xref: /linux/arch/x86/mm/fault.c (revision 614da1d3d4cdbd6e41aea06bc97ec15aacff6daf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/memblock.h>		/* max_low_pfn			*/
11 #include <linux/kfence.h>		/* kfence_handle_page_fault	*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
17 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
18 #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
19 #include <linux/mm_types.h>
20 #include <linux/mm.h>			/* find_and_lock_vma() */
21 #include <linux/vmalloc.h>
22 
23 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
24 #include <asm/traps.h>			/* dotraplinkage, ...		*/
25 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
26 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
27 #include <asm/vm86.h>			/* struct vm86			*/
28 #include <asm/mmu_context.h>		/* vma_pkey()			*/
29 #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
30 #include <asm/desc.h>			/* store_idt(), ...		*/
31 #include <asm/cpu_entry_area.h>		/* exception stack		*/
32 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
33 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
34 #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
35 #include <asm/irq_stack.h>
36 #include <asm/fred.h>
37 #include <asm/sev.h>			/* snp_dump_hva_rmpentry()	*/
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/exceptions.h>
41 
42 /*
43  * Returns 0 if mmiotrace is disabled, or if the fault is not
44  * handled by mmiotrace:
45  */
46 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)47 kmmio_fault(struct pt_regs *regs, unsigned long addr)
48 {
49 	if (unlikely(is_kmmio_active()))
50 		if (kmmio_handler(regs, addr) == 1)
51 			return -1;
52 	return 0;
53 }
54 
55 /*
56  * Prefetch quirks:
57  *
58  * 32-bit mode:
59  *
60  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
61  *   Check that here and ignore it.  This is AMD erratum #91.
62  *
63  * 64-bit mode:
64  *
65  *   Sometimes the CPU reports invalid exceptions on prefetch.
66  *   Check that here and ignore it.
67  *
68  * Opcode checker based on code by Richard Brunner.
69  */
70 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)71 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
72 		      unsigned char opcode, int *prefetch)
73 {
74 	unsigned char instr_hi = opcode & 0xf0;
75 	unsigned char instr_lo = opcode & 0x0f;
76 
77 	switch (instr_hi) {
78 	case 0x20:
79 	case 0x30:
80 		/*
81 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
82 		 * In X86_64 long mode, the CPU will signal invalid
83 		 * opcode if some of these prefixes are present so
84 		 * X86_64 will never get here anyway
85 		 */
86 		return ((instr_lo & 7) == 0x6);
87 #ifdef CONFIG_X86_64
88 	case 0x40:
89 		/*
90 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
91 		 */
92 		return (!user_mode(regs) || user_64bit_mode(regs));
93 #endif
94 	case 0x60:
95 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
96 		return (instr_lo & 0xC) == 0x4;
97 	case 0xF0:
98 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
99 		return !instr_lo || (instr_lo>>1) == 1;
100 	case 0x00:
101 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
102 		if (get_kernel_nofault(opcode, instr))
103 			return 0;
104 
105 		*prefetch = (instr_lo == 0xF) &&
106 			(opcode == 0x0D || opcode == 0x18);
107 		return 0;
108 	default:
109 		return 0;
110 	}
111 }
112 
is_amd_k8_pre_npt(void)113 static bool is_amd_k8_pre_npt(void)
114 {
115 	struct cpuinfo_x86 *c = &boot_cpu_data;
116 
117 	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
118 			c->x86_vendor == X86_VENDOR_AMD &&
119 			c->x86 == 0xf && c->x86_model < 0x40);
120 }
121 
122 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)123 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
124 {
125 	unsigned char *max_instr;
126 	unsigned char *instr;
127 	int prefetch = 0;
128 
129 	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
130 	if (!is_amd_k8_pre_npt())
131 		return 0;
132 
133 	/*
134 	 * If it was a exec (instruction fetch) fault on NX page, then
135 	 * do not ignore the fault:
136 	 */
137 	if (error_code & X86_PF_INSTR)
138 		return 0;
139 
140 	instr = (void *)convert_ip_to_linear(current, regs);
141 	max_instr = instr + 15;
142 
143 	/*
144 	 * This code has historically always bailed out if IP points to a
145 	 * not-present page (e.g. due to a race).  No one has ever
146 	 * complained about this.
147 	 */
148 	pagefault_disable();
149 
150 	while (instr < max_instr) {
151 		unsigned char opcode;
152 
153 		if (user_mode(regs)) {
154 			if (get_user(opcode, (unsigned char __user *) instr))
155 				break;
156 		} else {
157 			if (get_kernel_nofault(opcode, instr))
158 				break;
159 		}
160 
161 		instr++;
162 
163 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
164 			break;
165 	}
166 
167 	pagefault_enable();
168 	return prefetch;
169 }
170 
171 DEFINE_SPINLOCK(pgd_lock);
172 LIST_HEAD(pgd_list);
173 
174 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)175 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
176 {
177 	unsigned index = pgd_index(address);
178 	pgd_t *pgd_k;
179 	p4d_t *p4d, *p4d_k;
180 	pud_t *pud, *pud_k;
181 	pmd_t *pmd, *pmd_k;
182 
183 	pgd += index;
184 	pgd_k = init_mm.pgd + index;
185 
186 	if (!pgd_present(*pgd_k))
187 		return NULL;
188 
189 	/*
190 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
191 	 * and redundant with the set_pmd() on non-PAE. As would
192 	 * set_p4d/set_pud.
193 	 */
194 	p4d = p4d_offset(pgd, address);
195 	p4d_k = p4d_offset(pgd_k, address);
196 	if (!p4d_present(*p4d_k))
197 		return NULL;
198 
199 	pud = pud_offset(p4d, address);
200 	pud_k = pud_offset(p4d_k, address);
201 	if (!pud_present(*pud_k))
202 		return NULL;
203 
204 	pmd = pmd_offset(pud, address);
205 	pmd_k = pmd_offset(pud_k, address);
206 
207 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
208 		set_pmd(pmd, *pmd_k);
209 
210 	if (!pmd_present(*pmd_k))
211 		return NULL;
212 	else
213 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
214 
215 	return pmd_k;
216 }
217 
218 /*
219  *   Handle a fault on the vmalloc or module mapping area
220  *
221  *   This is needed because there is a race condition between the time
222  *   when the vmalloc mapping code updates the PMD to the point in time
223  *   where it synchronizes this update with the other page-tables in the
224  *   system.
