xref: /linux/tools/testing/selftests/kvm/aarch64/vgic_irq.c (revision 64dd3b6a79f0907d36de481b0f15fab323a53e5a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * vgic_irq.c - Test userspace injection of IRQs
4  *
5  * This test validates the injection of IRQs from userspace using various
6  * methods (e.g., KVM_IRQ_LINE) and modes (e.g., EOI). The guest "asks" the
7  * host to inject a specific intid via a GUEST_SYNC call, and then checks that
8  * it received it.
9  */
10 #include <asm/kvm.h>
11 #include <asm/kvm_para.h>
12 #include <sys/eventfd.h>
13 #include <linux/sizes.h>
14 
15 #include "processor.h"
16 #include "test_util.h"
17 #include "kvm_util.h"
18 #include "gic.h"
19 #include "gic_v3.h"
20 #include "vgic.h"
21 
22 /*
23  * Stores the user specified args; it's passed to the guest and to every test
24  * function.
25  */
26 struct test_args {
27 	uint32_t nr_irqs; /* number of KVM supported IRQs. */
28 	bool eoi_split; /* 1 is eoir+dir, 0 is eoir only */
29 	bool level_sensitive; /* 1 is level, 0 is edge */
30 	int kvm_max_routes; /* output of KVM_CAP_IRQ_ROUTING */
31 	bool kvm_supports_irqfd; /* output of KVM_CAP_IRQFD */
32 };
33 
34 /*
35  * KVM implements 32 priority levels:
36  * 0x00 (highest priority) - 0xF8 (lowest priority), in steps of 8
37  *
38  * Note that these macros will still be correct in the case that KVM implements
39  * more priority levels. Also note that 32 is the minimum for GICv3 and GICv2.
40  */
41 #define KVM_NUM_PRIOS		32
42 #define KVM_PRIO_SHIFT		3 /* steps of 8 = 1 << 3 */
43 #define KVM_PRIO_STEPS		(1 << KVM_PRIO_SHIFT) /* 8 */
44 #define LOWEST_PRIO		(KVM_NUM_PRIOS - 1)
45 #define CPU_PRIO_MASK		(LOWEST_PRIO << KVM_PRIO_SHIFT)	/* 0xf8 */
46 #define IRQ_DEFAULT_PRIO	(LOWEST_PRIO - 1)
47 #define IRQ_DEFAULT_PRIO_REG	(IRQ_DEFAULT_PRIO << KVM_PRIO_SHIFT) /* 0xf0 */
48 
49 /*
50  * The kvm_inject_* utilities are used by the guest to ask the host to inject
51  * interrupts (e.g., using the KVM_IRQ_LINE ioctl).
52  */
53 
54 typedef enum {
55 	KVM_INJECT_EDGE_IRQ_LINE = 1,
56 	KVM_SET_IRQ_LINE,
57 	KVM_SET_IRQ_LINE_HIGH,
58 	KVM_SET_LEVEL_INFO_HIGH,
59 	KVM_INJECT_IRQFD,
60 	KVM_WRITE_ISPENDR,
61 	KVM_WRITE_ISACTIVER,
62 } kvm_inject_cmd;
63 
64 struct kvm_inject_args {
65 	kvm_inject_cmd cmd;
66 	uint32_t first_intid;
67 	uint32_t num;
68 	int level;
69 	bool expect_failure;
70 };
71 
72 /* Used on the guest side to perform the hypercall. */
73 static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid,
74 		uint32_t num, int level, bool expect_failure);
75 
76 /* Used on the host side to get the hypercall info. */
77 static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc,
78 		struct kvm_inject_args *args);
79 
80 #define _KVM_INJECT_MULTI(cmd, intid, num, expect_failure)			\
81 	kvm_inject_call(cmd, intid, num, -1 /* not used */, expect_failure)
82 
83 #define KVM_INJECT_MULTI(cmd, intid, num)					\
84 	_KVM_INJECT_MULTI(cmd, intid, num, false)
85 
86 #define _KVM_INJECT(cmd, intid, expect_failure)					\
87 	_KVM_INJECT_MULTI(cmd, intid, 1, expect_failure)
88 
89 #define KVM_INJECT(cmd, intid)							\
90 	_KVM_INJECT_MULTI(cmd, intid, 1, false)
91 
92 #define KVM_ACTIVATE(cmd, intid)						\
93 	kvm_inject_call(cmd, intid, 1, 1, false);
94 
95 struct kvm_inject_desc {
96 	kvm_inject_cmd cmd;
97 	/* can inject PPIs, PPIs, and/or SPIs. */
98 	bool sgi, ppi, spi;
99 };
100 
