_fs_counters_init(c) ?:
912 bch2_fs_sb_errors_init(c) ?:
913 bch2_io_clock_init(&c->io_clock[READ]) ?:
914 bch2_io_clock_init(&c->io_clock[WRITE]) ?:
915 bch2_fs_journal_init(&c->journal) ?:
916 bch2_fs_btree_iter_init(c) ?:
917 bch2_fs_btree_cache_init(c) ?:
918 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
919 bch2_fs_btree_interior_update_init(c) ?:
920 bch2_fs_buckets_waiting_for_journal_init(c) ?:
921 bch2_fs_btree_write_buffer_init(c) ?:
922 bch2_fs_subvolumes_init(c) ?:
923 bch2_fs_io_read_init(c) ?:
924 bch2_fs_io_write_init(c) ?:
925 bch2_fs_nocow_locking_init(c) ?:
926 bch2_fs_encryption_init(c) ?:
927 bch2_fs_compress_init(c) ?:
928 bch2_fs_ec_init(c) ?:
929 bch2_fs_vfs_init(c) ?:
930 bch2_fs_fsio_init(c) ?:
931 bch2_fs_fs_io_buffered_init(c) ?:
932 bch2_fs_fs_io_direct_init(c);
933 if (ret)
934 goto err;
935
936 for (i = 0; i < c->sb.nr_devices; i++) {
937 if (!bch2_member_exists(c->disk_sb.sb, i))
938 continue;
939 ret = bch2_dev_alloc(c, i);
940 if (ret)
941 goto err;
942 }
943
944 bch2_journal_entry_res_resize(&c->journal,
945 &c->btree_root_journal_res,
946 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
947 bch2_journal_entry_res_resize(&c->journal,
948 &c->clock_journal_res,
949 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
950
951 mutex_lock(&bch_fs_list_lock);
952 ret = bch2_fs_online(c);
953 mutex_unlock(&bch_fs_list_lock);
954
955 if (ret)
956 goto err;
957 out:
958 return c;
959 err:
960 bch2_fs_free(c);
961 c = ERR_PTR(ret);
962 goto out;
963 }
964
965 noinline_for_stack
print_mount_opts(struct bch_fs * c)966 static void print_mount_opts(struct bch_fs *c)
967 {
968 enum bch_opt_id i;
969 struct printbuf p = PRINTBUF;
970 bool first = true;
971
972 prt_str(&p, "starting version ");
973 bch2_version_to_text(&p, c->sb.version);
974
975 if (c->opts.read_only) {
976 prt_str(&p, " opts=");
977 first = false;
978 prt_printf(&p, "ro");
979 }
980
981 for (i = 0; i < bch2_opts_nr; i++) {
982 const struct bch_option *opt = &bch2_opt_table[i];
983 u64 v = bch2_opt_get_by_id(&c->opts, i);
984
985 if (!(opt->flags & OPT_MOUNT))
986 continue;
987
988 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
989 continue;
990
991 prt_str(&p, first ? " opts=" : ",");
992 first = false;
993 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
994 }
995
996 bch_info(c, "%s", p.buf);
997 printbuf_exit(&p);
998 }
999
bch2_fs_start(struct bch_fs * c)1000 int bch2_fs_start(struct bch_fs *c)
1001 {
1002 time64_t now = ktime_get_real_seconds();
1003 int ret;
1004
1005 print_mount_opts(c);
1006
1007 down_write(&c->state_lock);
1008
1009 BUG_ON(test_bit(BCH_FS_started, &c->flags));
1010
1011 mutex_lock(&c->sb_lock);
1012
1013 ret = bch2_sb_members_v2_init(c);
1014 if (ret) {
1015 mutex_unlock(&c->sb_lock);
1016 goto err;
1017 }
1018
1019 for_each_online_member(c, ca)
1020 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1021
1022 struct bch_sb_field_ext *ext =
1023 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
1024 mutex_unlock(&c->sb_lock);
1025
1026 if (!ext) {
1027 bch_err(c, "insufficient space in superblock for sb_field_ext");
1028 ret = -BCH_ERR_ENOSPC_sb;
1029 goto err;
1030 }
1031
1032 for_each_rw_member(c, ca)
1033 bch2_dev_allocator_add(c, ca);
1034 bch2_recalc_capacity(c);
1035
1036 ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1037 ? bch2_fs_recovery(c)
1038 : bch2_fs_initialize(c);
1039 if (ret)
1040 goto err;
1041
1042 ret = bch2_opts_check_may_set(c);
1043 if (ret)
1044 goto err;
1045
1046 if (bch2_fs_init_fault("fs_start")) {
1047 bch_err(c, "fs_start fault injected");
1048 ret = -EINVAL;
1049 goto err;
1050 }
1051
1052 set_bit(BCH_FS_started, &c->flags);
1053
1054 if (c->opts.read_only) {
1055 bch2_fs_read_only(c);
1056 } else {
1057 ret = !test_bit(BCH_FS_rw, &c->flags)
1058 ? bch2_fs_read_write(c)
1059 : bch2_fs_read_write_late(c);
1060 if (ret)
1061 goto err;
1062 }
1063
1064 ret = 0;
1065 err:
1066 if (ret)
1067 bch_err_msg(c, ret, "starting filesystem");
1068 else
1069 bch_verbose(c, "done starting filesystem");
1070 up_write(&c->state_lock);
1071 return ret;
1072 }
1073
bch2_dev_may_add(struct bch_sb * sb,struct bch_fs * c)1074 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1075 {