225  *
226  *   In this race window another thread/CPU can map an area on the same
227  *   PMD, finds it already present and does not synchronize it with the
228  *   rest of the system yet. As a result v[mz]alloc might return areas
229  *   which are not mapped in every page-table in the system, causing an
230  *   unhandled page-fault when they are accessed.
231  */
vmalloc_fault(unsigned long address)232 static noinline int vmalloc_fault(unsigned long address)
233 {
234 	unsigned long pgd_paddr;
235 	pmd_t *pmd_k;
236 	pte_t *pte_k;
237 
238 	/* Make sure we are in vmalloc area: */
239 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
240 		return -1;
241 
242 	/*
243 	 * Synchronize this task's top level page-table
244 	 * with the 'reference' page table.
245 	 *
246 	 * Do _not_ use "current" here. We might be inside
247 	 * an interrupt in the middle of a task switch..
248 	 */
249 	pgd_paddr = read_cr3_pa();
250 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
251 	if (!pmd_k)
252 		return -1;
253 
254 	if (pmd_leaf(*pmd_k))
255 		return 0;
256 
257 	pte_k = pte_offset_kernel(pmd_k, address);
258 	if (!pte_present(*pte_k))
259 		return -1;
260 
261 	return 0;
262 }
263 NOKPROBE_SYMBOL(vmalloc_fault);
264 
arch_sync_kernel_mappings(unsigned long start,unsigned long end)265 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
266 {
267 	unsigned long addr;
268 
269 	for (addr = start & PMD_MASK;
270 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
271 	     addr += PMD_SIZE) {
272 		struct page *page;
273 
274 		spin_lock(&pgd_lock);
275 		list_for_each_entry(page, &pgd_list, lru) {
276 			spinlock_t *pgt_lock;
277 
278 			/* the pgt_lock only for Xen */
279 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
280 
281 			spin_lock(pgt_lock);
282 			vmalloc_sync_one(page_address(page), addr);
283 			spin_unlock(pgt_lock);
284 		}
285 		spin_unlock(&pgd_lock);
286 	}
287 }
288 
low_pfn(unsigned long pfn)289 static bool low_pfn(unsigned long pfn)
290 {
291 	return pfn < max_low_pfn;
292 }
293 
dump_pagetable(unsigned long address)294 static void dump_pagetable(unsigned long address)
295 {
296 	pgd_t *base = __va(read_cr3_pa());
297 	pgd_t *pgd = &base[pgd_index(address)];
298 	p4d_t *p4d;
299 	pud_t *pud;
300 	pmd_t *pmd;
301 	pte_t *pte;
302 
303 #ifdef CONFIG_X86_PAE
304 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
305 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
306 		goto out;
307 #define pr_pde pr_cont
308 #else
309 #define pr_pde pr_info
310 #endif
311 	p4d = p4d_offset(pgd, address);
312 	pud = pud_offset(p4d, address);
313 	pmd = pmd_offset(pud, address);
314 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
315 #undef pr_pde
316 
317 	/*
318 	 * We must not directly access the pte in the highpte
319 	 * case if the page table is located in highmem.
320 	 * And let's rather not kmap-atomic the pte, just in case
321 	 * it's allocated already:
322 	 */
323 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
324 		goto out;
325 
326 	pte = pte_offset_kernel(pmd, address);
327 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
328 out:
329 	pr_cont("\n");
330 }
331 
332 #else /* CONFIG_X86_64: */
333 
334 #ifdef CONFIG_CPU_SUP_AMD
335 static const char errata93_warning[] =
336 KERN_ERR
337 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
338 "******* Working around it, but it may cause SEGVs or burn power.\n"
339 "******* Please consider a BIOS update.\n"
340 "******* Disabling USB legacy in the BIOS may also help.\n";
341 #endif
342 
bad_address(void * p)343 static int bad_address(void *p)
344 {
345 	unsigned long dummy;
346 
347 	return get_kernel_nofault(dummy, (unsigned long *)p);
348 }
349 
dump_pagetable(unsigned long address)350 static void dump_pagetable(unsigned long address)
351 {
352 	pgd_t *base = __va(read_cr3_pa());
353 	pgd_t *pgd = base + pgd_index(address);
354 	p4d_t *p4d;
355 	pud_t *pud;
356 	pmd_t *pmd;
357 	pte_t *pte;
358 
359 	if (bad_address(pgd))
360 		goto bad;
361 
362 	pr_info("PGD %lx ", pgd_val(*pgd));
363 
364 	if (!pgd_present(*pgd))
365 		goto out;
366 
367 	p4d = p4d_offset(pgd, address);
368 	if (bad_address(p4d))
369 		goto bad;
370 
371 	pr_cont("P4D %lx ", p4d_val(*p4d));
372 	if (!p4d_present(*p4d) || p4d_leaf(*p4d))
373 		goto out;
374 
375 	pud = pud_offset(p4d, address);
376 	if (bad_address(pud))
377 		goto bad;
378 
379 	pr_cont("PUD %lx ", pud_val(*pud));
380 	if (!pud_present(*pud) || pud_leaf(*pud))
381 		goto out;
382 
383 	pmd = pmd_offset(pud, address);
384 	if (bad_address(pmd))
385 		goto bad;
386 
387 	pr_cont("PMD %lx ", pmd_val(*pmd));
388 	if (!pmd_present(*pmd) || pmd_leaf(*pmd))
389 		goto out;
390 
391 	pte = pte_offset_kernel(pmd, address);
392 	if (bad_address(pte))
393 		goto bad;
394 
395 	pr_cont("PTE %lx", pte_val(*pte));
396 out:
397 	pr_cont("\n");
398 	return;
399 bad:
400 	pr_info("BAD\n");
401 }
402 
403 #endif /* CONFIG_X86_64 */
404 
405 /*
406  * Workaround for K8 erratum #93 & buggy BIOS.