101 static struct kvm_inject_desc inject_edge_fns[] = {
102 	/*                                      sgi    ppi    spi */
103 	{ KVM_INJECT_EDGE_IRQ_LINE,		false, false, true },
104 	{ KVM_INJECT_IRQFD,			false, false, true },
105 	{ KVM_WRITE_ISPENDR,			true,  false, true },
106 	{ 0, },
107 };
108 
109 static struct kvm_inject_desc inject_level_fns[] = {
110 	/*                                      sgi    ppi    spi */
111 	{ KVM_SET_IRQ_LINE_HIGH,		false, true,  true },
112 	{ KVM_SET_LEVEL_INFO_HIGH,		false, true,  true },
113 	{ KVM_INJECT_IRQFD,			false, false, true },
114 	{ KVM_WRITE_ISPENDR,			false, true,  true },
115 	{ 0, },
116 };
117 
118 static struct kvm_inject_desc set_active_fns[] = {
119 	/*                                      sgi    ppi    spi */
120 	{ KVM_WRITE_ISACTIVER,			true,  true,  true },
121 	{ 0, },
122 };
123 
124 #define for_each_inject_fn(t, f)						\
125 	for ((f) = (t); (f)->cmd; (f)++)
126 
127 #define for_each_supported_inject_fn(args, t, f)				\
128 	for_each_inject_fn(t, f)						\
129 		if ((args)->kvm_supports_irqfd || (f)->cmd != KVM_INJECT_IRQFD)
130 
131 #define for_each_supported_activate_fn(args, t, f)				\
132 	for_each_supported_inject_fn((args), (t), (f))
133 
134 /* Shared between the guest main thread and the IRQ handlers. */
135 volatile uint64_t irq_handled;
136 volatile uint32_t irqnr_received[MAX_SPI + 1];
137 
reset_stats(void)138 static void reset_stats(void)
139 {
140 	int i;
141 
142 	irq_handled = 0;
143 	for (i = 0; i <= MAX_SPI; i++)
144 		irqnr_received[i] = 0;
145 }
146 
gic_read_ap1r0(void)147 static uint64_t gic_read_ap1r0(void)
148 {
149 	uint64_t reg = read_sysreg_s(SYS_ICC_AP1R0_EL1);
150 
151 	dsb(sy);
152 	return reg;
153 }
154 
gic_write_ap1r0(uint64_t val)155 static void gic_write_ap1r0(uint64_t val)
156 {
157 	write_sysreg_s(val, SYS_ICC_AP1R0_EL1);
158 	isb();
159 }
160 
161 static void guest_set_irq_line(uint32_t intid, uint32_t level);
162 
guest_irq_generic_handler(bool eoi_split,bool level_sensitive)163 static void guest_irq_generic_handler(bool eoi_split, bool level_sensitive)
164 {
165 	uint32_t intid = gic_get_and_ack_irq();
166 
167 	if (intid == IAR_SPURIOUS)
168 		return;
169 
170 	GUEST_ASSERT(gic_irq_get_active(intid));
171 
172 	if (!level_sensitive)
173 		GUEST_ASSERT(!gic_irq_get_pending(intid));
174 
175 	if (level_sensitive)
176 		guest_set_irq_line(intid, 0);
177 
178 	GUEST_ASSERT(intid < MAX_SPI);
179 	irqnr_received[intid] += 1;
180 	irq_handled += 1;
181 
182 	gic_set_eoi(intid);
183 	GUEST_ASSERT_EQ(gic_read_ap1r0(), 0);
184 	if (eoi_split)
185 		gic_set_dir(intid);
186 
187 	GUEST_ASSERT(!gic_irq_get_active(intid));
188 	GUEST_ASSERT(!gic_irq_get_pending(intid));
189 }
190 
kvm_inject_call(kvm_inject_cmd cmd,uint32_t first_intid,uint32_t num,int level,bool expect_failure)191 static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid,
192 		uint32_t num, int level, bool expect_failure)
193 {
194 	struct kvm_inject_args args = {
195 		.cmd = cmd,
196 		.first_intid = first_intid,
197 		.num = num,
198 		.level = level,
199 		.expect_failure = expect_failure,
200 	};
201 	GUEST_SYNC(&args);
202 }
203 
204 #define GUEST_ASSERT_IAR_EMPTY()						\
205 do { 										\
206 	uint32_t _intid;							\
207 	_intid = gic_get_and_ack_irq();						\
208 	GUEST_ASSERT(_intid == 0 || _intid == IAR_SPURIOUS);			\
209 } while (0)
210 
211 #define CAT_HELPER(a, b) a ## b
