1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Code for managing the extent btree and dynamically updating the writeback
6 * dirty sector count.
7 */
8
9 #include "bcachefs.h"
10 #include "bkey_methods.h"
11 #include "btree_cache.h"
12 #include "btree_gc.h"
13 #include "btree_io.h"
14 #include "btree_iter.h"
15 #include "buckets.h"
16 #include "checksum.h"
17 #include "compress.h"
18 #include "debug.h"
19 #include "disk_groups.h"
20 #include "error.h"
21 #include "extents.h"
22 #include "inode.h"
23 #include "journal.h"
24 #include "replicas.h"
25 #include "super.h"
26 #include "super-io.h"
27 #include "trace.h"
28 #include "util.h"
29
30 static unsigned bch2_crc_field_size_max[] = {
31 [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX,
32 [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX,
33 [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX,
34 };
35
36 static void bch2_extent_crc_pack(union bch_extent_crc *,
37 struct bch_extent_crc_unpacked,
38 enum bch_extent_entry_type);
39
bch2_dev_io_failures(struct bch_io_failures * f,unsigned dev)40 struct bch_dev_io_failures *bch2_dev_io_failures(struct bch_io_failures *f,
41 unsigned dev)
42 {
43 struct bch_dev_io_failures *i;
44
45 for (i = f->devs; i < f->devs + f->nr; i++)
46 if (i->dev == dev)
47 return i;
48
49 return NULL;
50 }
51
bch2_mark_io_failure(struct bch_io_failures * failed,struct extent_ptr_decoded * p)52 void bch2_mark_io_failure(struct bch_io_failures *failed,
53 struct extent_ptr_decoded *p)
54 {
55 struct bch_dev_io_failures *f = bch2_dev_io_failures(failed, p->ptr.dev);
56
57 if (!f) {
58 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs));
59
60 f = &failed->devs[failed->nr++];
61 f->dev = p->ptr.dev;
62 f->idx = p->idx;
63 f->nr_failed = 1;
64 f->nr_retries = 0;
65 } else if (p->idx != f->idx) {
66 f->idx = p->idx;
67 f->nr_failed = 1;
68 f->nr_retries = 0;
69 } else {
70 f->nr_failed++;
71 }
72 }
73
dev_latency(struct bch_fs * c,unsigned dev)74 static inline u64 dev_latency(struct bch_fs *c, unsigned dev)
75 {
76 struct bch_dev *ca = bch2_dev_rcu(c, dev);
77 return ca ? atomic64_read(&ca->cur_latency[READ]) : S64_MAX;
78 }
79
80 /*
81 * returns true if p1 is better than p2:
82 */
ptr_better(struct bch_fs * c,const struct extent_ptr_decoded p1,const struct extent_ptr_decoded p2)83 static inline bool ptr_better(struct bch_fs *c,
84 const struct extent_ptr_decoded p1,
85 const struct extent_ptr_decoded p2)
86 {
87 if (likely(!p1.idx && !p2.idx)) {
88 u64 l1 = dev_latency(c, p1.ptr.dev);
89 u64 l2 = dev_latency(c, p2.ptr.dev);
90
91 /* Pick at random, biased in favor of the faster device: */
92
93 return bch2_rand_range(l1 + l2) > l1;
94 }
95
96 if (bch2_force_reconstruct_read)
97 return p1.idx > p2.idx;
98
99 return p1.idx < p2.idx;
100 }
101
102 /*
103 * This picks a non-stale pointer, preferably from a device other than @avoid.
104 * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
105 * other devices, it will still pick a pointer from avoid.
106 */
bch2_bkey_pick_read_device(struct bch_fs * c,struct bkey_s_c k,struct bch_io_failures * failed,struct extent_ptr_decoded * pick)107 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k,
108 struct bch_io_failures *failed,
109 struct extent_ptr_decoded *pick)
110 {
111 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
112 const union bch_extent_entry *entry;
113 struct extent_ptr_decoded p;
114 struct bch_dev_io_failures *f;
115 int ret = 0;
116
117 if (k.k->type == KEY_TYPE_error)
118 return -BCH_ERR_key_type_error;
119
120 rcu_read_lock();
121 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
122 /*
123 * Unwritten extent: no need to actually read, treat it as a
124 * hole and return 0s:
125 */
126 if (p.ptr.unwritten) {
127 ret = 0;
128 break;
129 }
130
131 /*
132 * If there are any dirty pointers it's an error if we can't
133 * read:
134 */
135 if (!ret && !p.ptr.cached)
136 ret = -BCH_ERR_no_device_to_read_from;
137
138 struct bch_dev *ca = bch2_dev_rcu(c, p.ptr.dev);
139
140 if (p.ptr.cached && (!ca || dev_ptr_stale_rcu(ca, &p.ptr)))
141 continue;
142
143 f = failed ? bch2_dev_io_failures(failed, p.ptr.dev) : NULL;
144 if (f)
145 p.idx = f->nr_failed < f->nr_retries
146 ? f->idx
147 : f->idx + 1;
148
149 if (!p.idx && (!ca || !bch2_dev_is_readable(ca)))
150 p.idx++;
151
152 if (!p.idx && p.has_ec && bch2_force_reconstruct_read)
153 p.idx++;
154
155 if (p.idx > (unsigned) p.has_ec)
156 continue;
157
158 if (ret > 0 && !ptr_better(c, p, *pick))
159 continue;
160
161 *pick = p;
162 ret = 1;
163 }
164 rcu_read_unlock();
165
166 return ret;
167 }
168
169 /* KEY_TYPE_btree_ptr: */
170
bch2_btree_ptr_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags)171 int bch2_btree_ptr_validate(struct bch_fs *c, struct bkey_s_c k,
172 enum bch_validate_flags flags)
173 {
174 int ret = 0;
175
176 bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX,
177 c, btree_ptr_val_too_big,
178 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX);
179
180 ret = bch2_bkey_ptrs_validate(c, k, flags);
181 fsck_err:
182 return ret;
183 }
184
bch2_btree_ptr_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)185 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c,
186 struct bkey_s_c k)
187 {
188 bch2_bkey_ptrs_to_text(out, c, k);
189 }
190
bch2_btree_ptr_v2_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags)191 int bch2_btree_ptr_v2_validate(struct bch_fs *c, struct bkey_s_c k,
192 enum bch_validate_flags flags)
193 {
194 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
195 int ret = 0;
196
197 bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX,
198 c, btree_ptr_v2_val_too_big,
199 "value too big (%zu > %zu)",
200 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX);
201
202 bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p),
203 c, btree_ptr_v2_min_key_bad,
204 "min_key > key");
205
206 if (flags & BCH_VALIDATE_write)
207 bkey_fsck_err_on(!bp.v->sectors_written,
208 c, btree_ptr_v2_written_0,
209 "sectors_written == 0");
210
211 ret = bch2_bkey_ptrs_validate(c, k, flags);
212 fsck_err:
213 return ret;
214 }
215
bch2_btree_ptr_v2_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)216 void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c,
217 struct bkey_s_c k)
218 {
219 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
220
221 prt_printf(out, "seq %llx written %u min_key %s",
222 le64_to_cpu(bp.v->seq),
223 le16_to_cpu(bp.v->sectors_written),
224 BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : "");
225
226 bch2_bpos_to_text(out, bp.v->min_key);
227 prt_printf(out, " ");
228 bch2_bkey_ptrs_to_text(out, c, k);
229 }
230
bch2_btree_ptr_v2_compat(enum btree_id btree_id,unsigned version,unsigned big_endian,int write,struct bkey_s k)231 void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version,
232 unsigned big_endian, int write,
233 struct bkey_s k)
234 {
235 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k);
236
237 compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key);
238
239 if (version < bcachefs_metadata_version_inode_btree_change &&
240 btree_id_is_extents(btree_id) &&
241 !bkey_eq(bp.v->min_key, POS_MIN))
242 bp.v->min_key = write
243 ? bpos_nosnap_predecessor(bp.v->min_key)
244 : bpos_nosnap_successor(bp.v->min_key);
245 }
246
247 /* KEY_TYPE_extent: */
248
bch2_extent_merge(struct bch_fs * c,struct bkey_s l,struct bkey_s_c r)249 bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r)
