xref: /linux/drivers/md/raid1.c (revision cfd47302ac64b595beb0a67a337b81942146448a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define RAID_1_10_NAME "raid1"
50 #include "raid1-10.c"
51 
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 		     START, LAST, static inline, raid1_rb);
56 
check_and_add_serial(struct md_rdev * rdev,struct r1bio * r1_bio,struct serial_info * si,int idx)57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 				struct serial_info *si, int idx)
59 {
60 	unsigned long flags;
61 	int ret = 0;
62 	sector_t lo = r1_bio->sector;
63 	sector_t hi = lo + r1_bio->sectors;
64 	struct serial_in_rdev *serial = &rdev->serial[idx];
65 
66 	spin_lock_irqsave(&serial->serial_lock, flags);
67 	/* collision happened */
68 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69 		ret = -EBUSY;
70 	else {
71 		si->start = lo;
72 		si->last = hi;
73 		raid1_rb_insert(si, &serial->serial_rb);
74 	}
75 	spin_unlock_irqrestore(&serial->serial_lock, flags);
76 
77 	return ret;
78 }
79 
wait_for_serialization(struct md_rdev * rdev,struct r1bio * r1_bio)80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81 {
82 	struct mddev *mddev = rdev->mddev;
83 	struct serial_info *si;
84 	int idx = sector_to_idx(r1_bio->sector);
85 	struct serial_in_rdev *serial = &rdev->serial[idx];
86 
87 	if (WARN_ON(!mddev->serial_info_pool))
88 		return;
89 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 	wait_event(serial->serial_io_wait,
91 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92 }
93 
remove_serial(struct md_rdev * rdev,sector_t lo,sector_t hi)94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
95 {
96 	struct serial_info *si;
97 	unsigned long flags;
98 	int found = 0;
99 	struct mddev *mddev = rdev->mddev;
100 	int idx = sector_to_idx(lo);
101 	struct serial_in_rdev *serial = &rdev->serial[idx];
102 
103 	spin_lock_irqsave(&serial->serial_lock, flags);
104 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
106 		if (si->start == lo && si->last == hi) {
107 			raid1_rb_remove(si, &serial->serial_rb);
108 			mempool_free(si, mddev->serial_info_pool);
109 			found = 1;
110 			break;
111 		}
112 	}
113 	if (!found)
114 		WARN(1, "The write IO is not recorded for serialization\n");
115 	spin_unlock_irqrestore(&serial->serial_lock, flags);
116 	wake_up(&serial->serial_io_wait);
117 }
118 
119 /*
120  * for resync bio, r1bio pointer can be retrieved from the per-bio
121  * 'struct resync_pages'.
122  */
get_resync_r1bio(struct bio * bio)123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124 {
125 	return get_resync_pages(bio)->raid_bio;
126 }
127 
r1bio_pool_alloc(gfp_t gfp_flags,void * data)128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
129 {
130 	struct pool_info *pi = data;
131 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
132 
133 	/* allocate a r1bio with room for raid_disks entries in the bios array */
134 	return kzalloc(size, gfp_flags);
135 }
136 
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
143 
r1buf_pool_alloc(gfp_t gfp_flags,void * data)144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
145 {
146 	struct pool_info *pi = data;
147 	struct r1bio *r1_bio;
148 	struct bio *bio;
149 	int need_pages;
150 	int j;
151 	struct resync_pages *rps;
152 
153 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154 	if (!r1_bio)
155 		return NULL;
156 
157 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158 			    gfp_flags);
159 	if (!rps)
160 		goto out_free_r1bio;
161 
162 	/*
163 	 * Allocate bios : 1 for reading, n-1 for writing
164 	 */
165 	for (j = pi->raid_disks ; j-- ; ) {
166 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167 		if (!bio)
168 			goto out_free_bio;
169 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 		r1_bio->bios[j] = bio;
171 	}
172 	/*
173 	 * Allocate RESYNC_PAGES data pages and attach them to
174 	 * the first bio.
175 	 * If this is a user-requested check/repair, allocate
176 	 * RESYNC_PAGES for each bio.
177 	 */
178 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 		need_pages = pi->raid_disks;
180 	else
181 		need_pages = 1;
182 	for (j = 0; j < pi->raid_disks; j++) {
183 		struct resync_pages *rp = &rps[j];
184 
185 		bio = r1_bio->bios[j];
186 
187 		if (j < need_pages) {
188 			if (resync_alloc_pages(rp, gfp_flags))
189 				goto out_free_pages;
190 		} else {
191 			memcpy(rp, &rps[0], sizeof(*rp));
192 			resync_get_all_pages(rp);
193 		}
194 
195 		rp->raid_bio = r1_bio;
196 		bio->bi_private = rp;
197 	}
198 
199 	r1_bio->master_bio = NULL;
200 
201 	return r1_bio;
202 
203 out_free_pages:
204 	while (--j >= 0)
205 		resync_free_pages(&rps[j]);
206 
207 out_free_bio:
208 	while (++j < pi->raid_disks) {
209 		bio_uninit(r1_bio->bios[j]);
210 		kfree(r1_bio->bios[j]);
211 	}
212 	kfree(rps);
213 
214 out_free_r1bio:
215 	rbio_pool_free(r1_bio, data);
216 	return NULL;
217 }
218 
r1buf_pool_free(void * __r1_bio,void * data)219 static void r1buf_pool_free(void *__r1_bio, void *data)
220 {
221 	struct pool_info *pi = data;
222 	int i;
223 	struct r1bio *r1bio = __r1_bio;
224 	struct resync_pages *rp = NULL;
225 
226 	for (i = pi->raid_disks; i--; ) {
227 		rp = get_resync_pages(r1bio->bios[i]);
228 		resync_free_pages(rp);
229 		bio_uninit(r1bio->bios[i]);
230 		kfree(r1bio->bios[i]);
231 	}
232 
233 	/* resync pages array stored in the 1st bio's .bi_private */
234 	kfree(rp);
235 
236 	rbio_pool_free(r1bio, data);
237 }
238 
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
240 {
241 	int i;
242 
243 	for (i = 0; i < conf->raid_disks * 2; i++) {
244 		struct bio **bio = r1_bio->bios + i;
245 		if (!BIO_SPECIAL(*bio))
246 			bio_put(*bio);
247 		*bio = NULL;
248 	}
249 }
250 
free_r1bio(struct r1bio * r1_bio)251 static void free_r1bio(struct r1bio *r1_bio)
252 {
253 	struct r1conf *conf = r1_bio->mddev->private;
254 
255 	put_all_bios(conf, r1_bio);
256 	mempool_free(r1_bio, &conf->r1bio_pool);
257 }
258 
put_buf(struct r1bio * r1_bio)259 static void put_buf(struct r1bio *r1_bio)
260 {
261 	struct r1conf *conf = r1_bio->mddev->private;
262 	sector_t sect = r1_bio->sector;
263 	int i;
264 
265 	for (i = 0; i < conf->raid_disks * 2; i++) {
266 		struct bio *bio = r1_bio->bios[i];
267 		if (bio->bi_end_io)
268 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 	}
270 
271 	mempool_free(r1_bio, &conf->r1buf_pool);
272 
273 	lower_barrier(conf, sect);
274 }
275 
reschedule_retry(struct r1bio * r1_bio)276 static void reschedule_retry(struct r1bio *r1_bio)
277 {
278 	unsigned long flags;
279 	struct mddev *mddev = r1_bio->mddev;
280 	struct r1conf *conf = mddev->private;
281 	int idx;
282 
283 	idx = sector_to_idx(r1_bio->sector);
284 	spin_lock_irqsave(&conf->device_lock, flags);
285 	list_add(&r1_bio->retry_list, &conf->retry_list);
286 	atomic_inc(&conf->nr_queued[idx]);
287 	spin_unlock_irqrestore(&conf->device_lock, flags);
288 
289 	wake_up(&conf->wait_barrier);
290 	md_wakeup_thread(mddev->thread);
291 }
292 
293 /*
294  * raid_end_bio_io() is called when we have finished servicing a mirrored
295  * operation and are ready to return a success/failure code to the buffer
296  * cache layer.
297  */
call_bio_endio(struct r1bio * r1_bio)298 static void call_bio_endio(struct r1bio *r1_bio)
299 {
300 	struct bio *bio = r1_bio->master_bio;
301 
302 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 		bio->bi_status = BLK_STS_IOERR;
304 
305 	bio_endio(bio);
306 }
307 
raid_end_bio_io(struct r1bio * r1_bio)308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 	struct bio *bio = r1_bio->master_bio;
311 	struct r1conf *conf = r1_bio->mddev->private;
312 	sector_t sector = r1_bio->sector;
313 
314 	/* if nobody has done the final endio yet, do it now */
315 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 			 (unsigned long long) bio->bi_iter.bi_sector,
319 			 (unsigned long long) bio_end_sector(bio) - 1);
320 
321 		call_bio_endio(r1_bio);
322 	}
323 
324 	free_r1bio(r1_bio);
325 	/*
326 	 * Wake up any possible resync thread that waits for the device
327 	 * to go idle.  All I/Os, even write-behind writes, are done.
328 	 */
329 	allow_barrier(conf, sector);
330 }
331 
332 /*
333  * Update disk head position estimator based on IRQ completion info.
334  */
update_head_pos(int disk,struct r1bio * r1_bio)335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 {
337 	struct r1conf *conf = r1_bio->mddev->private;
338 
339 	conf->mirrors[disk].head_position =
340 		r1_bio->sector + (r1_bio->sectors);
341 }
342 
343 /*
344  * Find the disk number which triggered given bio
345  */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
347 {
348 	int mirror;
349 	struct r1conf *conf = r1_bio->mddev->private;
350 	int raid_disks = conf->raid_disks;
351 
352 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 		if (r1_bio->bios[mirror] == bio)
354 			break;
355 
356 	BUG_ON(mirror == raid_disks * 2);
357 	update_head_pos(mirror, r1_bio);
358 
359 	return mirror;
360 }
361 
raid1_end_read_request(struct bio * bio)362 static void raid1_end_read_request(struct bio *bio)
363 {
364 	int uptodate = !bio->bi_status;
365 	struct r1bio *r1_bio = bio->bi_private;
366 	struct r1conf *conf = r1_bio->mddev->private;
367 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
368 
369 	/*
370 	 * this branch is our 'one mirror IO has finished' event handler:
371 	 */
372 	update_head_pos(r1_bio->read_disk, r1_bio);
373 
374 	if (uptodate)
375 		set_bit(R1BIO_Uptodate, &r1_bio->state);
376 	else if (test_bit(FailFast, &rdev->flags) &&
377 		 test_bit(R1BIO_FailFast, &r1_bio->state))
378 		/* This was a fail-fast read so we definitely
379 		 * want to retry */
380 		;
381 	else {
382 		/* If all other devices have failed, we want to return
383 		 * the error upwards rather than fail the last device.
384 		 * Here we redefine "uptodate" to mean "Don't want to retry"
385 		 */
386 		unsigned long flags;
387 		spin_lock_irqsave(&conf->device_lock, flags);
388 		if (r1_bio->mddev->degraded == conf->raid_disks ||
389 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390 		     test_bit(In_sync, &rdev->flags)))
391 			uptodate = 1;
392 		spin_unlock_irqrestore(&conf->device_lock, flags);
393 	}
394 
395 	if (uptodate) {
396 		raid_end_bio_io(r1_bio);
397 		rdev_dec_pending(rdev, conf->mddev);
398 	} else {
399 		/*
400 		 * oops, read error:
401 		 */
402 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
403 				   mdname(conf->mddev),
404 				   rdev->bdev,
405 				   (unsigned long long)r1_bio->sector);
406 		set_bit(R1BIO_ReadError, &r1_bio->state);
407 		reschedule_retry(r1_bio);
408 		/* don't drop the reference on read_disk yet */
409 	}
410 }
411 
close_write(struct r1bio * r1_bio)412 static void close_write(struct r1bio *r1_bio)
413 {
414 	struct mddev *mddev = r1_bio->mddev;
415 
416 	/* it really is the end of this request */
417 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418 		bio_free_pages(r1_bio->behind_master_bio);
419 		bio_put(r1_bio->behind_master_bio);
420 		r1_bio->behind_master_bio = NULL;
421 	}
422 
423 	/* clear the bitmap if all writes complete successfully */
424 	mddev->bitmap_ops->endwrite(mddev, r1_bio->sector, r1_bio->sectors,
425 				    !test_bit(R1BIO_Degraded, &r1_bio->state),
426 				    test_bit(R1BIO_BehindIO, &r1_bio->state));
427 	md_write_end(mddev);
428 }
429 
r1_bio_write_done(struct r1bio * r1_bio)430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432 	if (!atomic_dec_and_test(&r1_bio->remaining))
433 		return;
434 
435 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 		reschedule_retry(r1_bio);
437 	else {
438 		close_write(r1_bio);
439 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 			reschedule_retry(r1_bio);
441 		else
442 			raid_end_bio_io(r1_bio);
443 	}
444 }
445 
raid1_end_write_request(struct bio * bio)446 static void raid1_end_write_request(struct bio *bio)
447 {
448 	struct r1bio *r1_bio = bio->bi_private;
449 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 	struct r1conf *conf = r1_bio->mddev->private;
451 	struct bio *to_put = NULL;
452 	int mirror = find_bio_disk(r1_bio, bio);
453 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 	bool discard_error;
455 	sector_t lo = r1_bio->sector;
456 	sector_t hi = r1_bio->sector + r1_bio->sectors;
457 
458 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459 
460 	/*
461 	 * 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_status && !discard_error) {
464 		set_bit(WriteErrorSeen,	&rdev->flags);
465 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 			set_bit(MD_RECOVERY_NEEDED, &
467 				conf->mddev->recovery);
468 
469 		if (test_bit(FailFast, &rdev->flags) &&
470 		    (bio->bi_opf & MD_FAILFAST) &&
471 		    /* We never try FailFast to WriteMostly devices */
472 		    !test_bit(WriteMostly, &rdev->flags)) {
473 			md_error(r1_bio->mddev, rdev);
474 		}
475 
476 		/*
477 		 * When the device is faulty, it is not necessary to
478 		 * handle write error.
479 		 */
480 		if (!test_bit(Faulty, &rdev->flags))
481 			set_bit(R1BIO_WriteError, &r1_bio->state);
482 		else {
483 			/* Fail the request */
484 			set_bit(R1BIO_Degraded, &r1_bio->state);
485 			/* Finished with this branch */
486 			r1_bio->bios[mirror] = NULL;
487 			to_put = bio;
488 		}
489 	} else {
490 		/*
491 		 * Set R1BIO_Uptodate in our master bio, so that we
492 		 * will return a good error code for to the higher
493 		 * levels even if IO on some other mirrored buffer
494 		 * fails.
495 		 *
496 		 * The 'master' represents the composite IO operation
497 		 * to user-side. So if something waits for IO, then it
498 		 * will wait for the 'master' bio.
