xref: /linux/fs/bcachefs/extents.c (revision bc83b4d1f08695e85e85d36f7b803da58010161d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Code for managing the extent btree and dynamically updating the writeback
6  * dirty sector count.
7  */
8 
9 #include "bcachefs.h"
10 #include "bkey_methods.h"
11 #include "btree_cache.h"
12 #include "btree_gc.h"
13 #include "btree_io.h"
14 #include "btree_iter.h"
15 #include "buckets.h"
16 #include "checksum.h"
17 #include "compress.h"
18 #include "debug.h"
19 #include "disk_groups.h"
20 #include "error.h"
21 #include "extents.h"
22 #include "inode.h"
23 #include "journal.h"
24 #include "replicas.h"
25 #include "super.h"
26 #include "super-io.h"
27 #include "trace.h"
28 #include "util.h"
29 
30 static unsigned bch2_crc_field_size_max[] = {
31 	[BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX,
32 	[BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX,
33 	[BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX,
34 };
35 
36 static void bch2_extent_crc_pack(union bch_extent_crc *,
37 				 struct bch_extent_crc_unpacked,
38 				 enum bch_extent_entry_type);
39 
bch2_dev_io_failures(struct bch_io_failures * f,unsigned dev)40 struct bch_dev_io_failures *bch2_dev_io_failures(struct bch_io_failures *f,
41 						 unsigned dev)
42 {
43 	struct bch_dev_io_failures *i;
44 
45 	for (i = f->devs; i < f->devs + f->nr; i++)
46 		if (i->dev == dev)
47 			return i;
48 
49 	return NULL;
50 }
51 
bch2_mark_io_failure(struct bch_io_failures * failed,struct extent_ptr_decoded * p)52 void bch2_mark_io_failure(struct bch_io_failures *failed,
53 			  struct extent_ptr_decoded *p)
54 {
55 	struct bch_dev_io_failures *f = bch2_dev_io_failures(failed, p->ptr.dev);
56 
57 	if (!f) {
58 		BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs));
59 
60 		f = &failed->devs[failed->nr++];
61 		f->dev		= p->ptr.dev;
62 		f->idx		= p->idx;
63 		f->nr_failed	= 1;
64 		f->nr_retries	= 0;
65 	} else if (p->idx != f->idx) {
66 		f->idx		= p->idx;
67 		f->nr_failed	= 1;
68 		f->nr_retries	= 0;
69 	} else {
70 		f->nr_failed++;
71 	}
72 }
73 
dev_latency(struct bch_fs * c,unsigned dev)74 static inline u64 dev_latency(struct bch_fs *c, unsigned dev)
75 {
76 	struct bch_dev *ca = bch2_dev_rcu(c, dev);
77 	return ca ? atomic64_read(&ca->cur_latency[READ]) : S64_MAX;
78 }
79 
80 /*
81  * returns true if p1 is better than p2:
82  */
ptr_better(struct bch_fs * c,const struct extent_ptr_decoded p1,const struct extent_ptr_decoded p2)83 static inline bool ptr_better(struct bch_fs *c,
84 			      const struct extent_ptr_decoded p1,
85 			      const struct extent_ptr_decoded p2)
86 {
87 	if (likely(!p1.idx && !p2.idx)) {
88 		u64 l1 = dev_latency(c, p1.ptr.dev);
89 		u64 l2 = dev_latency(c, p2.ptr.dev);
90 
91 		/* Pick at random, biased in favor of the faster device: */
92 
93 		return bch2_rand_range(l1 + l2) > l1;
94 	}
95 
96 	if (bch2_force_reconstruct_read)
97 		return p1.idx > p2.idx;
98 
99 	return p1.idx < p2.idx;
100 }
101 
102 /*
103  * This picks a non-stale pointer, preferably from a device other than @avoid.
104  * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
105  * other devices, it will still pick a pointer from avoid.
106  */
bch2_bkey_pick_read_device(struct bch_fs * c,struct bkey_s_c k,struct bch_io_failures * failed,struct extent_ptr_decoded * pick)107 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k,
108 			       struct bch_io_failures *failed,
109 			       struct extent_ptr_decoded *pick)
110 {
111 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
112 	const union bch_extent_entry *entry;
113 	struct extent_ptr_decoded p;
114 	struct bch_dev_io_failures *f;
115 	int ret = 0;
116 
117 	if (k.k->type == KEY_TYPE_error)
118 		return -EIO;
119 
120 	rcu_read_lock();
121 	bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
122 		/*
123 		 * Unwritten extent: no need to actually read, treat it as a
124 		 * hole and return 0s:
125 		 */
126 		if (p.ptr.unwritten) {
127 			ret = 0;
128 			break;
129 		}
130 
131 		/*
132 		 * If there are any dirty pointers it's an error if we can't
133 		 * read:
134 		 */
135 		if (!ret && !p.ptr.cached)
136 			ret = -EIO;
137 
138 		struct bch_dev *ca = bch2_dev_rcu(c, p.ptr.dev);
139 
140 		if (p.ptr.cached && (!ca || dev_ptr_stale_rcu(ca, &p.ptr)))
141 			continue;
142 
143 		f = failed ? bch2_dev_io_failures(failed, p.ptr.dev) : NULL;
144 		if (f)
145 			p.idx = f->nr_failed < f->nr_retries
146 				? f->idx
147 				: f->idx + 1;
148 
149 		if (!p.idx && !ca)
150 			p.idx++;
151 
152 		if (!p.idx && p.has_ec && bch2_force_reconstruct_read)
153 			p.idx++;
154 
155 		if (!p.idx && !bch2_dev_is_readable(ca))
156 			p.idx++;
157 
158 		if (p.idx >= (unsigned) p.has_ec + 1)
159 			continue;
160 
161 		if (ret > 0 && !ptr_better(c, p, *pick))
162 			continue;
163 
164 		*pick = p;
165 		ret = 1;
166 	}
167 	rcu_read_unlock();
168 
169 	return ret;
170 }
171 
172 /* KEY_TYPE_btree_ptr: */
173 
bch2_btree_ptr_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags)174 int bch2_btree_ptr_validate(struct bch_fs *c, struct bkey_s_c k,
175 			    enum bch_validate_flags flags)
176 {
177 	int ret = 0;
178 
179 	bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX,
180 			 c, btree_ptr_val_too_big,
181 			 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX);
182 
183 	ret = bch2_bkey_ptrs_validate(c, k, flags);
184 fsck_err:
185 	return ret;
186 }
187 
bch2_btree_ptr_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)188 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c,
189 			    struct bkey_s_c k)
190 {
191 	bch2_bkey_ptrs_to_text(out, c, k);
192 }
193 
bch2_btree_ptr_v2_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags)194 int bch2_btree_ptr_v2_validate(struct bch_fs *c, struct bkey_s_c k,
195 			       enum bch_validate_flags flags)
196 {
197 	struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
198 	int ret = 0;
199 
200 	bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX,
201 			 c, btree_ptr_v2_val_too_big,
202 			 "value too big (%zu > %zu)",
203 			 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX);
204 
205 	bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p),
206 			 c, btree_ptr_v2_min_key_bad,
207 			 "min_key > key");
208 
209 	if (flags & BCH_VALIDATE_write)
210 		bkey_fsck_err_on(!bp.v->sectors_written,
211 				 c, btree_ptr_v2_written_0,
212 				 "sectors_written == 0");
213 
214 	ret = bch2_bkey_ptrs_validate(c, k, flags);
215 fsck_err:
216 	return ret;
217 }
218 
bch2_btree_ptr_v2_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)219 void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c,
220 			       struct bkey_s_c k)
221 {