1076 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1077
1078 if (le16_to_cpu(sb->block_size) != block_sectors(c))
1079 return -BCH_ERR_mismatched_block_size;
1080
1081 if (le16_to_cpu(m.bucket_size) <
1082 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1083 return -BCH_ERR_bucket_size_too_small;
1084
1085 return 0;
1086 }
1087
bch2_dev_in_fs(struct bch_sb_handle * fs,struct bch_sb_handle * sb,struct bch_opts * opts)1088 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1089 struct bch_sb_handle *sb,
1090 struct bch_opts *opts)
1091 {
1092 if (fs == sb)
1093 return 0;
1094
1095 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1096 return -BCH_ERR_device_not_a_member_of_filesystem;
1097
1098 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx))
1099 return -BCH_ERR_device_has_been_removed;
1100
1101 if (fs->sb->block_size != sb->sb->block_size)
1102 return -BCH_ERR_mismatched_block_size;
1103
1104 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1105 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1106 return 0;
1107
1108 if (fs->sb->seq == sb->sb->seq &&
1109 fs->sb->write_time != sb->sb->write_time) {
1110 struct printbuf buf = PRINTBUF;
1111
1112 prt_str(&buf, "Split brain detected between ");
1113 prt_bdevname(&buf, sb->bdev);
1114 prt_str(&buf, " and ");
1115 prt_bdevname(&buf, fs->bdev);
1116 prt_char(&buf, ':');
1117 prt_newline(&buf);
1118 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1119 prt_newline(&buf);
1120
1121 prt_bdevname(&buf, fs->bdev);
1122 prt_char(&buf, ' ');
1123 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));;
1124 prt_newline(&buf);
1125
1126 prt_bdevname(&buf, sb->bdev);
1127 prt_char(&buf, ' ');
1128 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));;
1129 prt_newline(&buf);
1130
1131 if (!opts->no_splitbrain_check)
1132 prt_printf(&buf, "Not using older sb");
1133
1134 pr_err("%s", buf.buf);
1135 printbuf_exit(&buf);
1136
1137 if (!opts->no_splitbrain_check)
1138 return -BCH_ERR_device_splitbrain;
1139 }
1140
1141 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1142 u64 seq_from_fs = le64_to_cpu(m.seq);
1143 u64 seq_from_member = le64_to_cpu(sb->sb->seq);
1144
1145 if (seq_from_fs && seq_from_fs < seq_from_member) {
1146 struct printbuf buf = PRINTBUF;
1147
1148 prt_str(&buf, "Split brain detected between ");
1149 prt_bdevname(&buf, sb->bdev);
1150 prt_str(&buf, " and ");
1151 prt_bdevname(&buf, fs->bdev);
1152 prt_char(&buf, ':');
1153 prt_newline(&buf);
1154
1155 prt_bdevname(&buf, fs->bdev);
1156 prt_str(&buf, " believes seq of ");
1157 prt_bdevname(&buf, sb->bdev);
1158 prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1159 prt_bdevname(&buf, sb->bdev);
1160 prt_printf(&buf, " has %llu\n", seq_from_member);
1161
1162 if (!opts->no_splitbrain_check) {
1163 prt_str(&buf, "Not using ");
1164 prt_bdevname(&buf, sb->bdev);
1165 }
1166
1167 pr_err("%s", buf.buf);
1168 printbuf_exit(&buf);
1169
1170 if (!opts->no_splitbrain_check)
1171 return -BCH_ERR_device_splitbrain;
1172 }
1173
1174 return 0;
1175 }
1176
1177 /* Device startup/shutdown: */
1178
bch2_dev_release(struct kobject * kobj)1179 static void bch2_dev_release(struct kobject *kobj)
1180 {
1181 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1182
1183 kfree(ca);
1184 }
1185
bch2_dev_free(struct bch_dev * ca)1186 static void bch2_dev_free(struct bch_dev *ca)
1187 {
1188 cancel_work_sync(&ca->io_error_work);
1189
1190 bch2_dev_unlink(ca);
1191
1192 if (ca->kobj.state_in_sysfs)
1193 kobject_del(&ca->kobj);
1194
1195 bch2_free_super(&ca->disk_sb);
1196 bch2_dev_allocator_background_exit(ca);
1197 bch2_dev_journal_exit(ca);
1198
1199 free_percpu(ca->io_done);
1200 bch2_dev_buckets_free(ca);
1201 free_page((unsigned long) ca->sb_read_scratch);
1202
1203 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1204 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]);
1205
1206 percpu_ref_exit(&ca->io_ref);
1207 #ifndef CONFIG_BCACHEFS_DEBUG
1208 percpu_ref_exit(&ca->ref);
1209 #endif
1210 kobject_put(&ca->kobj);
1211 }
1212
__bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca)1213 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1214 {
1215
1216 lockdep_assert_held(&c->state_lock);
1217
