1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009-2011 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/dm-bufio.h>
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
23
24 #include "dm.h"
25
26 #define DM_MSG_PREFIX "bufio"
27
28 /*
29 * Memory management policy:
30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34 * dirty buffers.
35 */
36 #define DM_BUFIO_MIN_BUFFERS 8
37
38 #define DM_BUFIO_MEMORY_PERCENT 2
39 #define DM_BUFIO_VMALLOC_PERCENT 25
40 #define DM_BUFIO_WRITEBACK_RATIO 3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO 16
42
43 /*
44 * Check buffer ages in this interval (seconds)
45 */
46 #define DM_BUFIO_WORK_TIMER_SECS 30
47
48 /*
49 * Free buffers when they are older than this (seconds)
50 */
51 #define DM_BUFIO_DEFAULT_AGE_SECS 300
52
53 /*
54 * The nr of bytes of cached data to keep around.
55 */
56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
57
58 /*
59 * Align buffer writes to this boundary.
60 * Tests show that SSDs have the highest IOPS when using 4k writes.
61 */
62 #define DM_BUFIO_WRITE_ALIGN 4096
63
64 /*
65 * dm_buffer->list_mode
66 */
67 #define LIST_CLEAN 0
68 #define LIST_DIRTY 1
69 #define LIST_SIZE 2
70
71 /*--------------------------------------------------------------*/
72
73 /*
74 * Rather than use an LRU list, we use a clock algorithm where entries
75 * are held in a circular list. When an entry is 'hit' a reference bit
76 * is set. The least recently used entry is approximated by running a
77 * cursor around the list selecting unreferenced entries. Referenced
78 * entries have their reference bit cleared as the cursor passes them.
79 */
80 struct lru_entry {
81 struct list_head list;
82 atomic_t referenced;
83 };
84
85 struct lru_iter {
86 struct lru *lru;
87 struct list_head list;
88 struct lru_entry *stop;
89 struct lru_entry *e;
90 };
91
92 struct lru {
93 struct list_head *cursor;
94 unsigned long count;
95
96 struct list_head iterators;
97 };
98
99 /*--------------*/
100
lru_init(struct lru * lru)101 static void lru_init(struct lru *lru)
102 {
103 lru->cursor = NULL;
104 lru->count = 0;
105 INIT_LIST_HEAD(&lru->iterators);
106 }
107
lru_destroy(struct lru * lru)108 static void lru_destroy(struct lru *lru)
109 {
110 WARN_ON_ONCE(lru->cursor);
111 WARN_ON_ONCE(!list_empty(&lru->iterators));
112 }
113
114 /*
115 * Insert a new entry into the lru.
116 */
lru_insert(struct lru * lru,struct lru_entry * le)117 static void lru_insert(struct lru *lru, struct lru_entry *le)
118 {
119 /*
120 * Don't be tempted to set to 1, makes the lru aspect
121 * perform poorly.
122 */
123 atomic_set(&le->referenced, 0);
124
125 if (lru->cursor) {
126 list_add_tail(&le->list, lru->cursor);
127 } else {
128 INIT_LIST_HEAD(&le->list);
129 lru->cursor = &le->list;
130 }
131 lru->count++;
132 }
133
134 /*--------------*/
135
136 /*
137 * Convert a list_head pointer to an lru_entry pointer.
138 */
to_le(struct list_head * l)139 static inline struct lru_entry *to_le(struct list_head *l)
140 {
141 return container_of(l, struct lru_entry, list);
142 }
143
144 /*
145 * Initialize an lru_iter and add it to the list of cursors in the lru.
146 */
lru_iter_begin(struct lru * lru,struct lru_iter * it)147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
148 {
149 it->lru = lru;
150 it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
151 it->e = lru->cursor ? to_le(lru->cursor) : NULL;
152 list_add(&it->list, &lru->iterators);
153 }
154
155 /*
156 * Remove an lru_iter from the list of cursors in the lru.
157 */
lru_iter_end(struct lru_iter * it)158 static inline void lru_iter_end(struct lru_iter *it)
159 {
160 list_del(&it->list);
161 }
162
163 /* Predicate function type to be used with lru_iter_next */
164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
165
166 /*
167 * Advance the cursor to the next entry that passes the
168 * predicate, and return that entry. Returns NULL if the
169 * iteration is complete.
