1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58
59 #include <net/cfg80211.h>
60 #include <net/ieee80211_radiotap.h>
61
62 #include <linux/unaligned.h>
63
64 #include <net/mac80211.h>
65 #include "base.h"
66 #include "reg.h"
67 #include "debug.h"
68 #include "ani.h"
69 #include "ath5k.h"
70 #include "../regd.h"
71
72 #define CREATE_TRACE_POINTS
73 #include "trace.h"
74
75 bool ath5k_modparam_nohwcrypt;
76 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
77 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78
79 static bool modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82
83 static bool ath5k_modparam_no_hw_rfkill_switch;
84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 bool, 0444);
86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87
88
89 /* Module info */
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_LICENSE("Dual BSD/GPL");
94
95 static int ath5k_init(struct ieee80211_hw *hw);
96 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
97 bool skip_pcu);
98
99 /* Known SREVs */
100 static const struct ath5k_srev_name srev_names[] = {
101 #ifdef CONFIG_ATH5K_AHB
102 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
103 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
104 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
105 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
106 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
107 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
108 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
109 #else
110 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
111 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
112 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
113 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
114 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
115 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
116 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
117 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
118 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
119 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
120 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
121 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
122 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
123 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
124 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
125 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
126 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
127 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
128 #endif
129 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
130 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
131 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
132 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
133 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
134 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
135 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
136 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
137 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
138 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
139 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
140 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
141 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
142 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
143 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
144 #ifdef CONFIG_ATH5K_AHB
145 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
146 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
147 #endif
148 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
149 };
150
151 static const struct ieee80211_rate ath5k_rates[] = {
152 { .bitrate = 10,
153 .hw_value = ATH5K_RATE_CODE_1M, },
154 { .bitrate = 20,
155 .hw_value = ATH5K_RATE_CODE_2M,
156 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
157 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
158 { .bitrate = 55,
159 .hw_value = ATH5K_RATE_CODE_5_5M,
160 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
161 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
162 { .bitrate = 110,
163 .hw_value = ATH5K_RATE_CODE_11M,
164 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
165 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
166 { .bitrate = 60,
167 .hw_value = ATH5K_RATE_CODE_6M,
168 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
169 IEEE80211_RATE_SUPPORTS_10MHZ },
170 { .bitrate = 90,
171 .hw_value = ATH5K_RATE_CODE_9M,
172 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
173 IEEE80211_RATE_SUPPORTS_10MHZ },
174 { .bitrate = 120,
175 .hw_value = ATH5K_RATE_CODE_12M,
176 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
177 IEEE80211_RATE_SUPPORTS_10MHZ },
178 { .bitrate = 180,
179 .hw_value = ATH5K_RATE_CODE_18M,
180 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
181 IEEE80211_RATE_SUPPORTS_10MHZ },
182 { .bitrate = 240,
183 .hw_value = ATH5K_RATE_CODE_24M,
184 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
185 IEEE80211_RATE_SUPPORTS_10MHZ },
186 { .bitrate = 360,
187 .hw_value = ATH5K_RATE_CODE_36M,
188 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
189 IEEE80211_RATE_SUPPORTS_10MHZ },
190 { .bitrate = 480,
191 .hw_value = ATH5K_RATE_CODE_48M,
192 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
193 IEEE80211_RATE_SUPPORTS_10MHZ },
194 { .bitrate = 540,
195 .hw_value = ATH5K_RATE_CODE_54M,
196 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
197 IEEE80211_RATE_SUPPORTS_10MHZ },
198 };
199
ath5k_extend_tsf(struct ath5k_hw * ah,u32 rstamp)200 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
201 {
202 u64 tsf = ath5k_hw_get_tsf64(ah);
203
204 if ((tsf & 0x7fff) < rstamp)
205 tsf -= 0x8000;
206
207 return (tsf & ~0x7fff) | rstamp;
208 }
209
210 const char *
ath5k_chip_name(enum ath5k_srev_type type,u_int16_t val)211 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
212 {
213 const char *name = "xxxxx";
214 unsigned int i;
215
216 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
217 if (srev_names[i].sr_type != type)
218 continue;
219
220 if ((val & 0xf0) == srev_names[i].sr_val)
221 name = srev_names[i].sr_name;
222
223 if ((val & 0xff) == srev_names[i].sr_val) {
224 name = srev_names[i].sr_name;
225 break;
226 }
227 }
228
229 return name;
230 }
ath5k_ioread32(void * hw_priv,u32 reg_offset)231 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
232 {
233 struct ath5k_hw *ah = hw_priv;
234 return ath5k_hw_reg_read(ah, reg_offset);
235 }
236
ath5k_iowrite32(void * hw_priv,u32 val,u32 reg_offset)237 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
238 {
239 struct ath5k_hw *ah = hw_priv;
240 ath5k_hw_reg_write(ah, val, reg_offset);
241 }
242
243 static const struct ath_ops ath5k_common_ops = {
244 .read = ath5k_ioread32,
245 .write = ath5k_iowrite32,
246 };
247
248 /***********************\
249 * Driver Initialization *
250 \***********************/
251
ath5k_reg_notifier(struct wiphy * wiphy,struct regulatory_request * request)252 static void ath5k_reg_notifier(struct wiphy *wiphy,
253 struct regulatory_request *request)
254 {
255 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
256 struct ath5k_hw *ah = hw->priv;
257 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
258
259 ath_reg_notifier_apply(wiphy, request, regulatory);
260 }
261
262 /********************\
263 * Channel/mode setup *
264 \********************/
265
266 /*
267 * Returns true for the channel numbers used.
268 */
269 #ifdef CONFIG_ATH5K_TEST_CHANNELS
ath5k_is_standard_channel(short chan,enum nl80211_band band)270 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
271 {
272 return true;
273 }
274
275 #else
ath5k_is_standard_channel(short chan,enum nl80211_band band)276 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
277 {
278 if (band == NL80211_BAND_2GHZ && chan <= 14)
279 return true;
280
281 return /* UNII 1,2 */
282 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
283 /* midband */
284 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
285 /* UNII-3 */
286 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
287 /* 802.11j 5.030-5.080 GHz (20MHz) */
288 (chan == 8 || chan == 12 || chan == 16) ||
289 /* 802.11j 4.9GHz (20MHz) */
290 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
291 }
292 #endif
293
294 static unsigned int
ath5k_setup_channels(struct ath5k_hw * ah,struct ieee80211_channel * channels,unsigned int mode,unsigned int max)295 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
296 unsigned int mode, unsigned int max)
297 {
298 unsigned int count, size, freq, ch;
299 enum nl80211_band band;
300
301 switch (mode) {
302 case AR5K_MODE_11A:
303 /* 1..220, but 2GHz frequencies are filtered by check_channel */
304 size = 220;
305 band = NL80211_BAND_5GHZ;
306 break;
307 case AR5K_MODE_11B:
308 case AR5K_MODE_11G:
309 size = 26;
310 band = NL80211_BAND_2GHZ;
311 break;
312 default:
313 ATH5K_WARN(ah, "bad mode, not copying channels\n");
314 return 0;
315 }
316
317 count = 0;
318 for (ch = 1; ch <= size && count < max; ch++) {
319 freq = ieee80211_channel_to_frequency(ch, band);
320
321 if (freq == 0) /* mapping failed - not a standard channel */
322 continue;
323
324 /* Write channel info, needed for ath5k_channel_ok() */
325 channels[count].center_freq = freq;
326 channels[count].band = band;
327 channels[count].hw_value = mode;
328
329 /* Check if channel is supported by the chipset */
330 if (!ath5k_channel_ok(ah, &channels[count]))
331 continue;
332
333 if (!ath5k_is_standard_channel(ch, band))
334 continue;
335
336 count++;
337 }
338
339 return count;
340 }
341
342 static void
ath5k_setup_rate_idx(struct ath5k_hw * ah,struct ieee80211_supported_band * b)343 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
344 {
345 u8 i;
346
347 for (i = 0; i < AR5K_MAX_RATES; i++)
348 ah->rate_idx[b->band][i] = -1;
349
350 for (i = 0; i < b->n_bitrates; i++) {
351 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
352 if (b->bitrates[i].hw_value_short)
353 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
354 }
355 }
356
357 static int
ath5k_setup_bands(struct ieee80211_hw * hw)358 ath5k_setup_bands(struct ieee80211_hw *hw)
359 {
360 struct ath5k_hw *ah = hw->priv;
361 struct ieee80211_supported_band *sband;
362 int max_c, count_c = 0;
363 int i;
364
365 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
366 max_c = ARRAY_SIZE(ah->channels);
367
368 /* 2GHz band */
369 sband = &ah->sbands[NL80211_BAND_2GHZ];
370 sband->band = NL80211_BAND_2GHZ;
371 sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
372
373 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
374 /* G mode */
375 memcpy(sband->bitrates, &ath5k_rates[0],
376 sizeof(struct ieee80211_rate) * 12);
377 sband->n_bitrates = 12;
378
379 sband->channels = ah->channels;
380 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
381 AR5K_MODE_11G, max_c);
382
383 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
384 count_c = sband->n_channels;
385 max_c -= count_c;
386 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
387 /* B mode */
388 memcpy(sband->bitrates, &ath5k_rates[0],
389 sizeof(struct ieee80211_rate) * 4);
390 sband->n_bitrates = 4;
391
392 /* 5211 only supports B rates and uses 4bit rate codes
393 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
394 * fix them up here:
395 */
396 if (ah->ah_version == AR5K_AR5211) {
397 for (i = 0; i < 4; i++) {
398 sband->bitrates[i].hw_value =
399 sband->bitrates[i].hw_value & 0xF;
400 sband->bitrates[i].hw_value_short =
401 sband->bitrates[i].hw_value_short & 0xF;
402 }
403 }
404
405 sband->channels = ah->channels;
406 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
407 AR5K_MODE_11B, max_c);
408
409 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
410 count_c = sband->n_channels;
411 max_c -= count_c;
412 }
413 ath5k_setup_rate_idx(ah, sband);
414
415 /* 5GHz band, A mode */
416 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
417 sband = &ah->sbands[NL80211_BAND_5GHZ];
418 sband->band = NL80211_BAND_5GHZ;
419 sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
420
421 memcpy(sband->bitrates, &ath5k_rates[4],
422 sizeof(struct ieee80211_rate) * 8);
423 sband->n_bitrates = 8;
424
425 sband->channels = &ah->channels[count_c];
426 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
427 AR5K_MODE_11A, max_c);
428
429 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
430 }
431 ath5k_setup_rate_idx(ah, sband);
432
433 ath5k_debug_dump_bands(ah);
434
435 return 0;
436 }
437
438 /*
439 * Set/change channels. We always reset the chip.
440 * To accomplish this we must first cleanup any pending DMA,
441 * then restart stuff after a la ath5k_init.
442 *
443 * Called with ah->lock.
444 */
445 int
ath5k_chan_set(struct ath5k_hw * ah,struct cfg80211_chan_def * chandef)446 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
447 {
448 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
449 "channel set, resetting (%u -> %u MHz)\n",
450 ah->curchan->center_freq, chandef->chan->center_freq);
451
452 switch (chandef->width) {
453 case NL80211_CHAN_WIDTH_20:
454 case NL80211_CHAN_WIDTH_20_NOHT:
455 ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
456 break;
457 case NL80211_CHAN_WIDTH_5:
458 ah->ah_bwmode = AR5K_BWMODE_5MHZ;
459 break;
460 case NL80211_CHAN_WIDTH_10:
461 ah->ah_bwmode = AR5K_BWMODE_10MHZ;
462 break;
463 default:
464 WARN_ON(1);
465 return -EINVAL;
466 }
467
468 /*
469 * To switch channels clear any pending DMA operations;
470 * wait long enough for the RX fifo to drain, reset the
471 * hardware at the new frequency, and then re-enable
472 * the relevant bits of the h/w.
473 */
474 return ath5k_reset(ah, chandef->chan, true);
475 }
476
ath5k_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)477 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
478 {
479 struct ath5k_vif_iter_data *iter_data = data;
480 int i;
481 struct ath5k_vif *avf = (void *)vif->drv_priv;
482
483 if (iter_data->hw_macaddr)
484 for (i = 0; i < ETH_ALEN; i++)
485 iter_data->mask[i] &=
486 ~(iter_data->hw_macaddr[i] ^ mac[i]);
487
488 if (!iter_data->found_active) {
489 iter_data->found_active = true;
490 memcpy(iter_data->active_mac, mac, ETH_ALEN);
491 }
492
493 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
494 if (ether_addr_equal(iter_data->hw_macaddr, mac))
495 iter_data->need_set_hw_addr = false;
496
497 if (!iter_data->any_assoc) {
498 if (avf->assoc)
499 iter_data->any_assoc = true;
500 }
501
502 /* Calculate combined mode - when APs are active, operate in AP mode.