250 {
251 struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l);
252 struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r);
253 union bch_extent_entry *en_l;
254 const union bch_extent_entry *en_r;
255 struct extent_ptr_decoded lp, rp;
256 bool use_right_ptr;
257
258 en_l = l_ptrs.start;
259 en_r = r_ptrs.start;
260 while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
261 if (extent_entry_type(en_l) != extent_entry_type(en_r))
262 return false;
263
264 en_l = extent_entry_next(en_l);
265 en_r = extent_entry_next(en_r);
266 }
267
268 if (en_l < l_ptrs.end || en_r < r_ptrs.end)
269 return false;
270
271 en_l = l_ptrs.start;
272 en_r = r_ptrs.start;
273 lp.crc = bch2_extent_crc_unpack(l.k, NULL);
274 rp.crc = bch2_extent_crc_unpack(r.k, NULL);
275
276 while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) &&
277 __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) {
278 if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size !=
279 rp.ptr.offset + rp.crc.offset ||
280 lp.ptr.dev != rp.ptr.dev ||
281 lp.ptr.gen != rp.ptr.gen ||
282 lp.ptr.unwritten != rp.ptr.unwritten ||
283 lp.has_ec != rp.has_ec)
284 return false;
285
286 /* Extents may not straddle buckets: */
287 rcu_read_lock();
288 struct bch_dev *ca = bch2_dev_rcu(c, lp.ptr.dev);
289 bool same_bucket = ca && PTR_BUCKET_NR(ca, &lp.ptr) == PTR_BUCKET_NR(ca, &rp.ptr);
290 rcu_read_unlock();
291
292 if (!same_bucket)
293 return false;
294
295 if (lp.has_ec != rp.has_ec ||
296 (lp.has_ec &&
297 (lp.ec.block != rp.ec.block ||
298 lp.ec.redundancy != rp.ec.redundancy ||
299 lp.ec.idx != rp.ec.idx)))
300 return false;
301
302 if (lp.crc.compression_type != rp.crc.compression_type ||
303 lp.crc.nonce != rp.crc.nonce)
304 return false;
305
306 if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <=
307 lp.crc.uncompressed_size) {
308 /* can use left extent's crc entry */
309 } else if (lp.crc.live_size <= rp.crc.offset) {
310 /* can use right extent's crc entry */
311 } else {
312 /* check if checksums can be merged: */
313 if (lp.crc.csum_type != rp.crc.csum_type ||
314 lp.crc.nonce != rp.crc.nonce ||
315 crc_is_compressed(lp.crc) ||
316 !bch2_checksum_mergeable(lp.crc.csum_type))
317 return false;
318
319 if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size ||
320 rp.crc.offset)
321 return false;
322
323 if (lp.crc.csum_type &&
324 lp.crc.uncompressed_size +
325 rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9))
326 return false;
327 }
328
329 en_l = extent_entry_next(en_l);
330 en_r = extent_entry_next(en_r);
331 }
332
333 en_l = l_ptrs.start;
334 en_r = r_ptrs.start;
335 while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
336 if (extent_entry_is_crc(en_l)) {
337 struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
338 struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
339
340 if (crc_l.uncompressed_size + crc_r.uncompressed_size >
341 bch2_crc_field_size_max[extent_entry_type(en_l)])
342 return false;
343 }
344
345 en_l = extent_entry_next(en_l);
346 en_r = extent_entry_next(en_r);
347 }
348
349 use_right_ptr = false;
350 en_l = l_ptrs.start;
351 en_r = r_ptrs.start;
352 while (en_l < l_ptrs.end) {
353 if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr &&
354 use_right_ptr)
355 en_l->ptr = en_r->ptr;
356
357 if (extent_entry_is_crc(en_l)) {
358 struct bch_extent_crc_unpacked crc_l =
359 bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
360 struct bch_extent_crc_unpacked crc_r =
361 bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
362
363 use_right_ptr = false;
364
365 if (crc_l.offset + crc_l.live_size + crc_r.live_size <=
366 crc_l.uncompressed_size) {
367 /* can use left extent's crc entry */
368 } else if (crc_l.live_size <= crc_r.offset) {
369 /* can use right extent's crc entry */
370 crc_r.offset -= crc_l.live_size;
371 bch2_extent_crc_pack(entry_to_crc(en_l), crc_r,
372 extent_entry_type(en_l));
373 use_right_ptr = true;
374 } else {
375 crc_l.csum = bch2_checksum_merge(crc_l.csum_type,
376 crc_l.csum,
377 crc_r.csum,
378 crc_r.uncompressed_size << 9);
379
380 crc_l.uncompressed_size += crc_r.uncompressed_size;
381 crc_l.compressed_size += crc_r.compressed_size;
382 bch2_extent_crc_pack(entry_to_crc(en_l), crc_l,
383 extent_entry_type(en_l));
384 }
385 }
386
387 en_l = extent_entry_next(en_l);
388 en_r = extent_entry_next(en_r);
389 }
390
391 bch2_key_resize(l.k, l.k->size + r.k->size);
392 return true;
393 }
394
395 /* KEY_TYPE_reservation: */
396
bch2_reservation_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags)397 int bch2_reservation_validate(struct bch_fs *c, struct bkey_s_c k,
398 enum bch_validate_flags flags)
399 {
400 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
401 int ret = 0;
402
403 bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX,
404 c, reservation_key_nr_replicas_invalid,
405 "invalid nr_replicas (%u)", r.v->nr_replicas);
406 fsck_err:
407 return ret;
408 }
409
bch2_reservation_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)410 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c,
411 struct bkey_s_c k)
412 {
413 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
414
415 prt_printf(out, "generation %u replicas %u",
416 le32_to_cpu(r.v->generation),
417 r.v->nr_replicas);
418 }
419
bch2_reservation_merge(struct bch_fs * c,struct bkey_s _l,struct bkey_s_c _r)420 bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r)
421 {
422 struct bkey_s_reservation l = bkey_s_to_reservation(_l);
423 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r);
424
425 if (l.v->generation != r.v->generation ||
426 l.v->nr_replicas != r.v->nr_replicas)
427 return false;
428
429 bch2_key_resize(l.k, l.k->size + r.k->size);
430 return true;
431 }
432
433 /* Extent checksum entries: */
434
435 /* returns true if not equal */
bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,struct bch_extent_crc_unpacked r)436 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
437 struct bch_extent_crc_unpacked r)
438 {
439 return (l.csum_type != r.csum_type ||
440 l.compression_type != r.compression_type ||
441 l.compressed_size != r.compressed_size ||
442 l.uncompressed_size != r.uncompressed_size ||
443 l.offset != r.offset ||
444 l.live_size != r.live_size ||
445 l.nonce != r.nonce ||
446 bch2_crc_cmp(l.csum, r.csum));
447 }
448
can_narrow_crc(struct bch_extent_crc_unpacked u,struct bch_extent_crc_unpacked n)449 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
450 struct bch_extent_crc_unpacked n)
451 {
452 return !crc_is_compressed(u) &&
453 u.csum_type &&
454 u.uncompressed_size > u.live_size &&
455 bch2_csum_type_is_encryption(u.csum_type) ==
456 bch2_csum_type_is_encryption(n.csum_type);
457 }
458
bch2_can_narrow_extent_crcs(struct bkey_s_c k,struct bch_extent_crc_unpacked n)459 bool bch2_can_narrow_extent_crcs(struct bkey_s_c k,
460 struct bch_extent_crc_unpacked n)
461 {
462 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
463 struct bch_extent_crc_unpacked crc;
464 const union bch_extent_entry *i;
465
466 if (!n.csum_type)
467 return false;
468
469 bkey_for_each_crc(k.k, ptrs, crc, i)
470 if (can_narrow_crc(crc, n))
471 return true;
472
473 return false;
474 }
475
476 /*
477 * We're writing another replica for this extent, so while we've got the data in
478 * memory we'll be computing a new checksum for the currently live data.