1218 if (percpu_ref_is_zero(&ca->io_ref))
1219 return;
1220
1221 __bch2_dev_read_only(c, ca);
1222
1223 reinit_completion(&ca->io_ref_completion);
1224 percpu_ref_kill(&ca->io_ref);
1225 wait_for_completion(&ca->io_ref_completion);
1226
1227 bch2_dev_unlink(ca);
1228
1229 bch2_free_super(&ca->disk_sb);
1230 bch2_dev_journal_exit(ca);
1231 }
1232
1233 #ifndef CONFIG_BCACHEFS_DEBUG
bch2_dev_ref_complete(struct percpu_ref * ref)1234 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1235 {
1236 struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1237
1238 complete(&ca->ref_completion);
1239 }
1240 #endif
1241
bch2_dev_io_ref_complete(struct percpu_ref * ref)1242 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1243 {
1244 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1245
1246 complete(&ca->io_ref_completion);
1247 }
1248
bch2_dev_unlink(struct bch_dev * ca)1249 static void bch2_dev_unlink(struct bch_dev *ca)
1250 {
1251 struct kobject *b;
1252
1253 /*
1254 * This is racy w.r.t. the underlying block device being hot-removed,
1255 * which removes it from sysfs.
1256 *
1257 * It'd be lovely if we had a way to handle this race, but the sysfs
1258 * code doesn't appear to provide a good method and block/holder.c is
1259 * susceptible as well:
1260 */
1261 if (ca->kobj.state_in_sysfs &&
1262 ca->disk_sb.bdev &&
1263 (b = bdev_kobj(ca->disk_sb.bdev))->state_in_sysfs) {
1264 sysfs_remove_link(b, "bcachefs");
1265 sysfs_remove_link(&ca->kobj, "block");
1266 }
1267 }
1268
bch2_dev_sysfs_online(struct bch_fs * c,struct bch_dev * ca)1269 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1270 {
1271 int ret;
1272
1273 if (!c->kobj.state_in_sysfs)
1274 return 0;
1275
1276 if (!ca->kobj.state_in_sysfs) {
1277 ret = kobject_add(&ca->kobj, &c->kobj,
1278 "dev-%u", ca->dev_idx);
1279 if (ret)
1280 return ret;
1281 }
1282
1283 if (ca->disk_sb.bdev) {
1284 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1285
1286 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1287 if (ret)
1288 return ret;
1289
1290 ret = sysfs_create_link(&ca->kobj, block, "block");
1291 if (ret)
1292 return ret;
1293 }
1294
1295 return 0;
1296 }
1297
__bch2_dev_alloc(struct bch_fs * c,struct bch_member * member)1298 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1299 struct bch_member *member)
1300 {
1301 struct bch_dev *ca;
1302 unsigned i;
1303
1304 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1305 if (!ca)
1306 return NULL;
1307
1308 kobject_init(&ca->kobj, &bch2_dev_ktype);
1309 init_completion(&ca->ref_completion);
1310 init_completion(&ca->io_ref_completion);
1311
1312 init_rwsem(&ca->bucket_lock);
1313
1314 INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1315
1316 bch2_time_stats_quantiles_init(&ca->io_latency[READ]);
1317 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]);
1318
1319 ca->mi = bch2_mi_to_cpu(member);
1320
1321 for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1322 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1323
1324 ca->uuid = member->uuid;
1325
1326 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1327 ca->mi.bucket_size / btree_sectors(c));
1328
1329 #ifndef CONFIG_BCACHEFS_DEBUG
1330 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL))
1331 goto err;
1332 #else
1333 atomic_long_set(&ca->ref, 1);
1334 #endif
1335
1336 bch2_dev_allocator_background_init(ca);
1337
1338 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1339 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1340 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1341 bch2_dev_buckets_alloc(c, ca) ||
1342 !(ca->io_done = alloc_percpu(*ca->io_done)))
1343 goto err;
1344
1345 return ca;
1346 err:
1347 bch2_dev_free(ca);
1348 return NULL;
1349 }
1350
bch2_dev_attach(struct bch_fs * c,struct bch_dev * ca,unsigned dev_idx)1351 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1352 unsigned dev_idx)
1353 {
1354 ca->dev_idx = dev_idx;
1355 __set_bit(ca->dev_idx, ca->self.d);
1356 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1357
1358 ca->fs = c;
1359 rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1360
1361 if (bch2_dev_sysfs_online(c, ca))
1362 pr_warn("error creating sysfs objects");
1363 }
1364