212 #define CAT(a, b) CAT_HELPER(a, b)
213 #define PREFIX guest_irq_handler_
214 #define GUEST_IRQ_HANDLER_NAME(split, lev) CAT(PREFIX, CAT(split, lev))
215 #define GENERATE_GUEST_IRQ_HANDLER(split, lev)					\
216 static void CAT(PREFIX, CAT(split, lev))(struct ex_regs *regs)			\
217 {										\
218 	guest_irq_generic_handler(split, lev);					\
219 }
220 
221 GENERATE_GUEST_IRQ_HANDLER(0, 0);
222 GENERATE_GUEST_IRQ_HANDLER(0, 1);
223 GENERATE_GUEST_IRQ_HANDLER(1, 0);
224 GENERATE_GUEST_IRQ_HANDLER(1, 1);
225 
226 static void (*guest_irq_handlers[2][2])(struct ex_regs *) = {
227 	{GUEST_IRQ_HANDLER_NAME(0, 0), GUEST_IRQ_HANDLER_NAME(0, 1),},
228 	{GUEST_IRQ_HANDLER_NAME(1, 0), GUEST_IRQ_HANDLER_NAME(1, 1),},
229 };
230 
reset_priorities(struct test_args * args)231 static void reset_priorities(struct test_args *args)
232 {
233 	int i;
234 
235 	for (i = 0; i < args->nr_irqs; i++)
236 		gic_set_priority(i, IRQ_DEFAULT_PRIO_REG);
237 }
238 
guest_set_irq_line(uint32_t intid,uint32_t level)239 static void guest_set_irq_line(uint32_t intid, uint32_t level)
240 {
241 	kvm_inject_call(KVM_SET_IRQ_LINE, intid, 1, level, false);
242 }
243 
test_inject_fail(struct test_args * args,uint32_t intid,kvm_inject_cmd cmd)244 static void test_inject_fail(struct test_args *args,
245 		uint32_t intid, kvm_inject_cmd cmd)
246 {
247 	reset_stats();
248 
249 	_KVM_INJECT(cmd, intid, true);
250 	/* no IRQ to handle on entry */
251 
252 	GUEST_ASSERT_EQ(irq_handled, 0);
253 	GUEST_ASSERT_IAR_EMPTY();
254 }
255 
guest_inject(struct test_args * args,uint32_t first_intid,uint32_t num,kvm_inject_cmd cmd)256 static void guest_inject(struct test_args *args,
257 		uint32_t first_intid, uint32_t num,
258 		kvm_inject_cmd cmd)
259 {
260 	uint32_t i;
261 
262 	reset_stats();
263 
264 	/* Cycle over all priorities to make things more interesting. */
265 	for (i = first_intid; i < num + first_intid; i++)
266 		gic_set_priority(i, (i % (KVM_NUM_PRIOS - 1)) << 3);
267 
268 	asm volatile("msr daifset, #2" : : : "memory");
269 	KVM_INJECT_MULTI(cmd, first_intid, num);
270 
271 	while (irq_handled < num) {
272 		wfi();
273 		local_irq_enable();
274 		isb(); /* handle IRQ */
275 		local_irq_disable();
276 	}
277 	local_irq_enable();
278 
279 	GUEST_ASSERT_EQ(irq_handled, num);
280 	for (i = first_intid; i < num + first_intid; i++)
281 		GUEST_ASSERT_EQ(irqnr_received[i], 1);
282 	GUEST_ASSERT_IAR_EMPTY();
283 
284 	reset_priorities(args);
285 }
286 
287 /*
288  * Restore the active state of multiple concurrent IRQs (given by
289  * concurrent_irqs).  This does what a live-migration would do on the
290  * destination side assuming there are some active IRQs that were not
291  * deactivated yet.
292  */
guest_restore_active(struct test_args * args,uint32_t first_intid,uint32_t num,kvm_inject_cmd cmd)293 static void guest_restore_active(struct test_args *args,
294 		uint32_t first_intid, uint32_t num,
295 		kvm_inject_cmd cmd)
296 {
297 	uint32_t prio, intid, ap1r;
298 	int i;
299 
300 	/*
301 	 * Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs
302 	 * in descending order, so intid+1 can preempt intid.
303 	 */
304 	for (i = 0, prio = (num - 1) * 8; i < num; i++, prio -= 8) {
305 		GUEST_ASSERT(prio >= 0);
306 		intid = i + first_intid;
307 		gic_set_priority(intid, prio);
308 	}
309 
310 	/*
311 	 * In a real migration, KVM would restore all GIC state before running
312 	 * guest code.