222 	struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
223 
224 	prt_printf(out, "seq %llx written %u min_key %s",
225 	       le64_to_cpu(bp.v->seq),
226 	       le16_to_cpu(bp.v->sectors_written),
227 	       BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : "");
228 
229 	bch2_bpos_to_text(out, bp.v->min_key);
230 	prt_printf(out, " ");
231 	bch2_bkey_ptrs_to_text(out, c, k);
232 }
233 
bch2_btree_ptr_v2_compat(enum btree_id btree_id,unsigned version,unsigned big_endian,int write,struct bkey_s k)234 void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version,
235 			      unsigned big_endian, int write,
236 			      struct bkey_s k)
237 {
238 	struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k);
239 
240 	compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key);
241 
242 	if (version < bcachefs_metadata_version_inode_btree_change &&
243 	    btree_id_is_extents(btree_id) &&
244 	    !bkey_eq(bp.v->min_key, POS_MIN))
245 		bp.v->min_key = write
246 			? bpos_nosnap_predecessor(bp.v->min_key)
247 			: bpos_nosnap_successor(bp.v->min_key);
248 }
249 
250 /* KEY_TYPE_extent: */
251 
bch2_extent_merge(struct bch_fs * c,struct bkey_s l,struct bkey_s_c r)252 bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r)
253 {
254 	struct bkey_ptrs   l_ptrs = bch2_bkey_ptrs(l);
255 	struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r);
256 	union bch_extent_entry *en_l;
257 	const union bch_extent_entry *en_r;
258 	struct extent_ptr_decoded lp, rp;
259 	bool use_right_ptr;
260 
261 	en_l = l_ptrs.start;
262 	en_r = r_ptrs.start;
263 	while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
264 		if (extent_entry_type(en_l) != extent_entry_type(en_r))
265 			return false;
266 
267 		en_l = extent_entry_next(en_l);
268 		en_r = extent_entry_next(en_r);
269 	}
270 
271 	if (en_l < l_ptrs.end || en_r < r_ptrs.end)
272 		return false;
273 
274 	en_l = l_ptrs.start;
275 	en_r = r_ptrs.start;
276 	lp.crc = bch2_extent_crc_unpack(l.k, NULL);
277 	rp.crc = bch2_extent_crc_unpack(r.k, NULL);
278 
279 	while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) &&
280 	       __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) {
281 		if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size !=
282 		    rp.ptr.offset + rp.crc.offset ||
283 		    lp.ptr.dev			!= rp.ptr.dev ||
284 		    lp.ptr.gen			!= rp.ptr.gen ||
285 		    lp.ptr.unwritten		!= rp.ptr.unwritten ||
286 		    lp.has_ec			!= rp.has_ec)
287 			return false;
288 
289 		/* Extents may not straddle buckets: */
290 		rcu_read_lock();
291 		struct bch_dev *ca = bch2_dev_rcu(c, lp.ptr.dev);
292 		bool same_bucket = ca && PTR_BUCKET_NR(ca, &lp.ptr) == PTR_BUCKET_NR(ca, &rp.ptr);
293 		rcu_read_unlock();
294 
295 		if (!same_bucket)
296 			return false;
297 
298 		if (lp.has_ec			!= rp.has_ec ||
299 		    (lp.has_ec &&
300 		     (lp.ec.block		!= rp.ec.block ||
301 		      lp.ec.redundancy		!= rp.ec.redundancy ||
302 		      lp.ec.idx			!= rp.ec.idx)))
303 			return false;
304 
305 		if (lp.crc.compression_type	!= rp.crc.compression_type ||
306 		    lp.crc.nonce		!= rp.crc.nonce)
307 			return false;
308 
309 		if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <=
310 		    lp.crc.uncompressed_size) {
311 			/* can use left extent's crc entry */
312 		} else if (lp.crc.live_size <= rp.crc.offset) {
313 			/* can use right extent's crc entry */
314 		} else {
315 			/* check if checksums can be merged: */
316 			if (lp.crc.csum_type		!= rp.crc.csum_type ||
317 			    lp.crc.nonce		!= rp.crc.nonce ||
318 			    crc_is_compressed(lp.crc) ||
319 			    !bch2_checksum_mergeable(lp.crc.csum_type))
320 				return false;
321 
322 			if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size ||
323 			    rp.crc.offset)
324 				return false;
325 
326 			if (lp.crc.csum_type &&
327 			    lp.crc.uncompressed_size +
328 			    rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9))
329 				return false;
330 		}
331 
332 		en_l = extent_entry_next(en_l);
333 		en_r = extent_entry_next(en_r);
334 	}
335 
336 	en_l = l_ptrs.start;
337 	en_r = r_ptrs.start;
338 	while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
339 		if (extent_entry_is_crc(en_l)) {
340 			struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
341 			struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
342 
343 			if (crc_l.uncompressed_size + crc_r.uncompressed_size >
344 			    bch2_crc_field_size_max[extent_entry_type(en_l)])
345 				return false;
346 		}
347 
348 		en_l = extent_entry_next(en_l);
349 		en_r = extent_entry_next(en_r);
350 	}
351 
352 	use_right_ptr = false;
353 	en_l = l_ptrs.start;
354 	en_r = r_ptrs.start;
355 	while (en_l < l_ptrs.end) {
356 		if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr &&
357 		    use_right_ptr)
358 			en_l->ptr = en_r->ptr;
359 
360 		if (extent_entry_is_crc(en_l)) {
361 			struct bch_extent_crc_unpacked crc_l =
362 				bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
363 			struct bch_extent_crc_unpacked crc_r =
364 				bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
365 
366 			use_right_ptr = false;
367 
368 			if (crc_l.offset + crc_l.live_size + crc_r.live_size <=
369 			    crc_l.uncompressed_size) {
370 				/* can use left extent's crc entry */
371 			} else if (crc_l.live_size <= crc_r.offset) {
372 				/* can use right extent's crc entry */
373 				crc_r.offset -= crc_l.live_size;
374 				bch2_extent_crc_pack(entry_to_crc(en_l), crc_r,
375 						     extent_entry_type(en_l));
376 				use_right_ptr = true;
377 			} else {
378 				crc_l.csum = bch2_checksum_merge(crc_l.csum_type,
379 								 crc_l.csum,
380 								 crc_r.csum,
381 								 crc_r.uncompressed_size << 9);
382 
383 				crc_l.uncompressed_size	+= crc_r.uncompressed_size;
384 				crc_l.compressed_size	+= crc_r.compressed_size;
385 				bch2_extent_crc_pack(entry_to_crc(en_l), crc_l,
386 						     extent_entry_type(en_l));
387 			}
388 		}
389 
390 		en_l = extent_entry_next(en_l);
391 		en_r = extent_entry_next(en_r);
392 	}
393 
394 	bch2_key_resize(l.k, l.k->size + r.k->size);
395 	return true;
396 }
397 
398 /* KEY_TYPE_reservation: */
399 
bch2_reservation_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags)400 int bch2_reservation_validate(struct bch_fs *c, struct bkey_s_c k,
401 			      enum bch_validate_flags flags)
402 {
403 	struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
404 	int ret = 0;
405 
406 	bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX,
407 			 c, reservation_key_nr_replicas_invalid,
408 			 "invalid nr_replicas (%u)", r.v->nr_replicas);
409 fsck_err:
410 	return ret;
411 }
412 
bch2_reservation_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)413 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c,