503 * Otherwise use the mode of the new interface. This can currently
504 * only deal with combinations of APs and STAs. Only one ad-hoc
505 * interfaces is allowed.
506 */
507 if (avf->opmode == NL80211_IFTYPE_AP)
508 iter_data->opmode = NL80211_IFTYPE_AP;
509 else {
510 if (avf->opmode == NL80211_IFTYPE_STATION)
511 iter_data->n_stas++;
512 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
513 iter_data->opmode = avf->opmode;
514 }
515 }
516
517 void
ath5k_update_bssid_mask_and_opmode(struct ath5k_hw * ah,struct ieee80211_vif * vif)518 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
519 struct ieee80211_vif *vif)
520 {
521 struct ath_common *common = ath5k_hw_common(ah);
522 struct ath5k_vif_iter_data iter_data;
523 u32 rfilt;
524
525 /*
526 * Use the hardware MAC address as reference, the hardware uses it
527 * together with the BSSID mask when matching addresses.
528 */
529 iter_data.hw_macaddr = common->macaddr;
530 eth_broadcast_addr(iter_data.mask);
531 iter_data.found_active = false;
532 iter_data.need_set_hw_addr = true;
533 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
534 iter_data.n_stas = 0;
535
536 if (vif)
537 ath5k_vif_iter(&iter_data, vif->addr, vif);
538
539 /* Get list of all active MAC addresses */
540 ieee80211_iterate_active_interfaces_atomic(
541 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
542 ath5k_vif_iter, &iter_data);
543 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
544
545 ah->opmode = iter_data.opmode;
546 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
547 /* Nothing active, default to station mode */
548 ah->opmode = NL80211_IFTYPE_STATION;
549
550 ath5k_hw_set_opmode(ah, ah->opmode);
551 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
552 ah->opmode, ath_opmode_to_string(ah->opmode));
553
554 if (iter_data.need_set_hw_addr && iter_data.found_active)
555 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
556
557 if (ath5k_hw_hasbssidmask(ah))
558 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
559
560 /* Set up RX Filter */
561 if (iter_data.n_stas > 1) {
562 /* If you have multiple STA interfaces connected to
563 * different APs, ARPs are not received (most of the time?)
564 * Enabling PROMISC appears to fix that problem.
565 */
566 ah->filter_flags |= AR5K_RX_FILTER_PROM;
567 }
568
569 rfilt = ah->filter_flags;
570 ath5k_hw_set_rx_filter(ah, rfilt);
571 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
572 }
573
574 static inline int
ath5k_hw_to_driver_rix(struct ath5k_hw * ah,int hw_rix)575 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
576 {
577 int rix;
578
579 /* return base rate on errors */
580 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
581 "hw_rix out of bounds: %x\n", hw_rix))
582 return 0;
583
584 rix = ah->rate_idx[ah->curchan->band][hw_rix];
585 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
586 rix = 0;
587
588 return rix;
589 }
590
591 /***************\
592 * Buffers setup *
593 \***************/
594
595 static
ath5k_rx_skb_alloc(struct ath5k_hw * ah,dma_addr_t * skb_addr)596 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
597 {
598 struct ath_common *common = ath5k_hw_common(ah);
599 struct sk_buff *skb;
600
601 /*
602 * Allocate buffer with headroom_needed space for the
603 * fake physical layer header at the start.
604 */
605 skb = ath_rxbuf_alloc(common,
606 common->rx_bufsize,
607 GFP_ATOMIC);
608
609 if (!skb) {
610 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
611 common->rx_bufsize);
612 return NULL;
613 }
614
615 *skb_addr = dma_map_single(ah->dev,
616 skb->data, common->rx_bufsize,
617 DMA_FROM_DEVICE);
618
619 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
620 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
621 dev_kfree_skb(skb);
622 return NULL;
623 }
624 return skb;
625 }
626
627 static int
ath5k_rxbuf_setup(struct ath5k_hw * ah,struct ath5k_buf * bf)628 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
629 {
630 struct sk_buff *skb = bf->skb;
631 struct ath5k_desc *ds;
632 int ret;
633
634 if (!skb) {
635 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
636 if (!skb)
637 return -ENOMEM;
638 bf->skb = skb;
639 }
640
641 /*
642 * Setup descriptors. For receive we always terminate
643 * the descriptor list with a self-linked entry so we'll
644 * not get overrun under high load (as can happen with a
645 * 5212 when ANI processing enables PHY error frames).
646 *
647 * To ensure the last descriptor is self-linked we create
648 * each descriptor as self-linked and add it to the end. As
649 * each additional descriptor is added the previous self-linked
650 * entry is "fixed" naturally. This should be safe even
651 * if DMA is happening. When processing RX interrupts we
652 * never remove/process the last, self-linked, entry on the
653 * descriptor list. This ensures the hardware always has
654 * someplace to write a new frame.
655 */
656 ds = bf->desc;
657 ds->ds_link = bf->daddr; /* link to self */
658 ds->ds_data = bf->skbaddr;
659 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
660 if (ret) {
661 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
662 return ret;
663 }
664
665 if (ah->rxlink != NULL)
666 *ah->rxlink = bf->daddr;
667 ah->rxlink = &ds->ds_link;
668 return 0;
669 }
670
get_hw_packet_type(struct sk_buff * skb)671 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
672 {
673 struct ieee80211_hdr *hdr;
674 enum ath5k_pkt_type htype;
675 __le16 fc;
676
677 hdr = (struct ieee80211_hdr *)skb->data;
678 fc = hdr->frame_control;
679
680 if (ieee80211_is_beacon(fc))
681 htype = AR5K_PKT_TYPE_BEACON;
682 else if (ieee80211_is_probe_resp(fc))
683 htype = AR5K_PKT_TYPE_PROBE_RESP;
684 else if (ieee80211_is_atim(fc))
685 htype = AR5K_PKT_TYPE_ATIM;
686 else if (ieee80211_is_pspoll(fc))
687 htype = AR5K_PKT_TYPE_PSPOLL;
688 else
689 htype = AR5K_PKT_TYPE_NORMAL;
690
691 return htype;
692 }
693
694 static struct ieee80211_rate *
ath5k_get_rate(const struct ieee80211_hw * hw,const struct ieee80211_tx_info * info,struct ath5k_buf * bf,int idx)695 ath5k_get_rate(const struct ieee80211_hw *hw,
696 const struct ieee80211_tx_info *info,
697 struct ath5k_buf *bf, int idx)
698 {
699 /*
700 * convert a ieee80211_tx_rate RC-table entry to
701 * the respective ieee80211_rate struct
702 */
703 if (bf->rates[idx].idx < 0) {
704 return NULL;
705 }
706
707 return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
708 }
709
710 static u16
ath5k_get_rate_hw_value(const struct ieee80211_hw * hw,const struct ieee80211_tx_info * info,struct ath5k_buf * bf,int idx)711 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
712 const struct ieee80211_tx_info *info,
713 struct ath5k_buf *bf, int idx)
714 {
715 struct ieee80211_rate *rate;
716 u16 hw_rate;
717 u8 rc_flags;
718
719 rate = ath5k_get_rate(hw, info, bf, idx);
720 if (!rate)
721 return 0;
722
723 rc_flags = bf->rates[idx].flags;
724 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
725 rate->hw_value_short : rate->hw_value;
726
727 return hw_rate;
728 }
729
ath5k_merge_ratetbl(struct ieee80211_sta * sta,struct ath5k_buf * bf,struct ieee80211_tx_info * tx_info)730 static bool ath5k_merge_ratetbl(struct ieee80211_sta *sta,
731 struct ath5k_buf *bf,
732 struct ieee80211_tx_info *tx_info)
733 {
734 struct ieee80211_sta_rates *ratetbl;
735 u8 i;
736
737 if (!sta)
738 return false;
739
740 ratetbl = rcu_dereference(sta->rates);
741 if (!ratetbl)
742 return false;
743
744 if (tx_info->control.rates[0].idx < 0 ||
745 tx_info->control.rates[0].count == 0)
746 {
747 i = 0;
748 } else {
749 bf->rates[0] = tx_info->control.rates[0];
750 i = 1;
751 }
752
753 for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
754 bf->rates[i].idx = ratetbl->rate[i].idx;
755 bf->rates[i].flags = ratetbl->rate[i].flags;
756 if (tx_info->control.use_rts)
757 bf->rates[i].count = ratetbl->rate[i].count_rts;
758 else if (tx_info->control.use_cts_prot)
759 bf->rates[i].count = ratetbl->rate[i].count_cts;
760 else
761 bf->rates[i].count = ratetbl->rate[i].count;
762 }
763
764 return true;
765 }
766
767 static int
ath5k_txbuf_setup(struct ath5k_hw * ah,struct ath5k_buf * bf,struct ath5k_txq * txq,int padsize,struct ieee80211_tx_control * control)768 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
769 struct ath5k_txq *txq, int padsize,
770 struct ieee80211_tx_control *control)
771 {
772 struct ath5k_desc *ds = bf->desc;
773 struct sk_buff *skb = bf->skb;
774 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
775 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
776 struct ieee80211_rate *rate;
777 struct ieee80211_sta *sta;
778 unsigned int mrr_rate[3], mrr_tries[3];
779 int i, ret;
780 u16 hw_rate;
781 u16 cts_rate = 0;
782 u16 duration = 0;
783 u8 rc_flags;
784
785 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
786
787 /* XXX endianness */
788 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
789 DMA_TO_DEVICE);
790
791 if (dma_mapping_error(ah->dev, bf->skbaddr))
792 return -ENOSPC;
793
794 if (control)
795 sta = control->sta;
796 else
797 sta = NULL;
798
799 if (!ath5k_merge_ratetbl(sta, bf, info)) {
800 ieee80211_get_tx_rates(info->control.vif,
801 sta, skb, bf->rates,
802 ARRAY_SIZE(bf->rates));
803 }
804
805 rate = ath5k_get_rate(ah->hw, info, bf, 0);
806
807 if (!rate) {
808 ret = -EINVAL;
809 goto err_unmap;
810 }
811
812 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
813 flags |= AR5K_TXDESC_NOACK;
814
815 rc_flags = bf->rates[0].flags;
816
817 hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
818
819 pktlen = skb->len;
820
821 /* FIXME: If we are in g mode and rate is a CCK rate
822 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
823 * from tx power (value is in dB units already) */
824 if (info->control.hw_key) {
825 keyidx = info->control.hw_key->hw_key_idx;
826 pktlen += info->control.hw_key->icv_len;
827 }
828 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
829 flags |= AR5K_TXDESC_RTSENA;
830 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
831 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
832 info->control.vif, pktlen, info));
833 }
834 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
835 flags |= AR5K_TXDESC_CTSENA;
836 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
837 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
838 info->control.vif, pktlen, info));
839 }
840
841 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
842 ieee80211_get_hdrlen_from_skb(skb), padsize,
843 get_hw_packet_type(skb),
844 (ah->ah_txpower.txp_requested * 2),
845 hw_rate,
846 bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
847 cts_rate, duration);
848 if (ret)
849 goto err_unmap;
850
851 /* Set up MRR descriptor */
852 if (ah->ah_capabilities.cap_has_mrr_support) {
853 memset(mrr_rate, 0, sizeof(mrr_rate));
854 memset(mrr_tries, 0, sizeof(mrr_tries));
855
856 for (i = 0; i < 3; i++) {
857
858 rate = ath5k_get_rate(ah->hw, info, bf, i);
859 if (!rate)
860 break;
861
862 mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
863 mrr_tries[i] = bf->rates[i].count;
864 }
865
866 ath5k_hw_setup_mrr_tx_desc(ah, ds,
867 mrr_rate[0], mrr_tries[0],
868 mrr_rate[1], mrr_tries[1],
869 mrr_rate[2], mrr_tries[2]);
870 }
871
872 ds->ds_link = 0;
873 ds->ds_data = bf->skbaddr;
874
875 spin_lock_bh(&txq->lock);
876 list_add_tail(&bf->list, &txq->q);
877 txq->txq_len++;
878 if (txq->link == NULL) /* is this first packet? */
879 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
880 else /* no, so only link it */
881 *txq->link = bf->daddr;
882
883 txq->link = &ds->ds_link;
884 ath5k_hw_start_tx_dma(ah, txq->qnum);
885 spin_unlock_bh(&txq->lock);
886
887 return 0;
888 err_unmap:
889 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
890 return ret;
891 }
892
893 /*******************\