bch2_dev_alloc(struct bch_fs * c,unsigned dev_idx)1365 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1366 {
1367 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1368 struct bch_dev *ca = NULL;
1369 int ret = 0;
1370
1371 if (bch2_fs_init_fault("dev_alloc"))
1372 goto err;
1373
1374 ca = __bch2_dev_alloc(c, &member);
1375 if (!ca)
1376 goto err;
1377
1378 ca->fs = c;
1379
1380 bch2_dev_attach(c, ca, dev_idx);
1381 return ret;
1382 err:
1383 if (ca)
1384 bch2_dev_free(ca);
1385 return -BCH_ERR_ENOMEM_dev_alloc;
1386 }
1387
__bch2_dev_attach_bdev(struct bch_dev * ca,struct bch_sb_handle * sb)1388 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1389 {
1390 unsigned ret;
1391
1392 if (bch2_dev_is_online(ca)) {
1393 bch_err(ca, "already have device online in slot %u",
1394 sb->sb->dev_idx);
1395 return -BCH_ERR_device_already_online;
1396 }
1397
1398 if (get_capacity(sb->bdev->bd_disk) <
1399 ca->mi.bucket_size * ca->mi.nbuckets) {
1400 bch_err(ca, "cannot online: device too small");
1401 return -BCH_ERR_device_size_too_small;
1402 }
1403
1404 BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1405
1406 ret = bch2_dev_journal_init(ca, sb->sb);
1407 if (ret)
1408 return ret;
1409
1410 /* Commit: */
1411 ca->disk_sb = *sb;
1412 memset(sb, 0, sizeof(*sb));
1413
1414 ca->dev = ca->disk_sb.bdev->bd_dev;
1415
1416 percpu_ref_reinit(&ca->io_ref);
1417
1418 return 0;
1419 }
1420
bch2_dev_attach_bdev(struct bch_fs * c,struct bch_sb_handle * sb)1421 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1422 {
1423 struct bch_dev *ca;
1424 int ret;
1425
1426 lockdep_assert_held(&c->state_lock);
1427
1428 if (le64_to_cpu(sb->sb->seq) >
1429 le64_to_cpu(c->disk_sb.sb->seq))
1430 bch2_sb_to_fs(c, sb->sb);
1431
1432 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx));
1433
1434 ca = bch2_dev_locked(c, sb->sb->dev_idx);
1435
1436 ret = __bch2_dev_attach_bdev(ca, sb);
1437 if (ret)
1438 return ret;
1439
1440 bch2_dev_sysfs_online(c, ca);
1441
1442 struct printbuf name = PRINTBUF;
1443 prt_bdevname(&name, ca->disk_sb.bdev);
1444
1445 if (c->sb.nr_devices == 1)
1446 strscpy(c->name, name.buf, sizeof(c->name));
1447 strscpy(ca->name, name.buf, sizeof(ca->name));
1448
1449 printbuf_exit(&name);
1450
1451 rebalance_wakeup(c);
1452 return 0;
1453 }
1454
1455 /* Device management: */
1456
1457 /*
1458 * Note: this function is also used by the error paths - when a particular
1459 * device sees an error, we call it to determine whether we can just set the
1460 * device RO, or - if this function returns false - we'll set the whole
1461 * filesystem RO:
1462 *
1463 * XXX: maybe we should be more explicit about whether we're changing state
1464 * because we got an error or what have you?
1465 */
bch2_dev_state_allowed(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1466 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1467 enum bch_member_state new_state, int flags)
1468 {
1469 struct bch_devs_mask new_online_devs;
1470 int nr_rw = 0, required;
1471
1472 lockdep_assert_held(&c->state_lock);
1473
1474 switch (new_state) {
1475 case BCH_MEMBER_STATE_rw:
1476 return true;
1477 case BCH_MEMBER_STATE_ro:
1478 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1479 return true;
1480
1481 /* do we have enough devices to write to? */
1482 for_each_member_device(c, ca2)
1483 if (ca2 != ca)
1484 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1485
1486 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1487 ? c->opts.metadata_replicas
1488 : metadata_replicas_required(c),
1489 !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1490 ? c->opts.data_replicas
1491 : data_replicas_required(c));
1492
1493 return nr_rw >= required;
1494 case BCH_MEMBER_STATE_failed:
1495 case BCH_MEMBER_STATE_spare:
1496 if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1497 ca->mi.state != BCH_MEMBER_STATE_ro)
1498 return true;
1499
1500 /* do we have enough devices to read from? */
1501 new_online_devs = bch2_online_devs(c);
1502 __clear_bit(ca->dev_idx, new_online_devs.d);
1503
1504 return bch2_have_enough_devs(c, new_online_devs, flags, false);
1505 default:
1506 BUG();
1507 }
1508 }
1509
bch2_fs_may_start(struct bch_fs * c)1510 static bool bch2_fs_may_start(struct bch_fs *c)
1511 {