479 *
480 * If there are other replicas we aren't moving, and they are checksummed but
481 * not compressed, we can modify them to point to only the data that is
482 * currently live (so that readers won't have to bounce) while we've got the
483 * checksum we need:
484 */
bch2_bkey_narrow_crcs(struct bkey_i * k,struct bch_extent_crc_unpacked n)485 bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n)
486 {
487 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
488 struct bch_extent_crc_unpacked u;
489 struct extent_ptr_decoded p;
490 union bch_extent_entry *i;
491 bool ret = false;
492
493 /* Find a checksum entry that covers only live data: */
494 if (!n.csum_type) {
495 bkey_for_each_crc(&k->k, ptrs, u, i)
496 if (!crc_is_compressed(u) &&
497 u.csum_type &&
498 u.live_size == u.uncompressed_size) {
499 n = u;
500 goto found;
501 }
502 return false;
503 }
504 found:
505 BUG_ON(crc_is_compressed(n));
506 BUG_ON(n.offset);
507 BUG_ON(n.live_size != k->k.size);
508
509 restart_narrow_pointers:
510 ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
511
512 bkey_for_each_ptr_decode(&k->k, ptrs, p, i)
513 if (can_narrow_crc(p.crc, n)) {
514 bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr);
515 p.ptr.offset += p.crc.offset;
516 p.crc = n;
517 bch2_extent_ptr_decoded_append(k, &p);
518 ret = true;
519 goto restart_narrow_pointers;
520 }
521
522 return ret;
523 }
524
bch2_extent_crc_pack(union bch_extent_crc * dst,struct bch_extent_crc_unpacked src,enum bch_extent_entry_type type)525 static void bch2_extent_crc_pack(union bch_extent_crc *dst,
526 struct bch_extent_crc_unpacked src,
527 enum bch_extent_entry_type type)
528 {
529 #define set_common_fields(_dst, _src) \
530 _dst.type = 1 << type; \
531 _dst.csum_type = _src.csum_type, \
532 _dst.compression_type = _src.compression_type, \
533 _dst._compressed_size = _src.compressed_size - 1, \
534 _dst._uncompressed_size = _src.uncompressed_size - 1, \
535 _dst.offset = _src.offset
536
537 switch (type) {
538 case BCH_EXTENT_ENTRY_crc32:
539 set_common_fields(dst->crc32, src);
540 dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo);
541 break;
542 case BCH_EXTENT_ENTRY_crc64:
543 set_common_fields(dst->crc64, src);
544 dst->crc64.nonce = src.nonce;
545 dst->crc64.csum_lo = (u64 __force) src.csum.lo;
546 dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi);
547 break;
548 case BCH_EXTENT_ENTRY_crc128:
549 set_common_fields(dst->crc128, src);
550 dst->crc128.nonce = src.nonce;
551 dst->crc128.csum = src.csum;
552 break;
553 default:
554 BUG();
555 }
556 #undef set_common_fields
557 }
558
bch2_extent_crc_append(struct bkey_i * k,struct bch_extent_crc_unpacked new)559 void bch2_extent_crc_append(struct bkey_i *k,
560 struct bch_extent_crc_unpacked new)
561 {
562 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
563 union bch_extent_crc *crc = (void *) ptrs.end;
564 enum bch_extent_entry_type type;
565
566 if (bch_crc_bytes[new.csum_type] <= 4 &&
567 new.uncompressed_size <= CRC32_SIZE_MAX &&
568 new.nonce <= CRC32_NONCE_MAX)
569 type = BCH_EXTENT_ENTRY_crc32;
570 else if (bch_crc_bytes[new.csum_type] <= 10 &&
571 new.uncompressed_size <= CRC64_SIZE_MAX &&
572 new.nonce <= CRC64_NONCE_MAX)
573 type = BCH_EXTENT_ENTRY_crc64;
574 else if (bch_crc_bytes[new.csum_type] <= 16 &&
575 new.uncompressed_size <= CRC128_SIZE_MAX &&
576 new.nonce <= CRC128_NONCE_MAX)
577 type = BCH_EXTENT_ENTRY_crc128;
578 else
579 BUG();
580
581 bch2_extent_crc_pack(crc, new, type);
582
583 k->k.u64s += extent_entry_u64s(ptrs.end);
584
585 EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX);
586 }
587
588 /* Generic code for keys with pointers: */
589
bch2_bkey_nr_ptrs(struct bkey_s_c k)590 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k)
591 {
592 return bch2_bkey_devs(k).nr;
593 }
594
bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)595 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)
596 {
597 return k.k->type == KEY_TYPE_reservation
598 ? bkey_s_c_to_reservation(k).v->nr_replicas
599 : bch2_bkey_dirty_devs(k).nr;
600 }
601
bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k)602 unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k)
603 {
604 unsigned ret = 0;
605
606 if (k.k->type == KEY_TYPE_reservation) {
607 ret = bkey_s_c_to_reservation(k).v->nr_replicas;
608 } else {
609 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
610 const union bch_extent_entry *entry;
611 struct extent_ptr_decoded p;
612
613 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
614 ret += !p.ptr.cached && !crc_is_compressed(p.crc);
615 }
616
617 return ret;
618 }
619
bch2_bkey_sectors_compressed(struct bkey_s_c k)620 unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k)
621 {
622 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
623 const union bch_extent_entry *entry;
624 struct extent_ptr_decoded p;
625 unsigned ret = 0;
626
627 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
628 if (!p.ptr.cached && crc_is_compressed(p.crc))
629 ret += p.crc.compressed_size;
630
631 return ret;
632 }
633
bch2_bkey_is_incompressible(struct bkey_s_c k)634 bool bch2_bkey_is_incompressible(struct bkey_s_c k)
635 {
636 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
637 const union bch_extent_entry *entry;
638 struct bch_extent_crc_unpacked crc;
639
640 bkey_for_each_crc(k.k, ptrs, crc, entry)
641 if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible)
642 return true;
643 return false;
644 }
645
bch2_bkey_replicas(struct bch_fs * c,struct bkey_s_c k)646 unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k)
647 {
648 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
649 const union bch_extent_entry *entry;
650 struct extent_ptr_decoded p = { 0 };
651 unsigned replicas = 0;
652
653 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
654 if (p.ptr.cached)
655 continue;
656
657 if (p.has_ec)
658 replicas += p.ec.redundancy;
659
660 replicas++;
661
662 }
663
664 return replicas;
665 }
666
__extent_ptr_durability(struct bch_dev * ca,struct extent_ptr_decoded * p)667 static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p)
668 {