499 		 */
500 		r1_bio->bios[mirror] = NULL;
501 		to_put = bio;
502 		/*
503 		 * Do not set R1BIO_Uptodate if the current device is
504 		 * rebuilding or Faulty. This is because we cannot use
505 		 * such device for properly reading the data back (we could
506 		 * potentially use it, if the current write would have felt
507 		 * before rdev->recovery_offset, but for simplicity we don't
508 		 * check this here.
509 		 */
510 		if (test_bit(In_sync, &rdev->flags) &&
511 		    !test_bit(Faulty, &rdev->flags))
512 			set_bit(R1BIO_Uptodate, &r1_bio->state);
513 
514 		/* Maybe we can clear some bad blocks. */
515 		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
516 		    !discard_error) {
517 			r1_bio->bios[mirror] = IO_MADE_GOOD;
518 			set_bit(R1BIO_MadeGood, &r1_bio->state);
519 		}
520 	}
521 
522 	if (behind) {
523 		if (test_bit(CollisionCheck, &rdev->flags))
524 			remove_serial(rdev, lo, hi);
525 		if (test_bit(WriteMostly, &rdev->flags))
526 			atomic_dec(&r1_bio->behind_remaining);
527 
528 		/*
529 		 * In behind mode, we ACK the master bio once the I/O
530 		 * has safely reached all non-writemostly
531 		 * disks. Setting the Returned bit ensures that this
532 		 * gets done only once -- we don't ever want to return
533 		 * -EIO here, instead we'll wait
534 		 */
535 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
536 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
537 			/* Maybe we can return now */
538 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
539 				struct bio *mbio = r1_bio->master_bio;
540 				pr_debug("raid1: behind end write sectors"
541 					 " %llu-%llu\n",
542 					 (unsigned long long) mbio->bi_iter.bi_sector,
543 					 (unsigned long long) bio_end_sector(mbio) - 1);
544 				call_bio_endio(r1_bio);
545 			}
546 		}
547 	} else if (rdev->mddev->serialize_policy)
548 		remove_serial(rdev, lo, hi);
549 	if (r1_bio->bios[mirror] == NULL)
550 		rdev_dec_pending(rdev, conf->mddev);
551 
552 	/*
553 	 * Let's see if all mirrored write operations have finished
554 	 * already.
555 	 */
556 	r1_bio_write_done(r1_bio);
557 
558 	if (to_put)
559 		bio_put(to_put);
560 }
561 
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)562 static sector_t align_to_barrier_unit_end(sector_t start_sector,
563 					  sector_t sectors)
564 {
565 	sector_t len;
566 
567 	WARN_ON(sectors == 0);
568 	/*
569 	 * len is the number of sectors from start_sector to end of the
570 	 * barrier unit which start_sector belongs to.
571 	 */
572 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
573 	      start_sector;
574 
575 	if (len > sectors)
576 		len = sectors;
577 
578 	return len;
579 }
580 
update_read_sectors(struct r1conf * conf,int disk,sector_t this_sector,int len)581 static void update_read_sectors(struct r1conf *conf, int disk,
582 				sector_t this_sector, int len)
583 {
584 	struct raid1_info *info = &conf->mirrors[disk];
585 
586 	atomic_inc(&info->rdev->nr_pending);
587 	if (info->next_seq_sect != this_sector)
588 		info->seq_start = this_sector;
589 	info->next_seq_sect = this_sector + len;
590 }
591 
choose_first_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)592 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
593 			     int *max_sectors)
594 {
595 	sector_t this_sector = r1_bio->sector;
596 	int len = r1_bio->sectors;
597 	int disk;
598 
599 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
600 		struct md_rdev *rdev;
601 		int read_len;
602 
603 		if (r1_bio->bios[disk] == IO_BLOCKED)
604 			continue;
605 
606 		rdev = conf->mirrors[disk].rdev;
607 		if (!rdev || test_bit(Faulty, &rdev->flags))
608 			continue;
609 
610 		/* choose the first disk even if it has some bad blocks. */
611 		read_len = raid1_check_read_range(rdev, this_sector, &len);
612 		if (read_len > 0) {
613 			update_read_sectors(conf, disk, this_sector, read_len);
614 			*max_sectors = read_len;
615 			return disk;
616 		}
617 	}
618 
619 	return -1;
620 }
621 
rdev_in_recovery(struct md_rdev * rdev,struct r1bio * r1_bio)622 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
623 {
624 	return !test_bit(In_sync, &rdev->flags) &&
625 	       rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
626 }
627 
choose_bb_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)628 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
629 			  int *max_sectors)
630 {
631 	sector_t this_sector = r1_bio->sector;
632 	int best_disk = -1;
633 	int best_len = 0;
634 	int disk;
635 
636 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637 		struct md_rdev *rdev;
638 		int len;
639 		int read_len;
640 
641 		if (r1_bio->bios[disk] == IO_BLOCKED)
642 			continue;
643 
644 		rdev = conf->mirrors[disk].rdev;
645 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
646 		    rdev_in_recovery(rdev, r1_bio) ||
647 		    test_bit(WriteMostly, &rdev->flags))
648 			continue;
649 
650 		/* keep track of the disk with the most readable sectors. */
651 		len = r1_bio->sectors;
652 		read_len = raid1_check_read_range(rdev, this_sector, &len);
653 		if (read_len > best_len) {
654 			best_disk = disk;
655 			best_len = read_len;
656 		}
657 	}
658 
659 	if (best_disk != -1) {
660 		*max_sectors = best_len;
661 		update_read_sectors(conf, best_disk, this_sector, best_len);
662 	}
663 
664 	return best_disk;
665 }
666 
choose_slow_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)667 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
668 			    int *max_sectors)
669 {
670 	sector_t this_sector = r1_bio->sector;
671 	int bb_disk = -1;
672 	int bb_read_len = 0;
673 	int disk;
674 
675 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
676 		struct md_rdev *rdev;
677 		int len;
678 		int read_len;
679 
680 		if (r1_bio->bios[disk] == IO_BLOCKED)
681 			continue;
682 
683 		rdev = conf->mirrors[disk].rdev;
684 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
685 		    !test_bit(WriteMostly, &rdev->flags) ||
686 		    rdev_in_recovery(rdev, r1_bio))
687 			continue;
688 
689 		/* there are no bad blocks, we can use this disk */
690 		len = r1_bio->sectors;
691 		read_len = raid1_check_read_range(rdev, this_sector, &len);
692 		if (read_len == r1_bio->sectors) {
693 			*max_sectors = read_len;
694 			update_read_sectors(conf, disk, this_sector, read_len);
695 			return disk;
696 		}
697 
698 		/*
699 		 * there are partial bad blocks, choose the rdev with largest
700 		 * read length.
701 		 */
702 		if (read_len > bb_read_len) {
703 			bb_disk = disk;
704 			bb_read_len = read_len;
705 		}
706 	}
707 
708 	if (bb_disk != -1) {
709 		*max_sectors = bb_read_len;
710 		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
711 	}
712 
713 	return bb_disk;
714 }
715 
is_sequential(struct r1conf * conf,int disk,struct r1bio * r1_bio)716 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
717 {
718 	/* TODO: address issues with this check and concurrency. */
719 	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
720 	       conf->mirrors[disk].head_position == r1_bio->sector;
721 }
722 
723 /*
724  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
725  * disk. If yes, choose the idle disk.
726  */
should_choose_next(struct r1conf * conf,int disk)727 static bool should_choose_next(struct r1conf *conf, int disk)
728 {
729 	struct raid1_info *mirror = &conf->mirrors[disk];
730 	int opt_iosize;
731 
732 	if (!test_bit(Nonrot, &mirror->rdev->flags))
733 		return false;
734 
735 	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
736 	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
737 	       mirror->next_seq_sect > opt_iosize &&
738 	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
739 }
740 
rdev_readable(struct md_rdev * rdev,struct r1bio * r1_bio)741 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
742 {
743 	if (!rdev || test_bit(Faulty, &rdev->flags))
744 		return false;
745 
746 	if (rdev_in_recovery(rdev, r1_bio))
747 		return false;
748 
749 	/* don't read from slow disk unless have to */
750 	if (test_bit(WriteMostly, &rdev->flags))
751 		return false;
752 
753 	/* don't split IO for bad blocks unless have to */
754 	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
755 		return false;
756 
757 	return true;
758 }
759 
760 struct read_balance_ctl {
761 	sector_t closest_dist;
762 	int closest_dist_disk;
763 	int min_pending;
764 	int min_pending_disk;
765 	int sequential_disk;
766 	int readable_disks;
767 };
768 
choose_best_rdev(struct r1conf * conf,struct r1bio * r1_bio)769 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
770 {
771 	int disk;
772 	struct read_balance_ctl ctl = {
773 		.closest_dist_disk      = -1,
774 		.closest_dist           = MaxSector,
775 		.min_pending_disk       = -1,
776 		.min_pending            = UINT_MAX,
777 		.sequential_disk	= -1,
778 	};
779 
780 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
781 		struct md_rdev *rdev;
782 		sector_t dist;
783 		unsigned int pending;
784 
785 		if (r1_bio->bios[disk] == IO_BLOCKED)
786 			continue;
787 
788 		rdev = conf->mirrors[disk].rdev;
789 		if (!rdev_readable(rdev, r1_bio))
790 			continue;
791 
792 		/* At least two disks to choose from so failfast is OK */
793 		if (ctl.readable_disks++ == 1)
794 			set_bit(R1BIO_FailFast, &r1_bio->state);
795 
796 		pending = atomic_read(&rdev->nr_pending);
797 		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
798 
799 		/* Don't change to another disk for sequential reads */
800 		if (is_sequential(conf, disk, r1_bio)) {
801 			if (!should_choose_next(conf, disk))
802 				return disk;
803 
804 			/*
805 			 * Add 'pending' to avoid choosing this disk if
806 			 * there is other idle disk.
807 			 */
808 			pending++;
809 			/*
810 			 * If there is no other idle disk, this disk
811 			 * will be chosen.
812 			 */
813 			ctl.sequential_disk = disk;
814 		}
815 
816 		if (ctl.min_pending > pending) {
817 			ctl.min_pending = pending;
818 			ctl.min_pending_disk = disk;
819 		}
820 
821 		if (ctl.closest_dist > dist) {
822 			ctl.closest_dist = dist;
823 			ctl.closest_dist_disk = disk;
824 		}
825 	}
826 
827 	/*
828 	 * sequential IO size exceeds optimal iosize, however, there is no other
829 	 * idle disk, so choose the sequential disk.
830 	 */
831 	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
832 		return ctl.sequential_disk;
833 
834 	/*
835 	 * If all disks are rotational, choose the closest disk. If any disk is
836 	 * non-rotational, choose the disk with less pending request even the
837 	 * disk is rotational, which might/might not be optimal for raids with
838 	 * mixed ratation/non-rotational disks depending on workload.
839 	 */
840 	if (ctl.min_pending_disk != -1 &&
841 	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
842 		return ctl.min_pending_disk;
843 	else
844 		return ctl.closest_dist_disk;
845 }
846 
847 /*
848  * This routine returns the disk from which the requested read should be done.
849  *
850  * 1) If resync is in progress, find the first usable disk and use it even if it
851  * has some bad blocks.
852  *
853  * 2) Now that there is no resync, loop through all disks and skipping slow
854  * disks and disks with bad blocks for now. Only pay attention to key disk
855  * choice.
856  *
857  * 3) If we've made it this far, now look for disks with bad blocks and choose
858  * the one with most number of sectors.
859  *
860  * 4) If we are all the way at the end, we have no choice but to use a disk even
861  * if it is write mostly.
862  *
863  * The rdev for the device selected will have nr_pending incremented.
864  */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)865 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
866 			int *max_sectors)
867 {
868 	int disk;
869 
870 	clear_bit(R1BIO_FailFast, &r1_bio->state);
871 
872 	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
873 				    r1_bio->sectors))
874 		return choose_first_rdev(conf, r1_bio, max_sectors);
875 
876 	disk = choose_best_rdev(conf, r1_bio);
877 	if (disk >= 0) {
878 		*max_sectors = r1_bio->sectors;
879 		update_read_sectors(conf, disk, r1_bio->sector,
880 				    r1_bio->sectors);
881 		return disk;
882 	}
883 
884 	/*
885 	 * If we are here it means we didn't find a perfectly good disk so
886 	 * now spend a bit more time trying to find one with the most good
887 	 * sectors.
888 	 */
889 	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
890 	if (disk >= 0)
891 		return disk;
892 
893 	return choose_slow_rdev(conf, r1_bio, max_sectors);
894 }
895 
wake_up_barrier(struct r1conf * conf)896 static void wake_up_barrier(struct r1conf *conf)
897 {
898 	if (wq_has_sleeper(&conf->wait_barrier))
899 		wake_up(&conf->wait_barrier);
900 }
901 
flush_bio_list(struct r1conf * conf,struct bio * bio)902 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
903 {
904 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
905 	raid1_prepare_flush_writes(conf->mddev);
906 	wake_up_barrier(conf);
907 
908 	while (bio) { /* submit pending writes */
909 		struct bio *next = bio->bi_next;
910 
911 		raid1_submit_write(bio);
912 		bio = next;
913 		cond_resched();
914 	}
915 }
916 
flush_pending_writes(struct r1conf * conf)917 static void flush_pending_writes(struct r1conf *conf)
918 {
919 	/* Any writes that have been queued but are awaiting
920 	 * bitmap updates get flushed here.
921 	 */
922 	spin_lock_irq(&conf->device_lock);
923 
924 	if (conf->pending_bio_list.head) {
925 		struct blk_plug plug;
926 		struct bio *bio;
927 
928 		bio = bio_list_get(&conf->pending_bio_list);
929 		spin_unlock_irq(&conf->device_lock);
930 
931 		/*
932 		 * As this is called in a wait_event() loop (see freeze_array),
933 		 * current->state might be TASK_UNINTERRUPTIBLE which will
934 		 * cause a warning when we prepare to wait again.  As it is
935 		 * rare that this path is taken, it is perfectly safe to force
936 		 * us to go around the wait_event() loop again, so the warning
937 		 * is a false-positive.  Silence the warning by resetting
938 		 * thread state
939 		 */
940 		__set_current_state(TASK_RUNNING);
941 		blk_start_plug(&plug);
942 		flush_bio_list(conf, bio);
943 		blk_finish_plug(&plug);
944 	} else
945 		spin_unlock_irq(&conf->device_lock);
946 }
947 
948 /* Barriers....
949  * Sometimes we need to suspend IO while we do something else,
950  * either some resync/recovery, or reconfigure the array.
951  * To do this we raise a 'barrier'.
952  * The 'barrier' is a counter that can be raised multiple times
953  * to count how many activities are happening which preclude
954  * normal IO.
955  * We can only raise the barrier if there is no pending IO.
956  * i.e. if nr_pending == 0.
957  * We choose only to raise the barrier if no-one is waiting for the
958  * barrier to go down.  This means that as soon as an IO request
959  * is ready, no other operations which require a barrier will start
960  * until the IO request has had a chance.