894 * Descriptors setup *
895 \*******************/
896
897 static int
ath5k_desc_alloc(struct ath5k_hw * ah)898 ath5k_desc_alloc(struct ath5k_hw *ah)
899 {
900 struct ath5k_desc *ds;
901 struct ath5k_buf *bf;
902 dma_addr_t da;
903 unsigned int i;
904 int ret;
905
906 /* allocate descriptors */
907 ah->desc_len = sizeof(struct ath5k_desc) *
908 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
909
910 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
911 &ah->desc_daddr, GFP_KERNEL);
912 if (ah->desc == NULL) {
913 ATH5K_ERR(ah, "can't allocate descriptors\n");
914 ret = -ENOMEM;
915 goto err;
916 }
917 ds = ah->desc;
918 da = ah->desc_daddr;
919 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
920 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
921
922 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
923 sizeof(struct ath5k_buf), GFP_KERNEL);
924 if (bf == NULL) {
925 ATH5K_ERR(ah, "can't allocate bufptr\n");
926 ret = -ENOMEM;
927 goto err_free;
928 }
929 ah->bufptr = bf;
930
931 INIT_LIST_HEAD(&ah->rxbuf);
932 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
933 bf->desc = ds;
934 bf->daddr = da;
935 list_add_tail(&bf->list, &ah->rxbuf);
936 }
937
938 INIT_LIST_HEAD(&ah->txbuf);
939 ah->txbuf_len = ATH_TXBUF;
940 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
941 bf->desc = ds;
942 bf->daddr = da;
943 list_add_tail(&bf->list, &ah->txbuf);
944 }
945
946 /* beacon buffers */
947 INIT_LIST_HEAD(&ah->bcbuf);
948 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
949 bf->desc = ds;
950 bf->daddr = da;
951 list_add_tail(&bf->list, &ah->bcbuf);
952 }
953
954 return 0;
955 err_free:
956 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
957 err:
958 ah->desc = NULL;
959 return ret;
960 }
961
962 void
ath5k_txbuf_free_skb(struct ath5k_hw * ah,struct ath5k_buf * bf)963 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
964 {
965 BUG_ON(!bf);
966 if (!bf->skb)
967 return;
968 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
969 DMA_TO_DEVICE);
970 ieee80211_free_txskb(ah->hw, bf->skb);
971 bf->skb = NULL;
972 bf->skbaddr = 0;
973 bf->desc->ds_data = 0;
974 }
975
976 void
ath5k_rxbuf_free_skb(struct ath5k_hw * ah,struct ath5k_buf * bf)977 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
978 {
979 struct ath_common *common = ath5k_hw_common(ah);
980
981 BUG_ON(!bf);
982 if (!bf->skb)
983 return;
984 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
985 DMA_FROM_DEVICE);
986 dev_kfree_skb_any(bf->skb);
987 bf->skb = NULL;
988 bf->skbaddr = 0;
989 bf->desc->ds_data = 0;
990 }
991
992 static void
ath5k_desc_free(struct ath5k_hw * ah)993 ath5k_desc_free(struct ath5k_hw *ah)
994 {
995 struct ath5k_buf *bf;
996
997 list_for_each_entry(bf, &ah->txbuf, list)
998 ath5k_txbuf_free_skb(ah, bf);
999 list_for_each_entry(bf, &ah->rxbuf, list)
1000 ath5k_rxbuf_free_skb(ah, bf);
1001 list_for_each_entry(bf, &ah->bcbuf, list)
1002 ath5k_txbuf_free_skb(ah, bf);
1003
1004 /* Free memory associated with all descriptors */
1005 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
1006 ah->desc = NULL;
1007 ah->desc_daddr = 0;
1008
1009 kfree(ah->bufptr);
1010 ah->bufptr = NULL;
1011 }
1012
1013
1014 /**************\
1015 * Queues setup *
1016 \**************/
1017
1018 static struct ath5k_txq *
ath5k_txq_setup(struct ath5k_hw * ah,int qtype,int subtype)1019 ath5k_txq_setup(struct ath5k_hw *ah,
1020 int qtype, int subtype)
1021 {
1022 struct ath5k_txq *txq;
1023 struct ath5k_txq_info qi = {
1024 .tqi_subtype = subtype,
1025 /* XXX: default values not correct for B and XR channels,
1026 * but who cares? */
1027 .tqi_aifs = AR5K_TUNE_AIFS,
1028 .tqi_cw_min = AR5K_TUNE_CWMIN,
1029 .tqi_cw_max = AR5K_TUNE_CWMAX
1030 };
1031 int qnum;
1032
1033 /*
1034 * Enable interrupts only for EOL and DESC conditions.
1035 * We mark tx descriptors to receive a DESC interrupt
1036 * when a tx queue gets deep; otherwise we wait for the
1037 * EOL to reap descriptors. Note that this is done to
1038 * reduce interrupt load and this only defers reaping
1039 * descriptors, never transmitting frames. Aside from
1040 * reducing interrupts this also permits more concurrency.
1041 * The only potential downside is if the tx queue backs
1042 * up in which case the top half of the kernel may backup
1043 * due to a lack of tx descriptors.
1044 */
1045 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1046 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1047 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1048 if (qnum < 0) {
1049 /*
1050 * NB: don't print a message, this happens
1051 * normally on parts with too few tx queues
1052 */
1053 return ERR_PTR(qnum);
1054 }
1055 txq = &ah->txqs[qnum];
1056 if (!txq->setup) {
1057 txq->qnum = qnum;
1058 txq->link = NULL;
1059 INIT_LIST_HEAD(&txq->q);
1060 spin_lock_init(&txq->lock);
1061 txq->setup = true;
1062 txq->txq_len = 0;
1063 txq->txq_max = ATH5K_TXQ_LEN_MAX;
1064 txq->txq_poll_mark = false;
1065 txq->txq_stuck = 0;
1066 }
1067 return &ah->txqs[qnum];
1068 }
1069
1070 static int
ath5k_beaconq_setup(struct ath5k_hw * ah)1071 ath5k_beaconq_setup(struct ath5k_hw *ah)
1072 {
1073 struct ath5k_txq_info qi = {
1074 /* XXX: default values not correct for B and XR channels,
1075 * but who cares? */
1076 .tqi_aifs = AR5K_TUNE_AIFS,
1077 .tqi_cw_min = AR5K_TUNE_CWMIN,
1078 .tqi_cw_max = AR5K_TUNE_CWMAX,
1079 /* NB: for dynamic turbo, don't enable any other interrupts */
1080 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1081 };
1082
1083 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1084 }
1085
1086 static int
ath5k_beaconq_config(struct ath5k_hw * ah)1087 ath5k_beaconq_config(struct ath5k_hw *ah)
1088 {
1089 struct ath5k_txq_info qi;
1090 int ret;
1091
1092 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1093 if (ret)
1094 goto err;
1095
1096 if (ah->opmode == NL80211_IFTYPE_AP ||
1097 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1098 /*
1099 * Always burst out beacon and CAB traffic
1100 * (aifs = cwmin = cwmax = 0)
1101 */
1102 qi.tqi_aifs = 0;
1103 qi.tqi_cw_min = 0;
1104 qi.tqi_cw_max = 0;
1105 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1106 /*
1107 * Adhoc mode; backoff between 0 and (2 * cw_min).
1108 */
1109 qi.tqi_aifs = 0;
1110 qi.tqi_cw_min = 0;
1111 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1112 }
1113
1114 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1115 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1116 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1117
1118 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1119 if (ret) {
1120 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1121 "hardware queue!\n", __func__);
1122 goto err;
1123 }
1124 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1125 if (ret)
1126 goto err;
1127
1128 /* reconfigure cabq with ready time to 80% of beacon_interval */
1129 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1130 if (ret)
1131 goto err;
1132
1133 qi.tqi_ready_time = (ah->bintval * 80) / 100;
1134 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1135 if (ret)
1136 goto err;
1137
1138 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1139 err:
1140 return ret;
1141 }
1142
1143 /**
1144 * ath5k_drain_tx_buffs - Empty tx buffers
1145 *
1146 * @ah: The &struct ath5k_hw
1147 *
1148 * Empty tx buffers from all queues in preparation
1149 * of a reset or during shutdown.
1150 *
1151 * NB: this assumes output has been stopped and
1152 * we do not need to block ath5k_tx_tasklet
1153 */
1154 static void
ath5k_drain_tx_buffs(struct ath5k_hw * ah)1155 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1156 {
1157 struct ath5k_txq *txq;
1158 struct ath5k_buf *bf, *bf0;
1159 int i;
1160
1161 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1162 if (ah->txqs[i].setup) {
1163 txq = &ah->txqs[i];
1164 spin_lock_bh(&txq->lock);
1165 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1166 ath5k_debug_printtxbuf(ah, bf);
1167
1168 ath5k_txbuf_free_skb(ah, bf);
1169
1170 spin_lock(&ah->txbuflock);
1171 list_move_tail(&bf->list, &ah->txbuf);
1172 ah->txbuf_len++;
1173 txq->txq_len--;
1174 spin_unlock(&ah->txbuflock);
1175 }
1176 txq->link = NULL;
1177 txq->txq_poll_mark = false;
1178 spin_unlock_bh(&txq->lock);
1179 }
1180 }
1181 }
1182
1183 static void
ath5k_txq_release(struct ath5k_hw * ah)1184 ath5k_txq_release(struct ath5k_hw *ah)
1185 {
1186 struct ath5k_txq *txq = ah->txqs;
1187 unsigned int i;
1188
1189 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1190 if (txq->setup) {
1191 ath5k_hw_release_tx_queue(ah, txq->qnum);
1192 txq->setup = false;
1193 }
1194 }
1195
1196
1197 /*************\
1198 * RX Handling *
1199 \*************/
1200
1201 /*
1202 * Enable the receive h/w following a reset.
1203 */
1204 static int
ath5k_rx_start(struct ath5k_hw * ah)1205 ath5k_rx_start(struct ath5k_hw *ah)
1206 {
1207 struct ath_common *common = ath5k_hw_common(ah);
1208 struct ath5k_buf *bf;
1209 int ret;
1210
1211 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1212
1213 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1214 common->cachelsz, common->rx_bufsize);
1215
1216 spin_lock_bh(&ah->rxbuflock);
1217 ah->rxlink = NULL;
1218 list_for_each_entry(bf, &ah->rxbuf, list) {
1219 ret = ath5k_rxbuf_setup(ah, bf);
1220 if (ret != 0) {
1221 spin_unlock_bh(&ah->rxbuflock);
1222 goto err;
1223 }
1224 }
1225 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1226 ath5k_hw_set_rxdp(ah, bf->daddr);
1227 spin_unlock_bh(&ah->rxbuflock);
1228
1229 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1230 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1231 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1232
1233 return 0;
1234 err:
1235 return ret;
1236 }
1237
1238 /*
1239 * Disable the receive logic on PCU (DRU)
1240 * In preparation for a shutdown.
1241 *
1242 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1243 * does.
1244 */
1245 static void
ath5k_rx_stop(struct ath5k_hw * ah)1246 ath5k_rx_stop(struct ath5k_hw *ah)
1247 {
1248
1249 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1250 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1251
1252 ath5k_debug_printrxbuffs(ah);
1253 }
1254
1255 static unsigned int
ath5k_rx_decrypted(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_rx_status * rs)1256 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1257 struct ath5k_rx_status *rs)
1258 {
1259 struct ath_common *common = ath5k_hw_common(ah);
1260 struct ieee80211_hdr *hdr = (void *)skb->data;
1261 unsigned int keyix, hlen;
1262
1263 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1264 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1265 return RX_FLAG_DECRYPTED;
1266
1267 /* Apparently when a default key is used to decrypt the packet
1268 the hw does not set the index used to decrypt. In such cases
1269 get the index from the packet. */
1270 hlen = ieee80211_hdrlen(hdr->frame_control);
1271 if (ieee80211_has_protected(hdr->frame_control) &&
1272 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1273 skb->len >= hlen + 4) {
1274 keyix = skb->data[hlen + 3] >> 6;
1275
1276 if (test_bit(keyix, common->keymap))
1277 return RX_FLAG_DECRYPTED;
1278 }
1279
1280 return 0;
1281 }
1282
1283
1284 static void
ath5k_check_ibss_tsf(struct ath5k_hw * ah,struct sk_buff * skb,struct ieee80211_rx_status * rxs)1285 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1286 struct ieee80211_rx_status *rxs)
1287 {
1288 u64 tsf, bc_tstamp;
1289 u32 hw_tu;
1290 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1291
1292 if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1293 /*
1294 * Received an IBSS beacon with the same BSSID. Hardware *must*
1295 * have updated the local TSF. We have to work around various
1296 * hardware bugs, though...