414 			      struct bkey_s_c k)
415 {
416 	struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
417 
418 	prt_printf(out, "generation %u replicas %u",
419 	       le32_to_cpu(r.v->generation),
420 	       r.v->nr_replicas);
421 }
422 
bch2_reservation_merge(struct bch_fs * c,struct bkey_s _l,struct bkey_s_c _r)423 bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r)
424 {
425 	struct bkey_s_reservation l = bkey_s_to_reservation(_l);
426 	struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r);
427 
428 	if (l.v->generation != r.v->generation ||
429 	    l.v->nr_replicas != r.v->nr_replicas)
430 		return false;
431 
432 	bch2_key_resize(l.k, l.k->size + r.k->size);
433 	return true;
434 }
435 
436 /* Extent checksum entries: */
437 
438 /* returns true if not equal */
bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,struct bch_extent_crc_unpacked r)439 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
440 					 struct bch_extent_crc_unpacked r)
441 {
442 	return (l.csum_type		!= r.csum_type ||
443 		l.compression_type	!= r.compression_type ||
444 		l.compressed_size	!= r.compressed_size ||
445 		l.uncompressed_size	!= r.uncompressed_size ||
446 		l.offset		!= r.offset ||
447 		l.live_size		!= r.live_size ||
448 		l.nonce			!= r.nonce ||
449 		bch2_crc_cmp(l.csum, r.csum));
450 }
451 
can_narrow_crc(struct bch_extent_crc_unpacked u,struct bch_extent_crc_unpacked n)452 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
453 				  struct bch_extent_crc_unpacked n)
454 {
455 	return !crc_is_compressed(u) &&
456 		u.csum_type &&
457 		u.uncompressed_size > u.live_size &&
458 		bch2_csum_type_is_encryption(u.csum_type) ==
459 		bch2_csum_type_is_encryption(n.csum_type);
460 }
461 
bch2_can_narrow_extent_crcs(struct bkey_s_c k,struct bch_extent_crc_unpacked n)462 bool bch2_can_narrow_extent_crcs(struct bkey_s_c k,
463 				 struct bch_extent_crc_unpacked n)
464 {
465 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
466 	struct bch_extent_crc_unpacked crc;
467 	const union bch_extent_entry *i;
468 
469 	if (!n.csum_type)
470 		return false;
471 
472 	bkey_for_each_crc(k.k, ptrs, crc, i)
473 		if (can_narrow_crc(crc, n))
474 			return true;
475 
476 	return false;
477 }
478 
479 /*
480  * We're writing another replica for this extent, so while we've got the data in
481  * memory we'll be computing a new checksum for the currently live data.
482  *
483  * If there are other replicas we aren't moving, and they are checksummed but
484  * not compressed, we can modify them to point to only the data that is
485  * currently live (so that readers won't have to bounce) while we've got the
486  * checksum we need:
487  */
bch2_bkey_narrow_crcs(struct bkey_i * k,struct bch_extent_crc_unpacked n)488 bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n)
489 {
490 	struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
491 	struct bch_extent_crc_unpacked u;
492 	struct extent_ptr_decoded p;
493 	union bch_extent_entry *i;
494 	bool ret = false;
495 
496 	/* Find a checksum entry that covers only live data: */
497 	if (!n.csum_type) {
498 		bkey_for_each_crc(&k->k, ptrs, u, i)
499 			if (!crc_is_compressed(u) &&
500 			    u.csum_type &&
501 			    u.live_size == u.uncompressed_size) {
502 				n = u;
503 				goto found;
504 			}
505 		return false;
506 	}
507 found:
508 	BUG_ON(crc_is_compressed(n));
509 	BUG_ON(n.offset);
510 	BUG_ON(n.live_size != k->k.size);
511 
512 restart_narrow_pointers:
513 	ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
514 
515 	bkey_for_each_ptr_decode(&k->k, ptrs, p, i)
516 		if (can_narrow_crc(p.crc, n)) {
517 			bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr);
518 			p.ptr.offset += p.crc.offset;
519 			p.crc = n;
520 			bch2_extent_ptr_decoded_append(k, &p);
521 			ret = true;
522 			goto restart_narrow_pointers;
523 		}
524 
525 	return ret;
526 }
527 
bch2_extent_crc_pack(union bch_extent_crc * dst,struct bch_extent_crc_unpacked src,enum bch_extent_entry_type type)528 static void bch2_extent_crc_pack(union bch_extent_crc *dst,
529 				 struct bch_extent_crc_unpacked src,
530 				 enum bch_extent_entry_type type)
531 {
532 #define set_common_fields(_dst, _src)					\
533 		_dst.type		= 1 << type;			\
534 		_dst.csum_type		= _src.csum_type,		\
535 		_dst.compression_type	= _src.compression_type,	\
536 		_dst._compressed_size	= _src.compressed_size - 1,	\
537 		_dst._uncompressed_size	= _src.uncompressed_size - 1,	\
538 		_dst.offset		= _src.offset
539 
540 	switch (type) {
541 	case BCH_EXTENT_ENTRY_crc32:
542 		set_common_fields(dst->crc32, src);
543 		dst->crc32.csum		= (u32 __force) *((__le32 *) &src.csum.lo);
544 		break;
545 	case BCH_EXTENT_ENTRY_crc64:
546 		set_common_fields(dst->crc64, src);
547 		dst->crc64.nonce	= src.nonce;
548 		dst->crc64.csum_lo	= (u64 __force) src.csum.lo;
549 		dst->crc64.csum_hi	= (u64 __force) *((__le16 *) &src.csum.hi);
550 		break;
551 	case BCH_EXTENT_ENTRY_crc128:
552 		set_common_fields(dst->crc128, src);
553 		dst->crc128.nonce	= src.nonce;
554 		dst->crc128.csum	= src.csum;
555 		break;
556 	default:
557 		BUG();
558 	}
559 #undef set_common_fields
560 }
561 
bch2_extent_crc_append(struct bkey_i * k,struct bch_extent_crc_unpacked new)562 void bch2_extent_crc_append(struct bkey_i *k,
563 			    struct bch_extent_crc_unpacked new)
564 {
565 	struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
566 	union bch_extent_crc *crc = (void *) ptrs.end;
567 	enum bch_extent_entry_type type;
568 
569 	if (bch_crc_bytes[new.csum_type]	<= 4 &&
570 	    new.uncompressed_size		<= CRC32_SIZE_MAX &&
571 	    new.nonce				<= CRC32_NONCE_MAX)
572 		type = BCH_EXTENT_ENTRY_crc32;
573 	else if (bch_crc_bytes[new.csum_type]	<= 10 &&
574 		   new.uncompressed_size	<= CRC64_SIZE_MAX &&
575 		   new.nonce			<= CRC64_NONCE_MAX)
576 		type = BCH_EXTENT_ENTRY_crc64;
577 	else if (bch_crc_bytes[new.csum_type]	<= 16 &&
578 		   new.uncompressed_size	<= CRC128_SIZE_MAX &&
579 		   new.nonce			<= CRC128_NONCE_MAX)
580 		type = BCH_EXTENT_ENTRY_crc128;
581 	else
582 		BUG();
583 
584 	bch2_extent_crc_pack(crc, new, type);
585 
586 	k->k.u64s += extent_entry_u64s(ptrs.end);
587 
588 	EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX);
589 }
590 
591 /* Generic code for keys with pointers: */
592 
bch2_bkey_nr_ptrs(struct bkey_s_c k)593 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k)
594 {
595 	return bch2_bkey_devs(k).nr;
596 }
597 
bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)598 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)
599 {
600 	return k.k->type == KEY_TYPE_reservation
601 		? bkey_s_c_to_reservation(k).v->nr_replicas