1512 struct bch_dev *ca;
1513 unsigned i, flags = 0;
1514
1515 if (c->opts.very_degraded)
1516 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1517
1518 if (c->opts.degraded)
1519 flags |= BCH_FORCE_IF_DEGRADED;
1520
1521 if (!c->opts.degraded &&
1522 !c->opts.very_degraded) {
1523 mutex_lock(&c->sb_lock);
1524
1525 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1526 if (!bch2_member_exists(c->disk_sb.sb, i))
1527 continue;
1528
1529 ca = bch2_dev_locked(c, i);
1530
1531 if (!bch2_dev_is_online(ca) &&
1532 (ca->mi.state == BCH_MEMBER_STATE_rw ||
1533 ca->mi.state == BCH_MEMBER_STATE_ro)) {
1534 mutex_unlock(&c->sb_lock);
1535 return false;
1536 }
1537 }
1538 mutex_unlock(&c->sb_lock);
1539 }
1540
1541 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1542 }
1543
__bch2_dev_read_only(struct bch_fs * c,struct bch_dev * ca)1544 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1545 {
1546 /*
1547 * The allocator thread itself allocates btree nodes, so stop it first:
1548 */
1549 bch2_dev_allocator_remove(c, ca);
1550 bch2_recalc_capacity(c);
1551 bch2_dev_journal_stop(&c->journal, ca);
1552 }
1553
__bch2_dev_read_write(struct bch_fs * c,struct bch_dev * ca)1554 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1555 {
1556 lockdep_assert_held(&c->state_lock);
1557
1558 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1559
1560 bch2_dev_allocator_add(c, ca);
1561 bch2_recalc_capacity(c);
1562 bch2_dev_do_discards(ca);
1563 }
1564
__bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1565 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1566 enum bch_member_state new_state, int flags)
1567 {
1568 struct bch_member *m;
1569 int ret = 0;
1570
1571 if (ca->mi.state == new_state)
1572 return 0;
1573
1574 if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1575 return -BCH_ERR_device_state_not_allowed;
1576
1577 if (new_state != BCH_MEMBER_STATE_rw)
1578 __bch2_dev_read_only(c, ca);
1579
1580 bch_notice(ca, "%s", bch2_member_states[new_state]);
1581
1582 mutex_lock(&c->sb_lock);
1583 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1584 SET_BCH_MEMBER_STATE(m, new_state);
1585 bch2_write_super(c);
1586 mutex_unlock(&c->sb_lock);
1587
1588 if (new_state == BCH_MEMBER_STATE_rw)
1589 __bch2_dev_read_write(c, ca);
1590
1591 rebalance_wakeup(c);
1592
1593 return ret;
1594 }
1595
bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1596 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1597 enum bch_member_state new_state, int flags)
1598 {
1599 int ret;
1600
1601 down_write(&c->state_lock);
1602 ret = __bch2_dev_set_state(c, ca, new_state, flags);
1603 up_write(&c->state_lock);
1604
1605 return ret;
1606 }
1607
1608 /* Device add/removal: */
1609
bch2_dev_remove(struct bch_fs * c,struct bch_dev * ca,int flags)1610 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1611 {
1612 struct bch_member *m;
1613 unsigned dev_idx = ca->dev_idx, data;
1614 int ret;
1615
1616 down_write(&c->state_lock);
1617
1618 /*
1619 * We consume a reference to ca->ref, regardless of whether we succeed
1620 * or fail:
1621 */
1622 bch2_dev_put(ca);
1623
1624 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1625 bch_err(ca, "Cannot remove without losing data");
1626 ret = -BCH_ERR_device_state_not_allowed;
1627 goto err;
1628 }
1629
1630 __bch2_dev_read_only(c, ca);
1631
1632 ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1633 bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1634 if (ret)
1635 goto err;
1636
1637 ret = bch2_dev_remove_alloc(c, ca);
1638 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1639 if (ret)
1640 goto err;
1641
1642 /*
1643 * We need to flush the entire journal to get rid of keys that reference
1644 * the device being removed before removing the superblock entry
1645 */
1646 bch2_journal_flush_all_pins(&c->journal);
1647
1648 /*
1649 * this is really just needed for the bch2_replicas_gc_(start|end)
1650 * calls, and could be cleaned up:
1651 */
1652 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1653 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1654 if (ret)
1655 goto err;
1656
1657 ret = bch2_journal_flush(&c->journal);
1658 bch_err_msg(ca, ret, "bch2_journal_flush()");
1659 if (ret)
1660 goto err;