313 	 */
314 	for (i = 0; i < num; i++) {
315 		intid = i + first_intid;
316 		KVM_ACTIVATE(cmd, intid);
317 		ap1r = gic_read_ap1r0();
318 		ap1r |= 1U << i;
319 		gic_write_ap1r0(ap1r);
320 	}
321 
322 	/* This is where the "migration" would occur. */
323 
324 	/* finish handling the IRQs starting with the highest priority one. */
325 	for (i = 0; i < num; i++) {
326 		intid = num - i - 1 + first_intid;
327 		gic_set_eoi(intid);
328 		if (args->eoi_split)
329 			gic_set_dir(intid);
330 	}
331 
332 	for (i = 0; i < num; i++)
333 		GUEST_ASSERT(!gic_irq_get_active(i + first_intid));
334 	GUEST_ASSERT_EQ(gic_read_ap1r0(), 0);
335 	GUEST_ASSERT_IAR_EMPTY();
336 }
337 
338 /*
339  * Polls the IAR until it's not a spurious interrupt.
340  *
341  * This function should only be used in test_inject_preemption (with IRQs
342  * masked).
343  */
wait_for_and_activate_irq(void)344 static uint32_t wait_for_and_activate_irq(void)
345 {
346 	uint32_t intid;
347 
348 	do {
349 		asm volatile("wfi" : : : "memory");
350 		intid = gic_get_and_ack_irq();
351 	} while (intid == IAR_SPURIOUS);
352 
353 	return intid;
354 }
355 
356 /*
357  * Inject multiple concurrent IRQs (num IRQs starting at first_intid) and
358  * handle them without handling the actual exceptions.  This is done by masking
359  * interrupts for the whole test.
360  */
test_inject_preemption(struct test_args * args,uint32_t first_intid,int num,kvm_inject_cmd cmd)361 static void test_inject_preemption(struct test_args *args,
362 		uint32_t first_intid, int num,
363 		kvm_inject_cmd cmd)
364 {
365 	uint32_t intid, prio, step = KVM_PRIO_STEPS;
366 	int i;
367 
368 	/* Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs
369 	 * in descending order, so intid+1 can preempt intid.
370 	 */
371 	for (i = 0, prio = (num - 1) * step; i < num; i++, prio -= step) {
372 		GUEST_ASSERT(prio >= 0);
373 		intid = i + first_intid;
374 		gic_set_priority(intid, prio);
375 	}
376 
377 	local_irq_disable();
378 
379 	for (i = 0; i < num; i++) {
380 		uint32_t tmp;
381 		intid = i + first_intid;
382 		KVM_INJECT(cmd, intid);
383 		/* Each successive IRQ will preempt the previous one. */
384 		tmp = wait_for_and_activate_irq();
385 		GUEST_ASSERT_EQ(tmp, intid);
386 		if (args->level_sensitive)
387 			guest_set_irq_line(intid, 0);
388 	}
389 
390 	/* finish handling the IRQs starting with the highest priority one. */
391 	for (i = 0; i < num; i++) {
392 		intid = num - i - 1 + first_intid;
393 		gic_set_eoi(intid);
394 		if (args->eoi_split)
395 			gic_set_dir(intid);
396 	}
397 
398 	local_irq_enable();
399 
400 	for (i = 0; i < num; i++)
401 		GUEST_ASSERT(!gic_irq_get_active(i + first_intid));
402 	GUEST_ASSERT_EQ(gic_read_ap1r0(), 0);
403 	GUEST_ASSERT_IAR_EMPTY();
404 
405 	reset_priorities(args);
406 }
407 
test_injection(struct test_args * args,struct kvm_inject_desc * f)408 static void test_injection(struct test_args *args, struct kvm_inject_desc *f)
409 {
410 	uint32_t nr_irqs = args->nr_irqs;
411 
412 	if (f->sgi) {
413 		guest_inject(args, MIN_SGI, 1, f->cmd);
414 		guest_inject(args, 0, 16, f->cmd);
415 	}
416 
417 	if (f->ppi)
418 		guest_inject(args, MIN_PPI, 1, f->cmd);
419 
420 	if (f->spi) {
421 		guest_inject(args, MIN_SPI, 1, f->cmd);
422 		guest_inject(args, nr_irqs - 1, 1, f->cmd);
423 		guest_inject(args, MIN_SPI, nr_irqs - MIN_SPI, f->cmd);
424 	}
425 }
426 
test_injection_failure(struct test_args * args,struct kvm_inject_desc * f)427 static void test_injection_failure(struct test_args *args,
428 		struct kvm_inject_desc *f)
429 {
430 	uint32_t bad_intid[] = { args->nr_irqs, 1020, 1024, 1120, 5120, ~0U, };
431 	int i;
432 
433 	for (i = 0; i < ARRAY_SIZE(bad_intid); i++)
434 		test_inject_fail(args, bad_intid[i], f->cmd);
435 }
436 
test_preemption(struct test_args * args,struct kvm_inject_desc * f)437 static void test_preemption(struct test_args *args, struct kvm_inject_desc *f)
438 {
439 	/*
440 	 * Test up to 4 levels of preemption. The reason is that KVM doesn't
441 	 * currently implement the ability to have more than the number-of-LRs
442 	 * number of concurrently active IRQs. The number of LRs implemented is
443 	 * IMPLEMENTATION DEFINED, however, it seems that most implement 4.