961  *
962  * So: regular IO calls 'wait_barrier'.  When that returns there
963  *    is no backgroup IO happening,  It must arrange to call
964  *    allow_barrier when it has finished its IO.
965  * backgroup IO calls must call raise_barrier.  Once that returns
966  *    there is no normal IO happeing.  It must arrange to call
967  *    lower_barrier when the particular background IO completes.
968  *
969  * If resync/recovery is interrupted, returns -EINTR;
970  * Otherwise, returns 0.
971  */
raise_barrier(struct r1conf * conf,sector_t sector_nr)972 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
973 {
974 	int idx = sector_to_idx(sector_nr);
975 
976 	spin_lock_irq(&conf->resync_lock);
977 
978 	/* Wait until no block IO is waiting */
979 	wait_event_lock_irq(conf->wait_barrier,
980 			    !atomic_read(&conf->nr_waiting[idx]),
981 			    conf->resync_lock);
982 
983 	/* block any new IO from starting */
984 	atomic_inc(&conf->barrier[idx]);
985 	/*
986 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
987 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
988 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
989 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
990 	 * be fetched before conf->barrier[idx] is increased. Otherwise
991 	 * there will be a race between raise_barrier() and _wait_barrier().
992 	 */
993 	smp_mb__after_atomic();
994 
995 	/* For these conditions we must wait:
996 	 * A: while the array is in frozen state
997 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
998 	 *    existing in corresponding I/O barrier bucket.
999 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
1000 	 *    max resync count which allowed on current I/O barrier bucket.
1001 	 */
1002 	wait_event_lock_irq(conf->wait_barrier,
1003 			    (!conf->array_frozen &&
1004 			     !atomic_read(&conf->nr_pending[idx]) &&
1005 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1006 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1007 			    conf->resync_lock);
1008 
1009 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1010 		atomic_dec(&conf->barrier[idx]);
1011 		spin_unlock_irq(&conf->resync_lock);
1012 		wake_up(&conf->wait_barrier);
1013 		return -EINTR;
1014 	}
1015 
1016 	atomic_inc(&conf->nr_sync_pending);
1017 	spin_unlock_irq(&conf->resync_lock);
1018 
1019 	return 0;
1020 }
1021 
lower_barrier(struct r1conf * conf,sector_t sector_nr)1022 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024 	int idx = sector_to_idx(sector_nr);
1025 
1026 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1027 
1028 	atomic_dec(&conf->barrier[idx]);
1029 	atomic_dec(&conf->nr_sync_pending);
1030 	wake_up(&conf->wait_barrier);
1031 }
1032 
_wait_barrier(struct r1conf * conf,int idx,bool nowait)1033 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1034 {
1035 	bool ret = true;
1036 
1037 	/*
1038 	 * We need to increase conf->nr_pending[idx] very early here,
1039 	 * then raise_barrier() can be blocked when it waits for
1040 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1041 	 * conf->resync_lock when there is no barrier raised in same
1042 	 * barrier unit bucket. Also if the array is frozen, I/O
1043 	 * should be blocked until array is unfrozen.
1044 	 */
1045 	atomic_inc(&conf->nr_pending[idx]);
1046 	/*
1047 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1048 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1049 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1050 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1051 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1052 	 * will be a race between _wait_barrier() and raise_barrier().
1053 	 */
1054 	smp_mb__after_atomic();
1055 
1056 	/*
1057 	 * Don't worry about checking two atomic_t variables at same time
1058 	 * here. If during we check conf->barrier[idx], the array is
1059 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1060 	 * 0, it is safe to return and make the I/O continue. Because the
1061 	 * array is frozen, all I/O returned here will eventually complete
1062 	 * or be queued, no race will happen. See code comment in
1063 	 * frozen_array().
1064 	 */
1065 	if (!READ_ONCE(conf->array_frozen) &&
1066 	    !atomic_read(&conf->barrier[idx]))
1067 		return ret;
1068 
1069 	/*
1070 	 * After holding conf->resync_lock, conf->nr_pending[idx]
1071 	 * should be decreased before waiting for barrier to drop.
1072 	 * Otherwise, we may encounter a race condition because
1073 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1074 	 * to be 0 at same time.
1075 	 */
1076 	spin_lock_irq(&conf->resync_lock);
1077 	atomic_inc(&conf->nr_waiting[idx]);
1078 	atomic_dec(&conf->nr_pending[idx]);
1079 	/*
1080 	 * In case freeze_array() is waiting for
1081 	 * get_unqueued_pending() == extra
1082 	 */
1083 	wake_up_barrier(conf);
1084 	/* Wait for the barrier in same barrier unit bucket to drop. */
1085 
1086 	/* Return false when nowait flag is set */
1087 	if (nowait) {
1088 		ret = false;
1089 	} else {
1090 		wait_event_lock_irq(conf->wait_barrier,
1091 				!conf->array_frozen &&
1092 				!atomic_read(&conf->barrier[idx]),
1093 				conf->resync_lock);
1094 		atomic_inc(&conf->nr_pending[idx]);
1095 	}
1096 
1097 	atomic_dec(&conf->nr_waiting[idx]);
1098 	spin_unlock_irq(&conf->resync_lock);
1099 	return ret;
1100 }
1101 
wait_read_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1102 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1103 {
1104 	int idx = sector_to_idx(sector_nr);
1105 	bool ret = true;
1106 
1107 	/*
1108 	 * Very similar to _wait_barrier(). The difference is, for read
1109 	 * I/O we don't need wait for sync I/O, but if the whole array
1110 	 * is frozen, the read I/O still has to wait until the array is
1111 	 * unfrozen. Since there is no ordering requirement with
1112 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1113 	 */
1114 	atomic_inc(&conf->nr_pending[idx]);
1115 
1116 	if (!READ_ONCE(conf->array_frozen))
1117 		return ret;
1118 
1119 	spin_lock_irq(&conf->resync_lock);
1120 	atomic_inc(&conf->nr_waiting[idx]);
1121 	atomic_dec(&conf->nr_pending[idx]);
1122 	/*
1123 	 * In case freeze_array() is waiting for
1124 	 * get_unqueued_pending() == extra
1125 	 */
1126 	wake_up_barrier(conf);
1127 	/* Wait for array to be unfrozen */
1128 
1129 	/* Return false when nowait flag is set */
1130 	if (nowait) {
1131 		/* Return false when nowait flag is set */
1132 		ret = false;
1133 	} else {
1134 		wait_event_lock_irq(conf->wait_barrier,
1135 				!conf->array_frozen,
1136 				conf->resync_lock);
1137 		atomic_inc(&conf->nr_pending[idx]);
1138 	}
1139 
1140 	atomic_dec(&conf->nr_waiting[idx]);
1141 	spin_unlock_irq(&conf->resync_lock);
1142 	return ret;
1143 }
1144 
wait_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1145 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1146 {
1147 	int idx = sector_to_idx(sector_nr);
1148 
1149 	return _wait_barrier(conf, idx, nowait);
1150 }
1151 
_allow_barrier(struct r1conf * conf,int idx)1152 static void _allow_barrier(struct r1conf *conf, int idx)
1153 {
1154 	atomic_dec(&conf->nr_pending[idx]);
1155 	wake_up_barrier(conf);
1156 }
1157 
allow_barrier(struct r1conf * conf,sector_t sector_nr)1158 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1159 {
1160 	int idx = sector_to_idx(sector_nr);
1161 
1162 	_allow_barrier(conf, idx);
1163 }
1164 
1165 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1166 static int get_unqueued_pending(struct r1conf *conf)
1167 {
1168 	int idx, ret;
1169 
1170 	ret = atomic_read(&conf->nr_sync_pending);
1171 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1172 		ret += atomic_read(&conf->nr_pending[idx]) -
1173 			atomic_read(&conf->nr_queued[idx]);
1174 
1175 	return ret;
1176 }
1177 
freeze_array(struct r1conf * conf,int extra)1178 static void freeze_array(struct r1conf *conf, int extra)
1179 {
1180 	/* Stop sync I/O and normal I/O and wait for everything to
1181 	 * go quiet.
1182 	 * This is called in two situations:
1183 	 * 1) management command handlers (reshape, remove disk, quiesce).
1184 	 * 2) one normal I/O request failed.
1185 
1186 	 * After array_frozen is set to 1, new sync IO will be blocked at
1187 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1188 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1189 	 * queued. When everything goes quite, there are only queued I/Os left.
1190 
1191 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1192 	 * barrier bucket index which this I/O request hits. When all sync and
1193 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1194 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1195 	 * in handle_read_error(), we may call freeze_array() before trying to
1196 	 * fix the read error. In this case, the error read I/O is not queued,
1197 	 * so get_unqueued_pending() == 1.
1198 	 *
1199 	 * Therefore before this function returns, we need to wait until
1200 	 * get_unqueued_pendings(conf) gets equal to extra. For
1201 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1202 	 */
1203 	spin_lock_irq(&conf->resync_lock);
1204 	conf->array_frozen = 1;
1205 	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1206 	wait_event_lock_irq_cmd(
1207 		conf->wait_barrier,
1208 		get_unqueued_pending(conf) == extra,
1209 		conf->resync_lock,
1210 		flush_pending_writes(conf));
1211 	spin_unlock_irq(&conf->resync_lock);
1212 }
unfreeze_array(struct r1conf * conf)1213 static void unfreeze_array(struct r1conf *conf)
1214 {
1215 	/* reverse the effect of the freeze */
1216 	spin_lock_irq(&conf->resync_lock);
1217 	conf->array_frozen = 0;
1218 	spin_unlock_irq(&conf->resync_lock);
1219 	wake_up(&conf->wait_barrier);
1220 }
1221 
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1222 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1223 					   struct bio *bio)
1224 {
1225 	int size = bio->bi_iter.bi_size;
1226 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1227 	int i = 0;
1228 	struct bio *behind_bio = NULL;
1229 
1230 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1231 				      &r1_bio->mddev->bio_set);
1232 
1233 	/* discard op, we don't support writezero/writesame yet */
1234 	if (!bio_has_data(bio)) {
1235 		behind_bio->bi_iter.bi_size = size;
1236 		goto skip_copy;
1237 	}
1238 
1239 	while (i < vcnt && size) {
1240 		struct page *page;
1241 		int len = min_t(int, PAGE_SIZE, size);
1242 
1243 		page = alloc_page(GFP_NOIO);
1244 		if (unlikely(!page))
1245 			goto free_pages;
1246 
1247 		if (!bio_add_page(behind_bio, page, len, 0)) {
1248 			put_page(page);
1249 			goto free_pages;
1250 		}
1251 
1252 		size -= len;
1253 		i++;
1254 	}
1255 
1256 	bio_copy_data(behind_bio, bio);
1257 skip_copy:
1258 	r1_bio->behind_master_bio = behind_bio;
1259 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1260 
1261 	return;
1262 
1263 free_pages:
1264 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1265 		 bio->bi_iter.bi_size);
1266 	bio_free_pages(behind_bio);
1267 	bio_put(behind_bio);
1268 }
1269 
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1270 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1271 {
1272 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1273 						  cb);
1274 	struct mddev *mddev = plug->cb.data;
1275 	struct r1conf *conf = mddev->private;
1276 	struct bio *bio;
1277 
1278 	if (from_schedule) {
1279 		spin_lock_irq(&conf->device_lock);
1280 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1281 		spin_unlock_irq(&conf->device_lock);
1282 		wake_up_barrier(conf);
1283 		md_wakeup_thread(mddev->thread);
1284 		kfree(plug);
1285 		return;
1286 	}
1287 
1288 	/* we aren't scheduling, so we can do the write-out directly. */
1289 	bio = bio_list_get(&plug->pending);
1290 	flush_bio_list(conf, bio);
1291 	kfree(plug);
1292 }
1293 
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1294 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1295 {
1296 	r1_bio->master_bio = bio;
1297 	r1_bio->sectors = bio_sectors(bio);
1298 	r1_bio->state = 0;
1299 	r1_bio->mddev = mddev;
1300 	r1_bio->sector = bio->bi_iter.bi_sector;
1301 }
1302 
1303 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1304 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1305 {
1306 	struct r1conf *conf = mddev->private;
1307 	struct r1bio *r1_bio;
1308 
1309 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1310 	/* Ensure no bio records IO_BLOCKED */
1311 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1312 	init_r1bio(r1_bio, mddev, bio);
1313 	return r1_bio;
1314 }
1315 
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1316 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1317 			       int max_read_sectors, struct r1bio *r1_bio)
1318 {
1319 	struct r1conf *conf = mddev->private;
1320 	struct raid1_info *mirror;
1321 	struct bio *read_bio;
1322 	const enum req_op op = bio_op(bio);
1323 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1324 	int max_sectors;
1325 	int rdisk, error;
1326 	bool r1bio_existed = !!r1_bio;
1327 
1328 	/*
1329 	 * If r1_bio is set, we are blocking the raid1d thread
1330 	 * so there is a tiny risk of deadlock.  So ask for
1331 	 * emergency memory if needed.
1332 	 */
1333 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1334 
1335 	/*
1336 	 * Still need barrier for READ in case that whole
1337 	 * array is frozen.
1338 	 */
1339 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1340 				bio->bi_opf & REQ_NOWAIT)) {
1341 		bio_wouldblock_error(bio);
1342 		return;
1343 	}
1344 
1345 	if (!r1_bio)
1346 		r1_bio = alloc_r1bio(mddev, bio);
1347 	else
1348 		init_r1bio(r1_bio, mddev, bio);
1349 	r1_bio->sectors = max_read_sectors;
1350 
1351 	/*
1352 	 * make_request() can abort the operation when read-ahead is being
1353 	 * used and no empty request is available.