407  *
408  * BIOS SMM functions are required to use a specific workaround
409  * to avoid corruption of the 64bit RIP register on C stepping K8.
410  *
411  * A lot of BIOS that didn't get tested properly miss this.
412  *
413  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
414  * Try to work around it here.
415  *
416  * Note we only handle faults in kernel here.
417  * Does nothing on 32-bit.
418  */
is_errata93(struct pt_regs * regs,unsigned long address)419 static int is_errata93(struct pt_regs *regs, unsigned long address)
420 {
421 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
422 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
423 	    || boot_cpu_data.x86 != 0xf)
424 		return 0;
425 
426 	if (user_mode(regs))
427 		return 0;
428 
429 	if (address != regs->ip)
430 		return 0;
431 
432 	if ((address >> 32) != 0)
433 		return 0;
434 
435 	address |= 0xffffffffUL << 32;
436 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
437 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
438 		printk_once(errata93_warning);
439 		regs->ip = address;
440 		return 1;
441 	}
442 #endif
443 	return 0;
444 }
445 
446 /*
447  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
448  * to illegal addresses >4GB.
449  *
450  * We catch this in the page fault handler because these addresses
451  * are not reachable. Just detect this case and return.  Any code
452  * segment in LDT is compatibility mode.
453  */
is_errata100(struct pt_regs * regs,unsigned long address)454 static int is_errata100(struct pt_regs *regs, unsigned long address)
455 {
456 #ifdef CONFIG_X86_64
457 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
458 		return 1;
459 #endif
460 	return 0;
461 }
462 
463 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long error_code,unsigned long address)464 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
465 		       unsigned long address)
466 {
467 #ifdef CONFIG_X86_F00F_BUG
468 	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
469 	    idt_is_f00f_address(address)) {
470 		handle_invalid_op(regs);
471 		return 1;
472 	}
473 #endif
474 	return 0;
475 }
476 
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)477 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
478 {
479 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
480 	unsigned long addr;
481 	struct ldttss_desc desc;
482 
483 	if (index == 0) {
484 		pr_alert("%s: NULL\n", name);
485 		return;
486 	}
487 
488 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
489 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
490 		return;
491 	}
492 
493 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
494 			      sizeof(struct ldttss_desc))) {
495 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
496 			 name, index);
497 		return;
498 	}
499 
500 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
501 #ifdef CONFIG_X86_64
502 	addr |= ((u64)desc.base3 << 32);
503 #endif
504 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
505 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
506 }
507 
508 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)509 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
510 {
511 	if (!oops_may_print())
512 		return;
513 
514 	if (error_code & X86_PF_INSTR) {
515 		unsigned int level;
516 		bool nx, rw;
517 		pgd_t *pgd;
518 		pte_t *pte;
519 
520 		pgd = __va(read_cr3_pa());
521 		pgd += pgd_index(address);
522 
523 		pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw);
524 
525 		if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx))
526 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
527 				from_kuid(&init_user_ns, current_uid()));
528 		if (pte && pte_present(*pte) && pte_exec(*pte) && !nx &&
529 				(pgd_flags(*pgd) & _PAGE_USER) &&
530 				(__read_cr4() & X86_CR4_SMEP))
531 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
532 				from_kuid(&init_user_ns, current_uid()));
533 	}
534 
535 	if (address < PAGE_SIZE && !user_mode(regs))
536 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
537 			(void *)address);
538 	else
539 		pr_alert("BUG: unable to handle page fault for address: %px\n",
540 			(void *)address);
541 
542 	pr_alert("#PF: %s %s in %s mode\n",
543 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
544 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
545 		 (error_code & X86_PF_WRITE) ? "write access" :
546 					       "read access",
547 			     user_mode(regs) ? "user" : "kernel");
548 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
549 		 !(error_code & X86_PF_PROT) ? "not-present page" :
550 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
551 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
552 		 (error_code & X86_PF_RMP)   ? "RMP violation" :
553 					       "permissions violation");
554 
555 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
556 		struct desc_ptr idt, gdt;
557 		u16 ldtr, tr;
558 
559 		/*
560 		 * This can happen for quite a few reasons.  The more obvious
561 		 * ones are faults accessing the GDT, or LDT.  Perhaps
562 		 * surprisingly, if the CPU tries to deliver a benign or
563 		 * contributory exception from user code and gets a page fault
564 		 * during delivery, the page fault can be delivered as though
565 		 * it originated directly from user code.  This could happen
566 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
567 		 * kernel or IST stack.
568 		 */
569 		store_idt(&idt);
570 
571 		/* Usable even on Xen PV -- it's just slow. */
572 		native_store_gdt(&gdt);
573 
574 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
575 			 idt.address, idt.size, gdt.address, gdt.size);
576 
577 		store_ldt(ldtr);
578 		show_ldttss(&gdt, "LDTR", ldtr);
579 
580 		store_tr(tr);
581 		show_ldttss(&gdt, "TR", tr);
582 	}
583 
584 	dump_pagetable(address);
585 
586 	if (error_code & X86_PF_RMP)
587 		snp_dump_hva_rmpentry(address);
588 }
589 
590 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)591 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
592 	    unsigned long address)
593 {
594 	struct task_struct *tsk;
595 	unsigned long flags;
596 	int sig;
597 
598 	flags = oops_begin();
599 	tsk = current;
600 	sig = SIGKILL;
601 
602 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
603 	       tsk->comm, address);
604 	dump_pagetable(address);
605 
606 	if (__die("Bad pagetable", regs, error_code))
607 		sig = 0;
608 
609 	oops_end(flags, regs, sig);
610 }
611 
sanitize_error_code(unsigned long address,unsigned long * error_code)612 static void sanitize_error_code(unsigned long address,
613 				unsigned long *error_code)
614 {
615 	/*
616 	 * To avoid leaking information about the kernel page
617 	 * table layout, pretend that user-mode accesses to
618 	 * kernel addresses are always protection faults.