602 		: bch2_bkey_dirty_devs(k).nr;
603 }
604 
bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k)605 unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k)
606 {
607 	unsigned ret = 0;
608 
609 	if (k.k->type == KEY_TYPE_reservation) {
610 		ret = bkey_s_c_to_reservation(k).v->nr_replicas;
611 	} else {
612 		struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
613 		const union bch_extent_entry *entry;
614 		struct extent_ptr_decoded p;
615 
616 		bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
617 			ret += !p.ptr.cached && !crc_is_compressed(p.crc);
618 	}
619 
620 	return ret;
621 }
622 
bch2_bkey_sectors_compressed(struct bkey_s_c k)623 unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k)
624 {
625 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
626 	const union bch_extent_entry *entry;
627 	struct extent_ptr_decoded p;
628 	unsigned ret = 0;
629 
630 	bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
631 		if (!p.ptr.cached && crc_is_compressed(p.crc))
632 			ret += p.crc.compressed_size;
633 
634 	return ret;
635 }
636 
bch2_bkey_is_incompressible(struct bkey_s_c k)637 bool bch2_bkey_is_incompressible(struct bkey_s_c k)
638 {
639 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
640 	const union bch_extent_entry *entry;
641 	struct bch_extent_crc_unpacked crc;
642 
643 	bkey_for_each_crc(k.k, ptrs, crc, entry)
644 		if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible)
645 			return true;
646 	return false;
647 }
648 
bch2_bkey_replicas(struct bch_fs * c,struct bkey_s_c k)649 unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k)
650 {
651 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
652 	const union bch_extent_entry *entry;
653 	struct extent_ptr_decoded p = { 0 };
654 	unsigned replicas = 0;
655 
656 	bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
657 		if (p.ptr.cached)
658 			continue;
659 
660 		if (p.has_ec)
661 			replicas += p.ec.redundancy;
662 
663 		replicas++;
664 
665 	}
666 
667 	return replicas;
668 }
669 
__extent_ptr_durability(struct bch_dev * ca,struct extent_ptr_decoded * p)670 static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p)
671 {
672 	if (p->ptr.cached)
673 		return 0;
674 
675 	return p->has_ec
676 		? p->ec.redundancy + 1
677 		: ca->mi.durability;
678 }
679 
bch2_extent_ptr_desired_durability(struct bch_fs * c,struct extent_ptr_decoded * p)680 unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
681 {
682 	struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev);
683 
684 	return ca ? __extent_ptr_durability(ca, p) : 0;
685 }
686 
bch2_extent_ptr_durability(struct bch_fs * c,struct extent_ptr_decoded * p)687 unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
688 {
689 	struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev);
690 
691 	if (!ca || ca->mi.state == BCH_MEMBER_STATE_failed)
692 		return 0;
693 
694 	return __extent_ptr_durability(ca, p);
695 }
696 
bch2_bkey_durability(struct bch_fs * c,struct bkey_s_c k)697 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k)
698 {
699 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
700 	const union bch_extent_entry *entry;
701 	struct extent_ptr_decoded p;
702 	unsigned durability = 0;
703 
704 	rcu_read_lock();
705 	bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
706 		durability += bch2_extent_ptr_durability(c, &p);
707 	rcu_read_unlock();
708 
709 	return durability;
710 }
711 
bch2_bkey_durability_safe(struct bch_fs * c,struct bkey_s_c k)712 static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k)
713 {
714 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
715 	const union bch_extent_entry *entry;
716 	struct extent_ptr_decoded p;
717 	unsigned durability = 0;
718 
719 	rcu_read_lock();
720 	bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
721 		if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev])
722 			durability += bch2_extent_ptr_durability(c, &p);
723 	rcu_read_unlock();
724 
725 	return durability;
726 }
727 
bch2_bkey_extent_entry_drop(struct bkey_i * k,union bch_extent_entry * entry)728 void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry)
729 {
730 	union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k));
731 	union bch_extent_entry *next = extent_entry_next(entry);
732 
733 	memmove_u64s(entry, next, (u64 *) end - (u64 *) next);
734 	k->k.u64s -= extent_entry_u64s(entry);
735 }
736 
bch2_extent_ptr_decoded_append(struct bkey_i * k,struct extent_ptr_decoded * p)737 void bch2_extent_ptr_decoded_append(struct bkey_i *k,
738 				    struct extent_ptr_decoded *p)
739 {
740 	struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
741 	struct bch_extent_crc_unpacked crc =
742 		bch2_extent_crc_unpack(&k->k, NULL);
743 	union bch_extent_entry *pos;
744 
745 	if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
746 		pos = ptrs.start;
747 		goto found;
748 	}
749 
750 	bkey_for_each_crc(&k->k, ptrs, crc, pos)
751 		if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
752 			pos = extent_entry_next(pos);
753 			goto found;
754 		}
755 
756 	bch2_extent_crc_append(k, p->crc);
757 	pos = bkey_val_end(bkey_i_to_s(k));
758 found:
759 	p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
760 	__extent_entry_insert(k, pos, to_entry(&p->ptr));
761 
762 	if (p->has_ec) {
763 		p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr;
764 		__extent_entry_insert(k, pos, to_entry(&p->ec));
765 	}
766 }
767 
extent_entry_prev(struct bkey_ptrs ptrs,union bch_extent_entry * entry)768 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs,
769 					  union bch_extent_entry *entry)
770 {
771 	union bch_extent_entry *i = ptrs.start;
772 
773 	if (i == entry)
774 		return NULL;
775 
776 	while (extent_entry_next(i) != entry)
777 		i = extent_entry_next(i);
778 	return i;
779 }
780 
781 /*
782  * Returns pointer to the next entry after the one being dropped:
783  */
bch2_bkey_drop_ptr_noerror(struct bkey_s k,struct bch_extent_ptr * ptr)784 void bch2_bkey_drop_ptr_noerror(struct bkey_s k, struct bch_extent_ptr *ptr)
785 {
786 	struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
787 	union bch_extent_entry *entry = to_entry(ptr), *next;
788 	bool drop_crc = true;
789 
790 	if (k.k->type == KEY_TYPE_stripe) {
791 		ptr->dev = BCH_SB_MEMBER_INVALID;
792 		return;
793 	}
794 
795 	EBUG_ON(ptr < &ptrs.start->ptr ||
796 		ptr >= &ptrs.end->ptr);
797 	EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
798 
799 	for (next = extent_entry_next(entry);
800 	     next != ptrs.end;
801 	     next = extent_entry_next(next)) {
802 		if (extent_entry_is_crc(next)) {
803 			break;
804 		} else if (extent_entry_is_ptr(next)) {
805 			drop_crc = false;