1354 	 */
1355 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1356 	if (rdisk < 0) {
1357 		/* couldn't find anywhere to read from */
1358 		if (r1bio_existed)
1359 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1360 					    mdname(mddev),
1361 					    conf->mirrors[r1_bio->read_disk].rdev->bdev,
1362 					    r1_bio->sector);
1363 		raid_end_bio_io(r1_bio);
1364 		return;
1365 	}
1366 	mirror = conf->mirrors + rdisk;
1367 
1368 	if (r1bio_existed)
1369 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1370 				    mdname(mddev),
1371 				    (unsigned long long)r1_bio->sector,
1372 				    mirror->rdev->bdev);
1373 
1374 	if (test_bit(WriteMostly, &mirror->rdev->flags)) {
1375 		/*
1376 		 * Reading from a write-mostly device must take care not to
1377 		 * over-take any writes that are 'behind'
1378 		 */
1379 		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1380 		mddev->bitmap_ops->wait_behind_writes(mddev);
1381 	}
1382 
1383 	if (max_sectors < bio_sectors(bio)) {
1384 		struct bio *split = bio_split(bio, max_sectors,
1385 					      gfp, &conf->bio_split);
1386 
1387 		if (IS_ERR(split)) {
1388 			error = PTR_ERR(split);
1389 			goto err_handle;
1390 		}
1391 		bio_chain(split, bio);
1392 		submit_bio_noacct(bio);
1393 		bio = split;
1394 		r1_bio->master_bio = bio;
1395 		r1_bio->sectors = max_sectors;
1396 	}
1397 
1398 	r1_bio->read_disk = rdisk;
1399 	if (!r1bio_existed) {
1400 		md_account_bio(mddev, &bio);
1401 		r1_bio->master_bio = bio;
1402 	}
1403 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1404 				   &mddev->bio_set);
1405 
1406 	r1_bio->bios[rdisk] = read_bio;
1407 
1408 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1409 		mirror->rdev->data_offset;
1410 	read_bio->bi_end_io = raid1_end_read_request;
1411 	read_bio->bi_opf = op | do_sync;
1412 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1413 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1414 	        read_bio->bi_opf |= MD_FAILFAST;
1415 	read_bio->bi_private = r1_bio;
1416 	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1417 	submit_bio_noacct(read_bio);
1418 	return;
1419 
1420 err_handle:
1421 	atomic_dec(&mirror->rdev->nr_pending);
1422 	bio->bi_status = errno_to_blk_status(error);
1423 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1424 	raid_end_bio_io(r1_bio);
1425 }
1426 
wait_blocked_rdev(struct mddev * mddev,struct bio * bio)1427 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio)
1428 {
1429 	struct r1conf *conf = mddev->private;
1430 	int disks = conf->raid_disks * 2;
1431 	int i;
1432 
1433 retry:
1434 	for (i = 0; i < disks; i++) {
1435 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1436 
1437 		if (!rdev)
1438 			continue;
1439 
1440 		/* don't write here until the bad block is acknowledged */
1441 		if (test_bit(WriteErrorSeen, &rdev->flags) &&
1442 		    rdev_has_badblock(rdev, bio->bi_iter.bi_sector,
1443 				      bio_sectors(bio)) < 0)
1444 			set_bit(BlockedBadBlocks, &rdev->flags);
1445 
1446 		if (rdev_blocked(rdev)) {
1447 			if (bio->bi_opf & REQ_NOWAIT)
1448 				return false;
1449 
1450 			mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked",
1451 					    rdev->raid_disk);
1452 			atomic_inc(&rdev->nr_pending);
1453 			md_wait_for_blocked_rdev(rdev, rdev->mddev);
1454 			goto retry;
1455 		}
1456 	}
1457 
1458 	return true;
1459 }
1460 
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1461 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1462 				int max_write_sectors)
1463 {
1464 	struct r1conf *conf = mddev->private;
1465 	struct r1bio *r1_bio;
1466 	int i, disks, k, error;
1467 	unsigned long flags;
1468 	int first_clone;
1469 	int max_sectors;
1470 	bool write_behind = false;
1471 	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1472 
1473 	if (mddev_is_clustered(mddev) &&
1474 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1475 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1476 
1477 		DEFINE_WAIT(w);
1478 		if (bio->bi_opf & REQ_NOWAIT) {
1479 			bio_wouldblock_error(bio);
1480 			return;
1481 		}
1482 		for (;;) {
1483 			prepare_to_wait(&conf->wait_barrier,
1484 					&w, TASK_IDLE);
1485 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1486 							bio->bi_iter.bi_sector,
1487 							bio_end_sector(bio)))
1488 				break;
1489 			schedule();
1490 		}
1491 		finish_wait(&conf->wait_barrier, &w);
1492 	}
1493 
1494 	/*
1495 	 * Register the new request and wait if the reconstruction
1496 	 * thread has put up a bar for new requests.
1497 	 * Continue immediately if no resync is active currently.
1498 	 */
1499 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1500 				bio->bi_opf & REQ_NOWAIT)) {
1501 		bio_wouldblock_error(bio);
1502 		return;
1503 	}
1504 
1505 	if (!wait_blocked_rdev(mddev, bio)) {
1506 		bio_wouldblock_error(bio);
1507 		return;
1508 	}
1509 
1510 	r1_bio = alloc_r1bio(mddev, bio);
1511 	r1_bio->sectors = max_write_sectors;
1512 
1513 	/* first select target devices under rcu_lock and
1514 	 * inc refcount on their rdev.  Record them by setting
1515 	 * bios[x] to bio
1516 	 * If there are known/acknowledged bad blocks on any device on
1517 	 * which we have seen a write error, we want to avoid writing those
1518 	 * blocks.
1519 	 * This potentially requires several writes to write around
1520 	 * the bad blocks.  Each set of writes gets it's own r1bio
1521 	 * with a set of bios attached.
1522 	 */
1523 
1524 	disks = conf->raid_disks * 2;
1525 	max_sectors = r1_bio->sectors;
1526 	for (i = 0;  i < disks; i++) {
1527 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1528 
1529 		/*
1530 		 * The write-behind io is only attempted on drives marked as
1531 		 * write-mostly, which means we could allocate write behind
1532 		 * bio later.
1533 		 */
1534 		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1535 			write_behind = true;
1536 
1537 		r1_bio->bios[i] = NULL;
1538 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1539 			if (i < conf->raid_disks)
1540 				set_bit(R1BIO_Degraded, &r1_bio->state);
1541 			continue;
1542 		}
1543 
1544 		atomic_inc(&rdev->nr_pending);
1545 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1546 			sector_t first_bad;
1547 			int bad_sectors;
1548 			int is_bad;
1549 
1550 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1551 					     &first_bad, &bad_sectors);
1552 			if (is_bad && first_bad <= r1_bio->sector) {
1553 				/* Cannot write here at all */
1554 				bad_sectors -= (r1_bio->sector - first_bad);
1555 				if (bad_sectors < max_sectors)
1556 					/* mustn't write more than bad_sectors
1557 					 * to other devices yet
1558 					 */
1559 					max_sectors = bad_sectors;
1560 				rdev_dec_pending(rdev, mddev);
1561 				/* We don't set R1BIO_Degraded as that
1562 				 * only applies if the disk is
1563 				 * missing, so it might be re-added,
1564 				 * and we want to know to recover this
1565 				 * chunk.
1566 				 * In this case the device is here,
1567 				 * and the fact that this chunk is not
1568 				 * in-sync is recorded in the bad
1569 				 * block log
1570 				 */
1571 				continue;
1572 			}
1573 			if (is_bad) {
1574 				int good_sectors;
1575 
1576 				/*
1577 				 * We cannot atomically write this, so just
1578 				 * error in that case. It could be possible to
1579 				 * atomically write other mirrors, but the
1580 				 * complexity of supporting that is not worth
1581 				 * the benefit.
1582 				 */
1583 				if (bio->bi_opf & REQ_ATOMIC) {
1584 					error = -EIO;
1585 					goto err_handle;
1586 				}
1587 
1588 				good_sectors = first_bad - r1_bio->sector;
1589 				if (good_sectors < max_sectors)
1590 					max_sectors = good_sectors;
1591 			}
1592 		}
1593 		r1_bio->bios[i] = bio;
1594 	}
1595 
1596 	/*
1597 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1598 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1599 	 * at a time and thus needs a new bio that can fit the whole payload
1600 	 * this bio in page sized chunks.
1601 	 */
1602 	if (write_behind && mddev->bitmap)
1603 		max_sectors = min_t(int, max_sectors,
1604 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1605 	if (max_sectors < bio_sectors(bio)) {
1606 		struct bio *split = bio_split(bio, max_sectors,
1607 					      GFP_NOIO, &conf->bio_split);
1608 
1609 		if (IS_ERR(split)) {
1610 			error = PTR_ERR(split);
1611 			goto err_handle;
1612 		}
1613 		bio_chain(split, bio);
1614 		submit_bio_noacct(bio);
1615 		bio = split;
1616 		r1_bio->master_bio = bio;
1617 		r1_bio->sectors = max_sectors;
1618 	}
1619 
1620 	md_account_bio(mddev, &bio);
1621 	r1_bio->master_bio = bio;
1622 	atomic_set(&r1_bio->remaining, 1);
1623 	atomic_set(&r1_bio->behind_remaining, 0);
1624 
1625 	first_clone = 1;
1626 
1627 	for (i = 0; i < disks; i++) {
1628 		struct bio *mbio = NULL;
1629 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1630 		if (!r1_bio->bios[i])
1631 			continue;
1632 
1633 		if (first_clone) {
1634 			unsigned long max_write_behind =
1635 				mddev->bitmap_info.max_write_behind;
1636 			struct md_bitmap_stats stats;
1637 			int err;
1638 
1639 			/* do behind I/O ?
1640 			 * Not if there are too many, or cannot
1641 			 * allocate memory, or a reader on WriteMostly
1642 			 * is waiting for behind writes to flush */
1643 			err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1644 			if (!err && write_behind && !stats.behind_wait &&
1645 			    stats.behind_writes < max_write_behind)
1646 				alloc_behind_master_bio(r1_bio, bio);
1647 
1648 			mddev->bitmap_ops->startwrite(
1649 				mddev, r1_bio->sector, r1_bio->sectors,
1650 				test_bit(R1BIO_BehindIO, &r1_bio->state));
1651 			first_clone = 0;
1652 		}
1653 
1654 		if (r1_bio->behind_master_bio) {
1655 			mbio = bio_alloc_clone(rdev->bdev,
1656 					       r1_bio->behind_master_bio,
1657 					       GFP_NOIO, &mddev->bio_set);
1658 			if (test_bit(CollisionCheck, &rdev->flags))
1659 				wait_for_serialization(rdev, r1_bio);
1660 			if (test_bit(WriteMostly, &rdev->flags))
1661 				atomic_inc(&r1_bio->behind_remaining);
1662 		} else {
1663 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1664 					       &mddev->bio_set);
1665 
1666 			if (mddev->serialize_policy)
1667 				wait_for_serialization(rdev, r1_bio);
1668 		}
1669 
1670 		r1_bio->bios[i] = mbio;
1671 
1672 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1673 		mbio->bi_end_io	= raid1_end_write_request;
1674 		mbio->bi_opf = bio_op(bio) |
1675 			(bio->bi_opf & (REQ_SYNC | REQ_FUA | REQ_ATOMIC));
1676 		if (test_bit(FailFast, &rdev->flags) &&
1677 		    !test_bit(WriteMostly, &rdev->flags) &&
1678 		    conf->raid_disks - mddev->degraded > 1)
1679 			mbio->bi_opf |= MD_FAILFAST;
1680 		mbio->bi_private = r1_bio;
1681 
1682 		atomic_inc(&r1_bio->remaining);
1683 		mddev_trace_remap(mddev, mbio, r1_bio->sector);
1684 		/* flush_pending_writes() needs access to the rdev so...*/
1685 		mbio->bi_bdev = (void *)rdev;
1686 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1687 			spin_lock_irqsave(&conf->device_lock, flags);
1688 			bio_list_add(&conf->pending_bio_list, mbio);
1689 			spin_unlock_irqrestore(&conf->device_lock, flags);
1690 			md_wakeup_thread(mddev->thread);
1691 		}
1692 	}
1693 
1694 	r1_bio_write_done(r1_bio);
1695 
1696 	/* In case raid1d snuck in to freeze_array */
1697 	wake_up_barrier(conf);
1698 	return;
1699 err_handle:
1700 	for (k = 0; k < i; k++) {
1701 		if (r1_bio->bios[k]) {
1702 			rdev_dec_pending(conf->mirrors[k].rdev, mddev);
1703 			r1_bio->bios[k] = NULL;
1704 		}
1705 	}
1706 
1707 	bio->bi_status = errno_to_blk_status(error);
1708 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1709 	raid_end_bio_io(r1_bio);
1710 }
1711 
raid1_make_request(struct mddev * mddev,struct bio * bio)1712 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1713 {
1714 	sector_t sectors;
1715 
1716 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1717 	    && md_flush_request(mddev, bio))
1718 		return true;
1719 
1720 	/*
1721 	 * There is a limit to the maximum size, but
1722 	 * the read/write handler might find a lower limit
1723 	 * due to bad blocks.  To avoid multiple splits,
1724 	 * we pass the maximum number of sectors down
1725 	 * and let the lower level perform the split.
1726 	 */
1727 	sectors = align_to_barrier_unit_end(
1728 		bio->bi_iter.bi_sector, bio_sectors(bio));
1729 
1730 	if (bio_data_dir(bio) == READ)
1731 		raid1_read_request(mddev, bio, sectors, NULL);
1732 	else {
1733 		md_write_start(mddev,bio);
1734 		raid1_write_request(mddev, bio, sectors);
1735 	}
1736 	return true;
1737 }
1738 
raid1_status(struct seq_file * seq,struct mddev * mddev)1739 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1740 {
1741 	struct r1conf *conf = mddev->private;
1742 	int i;
1743 
1744 	lockdep_assert_held(&mddev->lock);
1745 
1746 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1747 		   conf->raid_disks - mddev->degraded);
1748 	for (i = 0; i < conf->raid_disks; i++) {
1749 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1750 
1751 		seq_printf(seq, "%s",
1752 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1753 	}
1754 	seq_printf(seq, "]");
1755 }
1756 
1757 /**
1758  * raid1_error() - RAID1 error handler.
1759  * @mddev: affected md device.
1760  * @rdev: member device to fail.
1761  *
1762  * The routine acknowledges &rdev failure and determines new @mddev state.
1763  * If it failed, then:
1764  *	- &MD_BROKEN flag is set in &mddev->flags.
1765  *	- recovery is disabled.
1766  * Otherwise, it must be degraded:
1767  *	- recovery is interrupted.
1768  *	- &mddev->degraded is bumped.
1769  *
1770  * @rdev is marked as &Faulty excluding case when array is failed and
1771  * &mddev->fail_last_dev is off.
1772  */
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1773 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1774 {
1775 	struct r1conf *conf = mddev->private;
1776 	unsigned long flags;
1777 
1778 	spin_lock_irqsave(&conf->device_lock, flags);
1779 
1780 	if (test_bit(In_sync, &rdev->flags) &&
1781 	    (conf->raid_disks - mddev->degraded) == 1) {
1782 		set_bit(MD_BROKEN, &mddev->flags);
1783 
1784 		if (!mddev->fail_last_dev) {
1785 			conf->recovery_disabled = mddev->recovery_disabled;
1786 			spin_unlock_irqrestore(&conf->device_lock, flags);
1787 			return;
1788 		}
1789 	}
1790 	set_bit(Blocked, &rdev->flags);
1791 	if (test_and_clear_bit(In_sync, &rdev->flags))
1792 		mddev->degraded++;
1793 	set_bit(Faulty, &rdev->flags);
1794 	spin_unlock_irqrestore(&conf->device_lock, flags);
1795 	/*
1796 	 * if recovery is running, make sure it aborts.