1297 */
1298 tsf = ath5k_hw_get_tsf64(ah);
1299 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1300 hw_tu = TSF_TO_TU(tsf);
1301
1302 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1303 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1304 (unsigned long long)bc_tstamp,
1305 (unsigned long long)rxs->mactime,
1306 (unsigned long long)(rxs->mactime - bc_tstamp),
1307 (unsigned long long)tsf);
1308
1309 /*
1310 * Sometimes the HW will give us a wrong tstamp in the rx
1311 * status, causing the timestamp extension to go wrong.
1312 * (This seems to happen especially with beacon frames bigger
1313 * than 78 byte (incl. FCS))
1314 * But we know that the receive timestamp must be later than the
1315 * timestamp of the beacon since HW must have synced to that.
1316 *
1317 * NOTE: here we assume mactime to be after the frame was
1318 * received, not like mac80211 which defines it at the start.
1319 */
1320 if (bc_tstamp > rxs->mactime) {
1321 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1322 "fixing mactime from %llx to %llx\n",
1323 (unsigned long long)rxs->mactime,
1324 (unsigned long long)tsf);
1325 rxs->mactime = tsf;
1326 }
1327
1328 /*
1329 * Local TSF might have moved higher than our beacon timers,
1330 * in that case we have to update them to continue sending
1331 * beacons. This also takes care of synchronizing beacon sending
1332 * times with other stations.
1333 */
1334 if (hw_tu >= ah->nexttbtt)
1335 ath5k_beacon_update_timers(ah, bc_tstamp);
1336
1337 /* Check if the beacon timers are still correct, because a TSF
1338 * update might have created a window between them - for a
1339 * longer description see the comment of this function: */
1340 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1341 ath5k_beacon_update_timers(ah, bc_tstamp);
1342 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1343 "fixed beacon timers after beacon receive\n");
1344 }
1345 }
1346 }
1347
1348 /*
1349 * Compute padding position. skb must contain an IEEE 802.11 frame
1350 */
ath5k_common_padpos(struct sk_buff * skb)1351 static int ath5k_common_padpos(struct sk_buff *skb)
1352 {
1353 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1354 __le16 frame_control = hdr->frame_control;
1355 int padpos = 24;
1356
1357 if (ieee80211_has_a4(frame_control))
1358 padpos += ETH_ALEN;
1359
1360 if (ieee80211_is_data_qos(frame_control))
1361 padpos += IEEE80211_QOS_CTL_LEN;
1362
1363 return padpos;
1364 }
1365
1366 /*
1367 * This function expects an 802.11 frame and returns the number of
1368 * bytes added, or -1 if we don't have enough header room.
1369 */
ath5k_add_padding(struct sk_buff * skb)1370 static int ath5k_add_padding(struct sk_buff *skb)
1371 {
1372 int padpos = ath5k_common_padpos(skb);
1373 int padsize = padpos & 3;
1374
1375 if (padsize && skb->len > padpos) {
1376
1377 if (skb_headroom(skb) < padsize)
1378 return -1;
1379
1380 skb_push(skb, padsize);
1381 memmove(skb->data, skb->data + padsize, padpos);
1382 return padsize;
1383 }
1384
1385 return 0;
1386 }
1387
1388 /*
1389 * The MAC header is padded to have 32-bit boundary if the
1390 * packet payload is non-zero. The general calculation for
1391 * padsize would take into account odd header lengths:
1392 * padsize = 4 - (hdrlen & 3); however, since only
1393 * even-length headers are used, padding can only be 0 or 2
1394 * bytes and we can optimize this a bit. We must not try to
1395 * remove padding from short control frames that do not have a
1396 * payload.
1397 *
1398 * This function expects an 802.11 frame and returns the number of
1399 * bytes removed.
1400 */
ath5k_remove_padding(struct sk_buff * skb)1401 static int ath5k_remove_padding(struct sk_buff *skb)
1402 {
1403 int padpos = ath5k_common_padpos(skb);
1404 int padsize = padpos & 3;
1405
1406 if (padsize && skb->len >= padpos + padsize) {
1407 memmove(skb->data + padsize, skb->data, padpos);
1408 skb_pull(skb, padsize);
1409 return padsize;
1410 }
1411
1412 return 0;
1413 }
1414
1415 static void
ath5k_receive_frame(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_rx_status * rs)1416 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1417 struct ath5k_rx_status *rs)
1418 {
1419 struct ieee80211_rx_status *rxs;
1420 struct ath_common *common = ath5k_hw_common(ah);
1421
1422 ath5k_remove_padding(skb);
1423
1424 rxs = IEEE80211_SKB_RXCB(skb);
1425
1426 rxs->flag = 0;
1427 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1428 rxs->flag |= RX_FLAG_MMIC_ERROR;
1429 if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1430 rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1431
1432
1433 /*
1434 * always extend the mac timestamp, since this information is
1435 * also needed for proper IBSS merging.
1436 *
1437 * XXX: it might be too late to do it here, since rs_tstamp is
1438 * 15bit only. that means TSF extension has to be done within
1439 * 32768usec (about 32ms). it might be necessary to move this to
1440 * the interrupt handler, like it is done in madwifi.
1441 */
1442 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1443 rxs->flag |= RX_FLAG_MACTIME_END;
1444
1445 rxs->freq = ah->curchan->center_freq;
1446 rxs->band = ah->curchan->band;
1447
1448 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1449
1450 rxs->antenna = rs->rs_antenna;
1451
1452 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1453 ah->stats.antenna_rx[rs->rs_antenna]++;
1454 else
1455 ah->stats.antenna_rx[0]++; /* invalid */
1456
1457 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1458 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1459 switch (ah->ah_bwmode) {
1460 case AR5K_BWMODE_5MHZ:
1461 rxs->bw = RATE_INFO_BW_5;
1462 break;
1463 case AR5K_BWMODE_10MHZ:
1464 rxs->bw = RATE_INFO_BW_10;
1465 break;
1466 default:
1467 break;
1468 }
1469
1470 if (rs->rs_rate ==
1471 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1472 rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1473
1474 trace_ath5k_rx(ah, skb);
1475
1476 if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1477 ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1478
1479 /* check beacons in IBSS mode */
1480 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1481 ath5k_check_ibss_tsf(ah, skb, rxs);
1482 }
1483
1484 ieee80211_rx(ah->hw, skb);
1485 }
1486
1487 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1488 *
1489 * Check if we want to further process this frame or not. Also update
1490 * statistics. Return true if we want this frame, false if not.
1491 */
1492 static bool
ath5k_receive_frame_ok(struct ath5k_hw * ah,struct ath5k_rx_status * rs)1493 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1494 {
1495 ah->stats.rx_all_count++;
1496 ah->stats.rx_bytes_count += rs->rs_datalen;
1497
1498 if (unlikely(rs->rs_status)) {
1499 unsigned int filters;
1500
1501 if (rs->rs_status & AR5K_RXERR_CRC)
1502 ah->stats.rxerr_crc++;
1503 if (rs->rs_status & AR5K_RXERR_FIFO)
1504 ah->stats.rxerr_fifo++;
1505 if (rs->rs_status & AR5K_RXERR_PHY) {
1506 ah->stats.rxerr_phy++;
1507 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1508 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1509
1510 /*
1511 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1512 * These restarts happen when the radio resynchronizes to a stronger frame
1513 * while receiving a weaker frame. Here we receive the prefix of the weak
1514 * frame. Since these are incomplete packets, mark their CRC as invalid.
1515 */
1516 if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1517 rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1518 rs->rs_status |= AR5K_RXERR_CRC;
1519 rs->rs_status &= ~AR5K_RXERR_PHY;
1520 } else {
1521 return false;
1522 }
1523 }
1524 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1525 /*
1526 * Decrypt error. If the error occurred
1527 * because there was no hardware key, then
1528 * let the frame through so the upper layers
1529 * can process it. This is necessary for 5210
1530 * parts which have no way to setup a ``clear''
1531 * key cache entry.
1532 *
1533 * XXX do key cache faulting
1534 */
1535 ah->stats.rxerr_decrypt++;
1536 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1537 !(rs->rs_status & AR5K_RXERR_CRC))
1538 return true;
1539 }
1540 if (rs->rs_status & AR5K_RXERR_MIC) {
1541 ah->stats.rxerr_mic++;
1542 return true;
1543 }
1544
1545 /*
1546 * Reject any frames with non-crypto errors, and take into account the
1547 * current FIF_* filters.
1548 */
1549 filters = AR5K_RXERR_DECRYPT;
1550 if (ah->fif_filter_flags & FIF_FCSFAIL)
1551 filters |= AR5K_RXERR_CRC;
1552
1553 if (rs->rs_status & ~filters)
1554 return false;
1555 }
1556
1557 if (unlikely(rs->rs_more)) {
1558 ah->stats.rxerr_jumbo++;
1559 return false;
1560 }
1561 return true;
1562 }
1563
1564 static void
ath5k_set_current_imask(struct ath5k_hw * ah)1565 ath5k_set_current_imask(struct ath5k_hw *ah)
1566 {
1567 enum ath5k_int imask;
1568 unsigned long flags;
1569
1570 if (test_bit(ATH_STAT_RESET, ah->status))
1571 return;
1572
1573 spin_lock_irqsave(&ah->irqlock, flags);
1574 imask = ah->imask;
1575 if (ah->rx_pending)
1576 imask &= ~AR5K_INT_RX_ALL;
1577 if (ah->tx_pending)
1578 imask &= ~AR5K_INT_TX_ALL;
1579 ath5k_hw_set_imr(ah, imask);
1580 spin_unlock_irqrestore(&ah->irqlock, flags);
1581 }
1582
1583 static void
ath5k_tasklet_rx(struct tasklet_struct * t)1584 ath5k_tasklet_rx(struct tasklet_struct *t)
1585 {
1586 struct ath5k_rx_status rs = {};
1587 struct sk_buff *skb, *next_skb;
1588 dma_addr_t next_skb_addr;
1589 struct ath5k_hw *ah = from_tasklet(ah, t, rxtq);
1590 struct ath_common *common = ath5k_hw_common(ah);
1591 struct ath5k_buf *bf;
1592 struct ath5k_desc *ds;
1593 int ret;
1594
1595 spin_lock(&ah->rxbuflock);
1596 if (list_empty(&ah->rxbuf)) {
1597 ATH5K_WARN(ah, "empty rx buf pool\n");
1598 goto unlock;
1599 }
1600 do {
1601 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1602 BUG_ON(bf->skb == NULL);
1603 skb = bf->skb;
1604 ds = bf->desc;
1605
1606 /* bail if HW is still using self-linked descriptor */
1607 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1608 break;
1609
1610 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1611 if (unlikely(ret == -EINPROGRESS))
1612 break;
1613 else if (unlikely(ret)) {
1614 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1615 ah->stats.rxerr_proc++;
1616 break;
1617 }
1618
1619 if (ath5k_receive_frame_ok(ah, &rs)) {
1620 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1621
1622 /*
1623 * If we can't replace bf->skb with a new skb under
1624 * memory pressure, just skip this packet
1625 */
1626 if (!next_skb)
1627 goto next;
1628
1629 dma_unmap_single(ah->dev, bf->skbaddr,
1630 common->rx_bufsize,
1631 DMA_FROM_DEVICE);
1632
1633 skb_put(skb, rs.rs_datalen);
1634
1635 ath5k_receive_frame(ah, skb, &rs);
1636
1637 bf->skb = next_skb;
1638 bf->skbaddr = next_skb_addr;
1639 }
1640 next:
1641 list_move_tail(&bf->list, &ah->rxbuf);
1642 } while (ath5k_rxbuf_setup(ah, bf) == 0);
1643 unlock:
1644 spin_unlock(&ah->rxbuflock);
1645 ah->rx_pending = false;
1646 ath5k_set_current_imask(ah);
1647 }
1648
1649
1650 /*************\
1651 * TX Handling *
1652 \*************/
1653
1654 void
ath5k_tx_queue(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath5k_txq * txq,struct ieee80211_tx_control * control)1655 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1656 struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1657 {
1658 struct ath5k_hw *ah = hw->priv;
1659 struct ath5k_buf *bf;
1660 unsigned long flags;
1661 int padsize;
1662
1663 trace_ath5k_tx(ah, skb, txq);
1664
1665 /*
1666 * The hardware expects the header padded to 4 byte boundaries.
1667 * If this is not the case, we add the padding after the header.