444 	 */
445 	if (f->sgi)
446 		test_inject_preemption(args, MIN_SGI, 4, f->cmd);
447 
448 	if (f->ppi)
449 		test_inject_preemption(args, MIN_PPI, 4, f->cmd);
450 
451 	if (f->spi)
452 		test_inject_preemption(args, MIN_SPI, 4, f->cmd);
453 }
454 
test_restore_active(struct test_args * args,struct kvm_inject_desc * f)455 static void test_restore_active(struct test_args *args, struct kvm_inject_desc *f)
456 {
457 	/* Test up to 4 active IRQs. Same reason as in test_preemption. */
458 	if (f->sgi)
459 		guest_restore_active(args, MIN_SGI, 4, f->cmd);
460 
461 	if (f->ppi)
462 		guest_restore_active(args, MIN_PPI, 4, f->cmd);
463 
464 	if (f->spi)
465 		guest_restore_active(args, MIN_SPI, 4, f->cmd);
466 }
467 
guest_code(struct test_args * args)468 static void guest_code(struct test_args *args)
469 {
470 	uint32_t i, nr_irqs = args->nr_irqs;
471 	bool level_sensitive = args->level_sensitive;
472 	struct kvm_inject_desc *f, *inject_fns;
473 
474 	gic_init(GIC_V3, 1);
475 
476 	for (i = 0; i < nr_irqs; i++)
477 		gic_irq_enable(i);
478 
479 	for (i = MIN_SPI; i < nr_irqs; i++)
480 		gic_irq_set_config(i, !level_sensitive);
481 
482 	gic_set_eoi_split(args->eoi_split);
483 
484 	reset_priorities(args);
485 	gic_set_priority_mask(CPU_PRIO_MASK);
486 
487 	inject_fns  = level_sensitive ? inject_level_fns
488 				      : inject_edge_fns;
489 
490 	local_irq_enable();
491 
492 	/* Start the tests. */
493 	for_each_supported_inject_fn(args, inject_fns, f) {
494 		test_injection(args, f);
495 		test_preemption(args, f);
496 		test_injection_failure(args, f);
497 	}
498 
499 	/*
500 	 * Restore the active state of IRQs. This would happen when live
501 	 * migrating IRQs in the middle of being handled.
502 	 */
503 	for_each_supported_activate_fn(args, set_active_fns, f)
504 		test_restore_active(args, f);
505 
506 	GUEST_DONE();
507 }
508 
kvm_irq_line_check(struct kvm_vm * vm,uint32_t intid,int level,struct test_args * test_args,bool expect_failure)509 static void kvm_irq_line_check(struct kvm_vm *vm, uint32_t intid, int level,
510 			struct test_args *test_args, bool expect_failure)
511 {
512 	int ret;
513 
514 	if (!expect_failure) {
515 		kvm_arm_irq_line(vm, intid, level);
516 	} else {
517 		/* The interface doesn't allow larger intid's. */
518 		if (intid > KVM_ARM_IRQ_NUM_MASK)
519 			return;
520 
521 		ret = _kvm_arm_irq_line(vm, intid, level);
522 		TEST_ASSERT(ret != 0 && errno == EINVAL,
523 				"Bad intid %i did not cause KVM_IRQ_LINE "
524 				"error: rc: %i errno: %i", intid, ret, errno);
525 	}
526 }
527 
kvm_irq_set_level_info_check(int gic_fd,uint32_t intid,int level,bool expect_failure)528 void kvm_irq_set_level_info_check(int gic_fd, uint32_t intid, int level,
529 			bool expect_failure)
530 {
531 	if (!expect_failure) {
532 		kvm_irq_set_level_info(gic_fd, intid, level);
533 	} else {
534 		int ret = _kvm_irq_set_level_info(gic_fd, intid, level);
535 		/*
536 		 * The kernel silently fails for invalid SPIs and SGIs (which
537 		 * are not level-sensitive). It only checks for intid to not
538 		 * spill over 1U << 10 (the max reserved SPI). Also, callers
539 		 * are supposed to mask the intid with 0x3ff (1023).