619 	 *
620 	 * NB: This means that failed vsyscalls with vsyscall=none
621 	 * will have the PROT bit.  This doesn't leak any
622 	 * information and does not appear to cause any problems.
623 	 */
624 	if (address >= TASK_SIZE_MAX)
625 		*error_code |= X86_PF_PROT;
626 }
627 
set_signal_archinfo(unsigned long address,unsigned long error_code)628 static void set_signal_archinfo(unsigned long address,
629 				unsigned long error_code)
630 {
631 	struct task_struct *tsk = current;
632 
633 	tsk->thread.trap_nr = X86_TRAP_PF;
634 	tsk->thread.error_code = error_code | X86_PF_USER;
635 	tsk->thread.cr2 = address;
636 }
637 
638 static noinline void
page_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)639 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
640 		unsigned long address)
641 {
642 #ifdef CONFIG_VMAP_STACK
643 	struct stack_info info;
644 #endif
645 	unsigned long flags;
646 	int sig;
647 
648 	if (user_mode(regs)) {
649 		/*
650 		 * Implicit kernel access from user mode?  Skip the stack
651 		 * overflow and EFI special cases.
652 		 */
653 		goto oops;
654 	}
655 
656 #ifdef CONFIG_VMAP_STACK
657 	/*
658 	 * Stack overflow?  During boot, we can fault near the initial
659 	 * stack in the direct map, but that's not an overflow -- check
660 	 * that we're in vmalloc space to avoid this.
661 	 */
662 	if (is_vmalloc_addr((void *)address) &&
663 	    get_stack_guard_info((void *)address, &info)) {
664 		/*
665 		 * We're likely to be running with very little stack space
666 		 * left.  It's plausible that we'd hit this condition but
667 		 * double-fault even before we get this far, in which case
668 		 * we're fine: the double-fault handler will deal with it.
669 		 *
670 		 * We don't want to make it all the way into the oops code
671 		 * and then double-fault, though, because we're likely to
672 		 * break the console driver and lose most of the stack dump.
673 		 */
674 		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
675 			      handle_stack_overflow,
676 			      ASM_CALL_ARG3,
677 			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
678 
679 		BUG();
680 	}
681 #endif
682 
683 	/*
684 	 * Buggy firmware could access regions which might page fault.  If
685 	 * this happens, EFI has a special OOPS path that will try to
686 	 * avoid hanging the system.
687 	 */
688 	if (IS_ENABLED(CONFIG_EFI))
689 		efi_crash_gracefully_on_page_fault(address);
690 
691 	/* Only not-present faults should be handled by KFENCE. */
692 	if (!(error_code & X86_PF_PROT) &&
693 	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
694 		return;
695 
696 oops:
697 	/*
698 	 * Oops. The kernel tried to access some bad page. We'll have to
699 	 * terminate things with extreme prejudice:
700 	 */
701 	flags = oops_begin();
702 
703 	show_fault_oops(regs, error_code, address);
704 
705 	if (task_stack_end_corrupted(current))
706 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
707 
708 	sig = SIGKILL;
709 	if (__die("Oops", regs, error_code))
710 		sig = 0;
711 
712 	/* Executive summary in case the body of the oops scrolled away */
713 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
714 
715 	oops_end(flags, regs, sig);
716 }
717 
718 static noinline void
kernelmode_fixup_or_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code,u32 pkey)719 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
720 			 unsigned long address, int signal, int si_code,
721 			 u32 pkey)
722 {
723 	WARN_ON_ONCE(user_mode(regs));
724 
725 	/* Are we prepared to handle this kernel fault? */
726 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
727 		return;
728 
729 	/*
730 	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
731 	 * instruction.
732 	 */
733 	if (is_prefetch(regs, error_code, address))
734 		return;
735 
736 	page_fault_oops(regs, error_code, address);
737 }
738 
739 /*
740  * Print out info about fatal segfaults, if the show_unhandled_signals
741  * sysctl is set:
742  */
743 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)744 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
745 		unsigned long address, struct task_struct *tsk)
746 {
747 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
748 	/* This is a racy snapshot, but it's better than nothing. */
749 	int cpu = raw_smp_processor_id();
750 
751 	if (!unhandled_signal(tsk, SIGSEGV))
752 		return;
753 
754 	if (!printk_ratelimit())
755 		return;
756 
757 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
758 		loglvl, tsk->comm, task_pid_nr(tsk), address,
759 		(void *)regs->ip, (void *)regs->sp, error_code);
760 
761 	print_vma_addr(KERN_CONT " in ", regs->ip);
762 
763 	/*
764 	 * Dump the likely CPU where the fatal segfault happened.
765 	 * This can help identify faulty hardware.
766 	 */
767 	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
768 	       topology_core_id(cpu), topology_physical_package_id(cpu));
769 
770 
771 	printk(KERN_CONT "\n");
772 
773 	show_opcodes(regs, loglvl);
774 }
775 
776 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)777 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
778 		       unsigned long address, u32 pkey, int si_code)
779 {
780 	struct task_struct *tsk = current;
781 
782 	if (!user_mode(regs)) {
783 		kernelmode_fixup_or_oops(regs, error_code, address,
784 					 SIGSEGV, si_code, pkey);
785 		return;
786 	}
787 
788 	if (!(error_code & X86_PF_USER)) {
789 		/* Implicit user access to kernel memory -- just oops */
790 		page_fault_oops(regs, error_code, address);
791 		return;
792 	}
793 
794 	/*
795 	 * User mode accesses just cause a SIGSEGV.