1668 */
1669 padsize = ath5k_add_padding(skb);
1670 if (padsize < 0) {
1671 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1672 " headroom to pad");
1673 goto drop_packet;
1674 }
1675
1676 if (txq->txq_len >= txq->txq_max &&
1677 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1678 ieee80211_stop_queue(hw, txq->qnum);
1679
1680 spin_lock_irqsave(&ah->txbuflock, flags);
1681 if (list_empty(&ah->txbuf)) {
1682 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1683 spin_unlock_irqrestore(&ah->txbuflock, flags);
1684 ieee80211_stop_queues(hw);
1685 goto drop_packet;
1686 }
1687 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1688 list_del(&bf->list);
1689 ah->txbuf_len--;
1690 if (list_empty(&ah->txbuf))
1691 ieee80211_stop_queues(hw);
1692 spin_unlock_irqrestore(&ah->txbuflock, flags);
1693
1694 bf->skb = skb;
1695
1696 if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1697 bf->skb = NULL;
1698 spin_lock_irqsave(&ah->txbuflock, flags);
1699 list_add_tail(&bf->list, &ah->txbuf);
1700 ah->txbuf_len++;
1701 spin_unlock_irqrestore(&ah->txbuflock, flags);
1702 goto drop_packet;
1703 }
1704 return;
1705
1706 drop_packet:
1707 ieee80211_free_txskb(hw, skb);
1708 }
1709
1710 static void
ath5k_tx_frame_completed(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_txq * txq,struct ath5k_tx_status * ts,struct ath5k_buf * bf)1711 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1712 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1713 struct ath5k_buf *bf)
1714 {
1715 struct ieee80211_tx_info *info;
1716 u8 tries[3];
1717 int i;
1718 int size = 0;
1719
1720 ah->stats.tx_all_count++;
1721 ah->stats.tx_bytes_count += skb->len;
1722 info = IEEE80211_SKB_CB(skb);
1723
1724 size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1725 memcpy(info->status.rates, bf->rates, size);
1726
1727 tries[0] = info->status.rates[0].count;
1728 tries[1] = info->status.rates[1].count;
1729 tries[2] = info->status.rates[2].count;
1730
1731 ieee80211_tx_info_clear_status(info);
1732
1733 for (i = 0; i < ts->ts_final_idx; i++) {
1734 struct ieee80211_tx_rate *r =
1735 &info->status.rates[i];
1736
1737 r->count = tries[i];
1738 }
1739
1740 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1741 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1742
1743 if (unlikely(ts->ts_status)) {
1744 ah->stats.ack_fail++;
1745 if (ts->ts_status & AR5K_TXERR_FILT) {
1746 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1747 ah->stats.txerr_filt++;
1748 }
1749 if (ts->ts_status & AR5K_TXERR_XRETRY)
1750 ah->stats.txerr_retry++;
1751 if (ts->ts_status & AR5K_TXERR_FIFO)
1752 ah->stats.txerr_fifo++;
1753 } else {
1754 info->flags |= IEEE80211_TX_STAT_ACK;
1755 info->status.ack_signal = ts->ts_rssi;
1756
1757 /* count the successful attempt as well */
1758 info->status.rates[ts->ts_final_idx].count++;
1759 }
1760
1761 /*
1762 * Remove MAC header padding before giving the frame
1763 * back to mac80211.
1764 */
1765 ath5k_remove_padding(skb);
1766
1767 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1768 ah->stats.antenna_tx[ts->ts_antenna]++;
1769 else
1770 ah->stats.antenna_tx[0]++; /* invalid */
1771
1772 trace_ath5k_tx_complete(ah, skb, txq, ts);
1773 ieee80211_tx_status_skb(ah->hw, skb);
1774 }
1775
1776 static void
ath5k_tx_processq(struct ath5k_hw * ah,struct ath5k_txq * txq)1777 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1778 {
1779 struct ath5k_tx_status ts = {};
1780 struct ath5k_buf *bf, *bf0;
1781 struct ath5k_desc *ds;
1782 struct sk_buff *skb;
1783 int ret;
1784
1785 spin_lock(&txq->lock);
1786 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1787
1788 txq->txq_poll_mark = false;
1789
1790 /* skb might already have been processed last time. */
1791 if (bf->skb != NULL) {
1792 ds = bf->desc;
1793
1794 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1795 if (unlikely(ret == -EINPROGRESS))
1796 break;
1797 else if (unlikely(ret)) {
1798 ATH5K_ERR(ah,
1799 "error %d while processing "
1800 "queue %u\n", ret, txq->qnum);
1801 break;
1802 }
1803
1804 skb = bf->skb;
1805 bf->skb = NULL;
1806
1807 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1808 DMA_TO_DEVICE);
1809 ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1810 }
1811
1812 /*
1813 * It's possible that the hardware can say the buffer is
1814 * completed when it hasn't yet loaded the ds_link from
1815 * host memory and moved on.
1816 * Always keep the last descriptor to avoid HW races...
1817 */
1818 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1819 spin_lock(&ah->txbuflock);
1820 list_move_tail(&bf->list, &ah->txbuf);
1821 ah->txbuf_len++;
1822 txq->txq_len--;
1823 spin_unlock(&ah->txbuflock);
1824 }
1825 }
1826 spin_unlock(&txq->lock);
1827 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1828 ieee80211_wake_queue(ah->hw, txq->qnum);
1829 }
1830
1831 static void
ath5k_tasklet_tx(struct tasklet_struct * t)1832 ath5k_tasklet_tx(struct tasklet_struct *t)
1833 {
1834 int i;
1835 struct ath5k_hw *ah = from_tasklet(ah, t, txtq);
1836
1837 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1838 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1839 ath5k_tx_processq(ah, &ah->txqs[i]);
1840
1841 ah->tx_pending = false;
1842 ath5k_set_current_imask(ah);
1843 }
1844
1845
1846 /*****************\
1847 * Beacon handling *
1848 \*****************/
1849
1850 /*
1851 * Setup the beacon frame for transmit.
1852 */
1853 static int
ath5k_beacon_setup(struct ath5k_hw * ah,struct ath5k_buf * bf)1854 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1855 {
1856 struct sk_buff *skb = bf->skb;
1857 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1858 struct ath5k_desc *ds;
1859 int ret = 0;
1860 u8 antenna;
1861 u32 flags;
1862 const int padsize = 0;
1863
1864 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1865 DMA_TO_DEVICE);
1866 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1867 "skbaddr %llx\n", skb, skb->data, skb->len,
1868 (unsigned long long)bf->skbaddr);
1869
1870 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1871 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1872 dev_kfree_skb_any(skb);
1873 bf->skb = NULL;
1874 return -EIO;
1875 }
1876
1877 ds = bf->desc;
1878 antenna = ah->ah_tx_ant;
1879
1880 flags = AR5K_TXDESC_NOACK;
1881 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1882 ds->ds_link = bf->daddr; /* self-linked */
1883 flags |= AR5K_TXDESC_VEOL;
1884 } else
1885 ds->ds_link = 0;
1886
1887 /*
1888 * If we use multiple antennas on AP and use
1889 * the Sectored AP scenario, switch antenna every
1890 * 4 beacons to make sure everybody hears our AP.
1891 * When a client tries to associate, hw will keep
1892 * track of the tx antenna to be used for this client
1893 * automatically, based on ACKed packets.
1894 *
1895 * Note: AP still listens and transmits RTS on the
1896 * default antenna which is supposed to be an omni.
1897 *
1898 * Note2: On sectored scenarios it's possible to have
1899 * multiple antennas (1 omni -- the default -- and 14
1900 * sectors), so if we choose to actually support this
1901 * mode, we need to allow the user to set how many antennas
1902 * we have and tweak the code below to send beacons
1903 * on all of them.
1904 */
1905 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1906 antenna = ah->bsent & 4 ? 2 : 1;
1907
1908
1909 /* FIXME: If we are in g mode and rate is a CCK rate
1910 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1911 * from tx power (value is in dB units already) */
1912 ds->ds_data = bf->skbaddr;
1913 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1914 ieee80211_get_hdrlen_from_skb(skb), padsize,
1915 AR5K_PKT_TYPE_BEACON,
1916 (ah->ah_txpower.txp_requested * 2),
1917 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1918 1, AR5K_TXKEYIX_INVALID,
1919 antenna, flags, 0, 0);
1920 if (ret)
1921 goto err_unmap;
1922
1923 return 0;
1924 err_unmap:
1925 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1926 return ret;
1927 }
1928
1929 /*
1930 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1931 * this is called only once at config_bss time, for AP we do it every
1932 * SWBA interrupt so that the TIM will reflect buffered frames.
1933 *
1934 * Called with the beacon lock.
1935 */
1936 int
ath5k_beacon_update(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1937 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1938 {
1939 int ret;
1940 struct ath5k_hw *ah = hw->priv;
1941 struct ath5k_vif *avf;
1942 struct sk_buff *skb;
1943
1944 if (WARN_ON(!vif)) {
1945 ret = -EINVAL;
1946 goto out;
1947 }
1948
1949 skb = ieee80211_beacon_get(hw, vif, 0);
1950
1951 if (!skb) {
1952 ret = -ENOMEM;
1953 goto out;
1954 }
1955
1956 avf = (void *)vif->drv_priv;
1957 ath5k_txbuf_free_skb(ah, avf->bbuf);
1958 avf->bbuf->skb = skb;
1959 ret = ath5k_beacon_setup(ah, avf->bbuf);
1960 out:
1961 return ret;
1962 }
1963
1964 /*
1965 * Transmit a beacon frame at SWBA. Dynamic updates to the
1966 * frame contents are done as needed and the slot time is
1967 * also adjusted based on current state.
1968 *
1969 * This is called from software irq context (beacontq tasklets)
1970 * or user context from ath5k_beacon_config.
1971 */
1972 static void
ath5k_beacon_send(struct ath5k_hw * ah)1973 ath5k_beacon_send(struct ath5k_hw *ah)
1974 {
1975 struct ieee80211_vif *vif;
1976 struct ath5k_vif *avf;
1977 struct ath5k_buf *bf;
1978 struct sk_buff *skb;
1979 int err;
1980
1981 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1982
1983 /*
1984 * Check if the previous beacon has gone out. If
1985 * not, don't try to post another: skip this
1986 * period and wait for the next. Missed beacons
1987 * indicate a problem and should not occur. If we
1988 * miss too many consecutive beacons reset the device.
1989 */
1990 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1991 ah->bmisscount++;
1992 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1993 "missed %u consecutive beacons\n", ah->bmisscount);
1994 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1995 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1996 "stuck beacon time (%u missed)\n",
1997 ah->bmisscount);
1998 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1999 "stuck beacon, resetting\n");
2000 ieee80211_queue_work(ah->hw, &ah->reset_work);
2001 }
2002 return;
2003 }
2004 if (unlikely(ah->bmisscount != 0)) {
2005 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2006 "resume beacon xmit after %u misses\n",
2007 ah->bmisscount);
2008 ah->bmisscount = 0;
2009 }
2010
2011 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
2012 ah->num_mesh_vifs > 1) ||
2013 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
2014 u64 tsf = ath5k_hw_get_tsf64(ah);
2015 u32 tsftu = TSF_TO_TU(tsf);
2016 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
2017 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
2018 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2019 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
2020 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
2021 } else /* only one interface */
2022 vif = ah->bslot[0];
2023
2024 if (!vif)
2025 return;
2026
2027 avf = (void *)vif->drv_priv;
2028 bf = avf->bbuf;
2029
2030 /*
2031 * Stop any current dma and put the new frame on the queue.
2032 * This should never fail since we check above that no frames
2033 * are still pending on the queue.
2034 */
2035 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
2036 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
2037 /* NB: hw still stops DMA, so proceed */
2038 }
2039
2040 /* refresh the beacon for AP or MESH mode */
2041 if (ah->opmode == NL80211_IFTYPE_AP ||
2042 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
2043 err = ath5k_beacon_update(ah->hw, vif);
2044 if (err)
2045 return;
2046 }
2047
2048 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2049 ah->opmode == NL80211_IFTYPE_MONITOR)) {
2050 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2051 return;
2052 }
2053
2054 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2055
2056 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2057 ath5k_hw_start_tx_dma(ah, ah->bhalq);
2058 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2059 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2060
2061 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2062 while (skb) {
2063 ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2064
2065 if (ah->cabq->txq_len >= ah->cabq->txq_max)
2066 break;
2067
2068 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2069 }
2070
2071 ah->bsent++;
2072 }
2073
2074 /**
2075 * ath5k_beacon_update_timers - update beacon timers
2076 *
2077 * @ah: struct ath5k_hw pointer we are operating on
2078 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2079 * beacon timer update based on the current HW TSF.