806 			break;
807 		}
808 	}
809 
810 	extent_entry_drop(k, entry);
811 
812 	while ((entry = extent_entry_prev(ptrs, entry))) {
813 		if (extent_entry_is_ptr(entry))
814 			break;
815 
816 		if ((extent_entry_is_crc(entry) && drop_crc) ||
817 		    extent_entry_is_stripe_ptr(entry))
818 			extent_entry_drop(k, entry);
819 	}
820 }
821 
bch2_bkey_drop_ptr(struct bkey_s k,struct bch_extent_ptr * ptr)822 void bch2_bkey_drop_ptr(struct bkey_s k, struct bch_extent_ptr *ptr)
823 {
824 	bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr;
825 
826 	bch2_bkey_drop_ptr_noerror(k, ptr);
827 
828 	/*
829 	 * If we deleted all the dirty pointers and there's still cached
830 	 * pointers, we could set the cached pointers to dirty if they're not
831 	 * stale - but to do that correctly we'd need to grab an open_bucket
832 	 * reference so that we don't race with bucket reuse:
833 	 */
834 	if (have_dirty &&
835 	    !bch2_bkey_dirty_devs(k.s_c).nr) {
836 		k.k->type = KEY_TYPE_error;
837 		set_bkey_val_u64s(k.k, 0);
838 	} else if (!bch2_bkey_nr_ptrs(k.s_c)) {
839 		k.k->type = KEY_TYPE_deleted;
840 		set_bkey_val_u64s(k.k, 0);
841 	}
842 }
843 
bch2_bkey_drop_device(struct bkey_s k,unsigned dev)844 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev)
845 {
846 	bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev);
847 }
848 
bch2_bkey_drop_device_noerror(struct bkey_s k,unsigned dev)849 void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev)
850 {
851 	struct bch_extent_ptr *ptr = bch2_bkey_has_device(k, dev);
852 
853 	if (ptr)
854 		bch2_bkey_drop_ptr_noerror(k, ptr);
855 }
856 
bch2_bkey_has_device_c(struct bkey_s_c k,unsigned dev)857 const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev)
858 {
859 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
860 
861 	bkey_for_each_ptr(ptrs, ptr)
862 		if (ptr->dev == dev)
863 			return ptr;
864 
865 	return NULL;
866 }
867 
bch2_bkey_has_target(struct bch_fs * c,struct bkey_s_c k,unsigned target)868 bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target)
869 {
870 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
871 	struct bch_dev *ca;
872 	bool ret = false;
873 
874 	rcu_read_lock();
875 	bkey_for_each_ptr(ptrs, ptr)
876 		if (bch2_dev_in_target(c, ptr->dev, target) &&
877 		    (ca = bch2_dev_rcu(c, ptr->dev)) &&
878 		    (!ptr->cached ||
879 		     !dev_ptr_stale_rcu(ca, ptr))) {
880 			ret = true;
881 			break;
882 		}
883 	rcu_read_unlock();
884 
885 	return ret;
886 }
887 
bch2_bkey_matches_ptr(struct bch_fs * c,struct bkey_s_c k,struct bch_extent_ptr m,u64 offset)888 bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k,
889 			   struct bch_extent_ptr m, u64 offset)
890 {
891 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
892 	const union bch_extent_entry *entry;
893 	struct extent_ptr_decoded p;
894 
895 	bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
896 		if (p.ptr.dev	== m.dev &&
897 		    p.ptr.gen	== m.gen &&
898 		    (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) ==
899 		    (s64) m.offset  - offset)
900 			return true;
901 
902 	return false;
903 }
904 
905 /*
906  * Returns true if two extents refer to the same data:
907  */
bch2_extents_match(struct bkey_s_c k1,struct bkey_s_c k2)908 bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2)
909 {
910 	if (k1.k->type != k2.k->type)
911 		return false;
912 
913 	if (bkey_extent_is_direct_data(k1.k)) {
914 		struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1);
915 		struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2);
916 		const union bch_extent_entry *entry1, *entry2;
917 		struct extent_ptr_decoded p1, p2;
918 
919 		if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2))
920 			return false;
921 
922 		bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1)
923 			bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
924 				if (p1.ptr.dev		== p2.ptr.dev &&
925 				    p1.ptr.gen		== p2.ptr.gen &&
926 
927 				    /*
928 				     * This checks that the two pointers point
929 				     * to the same region on disk - adjusting
930 				     * for the difference in where the extents
931 				     * start, since one may have been trimmed:
932 				     */
933 				    (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
934 				    (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k) &&
935 
936 				    /*
937 				     * This additionally checks that the
938 				     * extents overlap on disk, since the
939 				     * previous check may trigger spuriously
940 				     * when one extent is immediately partially
941 				     * overwritten with another extent (so that
942 				     * on disk they are adjacent) and
943 				     * compression is in use:
944 				     */
945 				    ((p1.ptr.offset >= p2.ptr.offset &&
946 				      p1.ptr.offset  < p2.ptr.offset + p2.crc.compressed_size) ||
947 				     (p2.ptr.offset >= p1.ptr.offset &&
948 				      p2.ptr.offset  < p1.ptr.offset + p1.crc.compressed_size)))
949 					return true;
950 
951 		return false;
952 	} else {
953 		/* KEY_TYPE_deleted, etc. */
954 		return true;
955 	}
956 }
957 
958 struct bch_extent_ptr *
bch2_extent_has_ptr(struct bkey_s_c k1,struct extent_ptr_decoded p1,struct bkey_s k2)959 bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2)
960 {
961 	struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2);
962 	union bch_extent_entry *entry2;
963 	struct extent_ptr_decoded p2;
964 
965 	bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
966 		if (p1.ptr.dev		== p2.ptr.dev &&
967 		    p1.ptr.gen		== p2.ptr.gen &&
968 		    (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
969 		    (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k))
970 			return &entry2->ptr;
971 
972 	return NULL;
973 }
974 
bch2_extent_ptr_set_cached(struct bkey_s k,struct bch_extent_ptr * ptr)975 void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr)
976 {
977 	struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
978 	union bch_extent_entry *entry;
979 	union bch_extent_entry *ec = NULL;
980 
981 	bkey_extent_entry_for_each(ptrs, entry) {
982 		if (&entry->ptr == ptr) {
983 			ptr->cached = true;
984 			if (ec)
985 				extent_entry_drop(k, ec);
986 			return;
987 		}
988 
989 		if (extent_entry_is_stripe_ptr(entry))
990 			ec = entry;
991 		else if (extent_entry_is_ptr(entry))
992 			ec = NULL;
993 	}
994 
995 	BUG();
996 }
997 
998 /*
999  * bch_extent_normalize - clean up an extent, dropping stale pointers etc.
1000  *
1001  * Returns true if @k should be dropped entirely
1002  *
1003  * For existing keys, only called when btree nodes are being rewritten, not when
1004  * they're merely being compacted/resorted in memory.