1797 	 */
1798 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1799 	set_mask_bits(&mddev->sb_flags, 0,
1800 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1801 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1802 		"md/raid1:%s: Operation continuing on %d devices.\n",
1803 		mdname(mddev), rdev->bdev,
1804 		mdname(mddev), conf->raid_disks - mddev->degraded);
1805 }
1806 
print_conf(struct r1conf * conf)1807 static void print_conf(struct r1conf *conf)
1808 {
1809 	int i;
1810 
1811 	pr_debug("RAID1 conf printout:\n");
1812 	if (!conf) {
1813 		pr_debug("(!conf)\n");
1814 		return;
1815 	}
1816 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1817 		 conf->raid_disks);
1818 
1819 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1820 	for (i = 0; i < conf->raid_disks; i++) {
1821 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1822 		if (rdev)
1823 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1824 				 i, !test_bit(In_sync, &rdev->flags),
1825 				 !test_bit(Faulty, &rdev->flags),
1826 				 rdev->bdev);
1827 	}
1828 }
1829 
close_sync(struct r1conf * conf)1830 static void close_sync(struct r1conf *conf)
1831 {
1832 	int idx;
1833 
1834 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1835 		_wait_barrier(conf, idx, false);
1836 		_allow_barrier(conf, idx);
1837 	}
1838 
1839 	mempool_exit(&conf->r1buf_pool);
1840 }
1841 
raid1_spare_active(struct mddev * mddev)1842 static int raid1_spare_active(struct mddev *mddev)
1843 {
1844 	int i;
1845 	struct r1conf *conf = mddev->private;
1846 	int count = 0;
1847 	unsigned long flags;
1848 
1849 	/*
1850 	 * Find all failed disks within the RAID1 configuration
1851 	 * and mark them readable.
1852 	 * Called under mddev lock, so rcu protection not needed.
1853 	 * device_lock used to avoid races with raid1_end_read_request
1854 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1855 	 */
1856 	spin_lock_irqsave(&conf->device_lock, flags);
1857 	for (i = 0; i < conf->raid_disks; i++) {
1858 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1859 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1860 		if (repl
1861 		    && !test_bit(Candidate, &repl->flags)
1862 		    && repl->recovery_offset == MaxSector
1863 		    && !test_bit(Faulty, &repl->flags)
1864 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1865 			/* replacement has just become active */
1866 			if (!rdev ||
1867 			    !test_and_clear_bit(In_sync, &rdev->flags))
1868 				count++;
1869 			if (rdev) {
1870 				/* Replaced device not technically
1871 				 * faulty, but we need to be sure
1872 				 * it gets removed and never re-added
1873 				 */
1874 				set_bit(Faulty, &rdev->flags);
1875 				sysfs_notify_dirent_safe(
1876 					rdev->sysfs_state);
1877 			}
1878 		}
1879 		if (rdev
1880 		    && rdev->recovery_offset == MaxSector
1881 		    && !test_bit(Faulty, &rdev->flags)
1882 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1883 			count++;
1884 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1885 		}
1886 	}
1887 	mddev->degraded -= count;
1888 	spin_unlock_irqrestore(&conf->device_lock, flags);
1889 
1890 	print_conf(conf);
1891 	return count;
1892 }
1893 
raid1_add_conf(struct r1conf * conf,struct md_rdev * rdev,int disk,bool replacement)1894 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1895 			   bool replacement)
1896 {
1897 	struct raid1_info *info = conf->mirrors + disk;
1898 
1899 	if (replacement)
1900 		info += conf->raid_disks;
1901 
1902 	if (info->rdev)
1903 		return false;
1904 
1905 	if (bdev_nonrot(rdev->bdev)) {
1906 		set_bit(Nonrot, &rdev->flags);
1907 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1908 	}
1909 
1910 	rdev->raid_disk = disk;
1911 	info->head_position = 0;
1912 	info->seq_start = MaxSector;
1913 	WRITE_ONCE(info->rdev, rdev);
1914 
1915 	return true;
1916 }
1917 
raid1_remove_conf(struct r1conf * conf,int disk)1918 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1919 {
1920 	struct raid1_info *info = conf->mirrors + disk;
1921 	struct md_rdev *rdev = info->rdev;
1922 
1923 	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1924 	    atomic_read(&rdev->nr_pending))
1925 		return false;
1926 
1927 	/* Only remove non-faulty devices if recovery is not possible. */
1928 	if (!test_bit(Faulty, &rdev->flags) &&
1929 	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1930 	    rdev->mddev->degraded < conf->raid_disks)
1931 		return false;
1932 
1933 	if (test_and_clear_bit(Nonrot, &rdev->flags))
1934 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1935 
1936 	WRITE_ONCE(info->rdev, NULL);
1937 	return true;
1938 }
1939 
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1940 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1941 {
1942 	struct r1conf *conf = mddev->private;
1943 	int err = -EEXIST;
1944 	int mirror = 0, repl_slot = -1;
1945 	struct raid1_info *p;
1946 	int first = 0;
1947 	int last = conf->raid_disks - 1;
1948 
1949 	if (mddev->recovery_disabled == conf->recovery_disabled)
1950 		return -EBUSY;
1951 
1952 	if (rdev->raid_disk >= 0)
1953 		first = last = rdev->raid_disk;
1954 
1955 	/*
1956 	 * find the disk ... but prefer rdev->saved_raid_disk
1957 	 * if possible.
1958 	 */
1959 	if (rdev->saved_raid_disk >= 0 &&
1960 	    rdev->saved_raid_disk >= first &&
1961 	    rdev->saved_raid_disk < conf->raid_disks &&
1962 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1963 		first = last = rdev->saved_raid_disk;
1964 
1965 	for (mirror = first; mirror <= last; mirror++) {
1966 		p = conf->mirrors + mirror;
1967 		if (!p->rdev) {
1968 			err = mddev_stack_new_rdev(mddev, rdev);
1969 			if (err)
1970 				return err;
1971 
1972 			raid1_add_conf(conf, rdev, mirror, false);
1973 			/* As all devices are equivalent, we don't need a full recovery
1974 			 * if this was recently any drive of the array
1975 			 */
1976 			if (rdev->saved_raid_disk < 0)
1977 				conf->fullsync = 1;
1978 			break;
1979 		}
1980 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1981 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1982 			repl_slot = mirror;
1983 	}
1984 
1985 	if (err && repl_slot >= 0) {
1986 		/* Add this device as a replacement */
1987 		clear_bit(In_sync, &rdev->flags);
1988 		set_bit(Replacement, &rdev->flags);
1989 		raid1_add_conf(conf, rdev, repl_slot, true);
1990 		err = 0;
1991 		conf->fullsync = 1;
1992 	}
1993 
1994 	print_conf(conf);
1995 	return err;
1996 }
1997 
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1998 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1999 {
2000 	struct r1conf *conf = mddev->private;
2001 	int err = 0;
2002 	int number = rdev->raid_disk;
2003 	struct raid1_info *p = conf->mirrors + number;
2004 
2005 	if (unlikely(number >= conf->raid_disks))
2006 		goto abort;
2007 
2008 	if (rdev != p->rdev) {
2009 		number += conf->raid_disks;
2010 		p = conf->mirrors + number;
2011 	}
2012 
2013 	print_conf(conf);
2014 	if (rdev == p->rdev) {
2015 		if (!raid1_remove_conf(conf, number)) {
2016 			err = -EBUSY;
2017 			goto abort;
2018 		}
2019 
2020 		if (number < conf->raid_disks &&
2021 		    conf->mirrors[conf->raid_disks + number].rdev) {
2022 			/* We just removed a device that is being replaced.
2023 			 * Move down the replacement.  We drain all IO before
2024 			 * doing this to avoid confusion.
2025 			 */
2026 			struct md_rdev *repl =
2027 				conf->mirrors[conf->raid_disks + number].rdev;
2028 			freeze_array(conf, 0);
2029 			if (atomic_read(&repl->nr_pending)) {
2030 				/* It means that some queued IO of retry_list
2031 				 * hold repl. Thus, we cannot set replacement
2032 				 * as NULL, avoiding rdev NULL pointer
2033 				 * dereference in sync_request_write and
2034 				 * handle_write_finished.
2035 				 */
2036 				err = -EBUSY;
2037 				unfreeze_array(conf);
2038 				goto abort;
2039 			}
2040 			clear_bit(Replacement, &repl->flags);
2041 			WRITE_ONCE(p->rdev, repl);
2042 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
2043 			unfreeze_array(conf);
2044 		}
2045 
2046 		clear_bit(WantReplacement, &rdev->flags);
2047 		err = md_integrity_register(mddev);
2048 	}
2049 abort:
2050 
2051 	print_conf(conf);
2052 	return err;
2053 }
2054 
end_sync_read(struct bio * bio)2055 static void end_sync_read(struct bio *bio)
2056 {
2057 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2058 
2059 	update_head_pos(r1_bio->read_disk, r1_bio);
2060 
2061 	/*
2062 	 * we have read a block, now it needs to be re-written,
2063 	 * or re-read if the read failed.
2064 	 * We don't do much here, just schedule handling by raid1d
2065 	 */
2066 	if (!bio->bi_status)
2067 		set_bit(R1BIO_Uptodate, &r1_bio->state);
2068 
2069 	if (atomic_dec_and_test(&r1_bio->remaining))
2070 		reschedule_retry(r1_bio);
2071 }
2072 
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)2073 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2074 {
2075 	sector_t sync_blocks = 0;
2076 	sector_t s = r1_bio->sector;
2077 	long sectors_to_go = r1_bio->sectors;
2078 
2079 	/* make sure these bits don't get cleared. */
2080 	do {
2081 		mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
2082 		s += sync_blocks;
2083 		sectors_to_go -= sync_blocks;
2084 	} while (sectors_to_go > 0);
2085 }
2086 
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)2087 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2088 {
2089 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2090 		struct mddev *mddev = r1_bio->mddev;
2091 		int s = r1_bio->sectors;
2092 
2093 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2094 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2095 			reschedule_retry(r1_bio);
2096 		else {
2097 			put_buf(r1_bio);
2098 			md_done_sync(mddev, s, uptodate);
2099 		}
2100 	}
2101 }
2102 
end_sync_write(struct bio * bio)2103 static void end_sync_write(struct bio *bio)
2104 {
2105 	int uptodate = !bio->bi_status;
2106 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2107 	struct mddev *mddev = r1_bio->mddev;
2108 	struct r1conf *conf = mddev->private;
2109 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2110 
2111 	if (!uptodate) {
2112 		abort_sync_write(mddev, r1_bio);
2113 		set_bit(WriteErrorSeen, &rdev->flags);
2114 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2115 			set_bit(MD_RECOVERY_NEEDED, &
2116 				mddev->recovery);
2117 		set_bit(R1BIO_WriteError, &r1_bio->state);
2118 	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2119 		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2120 				      r1_bio->sector, r1_bio->sectors)) {
2121 		set_bit(R1BIO_MadeGood, &r1_bio->state);
2122 	}
2123 
2124 	put_sync_write_buf(r1_bio, uptodate);
2125 }
2126 
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,blk_opf_t rw)2127 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2128 			   int sectors, struct page *page, blk_opf_t rw)
2129 {
2130 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2131 		/* success */
2132 		return 1;
2133 	if (rw == REQ_OP_WRITE) {
2134 		set_bit(WriteErrorSeen, &rdev->flags);
2135 		if (!test_and_set_bit(WantReplacement,
2136 				      &rdev->flags))
2137 			set_bit(MD_RECOVERY_NEEDED, &
2138 				rdev->mddev->recovery);
2139 	}
2140 	/* need to record an error - either for the block or the device */
2141 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2142 		md_error(rdev->mddev, rdev);
2143 	return 0;
2144 }
2145 
fix_sync_read_error(struct r1bio * r1_bio)2146 static int fix_sync_read_error(struct r1bio *r1_bio)
2147 {
2148 	/* Try some synchronous reads of other devices to get
2149 	 * good data, much like with normal read errors.  Only
2150 	 * read into the pages we already have so we don't
2151 	 * need to re-issue the read request.
2152 	 * We don't need to freeze the array, because being in an
2153 	 * active sync request, there is no normal IO, and
2154 	 * no overlapping syncs.
2155 	 * We don't need to check is_badblock() again as we
2156 	 * made sure that anything with a bad block in range
2157 	 * will have bi_end_io clear.
2158 	 */
2159 	struct mddev *mddev = r1_bio->mddev;
2160 	struct r1conf *conf = mddev->private;
2161 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2162 	struct page **pages = get_resync_pages(bio)->pages;
2163 	sector_t sect = r1_bio->sector;
2164 	int sectors = r1_bio->sectors;
2165 	int idx = 0;
2166 	struct md_rdev *rdev;
2167 
2168 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2169 	if (test_bit(FailFast, &rdev->flags)) {
2170 		/* Don't try recovering from here - just fail it
2171 		 * ... unless it is the last working device of course */
2172 		md_error(mddev, rdev);
2173 		if (test_bit(Faulty, &rdev->flags))
2174 			/* Don't try to read from here, but make sure
2175 			 * put_buf does it's thing
2176 			 */
2177 			bio->bi_end_io = end_sync_write;
2178 	}
2179 
2180 	while(sectors) {
2181 		int s = sectors;
2182 		int d = r1_bio->read_disk;
2183 		int success = 0;
2184 		int start;
2185 
2186 		if (s > (PAGE_SIZE>>9))
2187 			s = PAGE_SIZE >> 9;
2188 		do {
2189 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2190 				/* No rcu protection needed here devices
2191 				 * can only be removed when no resync is
2192 				 * active, and resync is currently active
2193 				 */
2194 				rdev = conf->mirrors[d].rdev;
2195 				if (sync_page_io(rdev, sect, s<<9,
2196 						 pages[idx],
2197 						 REQ_OP_READ, false)) {
2198 					success = 1;
2199 					break;
2200 				}
2201 			}
2202 			d++;
2203 			if (d == conf->raid_disks * 2)
2204 				d = 0;
2205 		} while (!success && d != r1_bio->read_disk);
2206 
2207 		if (!success) {
2208 			int abort = 0;
2209 			/* Cannot read from anywhere, this block is lost.
2210 			 * Record a bad block on each device.  If that doesn't
2211 			 * work just disable and interrupt the recovery.
2212 			 * Don't fail devices as that won't really help.