540 		 */
541 		if (intid > VGIC_MAX_RESERVED)
542 			TEST_ASSERT(ret != 0 && errno == EINVAL,
543 				"Bad intid %i did not cause VGIC_GRP_LEVEL_INFO "
544 				"error: rc: %i errno: %i", intid, ret, errno);
545 		else
546 			TEST_ASSERT(!ret, "KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO "
547 				"for intid %i failed, rc: %i errno: %i",
548 				intid, ret, errno);
549 	}
550 }
551 
kvm_set_gsi_routing_irqchip_check(struct kvm_vm * vm,uint32_t intid,uint32_t num,uint32_t kvm_max_routes,bool expect_failure)552 static void kvm_set_gsi_routing_irqchip_check(struct kvm_vm *vm,
553 		uint32_t intid, uint32_t num, uint32_t kvm_max_routes,
554 		bool expect_failure)
555 {
556 	struct kvm_irq_routing *routing;
557 	int ret;
558 	uint64_t i;
559 
560 	assert(num <= kvm_max_routes && kvm_max_routes <= KVM_MAX_IRQ_ROUTES);
561 
562 	routing = kvm_gsi_routing_create();
563 	for (i = intid; i < (uint64_t)intid + num; i++)
564 		kvm_gsi_routing_irqchip_add(routing, i - MIN_SPI, i - MIN_SPI);
565 
566 	if (!expect_failure) {
567 		kvm_gsi_routing_write(vm, routing);
568 	} else {
569 		ret = _kvm_gsi_routing_write(vm, routing);
570 		/* The kernel only checks e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS */
571 		if (((uint64_t)intid + num - 1 - MIN_SPI) >= KVM_IRQCHIP_NUM_PINS)
572 			TEST_ASSERT(ret != 0 && errno == EINVAL,
573 				"Bad intid %u did not cause KVM_SET_GSI_ROUTING "
574 				"error: rc: %i errno: %i", intid, ret, errno);
575 		else
576 			TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING "
577 				"for intid %i failed, rc: %i errno: %i",
578 				intid, ret, errno);
579 	}
580 }
581 
kvm_irq_write_ispendr_check(int gic_fd,uint32_t intid,struct kvm_vcpu * vcpu,bool expect_failure)582 static void kvm_irq_write_ispendr_check(int gic_fd, uint32_t intid,
583 					struct kvm_vcpu *vcpu,
584 					bool expect_failure)
585 {
586 	/*
587 	 * Ignore this when expecting failure as invalid intids will lead to
588 	 * either trying to inject SGIs when we configured the test to be
589 	 * level_sensitive (or the reverse), or inject large intids which
590 	 * will lead to writing above the ISPENDR register space (and we
591 	 * don't want to do that either).
592 	 */
593 	if (!expect_failure)
594 		kvm_irq_write_ispendr(gic_fd, intid, vcpu);
595 }
596 
kvm_routing_and_irqfd_check(struct kvm_vm * vm,uint32_t intid,uint32_t num,uint32_t kvm_max_routes,bool expect_failure)597 static void kvm_routing_and_irqfd_check(struct kvm_vm *vm,
598 		uint32_t intid, uint32_t num, uint32_t kvm_max_routes,
599 		bool expect_failure)
600 {
601 	int fd[MAX_SPI];
602 	uint64_t val;
603 	int ret, f;
604 	uint64_t i;
605 
606 	/*
607 	 * There is no way to try injecting an SGI or PPI as the interface
608 	 * starts counting from the first SPI (above the private ones), so just
609 	 * exit.
610 	 */
611 	if (INTID_IS_SGI(intid) || INTID_IS_PPI(intid))
612 		return;
613 
614 	kvm_set_gsi_routing_irqchip_check(vm, intid, num,
615 			kvm_max_routes, expect_failure);
616 
617 	/*
618 	 * If expect_failure, then just to inject anyway. These
619 	 * will silently fail. And in any case, the guest will check
620 	 * that no actual interrupt was injected for those cases.