1005  */
bch2_extent_normalize(struct bch_fs * c,struct bkey_s k)1006 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
1007 {
1008 	struct bch_dev *ca;
1009 
1010 	rcu_read_lock();
1011 	bch2_bkey_drop_ptrs(k, ptr,
1012 		ptr->cached &&
1013 		(ca = bch2_dev_rcu(c, ptr->dev)) &&
1014 		dev_ptr_stale_rcu(ca, ptr) > 0);
1015 	rcu_read_unlock();
1016 
1017 	return bkey_deleted(k.k);
1018 }
1019 
bch2_extent_ptr_to_text(struct printbuf * out,struct bch_fs * c,const struct bch_extent_ptr * ptr)1020 void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr)
1021 {
1022 	out->atomic++;
1023 	rcu_read_lock();
1024 	struct bch_dev *ca = bch2_dev_rcu(c, ptr->dev);
1025 	if (!ca) {
1026 		prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev,
1027 			   (u64) ptr->offset, ptr->gen,
1028 			   ptr->cached ? " cached" : "");
1029 	} else {
1030 		u32 offset;
1031 		u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset);
1032 
1033 		prt_printf(out, "ptr: %u:%llu:%u gen %u",
1034 			   ptr->dev, b, offset, ptr->gen);
1035 		if (ca->mi.durability != 1)
1036 			prt_printf(out, " d=%u", ca->mi.durability);
1037 		if (ptr->cached)
1038 			prt_str(out, " cached");
1039 		if (ptr->unwritten)
1040 			prt_str(out, " unwritten");
1041 		int stale = dev_ptr_stale_rcu(ca, ptr);
1042 		if (stale > 0)
1043 			prt_printf(out, " stale");
1044 		else if (stale)
1045 			prt_printf(out, " invalid");
1046 	}
1047 	rcu_read_unlock();
1048 	--out->atomic;
1049 }
1050 
bch2_extent_crc_unpacked_to_text(struct printbuf * out,struct bch_extent_crc_unpacked * crc)1051 void bch2_extent_crc_unpacked_to_text(struct printbuf *out, struct bch_extent_crc_unpacked *crc)
1052 {
1053 	prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ",
1054 		   crc->compressed_size,
1055 		   crc->uncompressed_size,
1056 		   crc->offset, crc->nonce);
1057 	bch2_prt_csum_type(out, crc->csum_type);
1058 	prt_printf(out, " %0llx:%0llx ", crc->csum.hi, crc->csum.lo);
1059 	prt_str(out, " compress ");
1060 	bch2_prt_compression_type(out, crc->compression_type);
1061 }
1062 
bch2_bkey_ptrs_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)1063 void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c,
1064 			    struct bkey_s_c k)
1065 {
1066 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1067 	const union bch_extent_entry *entry;
1068 	bool first = true;
1069 
1070 	if (c)
1071 		prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k));
1072 
1073 	bkey_extent_entry_for_each(ptrs, entry) {
1074 		if (!first)
1075 			prt_printf(out, " ");
1076 
1077 		switch (__extent_entry_type(entry)) {
1078 		case BCH_EXTENT_ENTRY_ptr:
1079 			bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry));
1080 			break;
1081 
1082 		case BCH_EXTENT_ENTRY_crc32:
1083 		case BCH_EXTENT_ENTRY_crc64:
1084 		case BCH_EXTENT_ENTRY_crc128: {
1085 			struct bch_extent_crc_unpacked crc =
1086 				bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
1087 
1088 			bch2_extent_crc_unpacked_to_text(out, &crc);
1089 			break;
1090 		}
1091 		case BCH_EXTENT_ENTRY_stripe_ptr: {
1092 			const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr;
1093 
1094 			prt_printf(out, "ec: idx %llu block %u",
1095 			       (u64) ec->idx, ec->block);
1096 			break;
1097 		}
1098 		case BCH_EXTENT_ENTRY_rebalance: {
1099 			const struct bch_extent_rebalance *r = &entry->rebalance;
1100 
1101 			prt_str(out, "rebalance: target ");
1102 			if (c)
1103 				bch2_target_to_text(out, c, r->target);
1104 			else
1105 				prt_printf(out, "%u", r->target);
1106 			prt_str(out, " compression ");
1107 			bch2_compression_opt_to_text(out, r->compression);
1108 			break;
1109 		}
1110 		default:
1111 			prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry));
1112 			return;
1113 		}
1114 
1115 		first = false;
1116 	}
1117 }
1118 
extent_ptr_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags,const struct bch_extent_ptr * ptr,unsigned size_ondisk,bool metadata)1119 static int extent_ptr_validate(struct bch_fs *c,
1120 			       struct bkey_s_c k,
1121 			       enum bch_validate_flags flags,
1122 			       const struct bch_extent_ptr *ptr,
1123 			       unsigned size_ondisk,
1124 			       bool metadata)
1125 {
1126 	int ret = 0;
1127 
1128 	rcu_read_lock();
1129 	struct bch_dev *ca = bch2_dev_rcu(c, ptr->dev);
1130 	if (!ca) {
1131 		rcu_read_unlock();
1132 		return 0;
1133 	}
1134 	u32 bucket_offset;
1135 	u64 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset);
1136 	unsigned first_bucket	= ca->mi.first_bucket;
1137 	u64 nbuckets		= ca->mi.nbuckets;
1138 	unsigned bucket_size	= ca->mi.bucket_size;
1139 	rcu_read_unlock();
1140 
1141 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1142 	bkey_for_each_ptr(ptrs, ptr2)
1143 		bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev,
1144 				 c, ptr_to_duplicate_device,
1145 				 "multiple pointers to same device (%u)", ptr->dev);
1146 
1147 
1148 	bkey_fsck_err_on(bucket >= nbuckets,
1149 			 c, ptr_after_last_bucket,
1150 			 "pointer past last bucket (%llu > %llu)", bucket, nbuckets);
1151 	bkey_fsck_err_on(bucket < first_bucket,
1152 			 c, ptr_before_first_bucket,
1153 			 "pointer before first bucket (%llu < %u)", bucket, first_bucket);
1154 	bkey_fsck_err_on(bucket_offset + size_ondisk > bucket_size,
1155 			 c, ptr_spans_multiple_buckets,
1156 			 "pointer spans multiple buckets (%u + %u > %u)",
1157 		       bucket_offset, size_ondisk, bucket_size);
1158 fsck_err:
1159 	return ret;
1160 }
1161 
bch2_bkey_ptrs_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags)1162 int bch2_bkey_ptrs_validate(struct bch_fs *c, struct bkey_s_c k,
1163 			    enum bch_validate_flags flags)
1164 {
1165 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1166 	const union bch_extent_entry *entry;
1167 	struct bch_extent_crc_unpacked crc;
1168 	unsigned size_ondisk = k.k->size;
1169 	unsigned nonce = UINT_MAX;
1170 	unsigned nr_ptrs = 0;
1171 	bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false;
1172 	int ret = 0;
1173 
1174 	if (bkey_is_btree_ptr(k.k))
1175 		size_ondisk = btree_sectors(c);
1176 
1177 	bkey_extent_entry_for_each(ptrs, entry) {
1178 		bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX,
1179 				 c, extent_ptrs_invalid_entry,
1180 				 "invalid extent entry type (got %u, max %u)",
1181 				 __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX);
1182 
1183 		bkey_fsck_err_on(bkey_is_btree_ptr(k.k) &&
1184 				 !extent_entry_is_ptr(entry),
1185 				 c, btree_ptr_has_non_ptr,
1186 				 "has non ptr field");
1187 
1188 		switch (extent_entry_type(entry)) {
1189 		case BCH_EXTENT_ENTRY_ptr:
1190 			ret = extent_ptr_validate(c, k, flags, &entry->ptr, size_ondisk, false);
1191 			if (ret)
1192 				return ret;
1193 
1194 			bkey_fsck_err_on(entry->ptr.cached && have_ec,