796 	 * It's possible to have interrupts off here:
797 	 */
798 	local_irq_enable();
799 
800 	/*
801 	 * Valid to do another page fault here because this one came
802 	 * from user space:
803 	 */
804 	if (is_prefetch(regs, error_code, address))
805 		return;
806 
807 	if (is_errata100(regs, address))
808 		return;
809 
810 	sanitize_error_code(address, &error_code);
811 
812 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
813 		return;
814 
815 	if (likely(show_unhandled_signals))
816 		show_signal_msg(regs, error_code, address, tsk);
817 
818 	set_signal_archinfo(address, error_code);
819 
820 	if (si_code == SEGV_PKUERR)
821 		force_sig_pkuerr((void __user *)address, pkey);
822 	else
823 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
824 }
825 
826 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)827 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
828 		     unsigned long address)
829 {
830 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
831 }
832 
833 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma,u32 pkey,int si_code)834 __bad_area(struct pt_regs *regs, unsigned long error_code,
835 	   unsigned long address, struct mm_struct *mm,
836 	   struct vm_area_struct *vma, u32 pkey, int si_code)
837 {
838 	/*
839 	 * Something tried to access memory that isn't in our memory map..
840 	 * Fix it, but check if it's kernel or user first..
841 	 */
842 	if (mm)
843 		mmap_read_unlock(mm);
844 	else
845 		vma_end_read(vma);
846 
847 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
848 }
849 
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)850 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
851 		struct vm_area_struct *vma)
852 {
853 	/* This code is always called on the current mm */
854 	bool foreign = false;
855 
856 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
857 		return false;
858 	if (error_code & X86_PF_PK)
859 		return true;
860 	/* this checks permission keys on the VMA: */
861 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
862 				       (error_code & X86_PF_INSTR), foreign))
863 		return true;
864 	return false;
865 }
866 
867 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma)868 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
869 		      unsigned long address, struct mm_struct *mm,
870 		      struct vm_area_struct *vma)
871 {
872 	/*
873 	 * This OSPKE check is not strictly necessary at runtime.
874 	 * But, doing it this way allows compiler optimizations
875 	 * if pkeys are compiled out.
876 	 */
877 	if (bad_area_access_from_pkeys(error_code, vma)) {
878 		/*
879 		 * A protection key fault means that the PKRU value did not allow
880 		 * access to some PTE.  Userspace can figure out what PKRU was
881 		 * from the XSAVE state.  This function captures the pkey from
882 		 * the vma and passes it to userspace so userspace can discover
883 		 * which protection key was set on the PTE.
884 		 *
885 		 * If we get here, we know that the hardware signaled a X86_PF_PK
886 		 * fault and that there was a VMA once we got in the fault
887 		 * handler.  It does *not* guarantee that the VMA we find here
888 		 * was the one that we faulted on.
889 		 *
890 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
891 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
892 		 * 3. T1   : faults...
893 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
894 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
895 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
896 		 *	     faulted on a pte with its pkey=4.
897 		 */
898 		u32 pkey = vma_pkey(vma);
899 
900 		__bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR);
901 	} else {
902 		__bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR);
903 	}
904 }
905 
906 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)907 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
908 	  vm_fault_t fault)
909 {
910 	/* Kernel mode? Handle exceptions or die: */
911 	if (!user_mode(regs)) {
912 		kernelmode_fixup_or_oops(regs, error_code, address,
913 					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
914 		return;
915 	}
916 
917 	/* User-space => ok to do another page fault: */
918 	if (is_prefetch(regs, error_code, address))
919 		return;
920 
921 	sanitize_error_code(address, &error_code);
922 
923 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
924 		return;
925 
926 	set_signal_archinfo(address, error_code);
927 
928 #ifdef CONFIG_MEMORY_FAILURE
929 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
930 		struct task_struct *tsk = current;
931 		unsigned lsb = 0;
932 
933 		pr_err(
934 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
935 			tsk->comm, tsk->pid, address);
936 		if (fault & VM_FAULT_HWPOISON_LARGE)
937 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
938 		if (fault & VM_FAULT_HWPOISON)
939 			lsb = PAGE_SHIFT;
940 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
941 		return;
942 	}
943 #endif
944 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
945 }
946 
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)947 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
948 {
949 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
950 		return 0;
951 
952 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
953 		return 0;
954 
955 	return 1;
956 }
957 
958 /*
959  * Handle a spurious fault caused by a stale TLB entry.
960  *
961  * This allows us to lazily refresh the TLB when increasing the
962  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
963  * eagerly is very expensive since that implies doing a full
964  * cross-processor TLB flush, even if no stale TLB entries exist
965  * on other processors.
966  *
967  * Spurious faults may only occur if the TLB contains an entry with
968  * fewer permission than the page table entry.  Non-present (P = 0)
969  * and reserved bit (R = 1) faults are never spurious.
970  *
971  * There are no security implications to leaving a stale TLB when
972  * increasing the permissions on a page.
973  *
974  * Returns non-zero if a spurious fault was handled, zero otherwise.
975  *
976  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
977  * (Optional Invalidation).
978  */
979 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)980 spurious_kernel_fault(unsigned long error_code, unsigned long address)
981 {
982 	pgd_t *pgd;
983 	p4d_t *p4d;
984 	pud_t *pud;
985 	pmd_t *pmd;
986 	pte_t *pte;
987 	int ret;
988 
989 	/*
990 	 * Only writes to RO or instruction fetches from NX may cause
991 	 * spurious faults.
992 	 *
993 	 * These could be from user or supervisor accesses but the TLB
994 	 * is only lazily flushed after a kernel mapping protection
995 	 * change, so user accesses are not expected to cause spurious
996 	 * faults.
997 	 */
998 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
999 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1000 		return 0;
1001 
1002 	pgd = init_mm.pgd + pgd_index(address);
1003 	if (!pgd_present(*pgd))
1004 		return 0;
1005 
1006 	p4d = p4d_offset(pgd, address);
1007 	if (!p4d_present(*p4d))
1008 		return 0;
1009 
1010 	if (p4d_leaf(*p4d))
1011 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1012 
1013 	pud = pud_offset(p4d, address);
1014 	if (!pud_present(*pud))
1015 		return 0;
1016 
1017 	if (pud_leaf(*pud))
1018 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1019 
1020 	pmd = pmd_offset(pud, address);
1021 	if (!pmd_present(*pmd))
1022 		return 0;
1023 
1024 	if (pmd_leaf(*pmd))
1025 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1026 
1027 	pte = pte_offset_kernel(pmd, address);
1028 	if (!pte_present(*pte))
1029 		return 0;
1030 
1031 	ret = spurious_kernel_fault_check(error_code, pte);
1032 	if (!ret)
1033 		return 0;
1034 
1035 	/*
1036 	 * Make sure we have permissions in PMD.