621 	 */
622 
623 	for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) {
624 		fd[f] = eventfd(0, 0);
625 		TEST_ASSERT(fd[f] != -1, __KVM_SYSCALL_ERROR("eventfd()", fd[f]));
626 	}
627 
628 	for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) {
629 		struct kvm_irqfd irqfd = {
630 			.fd  = fd[f],
631 			.gsi = i - MIN_SPI,
632 		};
633 		assert(i <= (uint64_t)UINT_MAX);
634 		vm_ioctl(vm, KVM_IRQFD, &irqfd);
635 	}
636 
637 	for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) {
638 		val = 1;
639 		ret = write(fd[f], &val, sizeof(uint64_t));
640 		TEST_ASSERT(ret == sizeof(uint64_t),
641 			    __KVM_SYSCALL_ERROR("write()", ret));
642 	}
643 
644 	for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++)
645 		close(fd[f]);
646 }
647 
648 /* handles the valid case: intid=0xffffffff num=1 */
649 #define for_each_intid(first, num, tmp, i)					\
650 	for ((tmp) = (i) = (first);						\
651 		(tmp) < (uint64_t)(first) + (uint64_t)(num);			\
652 		(tmp)++, (i)++)
653 
run_guest_cmd(struct kvm_vcpu * vcpu,int gic_fd,struct kvm_inject_args * inject_args,struct test_args * test_args)654 static void run_guest_cmd(struct kvm_vcpu *vcpu, int gic_fd,
655 			  struct kvm_inject_args *inject_args,
656 			  struct test_args *test_args)
657 {
658 	kvm_inject_cmd cmd = inject_args->cmd;
659 	uint32_t intid = inject_args->first_intid;
660 	uint32_t num = inject_args->num;
661 	int level = inject_args->level;
662 	bool expect_failure = inject_args->expect_failure;
663 	struct kvm_vm *vm = vcpu->vm;
664 	uint64_t tmp;
665 	uint32_t i;
666 
667 	/* handles the valid case: intid=0xffffffff num=1 */
668 	assert(intid < UINT_MAX - num || num == 1);
669 
670 	switch (cmd) {
671 	case KVM_INJECT_EDGE_IRQ_LINE:
672 		for_each_intid(intid, num, tmp, i)
673 			kvm_irq_line_check(vm, i, 1, test_args,
674 					expect_failure);
675 		for_each_intid(intid, num, tmp, i)
676 			kvm_irq_line_check(vm, i, 0, test_args,
677 					expect_failure);
678 		break;
679 	case KVM_SET_IRQ_LINE:
680 		for_each_intid(intid, num, tmp, i)
681 			kvm_irq_line_check(vm, i, level, test_args,
682 					expect_failure);
683 		break;
684 	case KVM_SET_IRQ_LINE_HIGH:
685 		for_each_intid(intid, num, tmp, i)
686 			kvm_irq_line_check(vm, i, 1, test_args,
687 					expect_failure);
688 		break;
689 	case KVM_SET_LEVEL_INFO_HIGH:
690 		for_each_intid(intid, num, tmp, i)
691 			kvm_irq_set_level_info_check(gic_fd, i, 1,
692 					expect_failure);
693 		break;
694 	case KVM_INJECT_IRQFD:
695 		kvm_routing_and_irqfd_check(vm, intid, num,
696 					test_args->kvm_max_routes,
697 					expect_failure);
698 		break;
699 	case KVM_WRITE_ISPENDR:
700 		for (i = intid; i < intid + num; i++)
701 			kvm_irq_write_ispendr_check(gic_fd, i, vcpu,
702 						    expect_failure);
703 		break;
704 	case KVM_WRITE_ISACTIVER:
705 		for (i = intid; i < intid + num; i++)
706 			kvm_irq_write_isactiver(gic_fd, i, vcpu);
707 		break;
708 	default:
709 		break;
710 	}
711 }
712 
kvm_inject_get_call(struct kvm_vm * vm,struct ucall * uc,struct kvm_inject_args * args)713 static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc,
714 		struct kvm_inject_args *args)
715 {
716 	struct kvm_inject_args *kvm_args_hva;
717 	vm_vaddr_t kvm_args_gva;
718 
719 	kvm_args_gva = uc->args[1];
720 	kvm_args_hva = (struct kvm_inject_args *)addr_gva2hva(vm, kvm_args_gva);
721 	memcpy(args, kvm_args_hva, sizeof(struct kvm_inject_args));
722 }
723 
print_args(struct test_args * args)724 static void print_args(struct test_args *args)
725 {
726 	printf("nr-irqs=%d level-sensitive=%d eoi-split=%d\n",