1195 					 c, ptr_cached_and_erasure_coded,
1196 					 "cached, erasure coded ptr");
1197 
1198 			if (!entry->ptr.unwritten)
1199 				have_written = true;
1200 			else
1201 				have_unwritten = true;
1202 
1203 			have_ec = false;
1204 			crc_since_last_ptr = false;
1205 			nr_ptrs++;
1206 			break;
1207 		case BCH_EXTENT_ENTRY_crc32:
1208 		case BCH_EXTENT_ENTRY_crc64:
1209 		case BCH_EXTENT_ENTRY_crc128:
1210 			crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
1211 
1212 			bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size,
1213 					 c, ptr_crc_uncompressed_size_too_small,
1214 					 "checksum offset + key size > uncompressed size");
1215 			bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type),
1216 					 c, ptr_crc_csum_type_unknown,
1217 					 "invalid checksum type");
1218 			bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR,
1219 					 c, ptr_crc_compression_type_unknown,
1220 					 "invalid compression type");
1221 
1222 			if (bch2_csum_type_is_encryption(crc.csum_type)) {
1223 				if (nonce == UINT_MAX)
1224 					nonce = crc.offset + crc.nonce;
1225 				else if (nonce != crc.offset + crc.nonce)
1226 					bkey_fsck_err(c, ptr_crc_nonce_mismatch,
1227 						      "incorrect nonce");
1228 			}
1229 
1230 			bkey_fsck_err_on(crc_since_last_ptr,
1231 					 c, ptr_crc_redundant,
1232 					 "redundant crc entry");
1233 			crc_since_last_ptr = true;
1234 
1235 			bkey_fsck_err_on(crc_is_encoded(crc) &&
1236 					 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) &&
1237 					 (flags & (BCH_VALIDATE_write|BCH_VALIDATE_commit)),
1238 					 c, ptr_crc_uncompressed_size_too_big,
1239 					 "too large encoded extent");
1240 
1241 			size_ondisk = crc.compressed_size;
1242 			break;
1243 		case BCH_EXTENT_ENTRY_stripe_ptr:
1244 			bkey_fsck_err_on(have_ec,
1245 					 c, ptr_stripe_redundant,
1246 					 "redundant stripe entry");
1247 			have_ec = true;
1248 			break;
1249 		case BCH_EXTENT_ENTRY_rebalance: {
1250 			/*
1251 			 * this shouldn't be a fsck error, for forward
1252 			 * compatibility; the rebalance code should just refetch
1253 			 * the compression opt if it's unknown
1254 			 */
1255 #if 0
1256 			const struct bch_extent_rebalance *r = &entry->rebalance;
1257 
1258 			if (!bch2_compression_opt_valid(r->compression)) {
1259 				struct bch_compression_opt opt = __bch2_compression_decode(r->compression);
1260 				prt_printf(err, "invalid compression opt %u:%u",
1261 					   opt.type, opt.level);
1262 				return -BCH_ERR_invalid_bkey;
1263 			}
1264 #endif
1265 			break;
1266 		}
1267 		}
1268 	}
1269 
1270 	bkey_fsck_err_on(!nr_ptrs,
1271 			 c, extent_ptrs_no_ptrs,
1272 			 "no ptrs");
1273 	bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX,
1274 			 c, extent_ptrs_too_many_ptrs,
1275 			 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX);
1276 	bkey_fsck_err_on(have_written && have_unwritten,
1277 			 c, extent_ptrs_written_and_unwritten,
1278 			 "extent with unwritten and written ptrs");
1279 	bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten,
1280 			 c, extent_ptrs_unwritten,
1281 			 "has unwritten ptrs");
1282 	bkey_fsck_err_on(crc_since_last_ptr,
1283 			 c, extent_ptrs_redundant_crc,
1284 			 "redundant crc entry");
1285 	bkey_fsck_err_on(have_ec,
1286 			 c, extent_ptrs_redundant_stripe,
1287 			 "redundant stripe entry");
1288 fsck_err:
1289 	return ret;
1290 }
1291 
bch2_ptr_swab(struct bkey_s k)1292 void bch2_ptr_swab(struct bkey_s k)
1293 {
1294 	struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1295 	union bch_extent_entry *entry;
1296 	u64 *d;
1297 
1298 	for (d =  (u64 *) ptrs.start;
1299 	     d != (u64 *) ptrs.end;
1300 	     d++)
1301 		*d = swab64(*d);
1302 
1303 	for (entry = ptrs.start;
1304 	     entry < ptrs.end;
1305 	     entry = extent_entry_next(entry)) {
1306 		switch (extent_entry_type(entry)) {
1307 		case BCH_EXTENT_ENTRY_ptr:
1308 			break;
1309 		case BCH_EXTENT_ENTRY_crc32:
1310 			entry->crc32.csum = swab32(entry->crc32.csum);
1311 			break;
1312 		case BCH_EXTENT_ENTRY_crc64:
1313 			entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
1314 			entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
1315 			break;
1316 		case BCH_EXTENT_ENTRY_crc128:
1317 			entry->crc128.csum.hi = (__force __le64)
1318 				swab64((__force u64) entry->crc128.csum.hi);
1319 			entry->crc128.csum.lo = (__force __le64)
1320 				swab64((__force u64) entry->crc128.csum.lo);
1321 			break;
1322 		case BCH_EXTENT_ENTRY_stripe_ptr:
1323 			break;
1324 		case BCH_EXTENT_ENTRY_rebalance:
1325 			break;
1326 		}
1327 	}
1328 }
1329 
bch2_bkey_rebalance_opts(struct bkey_s_c k)1330 const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k)
1331 {
1332 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1333 	const union bch_extent_entry *entry;
1334 
1335 	bkey_extent_entry_for_each(ptrs, entry)
1336 		if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance)
1337 			return &entry->rebalance;
1338 
1339 	return NULL;
1340 }
1341 
bch2_bkey_ptrs_need_rebalance(struct bch_fs * c,struct bkey_s_c k,unsigned target,unsigned compression)1342 unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k,
1343 				       unsigned target, unsigned compression)
1344 {
1345 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1346 	unsigned rewrite_ptrs = 0;
1347 
1348 	if (compression) {
1349 		unsigned compression_type = bch2_compression_opt_to_type(compression);
1350 		const union bch_extent_entry *entry;
1351 		struct extent_ptr_decoded p;
1352 		unsigned i = 0;
1353 
1354 		bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
1355 			if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible ||
1356 			    p.ptr.unwritten) {
1357 				rewrite_ptrs = 0;
1358 				goto incompressible;
1359 			}
1360 
1361 			if (!p.ptr.cached && p.crc.compression_type != compression_type)
1362 				rewrite_ptrs |= 1U << i;
1363 			i++;
1364 		}
1365 	}
1366 incompressible:
1367 	if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) {
1368 		unsigned i = 0;
1369 
1370 		bkey_for_each_ptr(ptrs, ptr) {
1371 			if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target))
1372 				rewrite_ptrs |= 1U << i;
1373 			i++;
1374 		}
1375 	}
1376 
1377 	return rewrite_ptrs;
1378 }
1379 
bch2_bkey_needs_rebalance(struct bch_fs * c,struct bkey_s_c k)1380 bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k)
1381 {
1382 	const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k);
1383 
1384 	/*
1385 	 * If it's an indirect extent, we don't delete the rebalance entry when
1386 	 * done so that we know what options were applied - check if it still
1387 	 * needs work done:
1388 	 */
1389 	if (r &&
1390 	    k.k->type == KEY_TYPE_reflink_v &&
1391 	    !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression))