2080 *
2081 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2082 * of a received beacon or the current local hardware TSF and write it to the
2083 * beacon timer registers.
2084 *
2085 * This is called in a variety of situations, e.g. when a beacon is received,
2086 * when a TSF update has been detected, but also when an new IBSS is created or
2087 * when we otherwise know we have to update the timers, but we keep it in this
2088 * function to have it all together in one place.
2089 */
2090 void
ath5k_beacon_update_timers(struct ath5k_hw * ah,u64 bc_tsf)2091 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2092 {
2093 u32 nexttbtt, intval, hw_tu, bc_tu;
2094 u64 hw_tsf;
2095
2096 intval = ah->bintval & AR5K_BEACON_PERIOD;
2097 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2098 + ah->num_mesh_vifs > 1) {
2099 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
2100 if (intval < 15)
2101 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2102 intval);
2103 }
2104 if (WARN_ON(!intval))
2105 return;
2106
2107 /* beacon TSF converted to TU */
2108 bc_tu = TSF_TO_TU(bc_tsf);
2109
2110 /* current TSF converted to TU */
2111 hw_tsf = ath5k_hw_get_tsf64(ah);
2112 hw_tu = TSF_TO_TU(hw_tsf);
2113
2114 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2115 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2116 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2117 * configuration we need to make sure it is bigger than that. */
2118
2119 if (bc_tsf == -1) {
2120 /*
2121 * no beacons received, called internally.
2122 * just need to refresh timers based on HW TSF.
2123 */
2124 nexttbtt = roundup(hw_tu + FUDGE, intval);
2125 } else if (bc_tsf == 0) {
2126 /*
2127 * no beacon received, probably called by ath5k_reset_tsf().
2128 * reset TSF to start with 0.
2129 */
2130 nexttbtt = intval;
2131 intval |= AR5K_BEACON_RESET_TSF;
2132 } else if (bc_tsf > hw_tsf) {
2133 /*
2134 * beacon received, SW merge happened but HW TSF not yet updated.
2135 * not possible to reconfigure timers yet, but next time we
2136 * receive a beacon with the same BSSID, the hardware will
2137 * automatically update the TSF and then we need to reconfigure
2138 * the timers.
2139 */
2140 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2141 "need to wait for HW TSF sync\n");
2142 return;
2143 } else {
2144 /*
2145 * most important case for beacon synchronization between STA.
2146 *
2147 * beacon received and HW TSF has been already updated by HW.
2148 * update next TBTT based on the TSF of the beacon, but make
2149 * sure it is ahead of our local TSF timer.
2150 */
2151 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2152 }
2153 #undef FUDGE
2154
2155 ah->nexttbtt = nexttbtt;
2156
2157 intval |= AR5K_BEACON_ENA;
2158 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2159
2160 /*
2161 * debugging output last in order to preserve the time critical aspect
2162 * of this function
2163 */
2164 if (bc_tsf == -1)
2165 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2166 "reconfigured timers based on HW TSF\n");
2167 else if (bc_tsf == 0)
2168 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2169 "reset HW TSF and timers\n");
2170 else
2171 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2172 "updated timers based on beacon TSF\n");
2173
2174 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2175 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2176 (unsigned long long) bc_tsf,
2177 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2178 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2179 intval & AR5K_BEACON_PERIOD,
2180 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2181 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2182 }
2183
2184 /**
2185 * ath5k_beacon_config - Configure the beacon queues and interrupts
2186 *
2187 * @ah: struct ath5k_hw pointer we are operating on
2188 *
2189 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2190 * interrupts to detect TSF updates only.
2191 */
2192 void
ath5k_beacon_config(struct ath5k_hw * ah)2193 ath5k_beacon_config(struct ath5k_hw *ah)
2194 {
2195 spin_lock_bh(&ah->block);
2196 ah->bmisscount = 0;
2197 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2198
2199 if (ah->enable_beacon) {
2200 /*
2201 * In IBSS mode we use a self-linked tx descriptor and let the
2202 * hardware send the beacons automatically. We have to load it
2203 * only once here.
2204 * We use the SWBA interrupt only to keep track of the beacon
2205 * timers in order to detect automatic TSF updates.
2206 */
2207 ath5k_beaconq_config(ah);
2208
2209 ah->imask |= AR5K_INT_SWBA;
2210
2211 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2212 if (ath5k_hw_hasveol(ah))
2213 ath5k_beacon_send(ah);
2214 } else
2215 ath5k_beacon_update_timers(ah, -1);
2216 } else {
2217 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2218 }
2219
2220 ath5k_hw_set_imr(ah, ah->imask);
2221 spin_unlock_bh(&ah->block);
2222 }
2223
ath5k_tasklet_beacon(struct tasklet_struct * t)2224 static void ath5k_tasklet_beacon(struct tasklet_struct *t)
2225 {
2226 struct ath5k_hw *ah = from_tasklet(ah, t, beacontq);
2227
2228 /*
2229 * Software beacon alert--time to send a beacon.
2230 *
2231 * In IBSS mode we use this interrupt just to
2232 * keep track of the next TBTT (target beacon
2233 * transmission time) in order to detect whether
2234 * automatic TSF updates happened.
2235 */
2236 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2237 /* XXX: only if VEOL supported */
2238 u64 tsf = ath5k_hw_get_tsf64(ah);
2239 ah->nexttbtt += ah->bintval;
2240 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2241 "SWBA nexttbtt: %x hw_tu: %x "
2242 "TSF: %llx\n",
2243 ah->nexttbtt,
2244 TSF_TO_TU(tsf),
2245 (unsigned long long) tsf);
2246 } else {
2247 spin_lock(&ah->block);
2248 ath5k_beacon_send(ah);
2249 spin_unlock(&ah->block);
2250 }
2251 }
2252
2253
2254 /********************\
2255 * Interrupt handling *
2256 \********************/
2257
2258 static void
ath5k_intr_calibration_poll(struct ath5k_hw * ah)2259 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2260 {
2261 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2262 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2263 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2264
2265 /* Run ANI only when calibration is not active */
2266
2267 ah->ah_cal_next_ani = jiffies +
2268 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2269 tasklet_schedule(&ah->ani_tasklet);
2270
2271 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2272 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2273 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2274
2275 /* Run calibration only when another calibration
2276 * is not running.
2277 *
2278 * Note: This is for both full/short calibration,
2279 * if it's time for a full one, ath5k_calibrate_work will deal
2280 * with it. */
2281
2282 ah->ah_cal_next_short = jiffies +
2283 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2284 ieee80211_queue_work(ah->hw, &ah->calib_work);
2285 }
2286 /* we could use SWI to generate enough interrupts to meet our
2287 * calibration interval requirements, if necessary:
2288 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2289 }
2290
2291 static void
ath5k_schedule_rx(struct ath5k_hw * ah)2292 ath5k_schedule_rx(struct ath5k_hw *ah)
2293 {
2294 ah->rx_pending = true;
2295 tasklet_schedule(&ah->rxtq);
2296 }
2297
2298 static void
ath5k_schedule_tx(struct ath5k_hw * ah)2299 ath5k_schedule_tx(struct ath5k_hw *ah)
2300 {
2301 ah->tx_pending = true;
2302 tasklet_schedule(&ah->txtq);
2303 }
2304
2305 static irqreturn_t
ath5k_intr(int irq,void * dev_id)2306 ath5k_intr(int irq, void *dev_id)
2307 {
2308 struct ath5k_hw *ah = dev_id;
2309 enum ath5k_int status;
2310 unsigned int counter = 1000;
2311
2312
2313 /*
2314 * If hw is not ready (or detached) and we get an
2315 * interrupt, or if we have no interrupts pending
2316 * (that means it's not for us) skip it.
2317 *
2318 * NOTE: Group 0/1 PCI interface registers are not
2319 * supported on WiSOCs, so we can't check for pending
2320 * interrupts (ISR belongs to another register group
2321 * so we are ok).
2322 */
2323 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2324 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2325 !ath5k_hw_is_intr_pending(ah))))
2326 return IRQ_NONE;
2327
2328 /** Main loop **/
2329 do {
2330 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2331
2332 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2333 status, ah->imask);
2334
2335 /*
2336 * Fatal hw error -> Log and reset
2337 *
2338 * Fatal errors are unrecoverable so we have to
2339 * reset the card. These errors include bus and
2340 * dma errors.
2341 */
2342 if (unlikely(status & AR5K_INT_FATAL)) {
2343
2344 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2345 "fatal int, resetting\n");
2346 ieee80211_queue_work(ah->hw, &ah->reset_work);
2347
2348 /*
2349 * RX Overrun -> Count and reset if needed
2350 *
2351 * Receive buffers are full. Either the bus is busy or
2352 * the CPU is not fast enough to process all received
2353 * frames.
2354 */
2355 } else if (unlikely(status & AR5K_INT_RXORN)) {
2356
2357 /*
2358 * Older chipsets need a reset to come out of this
2359 * condition, but we treat it as RX for newer chips.
2360 * We don't know exactly which versions need a reset
2361 * this guess is copied from the HAL.
2362 */
2363 ah->stats.rxorn_intr++;
2364
2365 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2366 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2367 "rx overrun, resetting\n");
2368 ieee80211_queue_work(ah->hw, &ah->reset_work);
2369 } else
2370 ath5k_schedule_rx(ah);
2371
2372 } else {
2373
2374 /* Software Beacon Alert -> Schedule beacon tasklet */
2375 if (status & AR5K_INT_SWBA)
2376 tasklet_hi_schedule(&ah->beacontq);
2377
2378 /*
2379 * No more RX descriptors -> Just count
2380 *
2381 * NB: the hardware should re-read the link when
2382 * RXE bit is written, but it doesn't work at
2383 * least on older hardware revs.
2384 */
2385 if (status & AR5K_INT_RXEOL)
2386 ah->stats.rxeol_intr++;
2387
2388
2389 /* TX Underrun -> Bump tx trigger level */
2390 if (status & AR5K_INT_TXURN)
2391 ath5k_hw_update_tx_triglevel(ah, true);
2392
2393 /* RX -> Schedule rx tasklet */
2394 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2395 ath5k_schedule_rx(ah);
2396
2397 /* TX -> Schedule tx tasklet */
2398 if (status & (AR5K_INT_TXOK
2399 | AR5K_INT_TXDESC
2400 | AR5K_INT_TXERR
2401 | AR5K_INT_TXEOL))
2402 ath5k_schedule_tx(ah);
2403
2404 /* Missed beacon -> TODO
2405 if (status & AR5K_INT_BMISS)
2406 */
2407
2408 /* MIB event -> Update counters and notify ANI */
2409 if (status & AR5K_INT_MIB) {
2410 ah->stats.mib_intr++;
2411 ath5k_hw_update_mib_counters(ah);
2412 ath5k_ani_mib_intr(ah);
2413 }
2414
2415 /* GPIO -> Notify RFKill layer */
2416 if (status & AR5K_INT_GPIO)
2417 tasklet_schedule(&ah->rf_kill.toggleq);
2418
2419 }
2420
2421 if (ath5k_get_bus_type(ah) == ATH_AHB)
2422 break;
2423
2424 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2425
2426 /*
2427 * Until we handle rx/tx interrupts mask them on IMR
2428 *
2429 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2430 * and unset after we 've handled the interrupts.
2431 */
2432 if (ah->rx_pending || ah->tx_pending)
2433 ath5k_set_current_imask(ah);
2434
2435 if (unlikely(!counter))
2436 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2437
2438 /* Fire up calibration poll */
2439 ath5k_intr_calibration_poll(ah);
2440
2441 return IRQ_HANDLED;
2442 }
2443
2444 /*
2445 * Periodically recalibrate the PHY to account
2446 * for temperature/environment changes.
2447 */
2448 static void
ath5k_calibrate_work(struct work_struct * work)2449 ath5k_calibrate_work(struct work_struct *work)
2450 {
2451 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2452 calib_work);
2453
2454 /* Should we run a full calibration ? */
2455 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2456
2457 ah->ah_cal_next_full = jiffies +
2458 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2459 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2460
2461 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2462 "running full calibration\n");
2463
2464 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2465 /*
2466 * Rfgain is out of bounds, reset the chip
2467 * to load new gain values.