727 			args->nr_irqs, args->level_sensitive,
728 			args->eoi_split);
729 }
730 
test_vgic(uint32_t nr_irqs,bool level_sensitive,bool eoi_split)731 static void test_vgic(uint32_t nr_irqs, bool level_sensitive, bool eoi_split)
732 {
733 	struct ucall uc;
734 	int gic_fd;
735 	struct kvm_vcpu *vcpu;
736 	struct kvm_vm *vm;
737 	struct kvm_inject_args inject_args;
738 	vm_vaddr_t args_gva;
739 
740 	struct test_args args = {
741 		.nr_irqs = nr_irqs,
742 		.level_sensitive = level_sensitive,
743 		.eoi_split = eoi_split,
744 		.kvm_max_routes = kvm_check_cap(KVM_CAP_IRQ_ROUTING),
745 		.kvm_supports_irqfd = kvm_check_cap(KVM_CAP_IRQFD),
746 	};
747 
748 	print_args(&args);
749 
750 	vm = vm_create_with_one_vcpu(&vcpu, guest_code);
751 
752 	vm_init_descriptor_tables(vm);
753 	vcpu_init_descriptor_tables(vcpu);
754 
755 	/* Setup the guest args page (so it gets the args). */
756 	args_gva = vm_vaddr_alloc_page(vm);
757 	memcpy(addr_gva2hva(vm, args_gva), &args, sizeof(args));
758 	vcpu_args_set(vcpu, 1, args_gva);
759 
760 	gic_fd = vgic_v3_setup(vm, 1, nr_irqs);
761 	__TEST_REQUIRE(gic_fd >= 0, "Failed to create vgic-v3, skipping");
762 
763 	vm_install_exception_handler(vm, VECTOR_IRQ_CURRENT,
764 		guest_irq_handlers[args.eoi_split][args.level_sensitive]);
765 
766 	while (1) {
767 		vcpu_run(vcpu);
768 
769 		switch (get_ucall(vcpu, &uc)) {
770 		case UCALL_SYNC:
771 			kvm_inject_get_call(vm, &uc, &inject_args);
772 			run_guest_cmd(vcpu, gic_fd, &inject_args, &args);
773 			break;
774 		case UCALL_ABORT:
775 			REPORT_GUEST_ASSERT(uc);
776 			break;
777 		case UCALL_DONE:
778 			goto done;
779 		default:
780 			TEST_FAIL("Unknown ucall %lu", uc.cmd);
781 		}
782 	}
783 
784 done:
785 	close(gic_fd);
786 	kvm_vm_free(vm);
787 }
788 
help(const char * name)789 static void help(const char *name)
790 {
791 	printf(
792 	"\n"
793 	"usage: %s [-n num_irqs] [-e eoi_split] [-l level_sensitive]\n", name);
794 	printf(" -n: specify number of IRQs to setup the vgic with. "
795 		"It has to be a multiple of 32 and between 64 and 1024.\n");
796 	printf(" -e: if 1 then EOI is split into a write to DIR on top "
797 		"of writing EOI.\n");
798 	printf(" -l: specify whether the IRQs are level-sensitive (1) or not (0).");
799 	puts("");
800 	exit(1);
801 }
802 
main(int argc,char ** argv)803 int main(int argc, char **argv)
804 {
805 	uint32_t nr_irqs = 64;
806 	bool default_args = true;
807 	bool level_sensitive = false;
808 	int opt;
809 	bool eoi_split = false;
810 
811 	while ((opt = getopt(argc, argv, "hn:e:l:")) != -1) {
812 		switch (opt) {
813 		case 'n':
814 			nr_irqs = atoi_non_negative("Number of IRQs", optarg);
815 			if (nr_irqs > 1024 || nr_irqs % 32)
816 				help(argv[0]);
817 			break;
818 		case 'e':
819 			eoi_split = (bool)atoi_paranoid(optarg);
820 			default_args = false;
821 			break;
822 		case 'l':
823 			level_sensitive = (bool)atoi_paranoid(optarg);
824 			default_args = false;
825 			break;
826 		case 'h':
827 		default:
828 			help(argv[0]);
829 			break;
830 		}
831 	}
832 
833 	/*
834 	 * If the user just specified nr_irqs and/or gic_version, then run all
835 	 * combinations.
836 	 */
837 	if (default_args) {
838 		test_vgic(nr_irqs, false /* level */, false /* eoi_split */);
839 		test_vgic(nr_irqs, false /* level */, true /* eoi_split */);
840 		test_vgic(nr_irqs, true /* level */, false /* eoi_split */);
841 		test_vgic(nr_irqs, true /* level */, true /* eoi_split */);
842 	} else {
843 		test_vgic(nr_irqs, level_sensitive, eoi_split);
844 	}
845 
846 	return 0;
847 }
848