669 if (p->ptr.cached)
670 return 0;
671
672 return p->has_ec
673 ? p->ec.redundancy + 1
674 : ca->mi.durability;
675 }
676
bch2_extent_ptr_desired_durability(struct bch_fs * c,struct extent_ptr_decoded * p)677 unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
678 {
679 struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev);
680
681 return ca ? __extent_ptr_durability(ca, p) : 0;
682 }
683
bch2_extent_ptr_durability(struct bch_fs * c,struct extent_ptr_decoded * p)684 unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
685 {
686 struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev);
687
688 if (!ca || ca->mi.state == BCH_MEMBER_STATE_failed)
689 return 0;
690
691 return __extent_ptr_durability(ca, p);
692 }
693
bch2_bkey_durability(struct bch_fs * c,struct bkey_s_c k)694 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k)
695 {
696 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
697 const union bch_extent_entry *entry;
698 struct extent_ptr_decoded p;
699 unsigned durability = 0;
700
701 rcu_read_lock();
702 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
703 durability += bch2_extent_ptr_durability(c, &p);
704 rcu_read_unlock();
705
706 return durability;
707 }
708
bch2_bkey_durability_safe(struct bch_fs * c,struct bkey_s_c k)709 static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k)
710 {
711 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
712 const union bch_extent_entry *entry;
713 struct extent_ptr_decoded p;
714 unsigned durability = 0;
715
716 rcu_read_lock();
717 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
718 if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev])
719 durability += bch2_extent_ptr_durability(c, &p);
720 rcu_read_unlock();
721
722 return durability;
723 }
724
bch2_bkey_extent_entry_drop(struct bkey_i * k,union bch_extent_entry * entry)725 void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry)
726 {
727 union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k));
728 union bch_extent_entry *next = extent_entry_next(entry);
729
730 memmove_u64s(entry, next, (u64 *) end - (u64 *) next);
731 k->k.u64s -= extent_entry_u64s(entry);
732 }
733
bch2_extent_ptr_decoded_append(struct bkey_i * k,struct extent_ptr_decoded * p)734 void bch2_extent_ptr_decoded_append(struct bkey_i *k,
735 struct extent_ptr_decoded *p)
736 {
737 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
738 struct bch_extent_crc_unpacked crc =
739 bch2_extent_crc_unpack(&k->k, NULL);
740 union bch_extent_entry *pos;
741
742 if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
743 pos = ptrs.start;
744 goto found;
745 }
746
747 bkey_for_each_crc(&k->k, ptrs, crc, pos)
748 if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
749 pos = extent_entry_next(pos);
750 goto found;
751 }
752
753 bch2_extent_crc_append(k, p->crc);
754 pos = bkey_val_end(bkey_i_to_s(k));
755 found:
756 p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
757 __extent_entry_insert(k, pos, to_entry(&p->ptr));
758
759 if (p->has_ec) {
760 p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr;
761 __extent_entry_insert(k, pos, to_entry(&p->ec));
762 }
763 }
764
extent_entry_prev(struct bkey_ptrs ptrs,union bch_extent_entry * entry)765 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs,
766 union bch_extent_entry *entry)
767 {
768 union bch_extent_entry *i = ptrs.start;
769
770 if (i == entry)
771 return NULL;
772
773 while (extent_entry_next(i) != entry)
774 i = extent_entry_next(i);
775 return i;
776 }
777
778 /*
779 * Returns pointer to the next entry after the one being dropped:
780 */
bch2_bkey_drop_ptr_noerror(struct bkey_s k,struct bch_extent_ptr * ptr)781 void bch2_bkey_drop_ptr_noerror(struct bkey_s k, struct bch_extent_ptr *ptr)
782 {
783 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
784 union bch_extent_entry *entry = to_entry(ptr), *next;
785 bool drop_crc = true;
786
787 if (k.k->type == KEY_TYPE_stripe) {
788 ptr->dev = BCH_SB_MEMBER_INVALID;
789 return;
790 }
791
792 EBUG_ON(ptr < &ptrs.start->ptr ||
793 ptr >= &ptrs.end->ptr);
794 EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
795
796 for (next = extent_entry_next(entry);
797 next != ptrs.end;
798 next = extent_entry_next(next)) {
799 if (extent_entry_is_crc(next)) {
800 break;
801 } else if (extent_entry_is_ptr(next)) {
802 drop_crc = false;
803 break;
804 }
805 }
806
807 extent_entry_drop(k, entry);
808
809 while ((entry = extent_entry_prev(ptrs, entry))) {
810 if (extent_entry_is_ptr(entry))
811 break;
812
813 if ((extent_entry_is_crc(entry) && drop_crc) ||
814 extent_entry_is_stripe_ptr(entry))
815 extent_entry_drop(k, entry);
816 }
817 }
818
bch2_bkey_drop_ptr(struct bkey_s k,struct bch_extent_ptr * ptr)819 void bch2_bkey_drop_ptr(struct bkey_s k, struct bch_extent_ptr *ptr)
820 {
821 if (k.k->type != KEY_TYPE_stripe) {
822 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k.s_c);
823 const union bch_extent_entry *entry;
824 struct extent_ptr_decoded p;
825
826 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
827 if (p.ptr.dev == ptr->dev && p.has_ec) {
828 ptr->dev = BCH_SB_MEMBER_INVALID;
829 return;
830 }
831 }
832
833 bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr;
834
835 bch2_bkey_drop_ptr_noerror(k, ptr);
836
837 /*
838 * If we deleted all the dirty pointers and there's still cached
839 * pointers, we could set the cached pointers to dirty if they're not
840 * stale - but to do that correctly we'd need to grab an open_bucket
841 * reference so that we don't race with bucket reuse:
842 */
843 if (have_dirty &&
844 !bch2_bkey_dirty_devs(k.s_c).nr) {
845 k.k->type = KEY_TYPE_error;
846 set_bkey_val_u64s(k.k, 0);
847 } else if (!bch2_bkey_nr_ptrs(k.s_c)) {
848 k.k->type = KEY_TYPE_deleted;
849 set_bkey_val_u64s(k.k, 0);
850 }
851 }
852
bch2_bkey_drop_device(struct bkey_s k,unsigned dev)853 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev)
854 {
855 bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev);
856 }
857
bch2_bkey_drop_device_noerror(struct bkey_s k,unsigned dev)858 void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev)
859 {