1037 	 * If not, then there's a bug in the page tables:
1038 	 */
1039 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1040 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1041 
1042 	return ret;
1043 }
1044 NOKPROBE_SYMBOL(spurious_kernel_fault);
1045 
1046 int show_unhandled_signals = 1;
1047 
1048 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1049 access_error(unsigned long error_code, struct vm_area_struct *vma)
1050 {
1051 	/* This is only called for the current mm, so: */
1052 	bool foreign = false;
1053 
1054 	/*
1055 	 * Read or write was blocked by protection keys.  This is
1056 	 * always an unconditional error and can never result in
1057 	 * a follow-up action to resolve the fault, like a COW.
1058 	 */
1059 	if (error_code & X86_PF_PK)
1060 		return 1;
1061 
1062 	/*
1063 	 * SGX hardware blocked the access.  This usually happens
1064 	 * when the enclave memory contents have been destroyed, like
1065 	 * after a suspend/resume cycle. In any case, the kernel can't
1066 	 * fix the cause of the fault.  Handle the fault as an access
1067 	 * error even in cases where no actual access violation
1068 	 * occurred.  This allows userspace to rebuild the enclave in
1069 	 * response to the signal.
1070 	 */
1071 	if (unlikely(error_code & X86_PF_SGX))
1072 		return 1;
1073 
1074 	/*
1075 	 * Make sure to check the VMA so that we do not perform
1076 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1077 	 * page.
1078 	 */
1079 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1080 				       (error_code & X86_PF_INSTR), foreign))
1081 		return 1;
1082 
1083 	/*
1084 	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1085 	 * shadow stack VMAs. All other accesses result in an error.
1086 	 */
1087 	if (error_code & X86_PF_SHSTK) {
1088 		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1089 			return 1;
1090 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1091 			return 1;
1092 		return 0;
1093 	}
1094 
1095 	if (error_code & X86_PF_WRITE) {
1096 		/* write, present and write, not present: */
1097 		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1098 			return 1;
1099 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1100 			return 1;
1101 		return 0;
1102 	}
1103 
1104 	/* read, present: */
1105 	if (unlikely(error_code & X86_PF_PROT))
1106 		return 1;
1107 
1108 	/* read, not present: */
1109 	if (unlikely(!vma_is_accessible(vma)))
1110 		return 1;
1111 
1112 	return 0;
1113 }
1114 
fault_in_kernel_space(unsigned long address)1115 bool fault_in_kernel_space(unsigned long address)
1116 {
1117 	/*
1118 	 * On 64-bit systems, the vsyscall page is at an address above
1119 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1120 	 * address space.
1121 	 */
1122 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1123 		return false;
1124 
1125 	return address >= TASK_SIZE_MAX;
1126 }
1127 
1128 /*
1129  * Called for all faults where 'address' is part of the kernel address
1130  * space.  Might get called for faults that originate from *code* that
1131  * ran in userspace or the kernel.
1132  */
1133 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1134 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1135 		   unsigned long address)
1136 {
1137 	/*
1138 	 * Protection keys exceptions only happen on user pages.  We
1139 	 * have no user pages in the kernel portion of the address
1140 	 * space, so do not expect them here.
1141 	 */
1142 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1143 
1144 #ifdef CONFIG_X86_32
1145 	/*
1146 	 * We can fault-in kernel-space virtual memory on-demand. The
1147 	 * 'reference' page table is init_mm.pgd.
1148 	 *
1149 	 * NOTE! We MUST NOT take any locks for this case. We may
1150 	 * be in an interrupt or a critical region, and should
1151 	 * only copy the information from the master page table,
1152 	 * nothing more.
1153 	 *
1154 	 * Before doing this on-demand faulting, ensure that the
1155 	 * fault is not any of the following:
1156 	 * 1. A fault on a PTE with a reserved bit set.
1157 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1158 	 *    fault kernel memory due to user-mode accesses).
1159 	 * 3. A fault caused by a page-level protection violation.
1160 	 *    (A demand fault would be on a non-present page which
1161 	 *     would have X86_PF_PROT==0).
1162 	 *
1163 	 * This is only needed to close a race condition on x86-32 in
1164 	 * the vmalloc mapping/unmapping code. See the comment above
1165 	 * vmalloc_fault() for details. On x86-64 the race does not
1166 	 * exist as the vmalloc mappings don't need to be synchronized
1167 	 * there.
1168 	 */
1169 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1170 		if (vmalloc_fault(address) >= 0)
1171 			return;
1172 	}
1173 #endif
1174 
1175 	if (is_f00f_bug(regs, hw_error_code, address))
1176 		return;
1177 
1178 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1179 	if (spurious_kernel_fault(hw_error_code, address))
1180 		return;
1181 
1182 	/* kprobes don't want to hook the spurious faults: */
1183 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1184 		return;
1185 
1186 	/*
1187 	 * Note, despite being a "bad area", there are quite a few
1188 	 * acceptable reasons to get here, such as erratum fixups
1189 	 * and handling kernel code that can fault, like get_user().
1190 	 *
1191 	 * Don't take the mm semaphore here. If we fixup a prefetch
1192 	 * fault we could otherwise deadlock:
1193 	 */
1194 	bad_area_nosemaphore(regs, hw_error_code, address);
1195 }
1196 NOKPROBE_SYMBOL(do_kern_addr_fault);
1197 
1198 /*
1199  * Handle faults in the user portion of the address space.  Nothing in here
1200  * should check X86_PF_USER without a specific justification: for almost
1201  * all purposes, we should treat a normal kernel access to user memory
1202  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1203  * The one exception is AC flag handling, which is, per the x86
1204  * architecture, special for WRUSS.