2213 			 */
2214 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2215 					    mdname(mddev), bio->bi_bdev,
2216 					    (unsigned long long)r1_bio->sector);
2217 			for (d = 0; d < conf->raid_disks * 2; d++) {
2218 				rdev = conf->mirrors[d].rdev;
2219 				if (!rdev || test_bit(Faulty, &rdev->flags))
2220 					continue;
2221 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2222 					abort = 1;
2223 			}
2224 			if (abort) {
2225 				conf->recovery_disabled =
2226 					mddev->recovery_disabled;
2227 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2228 				md_done_sync(mddev, r1_bio->sectors, 0);
2229 				put_buf(r1_bio);
2230 				return 0;
2231 			}
2232 			/* Try next page */
2233 			sectors -= s;
2234 			sect += s;
2235 			idx++;
2236 			continue;
2237 		}
2238 
2239 		start = d;
2240 		/* write it back and re-read */
2241 		while (d != r1_bio->read_disk) {
2242 			if (d == 0)
2243 				d = conf->raid_disks * 2;
2244 			d--;
2245 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2246 				continue;
2247 			rdev = conf->mirrors[d].rdev;
2248 			if (r1_sync_page_io(rdev, sect, s,
2249 					    pages[idx],
2250 					    REQ_OP_WRITE) == 0) {
2251 				r1_bio->bios[d]->bi_end_io = NULL;
2252 				rdev_dec_pending(rdev, mddev);
2253 			}
2254 		}
2255 		d = start;
2256 		while (d != r1_bio->read_disk) {
2257 			if (d == 0)
2258 				d = conf->raid_disks * 2;
2259 			d--;
2260 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2261 				continue;
2262 			rdev = conf->mirrors[d].rdev;
2263 			if (r1_sync_page_io(rdev, sect, s,
2264 					    pages[idx],
2265 					    REQ_OP_READ) != 0)
2266 				atomic_add(s, &rdev->corrected_errors);
2267 		}
2268 		sectors -= s;
2269 		sect += s;
2270 		idx ++;
2271 	}
2272 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2273 	bio->bi_status = 0;
2274 	return 1;
2275 }
2276 
process_checks(struct r1bio * r1_bio)2277 static void process_checks(struct r1bio *r1_bio)
2278 {
2279 	/* We have read all readable devices.  If we haven't
2280 	 * got the block, then there is no hope left.
2281 	 * If we have, then we want to do a comparison
2282 	 * and skip the write if everything is the same.
2283 	 * If any blocks failed to read, then we need to
2284 	 * attempt an over-write
2285 	 */
2286 	struct mddev *mddev = r1_bio->mddev;
2287 	struct r1conf *conf = mddev->private;
2288 	int primary;
2289 	int i;
2290 	int vcnt;
2291 
2292 	/* Fix variable parts of all bios */
2293 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2294 	for (i = 0; i < conf->raid_disks * 2; i++) {
2295 		blk_status_t status;
2296 		struct bio *b = r1_bio->bios[i];
2297 		struct resync_pages *rp = get_resync_pages(b);
2298 		if (b->bi_end_io != end_sync_read)
2299 			continue;
2300 		/* fixup the bio for reuse, but preserve errno */
2301 		status = b->bi_status;
2302 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2303 		b->bi_status = status;
2304 		b->bi_iter.bi_sector = r1_bio->sector +
2305 			conf->mirrors[i].rdev->data_offset;
2306 		b->bi_end_io = end_sync_read;
2307 		rp->raid_bio = r1_bio;
2308 		b->bi_private = rp;
2309 
2310 		/* initialize bvec table again */
2311 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2312 	}
2313 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2314 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2315 		    !r1_bio->bios[primary]->bi_status) {
2316 			r1_bio->bios[primary]->bi_end_io = NULL;
2317 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2318 			break;
2319 		}
2320 	r1_bio->read_disk = primary;
2321 	for (i = 0; i < conf->raid_disks * 2; i++) {
2322 		int j = 0;
2323 		struct bio *pbio = r1_bio->bios[primary];
2324 		struct bio *sbio = r1_bio->bios[i];
2325 		blk_status_t status = sbio->bi_status;
2326 		struct page **ppages = get_resync_pages(pbio)->pages;
2327 		struct page **spages = get_resync_pages(sbio)->pages;
2328 		struct bio_vec *bi;
2329 		int page_len[RESYNC_PAGES] = { 0 };
2330 		struct bvec_iter_all iter_all;
2331 
2332 		if (sbio->bi_end_io != end_sync_read)
2333 			continue;
2334 		/* Now we can 'fixup' the error value */
2335 		sbio->bi_status = 0;
2336 
2337 		bio_for_each_segment_all(bi, sbio, iter_all)
2338 			page_len[j++] = bi->bv_len;
2339 
2340 		if (!status) {
2341 			for (j = vcnt; j-- ; ) {
2342 				if (memcmp(page_address(ppages[j]),
2343 					   page_address(spages[j]),
2344 					   page_len[j]))
2345 					break;
2346 			}
2347 		} else
2348 			j = 0;
2349 		if (j >= 0)
2350 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2351 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2352 			      && !status)) {
2353 			/* No need to write to this device. */
2354 			sbio->bi_end_io = NULL;
2355 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2356 			continue;
2357 		}
2358 
2359 		bio_copy_data(sbio, pbio);
2360 	}
2361 }
2362 
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2363 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2364 {
2365 	struct r1conf *conf = mddev->private;
2366 	int i;
2367 	int disks = conf->raid_disks * 2;
2368 	struct bio *wbio;
2369 
2370 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2371 		/* ouch - failed to read all of that. */
2372 		if (!fix_sync_read_error(r1_bio))
2373 			return;
2374 
2375 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2376 		process_checks(r1_bio);
2377 
2378 	/*
2379 	 * schedule writes
2380 	 */
2381 	atomic_set(&r1_bio->remaining, 1);
2382 	for (i = 0; i < disks ; i++) {
2383 		wbio = r1_bio->bios[i];
2384 		if (wbio->bi_end_io == NULL ||
2385 		    (wbio->bi_end_io == end_sync_read &&
2386 		     (i == r1_bio->read_disk ||
2387 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2388 			continue;
2389 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2390 			abort_sync_write(mddev, r1_bio);
2391 			continue;
2392 		}
2393 
2394 		wbio->bi_opf = REQ_OP_WRITE;
2395 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2396 			wbio->bi_opf |= MD_FAILFAST;
2397 
2398 		wbio->bi_end_io = end_sync_write;
2399 		atomic_inc(&r1_bio->remaining);
2400 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2401 
2402 		submit_bio_noacct(wbio);
2403 	}
2404 
2405 	put_sync_write_buf(r1_bio, 1);
2406 }
2407 
2408 /*
2409  * This is a kernel thread which:
2410  *
2411  *	1.	Retries failed read operations on working mirrors.
2412  *	2.	Updates the raid superblock when problems encounter.
2413  *	3.	Performs writes following reads for array synchronising.
2414  */
2415 
fix_read_error(struct r1conf * conf,struct r1bio * r1_bio)2416 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2417 {
2418 	sector_t sect = r1_bio->sector;
2419 	int sectors = r1_bio->sectors;
2420 	int read_disk = r1_bio->read_disk;
2421 	struct mddev *mddev = conf->mddev;
2422 	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2423 
2424 	if (exceed_read_errors(mddev, rdev)) {
2425 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2426 		return;
2427 	}
2428 
2429 	while(sectors) {
2430 		int s = sectors;
2431 		int d = read_disk;
2432 		int success = 0;
2433 		int start;
2434 
2435 		if (s > (PAGE_SIZE>>9))
2436 			s = PAGE_SIZE >> 9;
2437 
2438 		do {
2439 			rdev = conf->mirrors[d].rdev;
2440 			if (rdev &&
2441 			    (test_bit(In_sync, &rdev->flags) ||
2442 			     (!test_bit(Faulty, &rdev->flags) &&
2443 			      rdev->recovery_offset >= sect + s)) &&
2444 			    rdev_has_badblock(rdev, sect, s) == 0) {
2445 				atomic_inc(&rdev->nr_pending);
2446 				if (sync_page_io(rdev, sect, s<<9,
2447 					 conf->tmppage, REQ_OP_READ, false))
2448 					success = 1;
2449 				rdev_dec_pending(rdev, mddev);
2450 				if (success)
2451 					break;
2452 			}
2453 
2454 			d++;
2455 			if (d == conf->raid_disks * 2)
2456 				d = 0;
2457 		} while (d != read_disk);
2458 
2459 		if (!success) {
2460 			/* Cannot read from anywhere - mark it bad */
2461 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2462 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2463 				md_error(mddev, rdev);
2464 			break;
2465 		}
2466 		/* write it back and re-read */
2467 		start = d;
2468 		while (d != read_disk) {
2469 			if (d==0)
2470 				d = conf->raid_disks * 2;
2471 			d--;
2472 			rdev = conf->mirrors[d].rdev;
2473 			if (rdev &&
2474 			    !test_bit(Faulty, &rdev->flags)) {
2475 				atomic_inc(&rdev->nr_pending);
2476 				r1_sync_page_io(rdev, sect, s,
2477 						conf->tmppage, REQ_OP_WRITE);
2478 				rdev_dec_pending(rdev, mddev);
2479 			}
2480 		}
2481 		d = start;
2482 		while (d != read_disk) {
2483 			if (d==0)
2484 				d = conf->raid_disks * 2;
2485 			d--;
2486 			rdev = conf->mirrors[d].rdev;
2487 			if (rdev &&
2488 			    !test_bit(Faulty, &rdev->flags)) {
2489 				atomic_inc(&rdev->nr_pending);
2490 				if (r1_sync_page_io(rdev, sect, s,
2491 						conf->tmppage, REQ_OP_READ)) {
2492 					atomic_add(s, &rdev->corrected_errors);
2493 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2494 						mdname(mddev), s,
2495 						(unsigned long long)(sect +
2496 								     rdev->data_offset),
2497 						rdev->bdev);
2498 				}
2499 				rdev_dec_pending(rdev, mddev);
2500 			}
2501 		}
2502 		sectors -= s;
2503 		sect += s;
2504 	}
2505 }
2506 
narrow_write_error(struct r1bio * r1_bio,int i)2507 static int narrow_write_error(struct r1bio *r1_bio, int i)
2508 {
2509 	struct mddev *mddev = r1_bio->mddev;
2510 	struct r1conf *conf = mddev->private;
2511 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2512 
2513 	/* bio has the data to be written to device 'i' where
2514 	 * we just recently had a write error.
2515 	 * We repeatedly clone the bio and trim down to one block,
2516 	 * then try the write.  Where the write fails we record
2517 	 * a bad block.
2518 	 * It is conceivable that the bio doesn't exactly align with
2519 	 * blocks.  We must handle this somehow.
2520 	 *
2521 	 * We currently own a reference on the rdev.
2522 	 */
2523 
2524 	int block_sectors;
2525 	sector_t sector;
2526 	int sectors;
2527 	int sect_to_write = r1_bio->sectors;
2528 	int ok = 1;
2529 
2530 	if (rdev->badblocks.shift < 0)
2531 		return 0;
2532 
2533 	block_sectors = roundup(1 << rdev->badblocks.shift,
2534 				bdev_logical_block_size(rdev->bdev) >> 9);
2535 	sector = r1_bio->sector;
2536 	sectors = ((sector + block_sectors)
2537 		   & ~(sector_t)(block_sectors - 1))
2538 		- sector;
2539 
2540 	while (sect_to_write) {
2541 		struct bio *wbio;
2542 		if (sectors > sect_to_write)
2543 			sectors = sect_to_write;
2544 		/* Write at 'sector' for 'sectors'*/
2545 
2546 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2547 			wbio = bio_alloc_clone(rdev->bdev,
2548 					       r1_bio->behind_master_bio,
2549 					       GFP_NOIO, &mddev->bio_set);
2550 		} else {
2551 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2552 					       GFP_NOIO, &mddev->bio_set);
2553 		}
2554 
2555 		wbio->bi_opf = REQ_OP_WRITE;
2556 		wbio->bi_iter.bi_sector = r1_bio->sector;
2557 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2558 
2559 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2560 		wbio->bi_iter.bi_sector += rdev->data_offset;
2561 
2562 		if (submit_bio_wait(wbio) < 0)
2563 			/* failure! */
2564 			ok = rdev_set_badblocks(rdev, sector,
2565 						sectors, 0)
2566 				&& ok;
2567 
2568 		bio_put(wbio);
2569 		sect_to_write -= sectors;
2570 		sector += sectors;
2571 		sectors = block_sectors;
2572 	}
2573 	return ok;
2574 }
2575 
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2576 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2577 {
2578 	int m;
2579 	int s = r1_bio->sectors;
2580 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2581 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2582 		struct bio *bio = r1_bio->bios[m];
2583 		if (bio->bi_end_io == NULL)
2584 			continue;
2585 		if (!bio->bi_status &&
2586 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2587 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2588 		}
2589 		if (bio->bi_status &&
2590 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2591 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2592 				md_error(conf->mddev, rdev);
2593 		}
2594 	}
2595 	put_buf(r1_bio);
2596 	md_done_sync(conf->mddev, s, 1);
2597 }
2598 
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2599 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2600 {
2601 	int m, idx;
2602 	bool fail = false;
2603 
2604 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2605 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2606 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2607 			rdev_clear_badblocks(rdev,
2608 					     r1_bio->sector,
2609 					     r1_bio->sectors, 0);
2610 			rdev_dec_pending(rdev, conf->mddev);
2611 		} else if (r1_bio->bios[m] != NULL) {
2612 			/* This drive got a write error.  We need to
2613 			 * narrow down and record precise write
2614 			 * errors.
2615 			 */
2616 			fail = true;
2617 			if (!narrow_write_error(r1_bio, m)) {
2618 				md_error(conf->mddev,
2619 					 conf->mirrors[m].rdev);
2620 				/* an I/O failed, we can't clear the bitmap */
2621 				set_bit(R1BIO_Degraded, &r1_bio->state);
2622 			}
2623 			rdev_dec_pending(conf->mirrors[m].rdev,
2624 					 conf->mddev);
2625 		}
2626 	if (fail) {
2627 		spin_lock_irq(&conf->device_lock);
2628 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2629 		idx = sector_to_idx(r1_bio->sector);
2630 		atomic_inc(&conf->nr_queued[idx]);
2631 		spin_unlock_irq(&conf->device_lock);
2632 		/*
2633 		 * In case freeze_array() is waiting for condition
2634 		 * get_unqueued_pending() == extra to be true.
2635 		 */
2636 		wake_up(&conf->wait_barrier);
2637 		md_wakeup_thread(conf->mddev->thread);
2638 	} else {
2639 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2640 			close_write(r1_bio);
2641 		raid_end_bio_io(r1_bio);
2642 	}
2643 }
2644 
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2645 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2646 {
2647 	struct mddev *mddev = conf->mddev;
2648 	struct bio *bio;
2649 	struct md_rdev *rdev;
2650 	sector_t sector;
2651 
2652 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2653 	/* we got a read error. Maybe the drive is bad.  Maybe just
2654 	 * the block and we can fix it.
2655 	 * We freeze all other IO, and try reading the block from
2656 	 * other devices.  When we find one, we re-write
2657 	 * and check it that fixes the read error.