860 bch2_bkey_drop_ptrs_noerror(k, ptr, ptr->dev == dev);
861 }
862
bch2_bkey_has_device_c(struct bkey_s_c k,unsigned dev)863 const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev)
864 {
865 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
866
867 bkey_for_each_ptr(ptrs, ptr)
868 if (ptr->dev == dev)
869 return ptr;
870
871 return NULL;
872 }
873
bch2_bkey_has_target(struct bch_fs * c,struct bkey_s_c k,unsigned target)874 bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target)
875 {
876 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
877 struct bch_dev *ca;
878 bool ret = false;
879
880 rcu_read_lock();
881 bkey_for_each_ptr(ptrs, ptr)
882 if (bch2_dev_in_target(c, ptr->dev, target) &&
883 (ca = bch2_dev_rcu(c, ptr->dev)) &&
884 (!ptr->cached ||
885 !dev_ptr_stale_rcu(ca, ptr))) {
886 ret = true;
887 break;
888 }
889 rcu_read_unlock();
890
891 return ret;
892 }
893
bch2_bkey_matches_ptr(struct bch_fs * c,struct bkey_s_c k,struct bch_extent_ptr m,u64 offset)894 bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k,
895 struct bch_extent_ptr m, u64 offset)
896 {
897 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
898 const union bch_extent_entry *entry;
899 struct extent_ptr_decoded p;
900
901 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
902 if (p.ptr.dev == m.dev &&
903 p.ptr.gen == m.gen &&
904 (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) ==
905 (s64) m.offset - offset)
906 return true;
907
908 return false;
909 }
910
911 /*
912 * Returns true if two extents refer to the same data:
913 */
bch2_extents_match(struct bkey_s_c k1,struct bkey_s_c k2)914 bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2)
915 {
916 if (k1.k->type != k2.k->type)
917 return false;
918
919 if (bkey_extent_is_direct_data(k1.k)) {
920 struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1);
921 struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2);
922 const union bch_extent_entry *entry1, *entry2;
923 struct extent_ptr_decoded p1, p2;
924
925 if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2))
926 return false;
927
928 bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1)
929 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
930 if (p1.ptr.dev == p2.ptr.dev &&
931 p1.ptr.gen == p2.ptr.gen &&
932
933 /*
934 * This checks that the two pointers point
935 * to the same region on disk - adjusting
936 * for the difference in where the extents
937 * start, since one may have been trimmed:
938 */
939 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
940 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k) &&
941
942 /*
943 * This additionally checks that the
944 * extents overlap on disk, since the
945 * previous check may trigger spuriously
946 * when one extent is immediately partially
947 * overwritten with another extent (so that
948 * on disk they are adjacent) and
949 * compression is in use:
950 */
951 ((p1.ptr.offset >= p2.ptr.offset &&
952 p1.ptr.offset < p2.ptr.offset + p2.crc.compressed_size) ||
953 (p2.ptr.offset >= p1.ptr.offset &&
954 p2.ptr.offset < p1.ptr.offset + p1.crc.compressed_size)))
955 return true;
956
957 return false;
958 } else {
959 /* KEY_TYPE_deleted, etc. */
960 return true;
961 }
962 }
963
964 struct bch_extent_ptr *
bch2_extent_has_ptr(struct bkey_s_c k1,struct extent_ptr_decoded p1,struct bkey_s k2)965 bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2)
966 {
967 struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2);
968 union bch_extent_entry *entry2;
969 struct extent_ptr_decoded p2;
970
971 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
972 if (p1.ptr.dev == p2.ptr.dev &&
973 p1.ptr.gen == p2.ptr.gen &&
974 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
975 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k))
976 return &entry2->ptr;
977
978 return NULL;
979 }
980
want_cached_ptr(struct bch_fs * c,struct bch_io_opts * opts,struct bch_extent_ptr * ptr)981 static bool want_cached_ptr(struct bch_fs *c, struct bch_io_opts *opts,
982 struct bch_extent_ptr *ptr)
983 {
984 if (!opts->promote_target ||
985 !bch2_dev_in_target(c, ptr->dev, opts->promote_target))
986 return false;
987
988 struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev);
989
990 return ca && bch2_dev_is_readable(ca) && !dev_ptr_stale_rcu(ca, ptr);
991 }
992
bch2_extent_ptr_set_cached(struct bch_fs * c,struct bch_io_opts * opts,struct bkey_s k,struct bch_extent_ptr * ptr)993 void bch2_extent_ptr_set_cached(struct bch_fs *c,
994 struct bch_io_opts *opts,
995 struct bkey_s k,
996 struct bch_extent_ptr *ptr)
997 {
998 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
999 union bch_extent_entry *entry;
1000 struct extent_ptr_decoded p;
1001
1002 rcu_read_lock();
1003 if (!want_cached_ptr(c, opts, ptr)) {
1004 bch2_bkey_drop_ptr_noerror(k, ptr);
1005 goto out;
1006 }
1007
1008 /*
1009 * Stripes can't contain cached data, for - reasons.
1010 *
1011 * Possibly something we can fix in the future?
1012 */
1013 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
1014 if (&entry->ptr == ptr) {
1015 if (p.has_ec)
1016 bch2_bkey_drop_ptr_noerror(k, ptr);
1017 else
1018 ptr->cached = true;
1019 goto out;
1020 }
1021
1022 BUG();
1023 out:
1024 rcu_read_unlock();
1025 }
1026
1027 /*
1028 * bch2_extent_normalize - clean up an extent, dropping stale pointers etc.
1029 *
1030 * Returns true if @k should be dropped entirely
1031 *
1032 * For existing keys, only called when btree nodes are being rewritten, not when
1033 * they're merely being compacted/resorted in memory.
1034 */
bch2_extent_normalize(struct bch_fs * c,struct bkey_s k)1035 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
1036 {
1037 struct bch_dev *ca;
1038
1039 rcu_read_lock();
1040 bch2_bkey_drop_ptrs(k, ptr,
1041 ptr->cached &&
1042 (!(ca = bch2_dev_rcu(c, ptr->dev)) ||
1043 dev_ptr_stale_rcu(ca, ptr) > 0));
1044 rcu_read_unlock();
1045
1046 return bkey_deleted(k.k);
1047 }
1048
1049 /*
1050 * bch2_extent_normalize_by_opts - clean up an extent, dropping stale pointers etc.
1051 *
1052 * Like bch2_extent_normalize(), but also only keeps a single cached pointer on
1053 * the promote target.