1205  */
1206 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1207 void do_user_addr_fault(struct pt_regs *regs,
1208 			unsigned long error_code,
1209 			unsigned long address)
1210 {
1211 	struct vm_area_struct *vma;
1212 	struct task_struct *tsk;
1213 	struct mm_struct *mm;
1214 	vm_fault_t fault;
1215 	unsigned int flags = FAULT_FLAG_DEFAULT;
1216 
1217 	tsk = current;
1218 	mm = tsk->mm;
1219 
1220 	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1221 		/*
1222 		 * Whoops, this is kernel mode code trying to execute from
1223 		 * user memory.  Unless this is AMD erratum #93, which
1224 		 * corrupts RIP such that it looks like a user address,
1225 		 * this is unrecoverable.  Don't even try to look up the
1226 		 * VMA or look for extable entries.
1227 		 */
1228 		if (is_errata93(regs, address))
1229 			return;
1230 
1231 		page_fault_oops(regs, error_code, address);
1232 		return;
1233 	}
1234 
1235 	/* kprobes don't want to hook the spurious faults: */
1236 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1237 		return;
1238 
1239 	/*
1240 	 * Reserved bits are never expected to be set on
1241 	 * entries in the user portion of the page tables.
1242 	 */
1243 	if (unlikely(error_code & X86_PF_RSVD))
1244 		pgtable_bad(regs, error_code, address);
1245 
1246 	/*
1247 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1248 	 * pages in the user address space.  The odd case here is WRUSS,
1249 	 * which, according to the preliminary documentation, does not respect
1250 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1251 	 * enforcement appears to be consistent with the USER bit.
1252 	 */
1253 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1254 		     !(error_code & X86_PF_USER) &&
1255 		     !(regs->flags & X86_EFLAGS_AC))) {
1256 		/*
1257 		 * No extable entry here.  This was a kernel access to an
1258 		 * invalid pointer.  get_kernel_nofault() will not get here.
1259 		 */
1260 		page_fault_oops(regs, error_code, address);
1261 		return;
1262 	}
1263 
1264 	/*
1265 	 * If we're in an interrupt, have no user context or are running
1266 	 * in a region with pagefaults disabled then we must not take the fault
1267 	 */
1268 	if (unlikely(faulthandler_disabled() || !mm)) {
1269 		bad_area_nosemaphore(regs, error_code, address);
1270 		return;
1271 	}
1272 
1273 	/* Legacy check - remove this after verifying that it doesn't trigger */
1274 	if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1275 		bad_area_nosemaphore(regs, error_code, address);
1276 		return;
1277 	}
1278 
1279 	local_irq_enable();
1280 
1281 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1282 
1283 	/*
1284 	 * Read-only permissions can not be expressed in shadow stack PTEs.
1285 	 * Treat all shadow stack accesses as WRITE faults. This ensures
1286 	 * that the MM will prepare everything (e.g., break COW) such that
1287 	 * maybe_mkwrite() can create a proper shadow stack PTE.
1288 	 */
1289 	if (error_code & X86_PF_SHSTK)
1290 		flags |= FAULT_FLAG_WRITE;
1291 	if (error_code & X86_PF_WRITE)
1292 		flags |= FAULT_FLAG_WRITE;
1293 	if (error_code & X86_PF_INSTR)
1294 		flags |= FAULT_FLAG_INSTRUCTION;
1295 
1296 	/*
1297 	 * We set FAULT_FLAG_USER based on the register state, not
1298 	 * based on X86_PF_USER. User space accesses that cause
1299 	 * system page faults are still user accesses.
1300 	 */
1301 	if (user_mode(regs))
1302 		flags |= FAULT_FLAG_USER;
1303 
1304 #ifdef CONFIG_X86_64
1305 	/*
1306 	 * Faults in the vsyscall page might need emulation.  The
1307 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1308 	 * considered to be part of the user address space.
1309 	 *
1310 	 * The vsyscall page does not have a "real" VMA, so do this
1311 	 * emulation before we go searching for VMAs.
1312 	 *
1313 	 * PKRU never rejects instruction fetches, so we don't need
1314 	 * to consider the PF_PK bit.
1315 	 */
1316 	if (is_vsyscall_vaddr(address)) {
1317 		if (emulate_vsyscall(error_code, regs, address))
1318 			return;
1319 	}
1320 #endif
1321 
1322 	if (!(flags & FAULT_FLAG_USER))
1323 		goto lock_mmap;
1324 
1325 	vma = lock_vma_under_rcu(mm, address);
1326 	if (!vma)
1327 		goto lock_mmap;
1328 
1329 	if (unlikely(access_error(error_code, vma))) {
1330 		bad_area_access_error(regs, error_code, address, NULL, vma);
1331 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1332 		return;
1333 	}
1334 	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1335 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1336 		vma_end_read(vma);
1337 
1338 	if (!(fault & VM_FAULT_RETRY)) {
1339 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1340 		goto done;
1341 	}
1342 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1343 	if (fault & VM_FAULT_MAJOR)
1344 		flags |= FAULT_FLAG_TRIED;
1345 
1346 	/* Quick path to respond to signals */
1347 	if (fault_signal_pending(fault, regs)) {
1348 		if (!user_mode(regs))
1349 			kernelmode_fixup_or_oops(regs, error_code, address,
1350 						 SIGBUS, BUS_ADRERR,
1351 						 ARCH_DEFAULT_PKEY);
1352 		return;
1353 	}
1354 lock_mmap:
1355 
1356 retry:
1357 	vma = lock_mm_and_find_vma(mm, address, regs);
1358 	if (unlikely(!vma)) {
1359 		bad_area_nosemaphore(regs, error_code, address);
1360 		return;
1361 	}
1362 
1363 	/*
1364 	 * Ok, we have a good vm_area for this memory access, so
1365 	 * we can handle it..