1661
1662 ret = bch2_replicas_gc2(c);
1663 bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1664 if (ret)
1665 goto err;
1666
1667 data = bch2_dev_has_data(c, ca);
1668 if (data) {
1669 struct printbuf data_has = PRINTBUF;
1670
1671 prt_bitflags(&data_has, __bch2_data_types, data);
1672 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1673 printbuf_exit(&data_has);
1674 ret = -EBUSY;
1675 goto err;
1676 }
1677
1678 __bch2_dev_offline(c, ca);
1679
1680 mutex_lock(&c->sb_lock);
1681 rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1682 mutex_unlock(&c->sb_lock);
1683
1684 #ifndef CONFIG_BCACHEFS_DEBUG
1685 percpu_ref_kill(&ca->ref);
1686 #else
1687 ca->dying = true;
1688 bch2_dev_put(ca);
1689 #endif
1690 wait_for_completion(&ca->ref_completion);
1691
1692 bch2_dev_free(ca);
1693
1694 /*
1695 * Free this device's slot in the bch_member array - all pointers to
1696 * this device must be gone:
1697 */
1698 mutex_lock(&c->sb_lock);
1699 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1700 memset(&m->uuid, 0, sizeof(m->uuid));
1701
1702 bch2_write_super(c);
1703
1704 mutex_unlock(&c->sb_lock);
1705 up_write(&c->state_lock);
1706 return 0;
1707 err:
1708 if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1709 !percpu_ref_is_zero(&ca->io_ref))
1710 __bch2_dev_read_write(c, ca);
1711 up_write(&c->state_lock);
1712 return ret;
1713 }
1714
1715 /* Add new device to running filesystem: */
bch2_dev_add(struct bch_fs * c,const char * path)1716 int bch2_dev_add(struct bch_fs *c, const char *path)
1717 {
1718 struct bch_opts opts = bch2_opts_empty();
1719 struct bch_sb_handle sb;
1720 struct bch_dev *ca = NULL;
1721 struct printbuf errbuf = PRINTBUF;
1722 struct printbuf label = PRINTBUF;
1723 int ret;
1724
1725 ret = bch2_read_super(path, &opts, &sb);
1726 bch_err_msg(c, ret, "reading super");
1727 if (ret)
1728 goto err;
1729
1730 struct bch_member dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1731
1732 if (BCH_MEMBER_GROUP(&dev_mi)) {
1733 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1734 if (label.allocation_failure) {
1735 ret = -ENOMEM;
1736 goto err;
1737 }
1738 }
1739
1740 ret = bch2_dev_may_add(sb.sb, c);
1741 if (ret)
1742 goto err;
1743
1744 ca = __bch2_dev_alloc(c, &dev_mi);
1745 if (!ca) {
1746 ret = -ENOMEM;
1747 goto err;
1748 }
1749
1750 ret = __bch2_dev_attach_bdev(ca, &sb);
1751 if (ret)
1752 goto err;
1753
1754 ret = bch2_dev_journal_alloc(ca, true);
1755 bch_err_msg(c, ret, "allocating journal");
1756 if (ret)
1757 goto err;
1758
1759 down_write(&c->state_lock);
1760 mutex_lock(&c->sb_lock);
1761
1762 ret = bch2_sb_from_fs(c, ca);
1763 bch_err_msg(c, ret, "setting up new superblock");
1764 if (ret)
1765 goto err_unlock;
1766
1767 if (dynamic_fault("bcachefs:add:no_slot"))
1768 goto err_unlock;
1769
1770 ret = bch2_sb_member_alloc(c);
1771 if (ret < 0) {
1772 bch_err_msg(c, ret, "setting up new superblock");
1773 goto err_unlock;
1774 }
1775 unsigned dev_idx = ret;
1776
1777 /* success: */
1778
1779 dev_mi.last_mount = cpu_to_le64(ktime_get_real_seconds());
1780 *bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx) = dev_mi;
1781
1782 ca->disk_sb.sb->dev_idx = dev_idx;
1783 bch2_dev_attach(c, ca, dev_idx);
1784
1785 if (BCH_MEMBER_GROUP(&dev_mi)) {
1786 ret = __bch2_dev_group_set(c, ca, label.buf);
1787 bch_err_msg(c, ret, "creating new label");
1788 if (ret)
1789 goto err_unlock;
1790 }
1791
1792 bch2_write_super(c);
1793 mutex_unlock(&c->sb_lock);
1794
1795 ret = bch2_dev_usage_init(ca, false);
1796 if (ret)
1797 goto err_late;
1798
1799 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1800 bch_err_msg(ca, ret, "marking new superblock");
1801 if (ret)
1802 goto err_late;
1803
1804 ret = bch2_fs_freespace_init(c);
1805 bch_err_msg(ca, ret, "initializing free space");
1806 if (ret)
1807 goto err_late;
1808
1809 ca->new_fs_bucket_idx = 0;
1810
1811 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1812 __bch2_dev_read_write(c, ca);
1813
1814 up_write(&c->state_lock);
1815 return 0;
1816
1817 err_unlock:
1818 mutex_unlock(&c->sb_lock);
1819 up_write(&c->state_lock);
1820 err:
1821 if (ca)
1822 bch2_dev_free(ca);
1823 bch2_free_super(&sb);
1824 printbuf_exit(&label);
1825 printbuf_exit(&errbuf);