1054 */
bch2_extent_normalize_by_opts(struct bch_fs * c,struct bch_io_opts * opts,struct bkey_s k)1055 bool bch2_extent_normalize_by_opts(struct bch_fs *c,
1056 struct bch_io_opts *opts,
1057 struct bkey_s k)
1058 {
1059 struct bkey_ptrs ptrs;
1060 bool have_cached_ptr;
1061
1062 rcu_read_lock();
1063 restart_drop_ptrs:
1064 ptrs = bch2_bkey_ptrs(k);
1065 have_cached_ptr = false;
1066
1067 bkey_for_each_ptr(ptrs, ptr)
1068 if (ptr->cached) {
1069 if (have_cached_ptr || !want_cached_ptr(c, opts, ptr)) {
1070 bch2_bkey_drop_ptr(k, ptr);
1071 goto restart_drop_ptrs;
1072 }
1073 have_cached_ptr = true;
1074 }
1075 rcu_read_unlock();
1076
1077 return bkey_deleted(k.k);
1078 }
1079
bch2_extent_ptr_to_text(struct printbuf * out,struct bch_fs * c,const struct bch_extent_ptr * ptr)1080 void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr)
1081 {
1082 out->atomic++;
1083 rcu_read_lock();
1084 struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev);
1085 if (!ca) {
1086 prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev,
1087 (u64) ptr->offset, ptr->gen,
1088 ptr->cached ? " cached" : "");
1089 } else {
1090 u32 offset;
1091 u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset);
1092
1093 prt_printf(out, "ptr: %u:%llu:%u gen %u",
1094 ptr->dev, b, offset, ptr->gen);
1095 if (ca->mi.durability != 1)
1096 prt_printf(out, " d=%u", ca->mi.durability);
1097 if (ptr->cached)
1098 prt_str(out, " cached");
1099 if (ptr->unwritten)
1100 prt_str(out, " unwritten");
1101 int stale = dev_ptr_stale_rcu(ca, ptr);
1102 if (stale > 0)
1103 prt_printf(out, " stale");
1104 else if (stale)
1105 prt_printf(out, " invalid");
1106 }
1107 rcu_read_unlock();
1108 --out->atomic;
1109 }
1110
bch2_extent_crc_unpacked_to_text(struct printbuf * out,struct bch_extent_crc_unpacked * crc)1111 void bch2_extent_crc_unpacked_to_text(struct printbuf *out, struct bch_extent_crc_unpacked *crc)
1112 {
1113 prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ",
1114 crc->compressed_size,
1115 crc->uncompressed_size,
1116 crc->offset, crc->nonce);
1117 bch2_prt_csum_type(out, crc->csum_type);
1118 prt_printf(out, " %0llx:%0llx ", crc->csum.hi, crc->csum.lo);
1119 prt_str(out, " compress ");
1120 bch2_prt_compression_type(out, crc->compression_type);
1121 }
1122
bch2_bkey_ptrs_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)1123 void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c,
1124 struct bkey_s_c k)
1125 {
1126 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1127 const union bch_extent_entry *entry;
1128 bool first = true;
1129
1130 if (c)
1131 prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k));
1132
1133 bkey_extent_entry_for_each(ptrs, entry) {
1134 if (!first)
1135 prt_printf(out, " ");
1136
1137 switch (__extent_entry_type(entry)) {
1138 case BCH_EXTENT_ENTRY_ptr:
1139 bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry));
1140 break;
1141
1142 case BCH_EXTENT_ENTRY_crc32:
1143 case BCH_EXTENT_ENTRY_crc64:
1144 case BCH_EXTENT_ENTRY_crc128: {
1145 struct bch_extent_crc_unpacked crc =
1146 bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
1147
1148 bch2_extent_crc_unpacked_to_text(out, &crc);
1149 break;
1150 }
1151 case BCH_EXTENT_ENTRY_stripe_ptr: {
1152 const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr;
1153
1154 prt_printf(out, "ec: idx %llu block %u",
1155 (u64) ec->idx, ec->block);
1156 break;
1157 }
1158 case BCH_EXTENT_ENTRY_rebalance: {
1159 const struct bch_extent_rebalance *r = &entry->rebalance;
1160
1161 prt_str(out, "rebalance: target ");
1162 if (c)
1163 bch2_target_to_text(out, c, r->target);
1164 else
1165 prt_printf(out, "%u", r->target);
1166 prt_str(out, " compression ");
1167 bch2_compression_opt_to_text(out, r->compression);
1168 break;
1169 }
1170 default:
1171 prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry));
1172 return;
1173 }
1174
1175 first = false;
1176 }
1177 }
1178
extent_ptr_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags,const struct bch_extent_ptr * ptr,unsigned size_ondisk,bool metadata)1179 static int extent_ptr_validate(struct bch_fs *c,
1180 struct bkey_s_c k,
1181 enum bch_validate_flags flags,
1182 const struct bch_extent_ptr *ptr,
1183 unsigned size_ondisk,
1184 bool metadata)
1185 {
1186 int ret = 0;
1187
1188 /* bad pointers are repaired by check_fix_ptrs(): */
1189 rcu_read_lock();
1190 struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev);
1191 if (!ca) {
1192 rcu_read_unlock();
1193 return 0;
1194 }
1195 u32 bucket_offset;
1196 u64 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset);
1197 unsigned first_bucket = ca->mi.first_bucket;
1198 u64 nbuckets = ca->mi.nbuckets;
1199 unsigned bucket_size = ca->mi.bucket_size;
1200 rcu_read_unlock();
1201
1202 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1203 bkey_for_each_ptr(ptrs, ptr2)
1204 bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev,
1205 c, ptr_to_duplicate_device,
1206 "multiple pointers to same device (%u)", ptr->dev);
1207
1208
1209 bkey_fsck_err_on(bucket >= nbuckets,
1210 c, ptr_after_last_bucket,
1211 "pointer past last bucket (%llu > %llu)", bucket, nbuckets);
1212 bkey_fsck_err_on(bucket < first_bucket,
1213 c, ptr_before_first_bucket,
1214 "pointer before first bucket (%llu < %u)", bucket, first_bucket);
1215 bkey_fsck_err_on(bucket_offset + size_ondisk > bucket_size,
1216 c, ptr_spans_multiple_buckets,
1217 "pointer spans multiple buckets (%u + %u > %u)",
1218 bucket_offset, size_ondisk, bucket_size);
1219 fsck_err:
1220 return ret;
1221 }
1222
bch2_bkey_ptrs_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags)1223 int bch2_bkey_ptrs_validate(struct bch_fs *c, struct bkey_s_c k,
1224 enum bch_validate_flags flags)
1225 {
1226 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1227 const union bch_extent_entry *entry;
1228 struct bch_extent_crc_unpacked crc;
1229 unsigned size_ondisk = k.k->size;
1230 unsigned nonce = UINT_MAX;
1231 unsigned nr_ptrs = 0;
1232 bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false;
1233 int ret = 0;
1234
1235 if (bkey_is_btree_ptr(k.k))
1236 size_ondisk = btree_sectors(c);
1237
1238 bkey_extent_entry_for_each(ptrs, entry) {
1239 bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX,
1240 c, extent_ptrs_invalid_entry,
1241 "invalid extent entry type (got %u, max %u)",
1242 __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX);
1243
1244 bkey_fsck_err_on(bkey_is_btree_ptr(k.k) &&
1245 !extent_entry_is_ptr(entry),
1246 c, btree_ptr_has_non_ptr,