1366 	 */
1367 	if (unlikely(access_error(error_code, vma))) {
1368 		bad_area_access_error(regs, error_code, address, mm, vma);
1369 		return;
1370 	}
1371 
1372 	/*
1373 	 * If for any reason at all we couldn't handle the fault,
1374 	 * make sure we exit gracefully rather than endlessly redo
1375 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1376 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1377 	 *
1378 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1379 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1380 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1381 	 * (potentially after handling any pending signal during the return to
1382 	 * userland). The return to userland is identified whenever
1383 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1384 	 */
1385 	fault = handle_mm_fault(vma, address, flags, regs);
1386 
1387 	if (fault_signal_pending(fault, regs)) {
1388 		/*
1389 		 * Quick path to respond to signals.  The core mm code
1390 		 * has unlocked the mm for us if we get here.
1391 		 */
1392 		if (!user_mode(regs))
1393 			kernelmode_fixup_or_oops(regs, error_code, address,
1394 						 SIGBUS, BUS_ADRERR,
1395 						 ARCH_DEFAULT_PKEY);
1396 		return;
1397 	}
1398 
1399 	/* The fault is fully completed (including releasing mmap lock) */
1400 	if (fault & VM_FAULT_COMPLETED)
1401 		return;
1402 
1403 	/*
1404 	 * If we need to retry the mmap_lock has already been released,
1405 	 * and if there is a fatal signal pending there is no guarantee
1406 	 * that we made any progress. Handle this case first.
1407 	 */
1408 	if (unlikely(fault & VM_FAULT_RETRY)) {
1409 		flags |= FAULT_FLAG_TRIED;
1410 		goto retry;
1411 	}
1412 
1413 	mmap_read_unlock(mm);
1414 done:
1415 	if (likely(!(fault & VM_FAULT_ERROR)))
1416 		return;
1417 
1418 	if (fatal_signal_pending(current) && !user_mode(regs)) {
1419 		kernelmode_fixup_or_oops(regs, error_code, address,
1420 					 0, 0, ARCH_DEFAULT_PKEY);
1421 		return;
1422 	}
1423 
1424 	if (fault & VM_FAULT_OOM) {
1425 		/* Kernel mode? Handle exceptions or die: */
1426 		if (!user_mode(regs)) {
1427 			kernelmode_fixup_or_oops(regs, error_code, address,
1428 						 SIGSEGV, SEGV_MAPERR,
1429 						 ARCH_DEFAULT_PKEY);
1430 			return;
1431 		}
1432 
1433 		/*
1434 		 * We ran out of memory, call the OOM killer, and return the
1435 		 * userspace (which will retry the fault, or kill us if we got
1436 		 * oom-killed):
1437 		 */
1438 		pagefault_out_of_memory();
1439 	} else {
1440 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1441 			     VM_FAULT_HWPOISON_LARGE))
1442 			do_sigbus(regs, error_code, address, fault);
1443 		else if (fault & VM_FAULT_SIGSEGV)
1444 			bad_area_nosemaphore(regs, error_code, address);
1445 		else
1446 			BUG();
1447 	}
1448 }
1449 NOKPROBE_SYMBOL(do_user_addr_fault);
1450 
1451 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1452 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1453 			 unsigned long address)
1454 {
1455 	if (user_mode(regs))
1456 		trace_page_fault_user(address, regs, error_code);
1457 	else
1458 		trace_page_fault_kernel(address, regs, error_code);
1459 }
1460 
1461 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1462 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1463 			      unsigned long address)
1464 {
1465 	trace_page_fault_entries(regs, error_code, address);
1466 
1467 	if (unlikely(kmmio_fault(regs, address)))
1468 		return;
1469 
1470 	/* Was the fault on kernel-controlled part of the address space? */
1471 	if (unlikely(fault_in_kernel_space(address))) {
1472 		do_kern_addr_fault(regs, error_code, address);
1473 	} else {
1474 		do_user_addr_fault(regs, error_code, address);
1475 	}
1476 	/*
1477 	 * page fault handling might have reenabled interrupts,
1478 	 * make sure to disable them again.
1479 	 */
1480 	local_irq_disable();
1481 }
1482 
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1483 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1484 {
1485 	irqentry_state_t state;
1486 	unsigned long address;
1487 
1488 	address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1489 
1490 	/*
1491 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1492 	 * (asynchronous page fault mechanism). The event happens when a
1493 	 * userspace task is trying to access some valid (from guest's point of
1494 	 * view) memory which is not currently mapped by the host (e.g. the
1495 	 * memory is swapped out). Note, the corresponding "page ready" event
1496 	 * which is injected when the memory becomes available, is delivered via
1497 	 * an interrupt mechanism and not a #PF exception
1498 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1499 	 *
1500 	 * We are relying on the interrupted context being sane (valid RSP,
1501 	 * relevant locks not held, etc.), which is fine as long as the
1502 	 * interrupted context had IF=1.  We are also relying on the KVM
1503 	 * async pf type field and CR2 being read consistently instead of
1504 	 * getting values from real and async page faults mixed up.
1505 	 *
1506 	 * Fingers crossed.
1507 	 *
1508 	 * The async #PF handling code takes care of idtentry handling
1509 	 * itself.
1510 	 */
1511 	if (kvm_handle_async_pf(regs, (u32)address))
1512 		return;
1513 
1514 	/*
1515 	 * Entry handling for valid #PF from kernel mode is slightly
1516 	 * different: RCU is already watching and ct_irq_enter() must not
1517 	 * be invoked because a kernel fault on a user space address might
1518 	 * sleep.
1519 	 *
1520 	 * In case the fault hit a RCU idle region the conditional entry
1521 	 * code reenabled RCU to avoid subsequent wreckage which helps
1522 	 * debuggability.
1523 	 */
1524 	state = irqentry_enter(regs);
1525 
1526 	instrumentation_begin();
1527 	handle_page_fault(regs, error_code, address);
1528 	instrumentation_end();
1529 
1530 	irqentry_exit(regs, state);
1531 }
1532