1392 		r = NULL;
1393 
1394 	return r != NULL;
1395 }
1396 
__bch2_bkey_sectors_need_rebalance(struct bch_fs * c,struct bkey_s_c k,unsigned target,unsigned compression)1397 static u64 __bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k,
1398 				       unsigned target, unsigned compression)
1399 {
1400 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1401 	const union bch_extent_entry *entry;
1402 	struct extent_ptr_decoded p;
1403 	u64 sectors = 0;
1404 
1405 	if (compression) {
1406 		unsigned compression_type = bch2_compression_opt_to_type(compression);
1407 
1408 		bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
1409 			if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible ||
1410 			    p.ptr.unwritten) {
1411 				sectors = 0;
1412 				goto incompressible;
1413 			}
1414 
1415 			if (!p.ptr.cached && p.crc.compression_type != compression_type)
1416 				sectors += p.crc.compressed_size;
1417 		}
1418 	}
1419 incompressible:
1420 	if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) {
1421 		bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
1422 			if (!p.ptr.cached && !bch2_dev_in_target(c, p.ptr.dev, target))
1423 				sectors += p.crc.compressed_size;
1424 	}
1425 
1426 	return sectors;
1427 }
1428 
bch2_bkey_sectors_need_rebalance(struct bch_fs * c,struct bkey_s_c k)1429 u64 bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k)
1430 {
1431 	const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k);
1432 
1433 	return r ? __bch2_bkey_sectors_need_rebalance(c, k, r->target, r->compression) : 0;
1434 }
1435 
bch2_bkey_set_needs_rebalance(struct bch_fs * c,struct bkey_i * _k,struct bch_io_opts * opts)1436 int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k,
1437 				  struct bch_io_opts *opts)
1438 {
1439 	struct bkey_s k = bkey_i_to_s(_k);
1440 	struct bch_extent_rebalance *r;
1441 	unsigned target = opts->background_target;
1442 	unsigned compression = background_compression(*opts);
1443 	bool needs_rebalance;
1444 
1445 	if (!bkey_extent_is_direct_data(k.k))
1446 		return 0;
1447 
1448 	/* get existing rebalance entry: */
1449 	r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c);
1450 	if (r) {
1451 		if (k.k->type == KEY_TYPE_reflink_v) {
1452 			/*
1453 			 * indirect extents: existing options take precedence,
1454 			 * so that we don't move extents back and forth if
1455 			 * they're referenced by different inodes with different
1456 			 * options:
1457 			 */
1458 			if (r->target)
1459 				target = r->target;
1460 			if (r->compression)
1461 				compression = r->compression;
1462 		}
1463 
1464 		r->target	= target;
1465 		r->compression	= compression;
1466 	}
1467 
1468 	needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression);
1469 
1470 	if (needs_rebalance && !r) {
1471 		union bch_extent_entry *new = bkey_val_end(k);
1472 
1473 		new->rebalance.type		= 1U << BCH_EXTENT_ENTRY_rebalance;
1474 		new->rebalance.compression	= compression;
1475 		new->rebalance.target		= target;
1476 		new->rebalance.unused		= 0;
1477 		k.k->u64s += extent_entry_u64s(new);
1478 	} else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) {
1479 		/*
1480 		 * For indirect extents, don't delete the rebalance entry when
1481 		 * we're finished so that we know we specifically moved it or
1482 		 * compressed it to its current location/compression type
1483 		 */
1484 		extent_entry_drop(k, (union bch_extent_entry *) r);
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 /* Generic extent code: */
1491 
bch2_cut_front_s(struct bpos where,struct bkey_s k)1492 int bch2_cut_front_s(struct bpos where, struct bkey_s k)
1493 {
1494 	unsigned new_val_u64s = bkey_val_u64s(k.k);
1495 	int val_u64s_delta;
1496 	u64 sub;
1497 
1498 	if (bkey_le(where, bkey_start_pos(k.k)))
1499 		return 0;
1500 
1501 	EBUG_ON(bkey_gt(where, k.k->p));
1502 
1503 	sub = where.offset - bkey_start_offset(k.k);
1504 
1505 	k.k->size -= sub;
1506 
1507 	if (!k.k->size) {
1508 		k.k->type = KEY_TYPE_deleted;
1509 		new_val_u64s = 0;
1510 	}
1511 
1512 	switch (k.k->type) {
1513 	case KEY_TYPE_extent:
1514 	case KEY_TYPE_reflink_v: {
1515 		struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1516 		union bch_extent_entry *entry;
1517 		bool seen_crc = false;
1518 
1519 		bkey_extent_entry_for_each(ptrs, entry) {
1520 			switch (extent_entry_type(entry)) {
1521 			case BCH_EXTENT_ENTRY_ptr:
1522 				if (!seen_crc)
1523 					entry->ptr.offset += sub;
1524 				break;
1525 			case BCH_EXTENT_ENTRY_crc32:
1526 				entry->crc32.offset += sub;
1527 				break;
1528 			case BCH_EXTENT_ENTRY_crc64:
1529 				entry->crc64.offset += sub;
1530 				break;
1531 			case BCH_EXTENT_ENTRY_crc128:
1532 				entry->crc128.offset += sub;
1533 				break;
1534 			case BCH_EXTENT_ENTRY_stripe_ptr:
1535 				break;
1536 			case BCH_EXTENT_ENTRY_rebalance:
1537 				break;
1538 			}
1539 
1540 			if (extent_entry_is_crc(entry))
1541 				seen_crc = true;
1542 		}
1543 
1544 		break;
1545 	}
1546 	case KEY_TYPE_reflink_p: {
1547 		struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k);
1548 
1549 		le64_add_cpu(&p.v->idx, sub);
1550 		break;
1551 	}
1552 	case KEY_TYPE_inline_data:
1553 	case KEY_TYPE_indirect_inline_data: {
1554 		void *p = bkey_inline_data_p(k);
1555 		unsigned bytes = bkey_inline_data_bytes(k.k);
1556 
1557 		sub = min_t(u64, sub << 9, bytes);
1558 
1559 		memmove(p, p + sub, bytes - sub);
1560 
1561 		new_val_u64s -= sub >> 3;
1562 		break;
1563 	}
1564 	}
1565 
1566 	val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1567 	BUG_ON(val_u64s_delta < 0);
1568 
1569 	set_bkey_val_u64s(k.k, new_val_u64s);
1570 	memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1571 	return -val_u64s_delta;
1572 }
1573 
bch2_cut_back_s(struct bpos where,struct bkey_s k)1574 int bch2_cut_back_s(struct bpos where, struct bkey_s k)
1575 {
1576 	unsigned new_val_u64s = bkey_val_u64s(k.k);
1577 	int val_u64s_delta;
1578 	u64 len = 0;
1579 
1580 	if (bkey_ge(where, k.k->p))
1581 		return 0;
1582 
1583 	EBUG_ON(bkey_lt(where, bkey_start_pos(k.k)));
1584 
1585 	len = where.offset - bkey_start_offset(k.k);
1586 
1587 	k.k->p.offset = where.offset;
1588 	k.k->size = len;
1589 
1590 	if (!len) {
1591 		k.k->type = KEY_TYPE_deleted;
1592 		new_val_u64s = 0;
1593 	}
1594 
1595 	switch (k.k->type) {
1596 	case KEY_TYPE_inline_data:
1597 	case KEY_TYPE_indirect_inline_data:
1598 		new_val_u64s = (bkey_inline_data_offset(k.k) +
1599 				min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3;
1600 		break;
1601 	}
1602 
1603 	val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1604 	BUG_ON(val_u64s_delta < 0);
1605 
1606 	set_bkey_val_u64s(k.k, new_val_u64s);
1607 	memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1608 	return -val_u64s_delta;
1609 }
1610