1247 "has non ptr field");
1248
1249 switch (extent_entry_type(entry)) {
1250 case BCH_EXTENT_ENTRY_ptr:
1251 ret = extent_ptr_validate(c, k, flags, &entry->ptr, size_ondisk, false);
1252 if (ret)
1253 return ret;
1254
1255 bkey_fsck_err_on(entry->ptr.cached && have_ec,
1256 c, ptr_cached_and_erasure_coded,
1257 "cached, erasure coded ptr");
1258
1259 if (!entry->ptr.unwritten)
1260 have_written = true;
1261 else
1262 have_unwritten = true;
1263
1264 have_ec = false;
1265 crc_since_last_ptr = false;
1266 nr_ptrs++;
1267 break;
1268 case BCH_EXTENT_ENTRY_crc32:
1269 case BCH_EXTENT_ENTRY_crc64:
1270 case BCH_EXTENT_ENTRY_crc128:
1271 crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
1272
1273 bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size,
1274 c, ptr_crc_uncompressed_size_too_small,
1275 "checksum offset + key size > uncompressed size");
1276 bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type),
1277 c, ptr_crc_csum_type_unknown,
1278 "invalid checksum type");
1279 bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR,
1280 c, ptr_crc_compression_type_unknown,
1281 "invalid compression type");
1282
1283 if (bch2_csum_type_is_encryption(crc.csum_type)) {
1284 if (nonce == UINT_MAX)
1285 nonce = crc.offset + crc.nonce;
1286 else if (nonce != crc.offset + crc.nonce)
1287 bkey_fsck_err(c, ptr_crc_nonce_mismatch,
1288 "incorrect nonce");
1289 }
1290
1291 bkey_fsck_err_on(crc_since_last_ptr,
1292 c, ptr_crc_redundant,
1293 "redundant crc entry");
1294 crc_since_last_ptr = true;
1295
1296 bkey_fsck_err_on(crc_is_encoded(crc) &&
1297 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) &&
1298 (flags & (BCH_VALIDATE_write|BCH_VALIDATE_commit)),
1299 c, ptr_crc_uncompressed_size_too_big,
1300 "too large encoded extent");
1301
1302 size_ondisk = crc.compressed_size;
1303 break;
1304 case BCH_EXTENT_ENTRY_stripe_ptr:
1305 bkey_fsck_err_on(have_ec,
1306 c, ptr_stripe_redundant,
1307 "redundant stripe entry");
1308 have_ec = true;
1309 break;
1310 case BCH_EXTENT_ENTRY_rebalance: {
1311 /*
1312 * this shouldn't be a fsck error, for forward
1313 * compatibility; the rebalance code should just refetch
1314 * the compression opt if it's unknown
1315 */
1316 #if 0
1317 const struct bch_extent_rebalance *r = &entry->rebalance;
1318
1319 if (!bch2_compression_opt_valid(r->compression)) {
1320 struct bch_compression_opt opt = __bch2_compression_decode(r->compression);
1321 prt_printf(err, "invalid compression opt %u:%u",
1322 opt.type, opt.level);
1323 return -BCH_ERR_invalid_bkey;
1324 }
1325 #endif
1326 break;
1327 }
1328 }
1329 }
1330
1331 bkey_fsck_err_on(!nr_ptrs,
1332 c, extent_ptrs_no_ptrs,
1333 "no ptrs");
1334 bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX,
1335 c, extent_ptrs_too_many_ptrs,
1336 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX);
1337 bkey_fsck_err_on(have_written && have_unwritten,
1338 c, extent_ptrs_written_and_unwritten,
1339 "extent with unwritten and written ptrs");
1340 bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten,
1341 c, extent_ptrs_unwritten,
1342 "has unwritten ptrs");
1343 bkey_fsck_err_on(crc_since_last_ptr,
1344 c, extent_ptrs_redundant_crc,
1345 "redundant crc entry");
1346 bkey_fsck_err_on(have_ec,
1347 c, extent_ptrs_redundant_stripe,
1348 "redundant stripe entry");
1349 fsck_err:
1350 return ret;
1351 }
1352
bch2_ptr_swab(struct bkey_s k)1353 void bch2_ptr_swab(struct bkey_s k)
1354 {
1355 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1356 union bch_extent_entry *entry;
1357 u64 *d;
1358
1359 for (d = (u64 *) ptrs.start;
1360 d != (u64 *) ptrs.end;
1361 d++)
1362 *d = swab64(*d);
1363
1364 for (entry = ptrs.start;
1365 entry < ptrs.end;
1366 entry = extent_entry_next(entry)) {
1367 switch (__extent_entry_type(entry)) {
1368 case BCH_EXTENT_ENTRY_ptr:
1369 break;
1370 case BCH_EXTENT_ENTRY_crc32:
1371 entry->crc32.csum = swab32(entry->crc32.csum);
1372 break;
1373 case BCH_EXTENT_ENTRY_crc64:
1374 entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
1375 entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
1376 break;
1377 case BCH_EXTENT_ENTRY_crc128:
1378 entry->crc128.csum.hi = (__force __le64)
1379 swab64((__force u64) entry->crc128.csum.hi);
1380 entry->crc128.csum.lo = (__force __le64)
1381 swab64((__force u64) entry->crc128.csum.lo);
1382 break;
1383 case BCH_EXTENT_ENTRY_stripe_ptr:
1384 break;
1385 case BCH_EXTENT_ENTRY_rebalance:
1386 break;
1387 default:
1388 /* Bad entry type: will be caught by validate() */
1389 return;
1390 }
1391 }
1392 }
1393
bch2_bkey_rebalance_opts(struct bkey_s_c k)1394 const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k)
1395 {
1396 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1397 const union bch_extent_entry *entry;
1398
1399 bkey_extent_entry_for_each(ptrs, entry)
1400 if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance)
1401 return &entry->rebalance;
1402
1403 return NULL;
1404 }
1405
bch2_bkey_ptrs_need_rebalance(struct bch_fs * c,struct bkey_s_c k,unsigned target,unsigned compression)1406 unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k,
1407 unsigned target, unsigned compression)
1408 {
1409 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1410 unsigned rewrite_ptrs = 0;
1411
1412 if (compression) {
1413 unsigned compression_type = bch2_compression_opt_to_type(compression);
1414 const union bch_extent_entry *entry;
1415 struct extent_ptr_decoded p;
1416 unsigned i = 0;
1417
1418 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
1419 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible ||
1420 p.ptr.unwritten) {
1421 rewrite_ptrs = 0;
1422 goto incompressible;
1423 }
1424
1425 if (!p.ptr.cached && p.crc.compression_type != compression_type)
1426 rewrite_ptrs |= 1U << i;
1427 i++;
1428 }
1429 }
1430 incompressible:
1431 if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) {
1432 unsigned i = 0;
1433
1434 bkey_for_each_ptr(ptrs, ptr) {
1435 if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target))
1436 rewrite_ptrs |= 1U << i;
1437 i++;
1438 }
1439 }
1440
1441 return rewrite_ptrs;
1442 }
1443
bch2_bkey_needs_rebalance(struct bch_fs * c,struct bkey_s_c k)1444 bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k)
1445 {
1446 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k);
1447
1448 /*
1449 * If it's an indirect extent, we don't delete the rebalance entry when
1450 * done so that we know what options were applied - check if it still
1451 * needs work done:
1452 */
1453 if (r &&