2658 	 * This is all done synchronously while the array is
2659 	 * frozen
2660 	 */
2661 
2662 	bio = r1_bio->bios[r1_bio->read_disk];
2663 	bio_put(bio);
2664 	r1_bio->bios[r1_bio->read_disk] = NULL;
2665 
2666 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2667 	if (mddev->ro == 0
2668 	    && !test_bit(FailFast, &rdev->flags)) {
2669 		freeze_array(conf, 1);
2670 		fix_read_error(conf, r1_bio);
2671 		unfreeze_array(conf);
2672 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2673 		md_error(mddev, rdev);
2674 	} else {
2675 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2676 	}
2677 
2678 	rdev_dec_pending(rdev, conf->mddev);
2679 	sector = r1_bio->sector;
2680 	bio = r1_bio->master_bio;
2681 
2682 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2683 	r1_bio->state = 0;
2684 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2685 	allow_barrier(conf, sector);
2686 }
2687 
raid1d(struct md_thread * thread)2688 static void raid1d(struct md_thread *thread)
2689 {
2690 	struct mddev *mddev = thread->mddev;
2691 	struct r1bio *r1_bio;
2692 	unsigned long flags;
2693 	struct r1conf *conf = mddev->private;
2694 	struct list_head *head = &conf->retry_list;
2695 	struct blk_plug plug;
2696 	int idx;
2697 
2698 	md_check_recovery(mddev);
2699 
2700 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2701 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2702 		LIST_HEAD(tmp);
2703 		spin_lock_irqsave(&conf->device_lock, flags);
2704 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2705 			list_splice_init(&conf->bio_end_io_list, &tmp);
2706 		spin_unlock_irqrestore(&conf->device_lock, flags);
2707 		while (!list_empty(&tmp)) {
2708 			r1_bio = list_first_entry(&tmp, struct r1bio,
2709 						  retry_list);
2710 			list_del(&r1_bio->retry_list);
2711 			idx = sector_to_idx(r1_bio->sector);
2712 			atomic_dec(&conf->nr_queued[idx]);
2713 			if (mddev->degraded)
2714 				set_bit(R1BIO_Degraded, &r1_bio->state);
2715 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2716 				close_write(r1_bio);
2717 			raid_end_bio_io(r1_bio);
2718 		}
2719 	}
2720 
2721 	blk_start_plug(&plug);
2722 	for (;;) {
2723 
2724 		flush_pending_writes(conf);
2725 
2726 		spin_lock_irqsave(&conf->device_lock, flags);
2727 		if (list_empty(head)) {
2728 			spin_unlock_irqrestore(&conf->device_lock, flags);
2729 			break;
2730 		}
2731 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2732 		list_del(head->prev);
2733 		idx = sector_to_idx(r1_bio->sector);
2734 		atomic_dec(&conf->nr_queued[idx]);
2735 		spin_unlock_irqrestore(&conf->device_lock, flags);
2736 
2737 		mddev = r1_bio->mddev;
2738 		conf = mddev->private;
2739 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2740 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2741 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2742 				handle_sync_write_finished(conf, r1_bio);
2743 			else
2744 				sync_request_write(mddev, r1_bio);
2745 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2746 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2747 			handle_write_finished(conf, r1_bio);
2748 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2749 			handle_read_error(conf, r1_bio);
2750 		else
2751 			WARN_ON_ONCE(1);
2752 
2753 		cond_resched();
2754 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2755 			md_check_recovery(mddev);
2756 	}
2757 	blk_finish_plug(&plug);
2758 }
2759 
init_resync(struct r1conf * conf)2760 static int init_resync(struct r1conf *conf)
2761 {
2762 	int buffs;
2763 
2764 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2765 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2766 
2767 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2768 			    r1buf_pool_free, conf->poolinfo);
2769 }
2770 
raid1_alloc_init_r1buf(struct r1conf * conf)2771 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2772 {
2773 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2774 	struct resync_pages *rps;
2775 	struct bio *bio;
2776 	int i;
2777 
2778 	for (i = conf->poolinfo->raid_disks; i--; ) {
2779 		bio = r1bio->bios[i];
2780 		rps = bio->bi_private;
2781 		bio_reset(bio, NULL, 0);
2782 		bio->bi_private = rps;
2783 	}
2784 	r1bio->master_bio = NULL;
2785 	return r1bio;
2786 }
2787 
2788 /*
2789  * perform a "sync" on one "block"
2790  *
2791  * We need to make sure that no normal I/O request - particularly write
2792  * requests - conflict with active sync requests.
2793  *
2794  * This is achieved by tracking pending requests and a 'barrier' concept
2795  * that can be installed to exclude normal IO requests.
2796  */
2797 
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)2798 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2799 				   sector_t max_sector, int *skipped)
2800 {
2801 	struct r1conf *conf = mddev->private;
2802 	struct r1bio *r1_bio;
2803 	struct bio *bio;
2804 	sector_t nr_sectors;
2805 	int disk = -1;
2806 	int i;
2807 	int wonly = -1;
2808 	int write_targets = 0, read_targets = 0;
2809 	sector_t sync_blocks;
2810 	bool still_degraded = false;
2811 	int good_sectors = RESYNC_SECTORS;
2812 	int min_bad = 0; /* number of sectors that are bad in all devices */
2813 	int idx = sector_to_idx(sector_nr);
2814 	int page_idx = 0;
2815 
2816 	if (!mempool_initialized(&conf->r1buf_pool))
2817 		if (init_resync(conf))
2818 			return 0;
2819 
2820 	if (sector_nr >= max_sector) {
2821 		/* If we aborted, we need to abort the
2822 		 * sync on the 'current' bitmap chunk (there will
2823 		 * only be one in raid1 resync.
2824 		 * We can find the current addess in mddev->curr_resync
2825 		 */
2826 		if (mddev->curr_resync < max_sector) /* aborted */
2827 			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
2828 						    &sync_blocks);
2829 		else /* completed sync */
2830 			conf->fullsync = 0;
2831 
2832 		mddev->bitmap_ops->close_sync(mddev);
2833 		close_sync(conf);
2834 
2835 		if (mddev_is_clustered(mddev)) {
2836 			conf->cluster_sync_low = 0;
2837 			conf->cluster_sync_high = 0;
2838 		}
2839 		return 0;
2840 	}
2841 
2842 	if (mddev->bitmap == NULL &&
2843 	    mddev->recovery_cp == MaxSector &&
2844 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2845 	    conf->fullsync == 0) {
2846 		*skipped = 1;
2847 		return max_sector - sector_nr;
2848 	}
2849 	/* before building a request, check if we can skip these blocks..
2850 	 * This call the bitmap_start_sync doesn't actually record anything
2851 	 */
2852 	if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
2853 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2854 		/* We can skip this block, and probably several more */
2855 		*skipped = 1;
2856 		return sync_blocks;
2857 	}
2858 
2859 	/*
2860 	 * If there is non-resync activity waiting for a turn, then let it
2861 	 * though before starting on this new sync request.
2862 	 */
2863 	if (atomic_read(&conf->nr_waiting[idx]))
2864 		schedule_timeout_uninterruptible(1);
2865 
2866 	/* we are incrementing sector_nr below. To be safe, we check against
2867 	 * sector_nr + two times RESYNC_SECTORS
2868 	 */
2869 
2870 	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2871 		mddev_is_clustered(mddev) &&
2872 		(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2873 
2874 	if (raise_barrier(conf, sector_nr))
2875 		return 0;
2876 
2877 	r1_bio = raid1_alloc_init_r1buf(conf);
2878 
2879 	/*
2880 	 * If we get a correctably read error during resync or recovery,
2881 	 * we might want to read from a different device.  So we
2882 	 * flag all drives that could conceivably be read from for READ,
2883 	 * and any others (which will be non-In_sync devices) for WRITE.
2884 	 * If a read fails, we try reading from something else for which READ
2885 	 * is OK.
2886 	 */
2887 
2888 	r1_bio->mddev = mddev;
2889 	r1_bio->sector = sector_nr;
2890 	r1_bio->state = 0;
2891 	set_bit(R1BIO_IsSync, &r1_bio->state);
2892 	/* make sure good_sectors won't go across barrier unit boundary */
2893 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2894 
2895 	for (i = 0; i < conf->raid_disks * 2; i++) {
2896 		struct md_rdev *rdev;
2897 		bio = r1_bio->bios[i];
2898 
2899 		rdev = conf->mirrors[i].rdev;
2900 		if (rdev == NULL ||
2901 		    test_bit(Faulty, &rdev->flags)) {
2902 			if (i < conf->raid_disks)
2903 				still_degraded = true;
2904 		} else if (!test_bit(In_sync, &rdev->flags)) {
2905 			bio->bi_opf = REQ_OP_WRITE;
2906 			bio->bi_end_io = end_sync_write;
2907 			write_targets ++;
2908 		} else {
2909 			/* may need to read from here */
2910 			sector_t first_bad = MaxSector;
2911 			int bad_sectors;
2912 
2913 			if (is_badblock(rdev, sector_nr, good_sectors,
2914 					&first_bad, &bad_sectors)) {
2915 				if (first_bad > sector_nr)
2916 					good_sectors = first_bad - sector_nr;
2917 				else {
2918 					bad_sectors -= (sector_nr - first_bad);
2919 					if (min_bad == 0 ||
2920 					    min_bad > bad_sectors)
2921 						min_bad = bad_sectors;
2922 				}
2923 			}
2924 			if (sector_nr < first_bad) {
2925 				if (test_bit(WriteMostly, &rdev->flags)) {
2926 					if (wonly < 0)
2927 						wonly = i;
2928 				} else {
2929 					if (disk < 0)
2930 						disk = i;
2931 				}
2932 				bio->bi_opf = REQ_OP_READ;
2933 				bio->bi_end_io = end_sync_read;
2934 				read_targets++;
2935 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2936 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2937 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2938 				/*
2939 				 * The device is suitable for reading (InSync),
2940 				 * but has bad block(s) here. Let's try to correct them,
2941 				 * if we are doing resync or repair. Otherwise, leave
2942 				 * this device alone for this sync request.
2943 				 */
2944 				bio->bi_opf = REQ_OP_WRITE;
2945 				bio->bi_end_io = end_sync_write;
2946 				write_targets++;
2947 			}
2948 		}
2949 		if (rdev && bio->bi_end_io) {
2950 			atomic_inc(&rdev->nr_pending);
2951 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2952 			bio_set_dev(bio, rdev->bdev);
2953 			if (test_bit(FailFast, &rdev->flags))
2954 				bio->bi_opf |= MD_FAILFAST;
2955 		}
2956 	}
2957 	if (disk < 0)
2958 		disk = wonly;
2959 	r1_bio->read_disk = disk;
2960 
2961 	if (read_targets == 0 && min_bad > 0) {
2962 		/* These sectors are bad on all InSync devices, so we
2963 		 * need to mark them bad on all write targets
2964 		 */
2965 		int ok = 1;
2966 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2967 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2968 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2969 				ok = rdev_set_badblocks(rdev, sector_nr,
2970 							min_bad, 0
2971 					) && ok;
2972 			}
2973 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2974 		*skipped = 1;
2975 		put_buf(r1_bio);
2976 
2977 		if (!ok) {
2978 			/* Cannot record the badblocks, so need to
2979 			 * abort the resync.
2980 			 * If there are multiple read targets, could just
2981 			 * fail the really bad ones ???