1826 bch_err_fn(c, ret);
1827 return ret;
1828 err_late:
1829 up_write(&c->state_lock);
1830 ca = NULL;
1831 goto err;
1832 }
1833
1834 /* Hot add existing device to running filesystem: */
bch2_dev_online(struct bch_fs * c,const char * path)1835 int bch2_dev_online(struct bch_fs *c, const char *path)
1836 {
1837 struct bch_opts opts = bch2_opts_empty();
1838 struct bch_sb_handle sb = { NULL };
1839 struct bch_dev *ca;
1840 unsigned dev_idx;
1841 int ret;
1842
1843 down_write(&c->state_lock);
1844
1845 ret = bch2_read_super(path, &opts, &sb);
1846 if (ret) {
1847 up_write(&c->state_lock);
1848 return ret;
1849 }
1850
1851 dev_idx = sb.sb->dev_idx;
1852
1853 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts);
1854 bch_err_msg(c, ret, "bringing %s online", path);
1855 if (ret)
1856 goto err;
1857
1858 ret = bch2_dev_attach_bdev(c, &sb);
1859 if (ret)
1860 goto err;
1861
1862 ca = bch2_dev_locked(c, dev_idx);
1863
1864 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1865 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1866 if (ret)
1867 goto err;
1868
1869 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1870 __bch2_dev_read_write(c, ca);
1871
1872 if (!ca->mi.freespace_initialized) {
1873 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1874 bch_err_msg(ca, ret, "initializing free space");
1875 if (ret)
1876 goto err;
1877 }
1878
1879 if (!ca->journal.nr) {
1880 ret = bch2_dev_journal_alloc(ca, false);
1881 bch_err_msg(ca, ret, "allocating journal");
1882 if (ret)
1883 goto err;
1884 }
1885
1886 mutex_lock(&c->sb_lock);
1887 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1888 cpu_to_le64(ktime_get_real_seconds());
1889 bch2_write_super(c);
1890 mutex_unlock(&c->sb_lock);
1891
1892 up_write(&c->state_lock);
1893 return 0;
1894 err:
1895 up_write(&c->state_lock);
1896 bch2_free_super(&sb);
1897 return ret;
1898 }
1899
bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca,int flags)1900 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1901 {
1902 down_write(&c->state_lock);
1903
1904 if (!bch2_dev_is_online(ca)) {
1905 bch_err(ca, "Already offline");
1906 up_write(&c->state_lock);
1907 return 0;
1908 }
1909
1910 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1911 bch_err(ca, "Cannot offline required disk");
1912 up_write(&c->state_lock);
1913 return -BCH_ERR_device_state_not_allowed;
1914 }
1915
1916 __bch2_dev_offline(c, ca);
1917
1918 up_write(&c->state_lock);
1919 return 0;
1920 }
1921
bch2_dev_resize(struct bch_fs * c,struct bch_dev * ca,u64 nbuckets)1922 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1923 {
1924 struct bch_member *m;
1925 u64 old_nbuckets;
1926 int ret = 0;
1927
1928 down_write(&c->state_lock);
1929 old_nbuckets = ca->mi.nbuckets;
1930
1931 if (nbuckets < ca->mi.nbuckets) {
1932 bch_err(ca, "Cannot shrink yet");
1933 ret = -EINVAL;
1934 goto err;
1935 }
1936
1937 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) {
1938 bch_err(ca, "New device size too big (%llu greater than max %u)",
1939 nbuckets, BCH_MEMBER_NBUCKETS_MAX);
1940 ret = -BCH_ERR_device_size_too_big;
1941 goto err;
1942 }
1943
1944 if (bch2_dev_is_online(ca) &&
1945 get_capacity(ca->disk_sb.bdev->bd_disk) <
1946 ca->mi.bucket_size * nbuckets) {
1947 bch_err(ca, "New size larger than device");
1948 ret = -BCH_ERR_device_size_too_small;
1949 goto err;
1950 }
1951
1952 ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1953 bch_err_msg(ca, ret, "resizing buckets");
1954 if (ret)
1955 goto err;
1956
1957 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1958 if (ret)
1959 goto err;
1960
1961 mutex_lock(&c->sb_lock);
1962 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1963 m->nbuckets = cpu_to_le64(nbuckets);
1964
1965 bch2_write_super(c);
1966 mutex_unlock(&c->sb_lock);
1967
1968 if (ca->mi.freespace_initialized) {
1969 struct disk_accounting_pos acc = {
1970 .type = BCH_DISK_ACCOUNTING_dev_data_type,
1971 .dev_data_type.dev = ca->dev_idx,
1972 .dev_data_type.data_type = BCH_DATA_free,
1973 };
1974 u64 v[3] = { nbuckets - old_nbuckets, 0, 0 };
1975
1976 ret = bch2_trans_commit_do(ca->fs, NULL, NULL, 0,
1977 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), false)) ?:
1978 bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1979 if (ret)
1980 goto err;
1981 }
1982
1983 bch2_recalc_capacity(c);
1984 err:
1985 up_write(&c->state_lock);
1986 return ret;
1987 }
1988
1989 /* return with ref on ca->ref: */
bch2_dev_lookup(struct bch_fs * c,const char * name)1990 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
1991 {
1992 if (!strncmp(name, "/dev/", strlen("/dev/")))
1993 name += strlen("/dev/");
1994
1995 for_each_member_device(c, ca)
1996 if (!strcmp(name, ca->name))
1997 return ca;
1998 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
1999 }
2000
2001 /* Filesystem open: */
2002
sb_cmp(struct bch_sb * l,struct bch_sb * r)2003 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2004 {
2005 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2006 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2007 }
2008
bch2_fs_open(char * const * devices,unsigned nr_devices,struct bch_opts opts)2009 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2010 struct bch_opts opts)
2011 {
2012 DARRAY(struct bch_sb_handle) sbs = { 0 };
2013 struct bch_fs *c = NULL;
2014 struct bch_sb_handle *best = NULL;
2015 struct printbuf errbuf = PRINTBUF;
2016 int ret = 0;
2017
2018 if (!try_module_get(THIS_MODULE))
2019 return ERR_PTR(-ENODEV);
2020
2021 if (!nr_devices) {
2022 ret = -EINVAL;
2023 goto err;
2024 }
2025
2026 ret = darray_make_room(&sbs, nr_devices);
2027 if (ret)
2028 goto err;
2029
2030 for (unsigned i = 0; i < nr_devices; i++) {
2031 struct bch_sb_handle sb = { NULL };
2032
2033 ret = bch2_read_super(devices[i], &opts, &sb);
2034 if (ret)
2035 goto err;
2036
2037 BUG_ON(darray_push(&sbs, sb));
2038 }
2039
2040 if (opts.nochanges && !opts.read_only) {
2041 ret = -BCH_ERR_erofs_nochanges;
2042 goto err_print;
2043 }
2044
2045 darray_for_each(sbs, sb)
2046 if (!best || sb_cmp(sb->sb, best->sb) > 0)
2047 best = sb;
2048
2049 darray_for_each_reverse(sbs, sb) {
2050 ret = bch2_dev_in_fs(best, sb, &opts);
2051
2052 if (ret == -BCH_ERR_device_has_been_removed ||
2053 ret == -BCH_ERR_device_splitbrain) {
2054 bch2_free_super(sb);
2055 darray_remove_item(&sbs, sb);
2056 best -= best > sb;
2057 ret = 0;
2058 continue;
2059 }
2060
2061 if (ret)
2062 goto err_print;
2063 }
2064
2065 c = bch2_fs_alloc(best->sb, opts);
2066 ret = PTR_ERR_OR_ZERO(c);
2067 if (ret)
2068 goto err;
2069
2070 down_write(&c->state_lock);
2071 darray_for_each(sbs, sb) {
2072 ret = bch2_dev_attach_bdev(c, sb);
2073 if (ret) {
2074 up_write(&c->state_lock);
2075 goto err;
2076 }
2077 }
2078 up_write(&c->state_lock);
2079
2080 if (!bch2_fs_may_start(c)) {
2081 ret = -BCH_ERR_insufficient_devices_to_start;
2082 goto err_print;
2083 }
2084
2085 if (!c->opts.nostart) {
2086 ret = bch2_fs_start(c);
2087 if (ret)
2088 goto err;
2089 }
2090 out:
2091 darray_for_each(sbs, sb)
2092 bch2_free_super(sb);
2093 darray_exit(&sbs);
2094 printbuf_exit(&errbuf);
2095 module_put(THIS_MODULE);
2096 return c;
2097 err_print:
2098 pr_err("bch_fs_open err opening %s: %s",
2099 devices[0], bch2_err_str(ret));
2100 err:
2101 if (!IS_ERR_OR_NULL(c))
2102 bch2_fs_stop(c);
2103 c = ERR_PTR(ret);
2104 goto out;
2105 }
2106
2107 /* Global interfaces/init */
2108
bcachefs_exit(void)2109 static void bcachefs_exit(void)
2110 {
2111 bch2_debug_exit();
2112 bch2_vfs_exit();
2113 bch2_chardev_exit();
2114 bch2_btree_key_cache_exit();
2115 if (bcachefs_kset)
2116 kset_unregister(bcachefs_kset);
2117 }
2118
bcachefs_init(void)2119 static int __init bcachefs_init(void)
2120 {
2121 bch2_bkey_pack_test();
2122
2123 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2124 bch2_btree_key_cache_init() ||
2125 bch2_chardev_init() ||
2126 bch2_vfs_init() ||
2127 bch2_debug_init())
2128 goto err;
2129
2130 return 0;
2131 err:
2132 bcachefs_exit();
2133 return -ENOMEM;
2134 }
2135
2136 #define BCH_DEBUG_PARAM(name, description) \
2137 bool bch2_##name; \
2138 module_param_named(name, bch2_##name, bool, 0644); \
2139 MODULE_PARM_DESC(name, description);
2140 BCH_DEBUG_PARAMS()
2141 #undef BCH_DEBUG_PARAM
2142
2143 __maybe_unused
2144 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2145 module_param_named(version, bch2_metadata_version, uint, 0400);
2146
2147 module_exit(bcachefs_exit);
2148 module_init(bcachefs_init);
2149