2468 */
2469 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2470 "got new rfgain, resetting\n");
2471 ieee80211_queue_work(ah->hw, &ah->reset_work);
2472 }
2473 } else
2474 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2475
2476
2477 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2478 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2479 ah->curchan->hw_value);
2480
2481 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2482 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2483 ieee80211_frequency_to_channel(
2484 ah->curchan->center_freq));
2485
2486 /* Clear calibration flags */
2487 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2488 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2489 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2490 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2491 }
2492
2493
2494 static void
ath5k_tasklet_ani(struct tasklet_struct * t)2495 ath5k_tasklet_ani(struct tasklet_struct *t)
2496 {
2497 struct ath5k_hw *ah = from_tasklet(ah, t, ani_tasklet);
2498
2499 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2500 ath5k_ani_calibration(ah);
2501 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2502 }
2503
2504
2505 static void
ath5k_tx_complete_poll_work(struct work_struct * work)2506 ath5k_tx_complete_poll_work(struct work_struct *work)
2507 {
2508 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2509 tx_complete_work.work);
2510 struct ath5k_txq *txq;
2511 int i;
2512 bool needreset = false;
2513
2514 if (!test_bit(ATH_STAT_STARTED, ah->status))
2515 return;
2516
2517 mutex_lock(&ah->lock);
2518
2519 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2520 if (ah->txqs[i].setup) {
2521 txq = &ah->txqs[i];
2522 spin_lock_bh(&txq->lock);
2523 if (txq->txq_len > 1) {
2524 if (txq->txq_poll_mark) {
2525 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2526 "TX queue stuck %d\n",
2527 txq->qnum);
2528 needreset = true;
2529 txq->txq_stuck++;
2530 spin_unlock_bh(&txq->lock);
2531 break;
2532 } else {
2533 txq->txq_poll_mark = true;
2534 }
2535 }
2536 spin_unlock_bh(&txq->lock);
2537 }
2538 }
2539
2540 if (needreset) {
2541 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2542 "TX queues stuck, resetting\n");
2543 ath5k_reset(ah, NULL, true);
2544 }
2545
2546 mutex_unlock(&ah->lock);
2547
2548 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2549 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2550 }
2551
2552
2553 /*************************\
2554 * Initialization routines *
2555 \*************************/
2556
2557 static const struct ieee80211_iface_limit if_limits[] = {
2558 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
2559 { .max = 4, .types =
2560 #ifdef CONFIG_MAC80211_MESH
2561 BIT(NL80211_IFTYPE_MESH_POINT) |
2562 #endif
2563 BIT(NL80211_IFTYPE_AP) },
2564 };
2565
2566 static const struct ieee80211_iface_combination if_comb = {
2567 .limits = if_limits,
2568 .n_limits = ARRAY_SIZE(if_limits),
2569 .max_interfaces = 2048,
2570 .num_different_channels = 1,
2571 };
2572
2573 int
ath5k_init_ah(struct ath5k_hw * ah,const struct ath_bus_ops * bus_ops)2574 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2575 {
2576 struct ieee80211_hw *hw = ah->hw;
2577 struct ath_common *common;
2578 int ret;
2579 int csz;
2580
2581 /* Initialize driver private data */
2582 SET_IEEE80211_DEV(hw, ah->dev);
2583 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2584 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2585 ieee80211_hw_set(hw, MFP_CAPABLE);
2586 ieee80211_hw_set(hw, SIGNAL_DBM);
2587 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2588 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2589
2590 hw->wiphy->interface_modes =
2591 BIT(NL80211_IFTYPE_AP) |
2592 BIT(NL80211_IFTYPE_STATION) |
2593 BIT(NL80211_IFTYPE_ADHOC) |
2594 BIT(NL80211_IFTYPE_MESH_POINT);
2595
2596 hw->wiphy->iface_combinations = &if_comb;
2597 hw->wiphy->n_iface_combinations = 1;
2598
2599 /* SW support for IBSS_RSN is provided by mac80211 */
2600 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2601
2602 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2603
2604 /* both antennas can be configured as RX or TX */
2605 hw->wiphy->available_antennas_tx = 0x3;
2606 hw->wiphy->available_antennas_rx = 0x3;
2607
2608 hw->extra_tx_headroom = 2;
2609
2610 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2611
2612 /*
2613 * Mark the device as detached to avoid processing
2614 * interrupts until setup is complete.
2615 */
2616 __set_bit(ATH_STAT_INVALID, ah->status);
2617
2618 ah->opmode = NL80211_IFTYPE_STATION;
2619 ah->bintval = 1000;
2620 mutex_init(&ah->lock);
2621 spin_lock_init(&ah->rxbuflock);
2622 spin_lock_init(&ah->txbuflock);
2623 spin_lock_init(&ah->block);
2624 spin_lock_init(&ah->irqlock);
2625
2626 /* Setup interrupt handler */
2627 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2628 if (ret) {
2629 ATH5K_ERR(ah, "request_irq failed\n");
2630 goto err;
2631 }
2632
2633 common = ath5k_hw_common(ah);
2634 common->ops = &ath5k_common_ops;
2635 common->bus_ops = bus_ops;
2636 common->ah = ah;
2637 common->hw = hw;
2638 common->priv = ah;
2639 common->clockrate = 40;
2640
2641 /*
2642 * Cache line size is used to size and align various
2643 * structures used to communicate with the hardware.
2644 */
2645 ath5k_read_cachesize(common, &csz);
2646 common->cachelsz = csz << 2; /* convert to bytes */
2647
2648 spin_lock_init(&common->cc_lock);
2649
2650 /* Initialize device */
2651 ret = ath5k_hw_init(ah);
2652 if (ret)
2653 goto err_irq;
2654
2655 /* Set up multi-rate retry capabilities */
2656 if (ah->ah_capabilities.cap_has_mrr_support) {
2657 hw->max_rates = 4;
2658 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2659 AR5K_INIT_RETRY_LONG);
2660 }
2661
2662 hw->vif_data_size = sizeof(struct ath5k_vif);
2663
2664 /* Finish private driver data initialization */
2665 ret = ath5k_init(hw);
2666 if (ret)
2667 goto err_ah;
2668
2669 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2670 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2671 ah->ah_mac_srev,
2672 ah->ah_phy_revision);
2673
2674 if (!ah->ah_single_chip) {
2675 /* Single chip radio (!RF5111) */
2676 if (ah->ah_radio_5ghz_revision &&
2677 !ah->ah_radio_2ghz_revision) {
2678 /* No 5GHz support -> report 2GHz radio */
2679 if (!test_bit(AR5K_MODE_11A,
2680 ah->ah_capabilities.cap_mode)) {
2681 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2682 ath5k_chip_name(AR5K_VERSION_RAD,
2683 ah->ah_radio_5ghz_revision),
2684 ah->ah_radio_5ghz_revision);
2685 /* No 2GHz support (5110 and some
2686 * 5GHz only cards) -> report 5GHz radio */
2687 } else if (!test_bit(AR5K_MODE_11B,
2688 ah->ah_capabilities.cap_mode)) {
2689 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2690 ath5k_chip_name(AR5K_VERSION_RAD,
2691 ah->ah_radio_5ghz_revision),
2692 ah->ah_radio_5ghz_revision);
2693 /* Multiband radio */
2694 } else {
2695 ATH5K_INFO(ah, "RF%s multiband radio found"
2696 " (0x%x)\n",
2697 ath5k_chip_name(AR5K_VERSION_RAD,
2698 ah->ah_radio_5ghz_revision),
2699 ah->ah_radio_5ghz_revision);
2700 }
2701 }
2702 /* Multi chip radio (RF5111 - RF2111) ->
2703 * report both 2GHz/5GHz radios */
2704 else if (ah->ah_radio_5ghz_revision &&
2705 ah->ah_radio_2ghz_revision) {
2706 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2707 ath5k_chip_name(AR5K_VERSION_RAD,
2708 ah->ah_radio_5ghz_revision),
2709 ah->ah_radio_5ghz_revision);
2710 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2711 ath5k_chip_name(AR5K_VERSION_RAD,
2712 ah->ah_radio_2ghz_revision),
2713 ah->ah_radio_2ghz_revision);
2714 }
2715 }
2716
2717 ath5k_debug_init_device(ah);
2718
2719 /* ready to process interrupts */
2720 __clear_bit(ATH_STAT_INVALID, ah->status);
2721
2722 return 0;
2723 err_ah:
2724 ath5k_hw_deinit(ah);
2725 err_irq:
2726 free_irq(ah->irq, ah);
2727 err:
2728 return ret;
2729 }
2730
2731 static int
ath5k_stop_locked(struct ath5k_hw * ah)2732 ath5k_stop_locked(struct ath5k_hw *ah)
2733 {
2734
2735 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2736 test_bit(ATH_STAT_INVALID, ah->status));
2737
2738 /*
2739 * Shutdown the hardware and driver:
2740 * stop output from above
2741 * disable interrupts
2742 * turn off timers
2743 * turn off the radio
2744 * clear transmit machinery
2745 * clear receive machinery
2746 * drain and release tx queues
2747 * reclaim beacon resources
2748 * power down hardware
2749 *
2750 * Note that some of this work is not possible if the
2751 * hardware is gone (invalid).
2752 */
2753 ieee80211_stop_queues(ah->hw);
2754
2755 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2756 ath5k_led_off(ah);
2757 ath5k_hw_set_imr(ah, 0);
2758 synchronize_irq(ah->irq);
2759 ath5k_rx_stop(ah);
2760 ath5k_hw_dma_stop(ah);
2761 ath5k_drain_tx_buffs(ah);
2762 ath5k_hw_phy_disable(ah);
2763 }
2764
2765 return 0;
2766 }
2767
ath5k_start(struct ieee80211_hw * hw)2768 int ath5k_start(struct ieee80211_hw *hw)
2769 {
2770 struct ath5k_hw *ah = hw->priv;
2771 struct ath_common *common = ath5k_hw_common(ah);
2772 int ret, i;
2773
2774 mutex_lock(&ah->lock);
2775
2776 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2777
2778 /*
2779 * Stop anything previously setup. This is safe
2780 * no matter this is the first time through or not.
2781 */
2782 ath5k_stop_locked(ah);
2783
2784 /*
2785 * The basic interface to setting the hardware in a good
2786 * state is ``reset''. On return the hardware is known to
2787 * be powered up and with interrupts disabled. This must
2788 * be followed by initialization of the appropriate bits
2789 * and then setup of the interrupt mask.
2790 */
2791 ah->curchan = ah->hw->conf.chandef.chan;
2792 ah->imask = AR5K_INT_RXOK
2793 | AR5K_INT_RXERR
2794 | AR5K_INT_RXEOL
2795 | AR5K_INT_RXORN
2796 | AR5K_INT_TXDESC
2797 | AR5K_INT_TXEOL
2798 | AR5K_INT_FATAL
2799 | AR5K_INT_GLOBAL
2800 | AR5K_INT_MIB;
2801
2802 ret = ath5k_reset(ah, NULL, false);
2803 if (ret)
2804 goto done;
2805
2806 if (!ath5k_modparam_no_hw_rfkill_switch)
2807 ath5k_rfkill_hw_start(ah);
2808
2809 /*
2810 * Reset the key cache since some parts do not reset the
2811 * contents on initial power up or resume from suspend.
2812 */
2813 for (i = 0; i < common->keymax; i++)
2814 ath_hw_keyreset(common, (u16) i);
2815
2816 /* Use higher rates for acks instead of base
2817 * rate */
2818 ah->ah_ack_bitrate_high = true;
2819
2820 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2821 ah->bslot[i] = NULL;
2822
2823 ret = 0;
2824 done:
2825 mutex_unlock(&ah->lock);
2826
2827 set_bit(ATH_STAT_STARTED, ah->status);
2828 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2829 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2830
2831 return ret;
2832 }
2833
ath5k_stop_tasklets(struct ath5k_hw * ah)2834 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2835 {
2836 ah->rx_pending = false;
2837 ah->tx_pending = false;
2838 tasklet_kill(&ah->rxtq);
2839 tasklet_kill(&ah->txtq);
2840 tasklet_kill(&ah->beacontq);
2841 tasklet_kill(&ah->ani_tasklet);
2842 }
2843
2844 /*
2845 * Stop the device, grabbing the top-level lock to protect
2846 * against concurrent entry through ath5k_init (which can happen
2847 * if another thread does a system call and the thread doing the
2848 * stop is preempted).
2849 */
ath5k_stop(struct ieee80211_hw * hw,bool suspend)2850 void ath5k_stop(struct ieee80211_hw *hw, bool suspend)
2851 {
2852 struct ath5k_hw *ah = hw->priv;
2853 int ret;
2854
2855 mutex_lock(&ah->lock);
2856 ret = ath5k_stop_locked(ah);
2857 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2858 /*
2859 * Don't set the card in full sleep mode!
2860 *
2861 * a) When the device is in this state it must be carefully
2862 * woken up or references to registers in the PCI clock
2863 * domain may freeze the bus (and system). This varies
2864 * by chip and is mostly an issue with newer parts
2865 * (madwifi sources mentioned srev >= 0x78) that go to
2866 * sleep more quickly.