2982 			 */
2983 			conf->recovery_disabled = mddev->recovery_disabled;
2984 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2985 			return 0;
2986 		} else
2987 			return min_bad;
2988 
2989 	}
2990 	if (min_bad > 0 && min_bad < good_sectors) {
2991 		/* only resync enough to reach the next bad->good
2992 		 * transition */
2993 		good_sectors = min_bad;
2994 	}
2995 
2996 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2997 		/* extra read targets are also write targets */
2998 		write_targets += read_targets-1;
2999 
3000 	if (write_targets == 0 || read_targets == 0) {
3001 		/* There is nowhere to write, so all non-sync
3002 		 * drives must be failed - so we are finished
3003 		 */
3004 		sector_t rv;
3005 		if (min_bad > 0)
3006 			max_sector = sector_nr + min_bad;
3007 		rv = max_sector - sector_nr;
3008 		*skipped = 1;
3009 		put_buf(r1_bio);
3010 		return rv;
3011 	}
3012 
3013 	if (max_sector > mddev->resync_max)
3014 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3015 	if (max_sector > sector_nr + good_sectors)
3016 		max_sector = sector_nr + good_sectors;
3017 	nr_sectors = 0;
3018 	sync_blocks = 0;
3019 	do {
3020 		struct page *page;
3021 		int len = PAGE_SIZE;
3022 		if (sector_nr + (len>>9) > max_sector)
3023 			len = (max_sector - sector_nr) << 9;
3024 		if (len == 0)
3025 			break;
3026 		if (sync_blocks == 0) {
3027 			if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3028 						&sync_blocks, still_degraded) &&
3029 			    !conf->fullsync &&
3030 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3031 				break;
3032 			if ((len >> 9) > sync_blocks)
3033 				len = sync_blocks<<9;
3034 		}
3035 
3036 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
3037 			struct resync_pages *rp;
3038 
3039 			bio = r1_bio->bios[i];
3040 			rp = get_resync_pages(bio);
3041 			if (bio->bi_end_io) {
3042 				page = resync_fetch_page(rp, page_idx);
3043 
3044 				/*
3045 				 * won't fail because the vec table is big
3046 				 * enough to hold all these pages
3047 				 */
3048 				__bio_add_page(bio, page, len, 0);
3049 			}
3050 		}
3051 		nr_sectors += len>>9;
3052 		sector_nr += len>>9;
3053 		sync_blocks -= (len>>9);
3054 	} while (++page_idx < RESYNC_PAGES);
3055 
3056 	r1_bio->sectors = nr_sectors;
3057 
3058 	if (mddev_is_clustered(mddev) &&
3059 			conf->cluster_sync_high < sector_nr + nr_sectors) {
3060 		conf->cluster_sync_low = mddev->curr_resync_completed;
3061 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3062 		/* Send resync message */
3063 		md_cluster_ops->resync_info_update(mddev,
3064 				conf->cluster_sync_low,
3065 				conf->cluster_sync_high);
3066 	}
3067 
3068 	/* For a user-requested sync, we read all readable devices and do a
3069 	 * compare
3070 	 */
3071 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3072 		atomic_set(&r1_bio->remaining, read_targets);
3073 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3074 			bio = r1_bio->bios[i];
3075 			if (bio->bi_end_io == end_sync_read) {
3076 				read_targets--;
3077 				md_sync_acct_bio(bio, nr_sectors);
3078 				if (read_targets == 1)
3079 					bio->bi_opf &= ~MD_FAILFAST;
3080 				submit_bio_noacct(bio);
3081 			}
3082 		}
3083 	} else {
3084 		atomic_set(&r1_bio->remaining, 1);
3085 		bio = r1_bio->bios[r1_bio->read_disk];
3086 		md_sync_acct_bio(bio, nr_sectors);
3087 		if (read_targets == 1)
3088 			bio->bi_opf &= ~MD_FAILFAST;
3089 		submit_bio_noacct(bio);
3090 	}
3091 	return nr_sectors;
3092 }
3093 
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)3094 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3095 {
3096 	if (sectors)
3097 		return sectors;
3098 
3099 	return mddev->dev_sectors;
3100 }
3101 
setup_conf(struct mddev * mddev)3102 static struct r1conf *setup_conf(struct mddev *mddev)
3103 {
3104 	struct r1conf *conf;
3105 	int i;
3106 	struct raid1_info *disk;
3107 	struct md_rdev *rdev;
3108 	int err = -ENOMEM;
3109 
3110 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3111 	if (!conf)
3112 		goto abort;
3113 
3114 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3115 				   sizeof(atomic_t), GFP_KERNEL);
3116 	if (!conf->nr_pending)
3117 		goto abort;
3118 
3119 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3120 				   sizeof(atomic_t), GFP_KERNEL);
3121 	if (!conf->nr_waiting)
3122 		goto abort;
3123 
3124 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3125 				  sizeof(atomic_t), GFP_KERNEL);
3126 	if (!conf->nr_queued)
3127 		goto abort;
3128 
3129 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3130 				sizeof(atomic_t), GFP_KERNEL);
3131 	if (!conf->barrier)
3132 		goto abort;
3133 
3134 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3135 					    mddev->raid_disks, 2),
3136 				GFP_KERNEL);
3137 	if (!conf->mirrors)
3138 		goto abort;
3139 
3140 	conf->tmppage = alloc_page(GFP_KERNEL);
3141 	if (!conf->tmppage)
3142 		goto abort;
3143 
3144 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3145 	if (!conf->poolinfo)
3146 		goto abort;
3147 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3148 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3149 			   rbio_pool_free, conf->poolinfo);
3150 	if (err)
3151 		goto abort;
3152 
3153 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3154 	if (err)
3155 		goto abort;
3156 
3157 	conf->poolinfo->mddev = mddev;
3158 
3159 	err = -EINVAL;
3160 	spin_lock_init(&conf->device_lock);
3161 	conf->raid_disks = mddev->raid_disks;
3162 	rdev_for_each(rdev, mddev) {
3163 		int disk_idx = rdev->raid_disk;
3164 
3165 		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3166 			continue;
3167 
3168 		if (!raid1_add_conf(conf, rdev, disk_idx,
3169 				    test_bit(Replacement, &rdev->flags)))
3170 			goto abort;
3171 	}
3172 	conf->mddev = mddev;
3173 	INIT_LIST_HEAD(&conf->retry_list);
3174 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3175 
3176 	spin_lock_init(&conf->resync_lock);
3177 	init_waitqueue_head(&conf->wait_barrier);
3178 
3179 	bio_list_init(&conf->pending_bio_list);
3180 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3181 
3182 	err = -EIO;
3183 	for (i = 0; i < conf->raid_disks * 2; i++) {
3184 
3185 		disk = conf->mirrors + i;
3186 
3187 		if (i < conf->raid_disks &&
3188 		    disk[conf->raid_disks].rdev) {
3189 			/* This slot has a replacement. */
3190 			if (!disk->rdev) {
3191 				/* No original, just make the replacement
3192 				 * a recovering spare
3193 				 */
3194 				disk->rdev =
3195 					disk[conf->raid_disks].rdev;
3196 				disk[conf->raid_disks].rdev = NULL;
3197 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3198 				/* Original is not in_sync - bad */
3199 				goto abort;
3200 		}
3201 
3202 		if (!disk->rdev ||
3203 		    !test_bit(In_sync, &disk->rdev->flags)) {
3204 			disk->head_position = 0;
3205 			if (disk->rdev &&
3206 			    (disk->rdev->saved_raid_disk < 0))
3207 				conf->fullsync = 1;
3208 		}
3209 	}
3210 
3211 	err = -ENOMEM;
3212 	rcu_assign_pointer(conf->thread,
3213 			   md_register_thread(raid1d, mddev, "raid1"));
3214 	if (!conf->thread)
3215 		goto abort;
3216 
3217 	return conf;
3218 
3219  abort:
3220 	if (conf) {
3221 		mempool_exit(&conf->r1bio_pool);
3222 		kfree(conf->mirrors);
3223 		safe_put_page(conf->tmppage);
3224 		kfree(conf->poolinfo);
3225 		kfree(conf->nr_pending);
3226 		kfree(conf->nr_waiting);
3227 		kfree(conf->nr_queued);
3228 		kfree(conf->barrier);
3229 		bioset_exit(&conf->bio_split);
3230 		kfree(conf);
3231 	}
3232 	return ERR_PTR(err);
3233 }
3234 
raid1_set_limits(struct mddev * mddev)3235 static int raid1_set_limits(struct mddev *mddev)
3236 {
3237 	struct queue_limits lim;
3238 	int err;
3239 
3240 	md_init_stacking_limits(&lim);
3241 	lim.max_write_zeroes_sectors = 0;
3242 	lim.features |= BLK_FEAT_ATOMIC_WRITES_STACKED;
3243 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3244 	if (err) {
3245 		queue_limits_cancel_update(mddev->gendisk->queue);
3246 		return err;
3247 	}
3248 	return queue_limits_set(mddev->gendisk->queue, &lim);
3249 }
3250 
raid1_run(struct mddev * mddev)3251 static int raid1_run(struct mddev *mddev)
3252 {
3253 	struct r1conf *conf;
3254 	int i;
3255 	int ret;
3256 
3257 	if (mddev->level != 1) {
3258 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3259 			mdname(mddev), mddev->level);
3260 		return -EIO;
3261 	}
3262 	if (mddev->reshape_position != MaxSector) {
3263 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3264 			mdname(mddev));
3265 		return -EIO;
3266 	}
3267 
3268 	/*
3269 	 * copy the already verified devices into our private RAID1
3270 	 * bookkeeping area. [whatever we allocate in run(),
3271 	 * should be freed in raid1_free()]
3272 	 */
3273 	if (mddev->private == NULL)
3274 		conf = setup_conf(mddev);
3275 	else
3276 		conf = mddev->private;
3277 
3278 	if (IS_ERR(conf))
3279 		return PTR_ERR(conf);
3280 
3281 	if (!mddev_is_dm(mddev)) {
3282 		ret = raid1_set_limits(mddev);
3283 		if (ret)
3284 			return ret;
3285 	}
3286 
3287 	mddev->degraded = 0;
3288 	for (i = 0; i < conf->raid_disks; i++)
3289 		if (conf->mirrors[i].rdev == NULL ||
3290 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3291 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3292 			mddev->degraded++;
3293 	/*
3294 	 * RAID1 needs at least one disk in active
3295 	 */
3296 	if (conf->raid_disks - mddev->degraded < 1) {
3297 		md_unregister_thread(mddev, &conf->thread);
3298 		return -EINVAL;
3299 	}
3300 
3301 	if (conf->raid_disks - mddev->degraded == 1)
3302 		mddev->recovery_cp = MaxSector;
3303 
3304 	if (mddev->recovery_cp != MaxSector)
3305 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3306 			mdname(mddev));
3307 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3308 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3309 		mddev->raid_disks);
3310 
3311 	/*
3312 	 * Ok, everything is just fine now
3313 	 */
3314 	rcu_assign_pointer(mddev->thread, conf->thread);
3315 	rcu_assign_pointer(conf->thread, NULL);
3316 	mddev->private = conf;
3317 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3318 
3319 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3320 
3321 	ret = md_integrity_register(mddev);
3322 	if (ret)
3323 		md_unregister_thread(mddev, &mddev->thread);
3324 	return ret;
3325 }
3326 
raid1_free(struct mddev * mddev,void * priv)3327 static void raid1_free(struct mddev *mddev, void *priv)
3328 {
3329 	struct r1conf *conf = priv;
3330 
3331 	mempool_exit(&conf->r1bio_pool);
3332 	kfree(conf->mirrors);
3333 	safe_put_page(conf->tmppage);
3334 	kfree(conf->poolinfo);
3335 	kfree(conf->nr_pending);
3336 	kfree(conf->nr_waiting);
3337 	kfree(conf->nr_queued);
3338 	kfree(conf->barrier);
3339 	bioset_exit(&conf->bio_split);
3340 	kfree(conf);
3341 }
3342 
raid1_resize(struct mddev * mddev,sector_t sectors)3343 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3344 {
3345 	/* no resync is happening, and there is enough space
3346 	 * on all devices, so we can resize.
3347 	 * We need to make sure resync covers any new space.
3348 	 * If the array is shrinking we should possibly wait until
3349 	 * any io in the removed space completes, but it hardly seems
3350 	 * worth it.
3351 	 */
3352 	sector_t newsize = raid1_size(mddev, sectors, 0);
3353 	int ret;
3354 
3355 	if (mddev->external_size &&
3356 	    mddev->array_sectors > newsize)
3357 		return -EINVAL;
3358 
3359 	ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
3360 	if (ret)
3361 		return ret;
3362 
3363 	md_set_array_sectors(mddev, newsize);
3364 	if (sectors > mddev->dev_sectors &&
3365 	    mddev->recovery_cp > mddev->dev_sectors) {
3366 		mddev->recovery_cp = mddev->dev_sectors;
3367 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3368 	}
3369 	mddev->dev_sectors = sectors;
3370 	mddev->resync_max_sectors = sectors;
3371 	return 0;
3372 }
3373 
raid1_reshape(struct mddev * mddev)3374 static int raid1_reshape(struct mddev *mddev)
3375 {
3376 	/* We need to:
3377 	 * 1/ resize the r1bio_pool
3378 	 * 2/ resize conf->mirrors
3379 	 *
3380 	 * We allocate a new r1bio_pool if we can.
3381 	 * Then raise a device barrier and wait until all IO stops.
3382 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3383 	 *
3384 	 * At the same time, we "pack" the devices so that all the missing
3385 	 * devices have the higher raid_disk numbers.
3386 	 */
3387 	mempool_t newpool, oldpool;
3388 	struct pool_info *newpoolinfo;
3389 	struct raid1_info *newmirrors;
3390 	struct r1conf *conf = mddev->private;
3391 	int cnt, raid_disks;
3392 	unsigned long flags;
3393 	int d, d2;
3394 	int ret;
3395 
3396 	memset(&newpool, 0, sizeof(newpool));
3397 	memset(&oldpool, 0, sizeof(oldpool));
3398 
3399 	/* Cannot change chunk_size, layout, or level */
3400 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3401 	    mddev->layout != mddev->new_layout ||
3402 	    mddev->level != mddev->new_level) {
3403 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3404 		mddev->new_layout = mddev->layout;
3405 		mddev->new_level = mddev->level;
3406 		return -EINVAL;
3407 	}
3408 
3409 	if (!mddev_is_clustered(mddev))
3410 		md_allow_write(mddev);
3411 
3412 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3413 
3414 	if (raid_disks < conf->raid_disks) {
3415 		cnt=0;
3416 		for (d= 0; d < conf->raid_disks; d++)
3417 			if (conf->mirrors[d].rdev)
3418 				cnt++;
3419 		if (cnt > raid_disks)
3420 			return -EBUSY;
3421 	}
3422 
3423 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3424 	if (!newpoolinfo)
3425 		return -ENOMEM;
3426 	newpoolinfo->mddev = mddev;
3427 	newpoolinfo->raid_disks = raid_disks * 2;
3428 
3429 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3430 			   rbio_pool_free, newpoolinfo);
3431 	if (ret) {
3432 		kfree(newpoolinfo);
3433 		return ret;
3434 	}
3435 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3436 					 raid_disks, 2),
3437 			     GFP_KERNEL);
3438 	if (!newmirrors) {
3439 		kfree(newpoolinfo);
3440 		mempool_exit(&newpool);
3441 		return -ENOMEM;
3442 	}
3443 
3444 	freeze_array(conf, 0);
3445 
3446 	/* ok, everything is stopped */
3447 	oldpool = conf->r1bio_pool;
3448 	conf->r1bio_pool = newpool;
3449 
3450 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3451 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3452 		if (rdev && rdev->raid_disk != d2) {
3453 			sysfs_unlink_rdev(mddev, rdev);
3454 			rdev->raid_disk = d2;
3455 			sysfs_unlink_rdev(mddev, rdev);
3456 			if (sysfs_link_rdev(mddev, rdev))
3457 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3458 					mdname(mddev), rdev->raid_disk);
3459 		}
3460 		if (rdev)
3461 			newmirrors[d2++].rdev = rdev;
3462 	}
3463 	kfree(conf->mirrors);
3464 	conf->mirrors = newmirrors;
3465 	kfree(conf->poolinfo);
3466 	conf->poolinfo = newpoolinfo;
3467 
3468 	spin_lock_irqsave(&conf->device_lock, flags);
3469 	mddev->degraded += (raid_disks - conf->raid_disks);
3470 	spin_unlock_irqrestore(&conf->device_lock, flags);
3471 	conf->raid_disks = mddev->raid_disks = raid_disks;
3472 	mddev->delta_disks = 0;
3473 
3474 	unfreeze_array(conf);
3475 
3476 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3477 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3478 	md_wakeup_thread(mddev->thread);
3479 
3480 	mempool_exit(&oldpool);
3481 	return 0;
3482 }
3483 
raid1_quiesce(struct mddev * mddev,int quiesce)3484 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3485 {
3486 	struct r1conf *conf = mddev->private;
3487 
3488 	if (quiesce)
3489 		freeze_array(conf, 0);
3490 	else
3491 		unfreeze_array(conf);
3492 }
3493 
raid1_takeover(struct mddev * mddev)3494 static void *raid1_takeover(struct mddev *mddev)
3495 {
3496 	/* raid1 can take over:
3497 	 *  raid5 with 2 devices, any layout or chunk size
3498 	 */
3499 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3500 		struct r1conf *conf;
3501 		mddev->new_level = 1;
3502 		mddev->new_layout = 0;
3503 		mddev->new_chunk_sectors = 0;
3504 		conf = setup_conf(mddev);
3505 		if (!IS_ERR(conf)) {
3506 			/* Array must appear to be quiesced */
3507 			conf->array_frozen = 1;
3508 			mddev_clear_unsupported_flags(mddev,
3509 				UNSUPPORTED_MDDEV_FLAGS);
3510 		}
3511 		return conf;
3512 	}
3513 	return ERR_PTR(-EINVAL);
3514 }
3515 
3516 static struct md_personality raid1_personality =
3517 {
3518 	.name		= "raid1",
3519 	.level		= 1,
3520 	.owner		= THIS_MODULE,
3521 	.make_request	= raid1_make_request,
3522 	.run		= raid1_run,
3523 	.free		= raid1_free,
3524 	.status		= raid1_status,
3525 	.error_handler	= raid1_error,
3526 	.hot_add_disk	= raid1_add_disk,
3527 	.hot_remove_disk= raid1_remove_disk,
3528 	.spare_active	= raid1_spare_active,
3529 	.sync_request	= raid1_sync_request,
3530 	.resize		= raid1_resize,
3531 	.size		= raid1_size,
3532 	.check_reshape	= raid1_reshape,
3533 	.quiesce	= raid1_quiesce,
3534 	.takeover	= raid1_takeover,
3535 };
3536 
raid_init(void)3537 static int __init raid_init(void)
3538 {
3539 	return register_md_personality(&raid1_personality);
3540 }
3541 
raid_exit(void)3542 static void raid_exit(void)
3543 {
3544 	unregister_md_personality(&raid1_personality);
3545 }
3546 
3547 module_init(raid_init);
3548 module_exit(raid_exit);
3549 MODULE_LICENSE("GPL");
3550 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3551 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3552 MODULE_ALIAS("md-raid1");
3553 MODULE_ALIAS("md-level-1");
3554