1454 k.k->type == KEY_TYPE_reflink_v &&
1455 !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression))
1456 r = NULL;
1457
1458 return r != NULL;
1459 }
1460
__bch2_bkey_sectors_need_rebalance(struct bch_fs * c,struct bkey_s_c k,unsigned target,unsigned compression)1461 static u64 __bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k,
1462 unsigned target, unsigned compression)
1463 {
1464 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1465 const union bch_extent_entry *entry;
1466 struct extent_ptr_decoded p;
1467 u64 sectors = 0;
1468
1469 if (compression) {
1470 unsigned compression_type = bch2_compression_opt_to_type(compression);
1471
1472 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
1473 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible ||
1474 p.ptr.unwritten) {
1475 sectors = 0;
1476 goto incompressible;
1477 }
1478
1479 if (!p.ptr.cached && p.crc.compression_type != compression_type)
1480 sectors += p.crc.compressed_size;
1481 }
1482 }
1483 incompressible:
1484 if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) {
1485 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
1486 if (!p.ptr.cached && !bch2_dev_in_target(c, p.ptr.dev, target))
1487 sectors += p.crc.compressed_size;
1488 }
1489
1490 return sectors;
1491 }
1492
bch2_bkey_sectors_need_rebalance(struct bch_fs * c,struct bkey_s_c k)1493 u64 bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k)
1494 {
1495 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k);
1496
1497 return r ? __bch2_bkey_sectors_need_rebalance(c, k, r->target, r->compression) : 0;
1498 }
1499
bch2_bkey_set_needs_rebalance(struct bch_fs * c,struct bkey_i * _k,struct bch_io_opts * opts)1500 int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k,
1501 struct bch_io_opts *opts)
1502 {
1503 struct bkey_s k = bkey_i_to_s(_k);
1504 struct bch_extent_rebalance *r;
1505 unsigned target = opts->background_target;
1506 unsigned compression = background_compression(*opts);
1507 bool needs_rebalance;
1508
1509 if (!bkey_extent_is_direct_data(k.k))
1510 return 0;
1511
1512 /* get existing rebalance entry: */
1513 r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c);
1514 if (r) {
1515 if (k.k->type == KEY_TYPE_reflink_v) {
1516 /*
1517 * indirect extents: existing options take precedence,
1518 * so that we don't move extents back and forth if
1519 * they're referenced by different inodes with different
1520 * options:
1521 */
1522 if (r->target)
1523 target = r->target;
1524 if (r->compression)
1525 compression = r->compression;
1526 }
1527
1528 r->target = target;
1529 r->compression = compression;
1530 }
1531
1532 needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression);
1533
1534 if (needs_rebalance && !r) {
1535 union bch_extent_entry *new = bkey_val_end(k);
1536
1537 new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance;
1538 new->rebalance.compression = compression;
1539 new->rebalance.target = target;
1540 new->rebalance.unused = 0;
1541 k.k->u64s += extent_entry_u64s(new);
1542 } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) {
1543 /*
1544 * For indirect extents, don't delete the rebalance entry when
1545 * we're finished so that we know we specifically moved it or
1546 * compressed it to its current location/compression type
1547 */
1548 extent_entry_drop(k, (union bch_extent_entry *) r);
1549 }
1550
1551 return 0;
1552 }
1553
1554 /* Generic extent code: */
1555
bch2_cut_front_s(struct bpos where,struct bkey_s k)1556 int bch2_cut_front_s(struct bpos where, struct bkey_s k)
1557 {
1558 unsigned new_val_u64s = bkey_val_u64s(k.k);
1559 int val_u64s_delta;
1560 u64 sub;
1561
1562 if (bkey_le(where, bkey_start_pos(k.k)))
1563 return 0;
1564
1565 EBUG_ON(bkey_gt(where, k.k->p));
1566
1567 sub = where.offset - bkey_start_offset(k.k);
1568
1569 k.k->size -= sub;
1570
1571 if (!k.k->size) {
1572 k.k->type = KEY_TYPE_deleted;
1573 new_val_u64s = 0;
1574 }
1575
1576 switch (k.k->type) {
1577 case KEY_TYPE_extent:
1578 case KEY_TYPE_reflink_v: {
1579 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1580 union bch_extent_entry *entry;
1581 bool seen_crc = false;
1582
1583 bkey_extent_entry_for_each(ptrs, entry) {
1584 switch (extent_entry_type(entry)) {
1585 case BCH_EXTENT_ENTRY_ptr:
1586 if (!seen_crc)
1587 entry->ptr.offset += sub;
1588 break;
1589 case BCH_EXTENT_ENTRY_crc32:
1590 entry->crc32.offset += sub;
1591 break;
1592 case BCH_EXTENT_ENTRY_crc64:
1593 entry->crc64.offset += sub;
1594 break;
1595 case BCH_EXTENT_ENTRY_crc128:
1596 entry->crc128.offset += sub;
1597 break;
1598 case BCH_EXTENT_ENTRY_stripe_ptr:
1599 break;
1600 case BCH_EXTENT_ENTRY_rebalance:
1601 break;
1602 }
1603
1604 if (extent_entry_is_crc(entry))
1605 seen_crc = true;
1606 }
1607
1608 break;
1609 }
1610 case KEY_TYPE_reflink_p: {
1611 struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k);
1612
1613 le64_add_cpu(&p.v->idx, sub);
1614 break;
1615 }
1616 case KEY_TYPE_inline_data:
1617 case KEY_TYPE_indirect_inline_data: {
1618 void *p = bkey_inline_data_p(k);
1619 unsigned bytes = bkey_inline_data_bytes(k.k);
1620
1621 sub = min_t(u64, sub << 9, bytes);
1622
1623 memmove(p, p + sub, bytes - sub);
1624
1625 new_val_u64s -= sub >> 3;
1626 break;
1627 }
1628 }
1629
1630 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1631 BUG_ON(val_u64s_delta < 0);
1632
1633 set_bkey_val_u64s(k.k, new_val_u64s);
1634 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1635 return -val_u64s_delta;
1636 }
1637
bch2_cut_back_s(struct bpos where,struct bkey_s k)1638 int bch2_cut_back_s(struct bpos where, struct bkey_s k)
1639 {
1640 unsigned new_val_u64s = bkey_val_u64s(k.k);
1641 int val_u64s_delta;
1642 u64 len = 0;
1643
1644 if (bkey_ge(where, k.k->p))
1645 return 0;
1646
1647 EBUG_ON(bkey_lt(where, bkey_start_pos(k.k)));
1648
1649 len = where.offset - bkey_start_offset(k.k);
1650
1651 k.k->p.offset = where.offset;
1652 k.k->size = len;
1653
1654 if (!len) {
1655 k.k->type = KEY_TYPE_deleted;
1656 new_val_u64s = 0;
1657 }
1658
1659 switch (k.k->type) {
1660 case KEY_TYPE_inline_data:
1661 case KEY_TYPE_indirect_inline_data:
1662 new_val_u64s = (bkey_inline_data_offset(k.k) +
1663 min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3;
1664 break;
1665 }
1666
1667 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1668 BUG_ON(val_u64s_delta < 0);
1669
1670 set_bkey_val_u64s(k.k, new_val_u64s);
1671 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1672 return -val_u64s_delta;
1673 }
1674