2867 *
2868 * b) On older chips full sleep results a weird behaviour
2869 * during wakeup. I tested various cards with srev < 0x78
2870 * and they don't wake up after module reload, a second
2871 * module reload is needed to bring the card up again.
2872 *
2873 * Until we figure out what's going on don't enable
2874 * full chip reset on any chip (this is what Legacy HAL
2875 * and Sam's HAL do anyway). Instead Perform a full reset
2876 * on the device (same as initial state after attach) and
2877 * leave it idle (keep MAC/BB on warm reset) */
2878 ret = ath5k_hw_on_hold(ah);
2879
2880 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2881 "putting device to sleep\n");
2882 }
2883
2884 mutex_unlock(&ah->lock);
2885
2886 ath5k_stop_tasklets(ah);
2887
2888 clear_bit(ATH_STAT_STARTED, ah->status);
2889 cancel_delayed_work_sync(&ah->tx_complete_work);
2890
2891 if (!ath5k_modparam_no_hw_rfkill_switch)
2892 ath5k_rfkill_hw_stop(ah);
2893 }
2894
2895 /*
2896 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2897 * and change to the given channel.
2898 *
2899 * This should be called with ah->lock.
2900 */
2901 static int
ath5k_reset(struct ath5k_hw * ah,struct ieee80211_channel * chan,bool skip_pcu)2902 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2903 bool skip_pcu)
2904 {
2905 struct ath_common *common = ath5k_hw_common(ah);
2906 int ret, ani_mode;
2907 bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2908
2909 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2910
2911 __set_bit(ATH_STAT_RESET, ah->status);
2912
2913 ath5k_hw_set_imr(ah, 0);
2914 synchronize_irq(ah->irq);
2915 ath5k_stop_tasklets(ah);
2916
2917 /* Save ani mode and disable ANI during
2918 * reset. If we don't we might get false
2919 * PHY error interrupts. */
2920 ani_mode = ah->ani_state.ani_mode;
2921 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2922
2923 /* We are going to empty hw queues
2924 * so we should also free any remaining
2925 * tx buffers */
2926 ath5k_drain_tx_buffs(ah);
2927
2928 /* Stop PCU */
2929 ath5k_hw_stop_rx_pcu(ah);
2930
2931 /* Stop DMA
2932 *
2933 * Note: If DMA didn't stop continue
2934 * since only a reset will fix it.
2935 */
2936 ret = ath5k_hw_dma_stop(ah);
2937
2938 /* RF Bus grant won't work if we have pending
2939 * frames
2940 */
2941 if (ret && fast) {
2942 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2943 "DMA didn't stop, falling back to normal reset\n");
2944 fast = false;
2945 }
2946
2947 if (chan)
2948 ah->curchan = chan;
2949
2950 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2951 if (ret) {
2952 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2953 goto err;
2954 }
2955
2956 ret = ath5k_rx_start(ah);
2957 if (ret) {
2958 ATH5K_ERR(ah, "can't start recv logic\n");
2959 goto err;
2960 }
2961
2962 ath5k_ani_init(ah, ani_mode);
2963
2964 /*
2965 * Set calibration intervals
2966 *
2967 * Note: We don't need to run calibration imediately
2968 * since some initial calibration is done on reset
2969 * even for fast channel switching. Also on scanning
2970 * this will get set again and again and it won't get
2971 * executed unless we connect somewhere and spend some
2972 * time on the channel (that's what calibration needs
2973 * anyway to be accurate).
2974 */
2975 ah->ah_cal_next_full = jiffies +
2976 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2977 ah->ah_cal_next_ani = jiffies +
2978 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2979 ah->ah_cal_next_short = jiffies +
2980 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2981
2982 ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2983
2984 /* clear survey data and cycle counters */
2985 memset(&ah->survey, 0, sizeof(ah->survey));
2986 spin_lock_bh(&common->cc_lock);
2987 ath_hw_cycle_counters_update(common);
2988 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2989 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2990 spin_unlock_bh(&common->cc_lock);
2991
2992 /*
2993 * Change channels and update the h/w rate map if we're switching;
2994 * e.g. 11a to 11b/g.
2995 *
2996 * We may be doing a reset in response to an ioctl that changes the
2997 * channel so update any state that might change as a result.
2998 *
2999 * XXX needed?
3000 */
3001 /* ath5k_chan_change(ah, c); */
3002
3003 __clear_bit(ATH_STAT_RESET, ah->status);
3004
3005 ath5k_beacon_config(ah);
3006 /* intrs are enabled by ath5k_beacon_config */
3007
3008 ieee80211_wake_queues(ah->hw);
3009
3010 return 0;
3011 err:
3012 return ret;
3013 }
3014
ath5k_reset_work(struct work_struct * work)3015 static void ath5k_reset_work(struct work_struct *work)
3016 {
3017 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
3018 reset_work);
3019
3020 mutex_lock(&ah->lock);
3021 ath5k_reset(ah, NULL, true);
3022 mutex_unlock(&ah->lock);
3023 }
3024
3025 static int
ath5k_init(struct ieee80211_hw * hw)3026 ath5k_init(struct ieee80211_hw *hw)
3027 {
3028
3029 struct ath5k_hw *ah = hw->priv;
3030 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
3031 struct ath5k_txq *txq;
3032 u8 mac[ETH_ALEN] = {};
3033 int ret;
3034
3035
3036 /*
3037 * Collect the channel list. The 802.11 layer
3038 * is responsible for filtering this list based
3039 * on settings like the phy mode and regulatory
3040 * domain restrictions.
3041 */
3042 ret = ath5k_setup_bands(hw);
3043 if (ret) {
3044 ATH5K_ERR(ah, "can't get channels\n");
3045 goto err;
3046 }
3047
3048 /*
3049 * Allocate tx+rx descriptors and populate the lists.
3050 */
3051 ret = ath5k_desc_alloc(ah);
3052 if (ret) {
3053 ATH5K_ERR(ah, "can't allocate descriptors\n");
3054 goto err;
3055 }
3056
3057 /*
3058 * Allocate hardware transmit queues: one queue for
3059 * beacon frames and one data queue for each QoS
3060 * priority. Note that hw functions handle resetting
3061 * these queues at the needed time.
3062 */
3063 ret = ath5k_beaconq_setup(ah);
3064 if (ret < 0) {
3065 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3066 goto err_desc;
3067 }
3068 ah->bhalq = ret;
3069 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3070 if (IS_ERR(ah->cabq)) {
3071 ATH5K_ERR(ah, "can't setup cab queue\n");
3072 ret = PTR_ERR(ah->cabq);
3073 goto err_bhal;
3074 }
3075
3076 /* 5211 and 5212 usually support 10 queues but we better rely on the
3077 * capability information */
3078 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3079 /* This order matches mac80211's queue priority, so we can
3080 * directly use the mac80211 queue number without any mapping */
3081 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3082 if (IS_ERR(txq)) {
3083 ATH5K_ERR(ah, "can't setup xmit queue\n");
3084 ret = PTR_ERR(txq);
3085 goto err_queues;
3086 }
3087 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3088 if (IS_ERR(txq)) {
3089 ATH5K_ERR(ah, "can't setup xmit queue\n");
3090 ret = PTR_ERR(txq);
3091 goto err_queues;
3092 }
3093 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3094 if (IS_ERR(txq)) {
3095 ATH5K_ERR(ah, "can't setup xmit queue\n");
3096 ret = PTR_ERR(txq);
3097 goto err_queues;
3098 }
3099 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3100 if (IS_ERR(txq)) {
3101 ATH5K_ERR(ah, "can't setup xmit queue\n");
3102 ret = PTR_ERR(txq);
3103 goto err_queues;
3104 }
3105 hw->queues = 4;
3106 } else {
3107 /* older hardware (5210) can only support one data queue */
3108 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3109 if (IS_ERR(txq)) {
3110 ATH5K_ERR(ah, "can't setup xmit queue\n");
3111 ret = PTR_ERR(txq);
3112 goto err_queues;
3113 }
3114 hw->queues = 1;
3115 }
3116
3117 tasklet_setup(&ah->rxtq, ath5k_tasklet_rx);
3118 tasklet_setup(&ah->txtq, ath5k_tasklet_tx);
3119 tasklet_setup(&ah->beacontq, ath5k_tasklet_beacon);
3120 tasklet_setup(&ah->ani_tasklet, ath5k_tasklet_ani);
3121
3122 INIT_WORK(&ah->reset_work, ath5k_reset_work);
3123 INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3124 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3125
3126 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3127 if (ret) {
3128 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3129 goto err_queues;
3130 }
3131
3132 SET_IEEE80211_PERM_ADDR(hw, mac);
3133 /* All MAC address bits matter for ACKs */
3134 ath5k_update_bssid_mask_and_opmode(ah, NULL);
3135
3136 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3137 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3138 if (ret) {
3139 ATH5K_ERR(ah, "can't initialize regulatory system\n");
3140 goto err_queues;
3141 }
3142
3143 ret = ieee80211_register_hw(hw);
3144 if (ret) {
3145 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3146 goto err_queues;
3147 }
3148
3149 if (!ath_is_world_regd(regulatory))
3150 regulatory_hint(hw->wiphy, regulatory->alpha2);
3151
3152 ath5k_init_leds(ah);
3153
3154 ath5k_sysfs_register(ah);
3155
3156 return 0;
3157 err_queues:
3158 ath5k_txq_release(ah);
3159 err_bhal:
3160 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3161 err_desc:
3162 ath5k_desc_free(ah);
3163 err:
3164 return ret;
3165 }
3166
3167 void
ath5k_deinit_ah(struct ath5k_hw * ah)3168 ath5k_deinit_ah(struct ath5k_hw *ah)
3169 {
3170 struct ieee80211_hw *hw = ah->hw;
3171
3172 /*
3173 * NB: the order of these is important:
3174 * o call the 802.11 layer before detaching ath5k_hw to
3175 * ensure callbacks into the driver to delete global
3176 * key cache entries can be handled
3177 * o reclaim the tx queue data structures after calling
3178 * the 802.11 layer as we'll get called back to reclaim
3179 * node state and potentially want to use them
3180 * o to cleanup the tx queues the hal is called, so detach
3181 * it last
3182 * XXX: ??? detach ath5k_hw ???
3183 * Other than that, it's straightforward...
3184 */
3185 ieee80211_unregister_hw(hw);
3186 ath5k_desc_free(ah);
3187 ath5k_txq_release(ah);
3188 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3189 ath5k_unregister_leds(ah);
3190
3191 ath5k_sysfs_unregister(ah);
3192 /*
3193 * NB: can't reclaim these until after ieee80211_ifdetach
3194 * returns because we'll get called back to reclaim node
3195 * state and potentially want to use them.
3196 */
3197 ath5k_hw_deinit(ah);
3198 free_irq(ah->irq, ah);
3199 }
3200
3201 bool
ath5k_any_vif_assoc(struct ath5k_hw * ah)3202 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3203 {
3204 struct ath5k_vif_iter_data iter_data;
3205 iter_data.hw_macaddr = NULL;
3206 iter_data.any_assoc = false;
3207 iter_data.need_set_hw_addr = false;
3208 iter_data.found_active = true;
3209
3210 ieee80211_iterate_active_interfaces_atomic(
3211 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3212 ath5k_vif_iter, &iter_data);
3213 return iter_data.any_assoc;
3214 }
3215
3216 void
ath5k_set_beacon_filter(struct ieee80211_hw * hw,bool enable)3217 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3218 {
3219 struct ath5k_hw *ah = hw->priv;
3220 u32 rfilt;
3221 rfilt = ath5k_hw_get_rx_filter(ah);
3222 if (enable)
3223 rfilt |= AR5K_RX_FILTER_BEACON;
3224 else
3225 rfilt &= ~AR5K_RX_FILTER_BEACON;
3226 ath5k_hw_set_rx_filter(ah, rfilt);
3227 ah->filter_flags = rfilt;
3228 }
3229
_ath5k_printk(const struct ath5k_hw * ah,const char * level,const char * fmt,...)3230 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3231 const char *fmt, ...)
3232 {
3233 struct va_format vaf;
3234 va_list args;
3235
3236 va_start(args, fmt);
3237
3238 vaf.fmt = fmt;
3239 vaf.va = &args;
3240
3241 if (ah && ah->hw)
3242 printk("%s" pr_fmt("%s: %pV"),
3243 level, wiphy_name(ah->hw->wiphy), &vaf);
3244 else
3245 printk("%s" pr_fmt("%pV"), level, &vaf);
3246
3247 va_end(args);
3248 }
3249