170 */
lru_iter_next(struct lru_iter * it,iter_predicate pred,void * context)171 static struct lru_entry *lru_iter_next(struct lru_iter *it,
172 iter_predicate pred, void *context)
173 {
174 struct lru_entry *e;
175
176 while (it->e) {
177 e = it->e;
178
179 /* advance the cursor */
180 if (it->e == it->stop)
181 it->e = NULL;
182 else
183 it->e = to_le(it->e->list.next);
184
185 if (pred(e, context))
186 return e;
187 }
188
189 return NULL;
190 }
191
192 /*
193 * Invalidate a specific lru_entry and update all cursors in
194 * the lru accordingly.
195 */
lru_iter_invalidate(struct lru * lru,struct lru_entry * e)196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
197 {
198 struct lru_iter *it;
199
200 list_for_each_entry(it, &lru->iterators, list) {
201 /* Move c->e forwards if necc. */
202 if (it->e == e) {
203 it->e = to_le(it->e->list.next);
204 if (it->e == e)
205 it->e = NULL;
206 }
207
208 /* Move it->stop backwards if necc. */
209 if (it->stop == e) {
210 it->stop = to_le(it->stop->list.prev);
211 if (it->stop == e)
212 it->stop = NULL;
213 }
214 }
215 }
216
217 /*--------------*/
218
219 /*
220 * Remove a specific entry from the lru.
221 */
lru_remove(struct lru * lru,struct lru_entry * le)222 static void lru_remove(struct lru *lru, struct lru_entry *le)
223 {
224 lru_iter_invalidate(lru, le);
225 if (lru->count == 1) {
226 lru->cursor = NULL;
227 } else {
228 if (lru->cursor == &le->list)
229 lru->cursor = lru->cursor->next;
230 list_del(&le->list);
231 }
232 lru->count--;
233 }
234
235 /*
236 * Mark as referenced.
237 */
lru_reference(struct lru_entry * le)238 static inline void lru_reference(struct lru_entry *le)
239 {
240 atomic_set(&le->referenced, 1);
241 }
242
243 /*--------------*/
244
245 /*
246 * Remove the least recently used entry (approx), that passes the predicate.
247 * Returns NULL on failure.
248 */
249 enum evict_result {
250 ER_EVICT,
251 ER_DONT_EVICT,
252 ER_STOP, /* stop looking for something to evict */
253 };
254
255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
256
lru_evict(struct lru * lru,le_predicate pred,void * context,bool no_sleep)257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
258 {
259 unsigned long tested = 0;
260 struct list_head *h = lru->cursor;
261 struct lru_entry *le;
262
263 if (!h)
264 return NULL;
265 /*
266 * In the worst case we have to loop around twice. Once to clear
267 * the reference flags, and then again to discover the predicate
268 * fails for all entries.
269 */
270 while (tested < lru->count) {
271 le = container_of(h, struct lru_entry, list);
272
273 if (atomic_read(&le->referenced)) {
274 atomic_set(&le->referenced, 0);
275 } else {
276 tested++;
277 switch (pred(le, context)) {
278 case ER_EVICT:
279 /*
280 * Adjust the cursor, so we start the next
281 * search from here.
282 */
283 lru->cursor = le->list.next;
284 lru_remove(lru, le);
285 return le;
286
287 case ER_DONT_EVICT:
288 break;
289
290 case ER_STOP:
291 lru->cursor = le->list.next;
292 return NULL;
293 }
294 }
295
296 h = h->next;
297
298 if (!no_sleep)
299 cond_resched();
300 }
301
302 return NULL;
303 }
304
305 /*--------------------------------------------------------------*/
306
307 /*
308 * Buffer state bits.
309 */
310 #define B_READING 0
311 #define B_WRITING 1
312 #define B_DIRTY 2
313
314 /*
315 * Describes how the block was allocated:
316 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
317 * See the comment at alloc_buffer_data.
318 */
319 enum data_mode {
320 DATA_MODE_SLAB = 0,
321 DATA_MODE_KMALLOC = 1,
322 DATA_MODE_GET_FREE_PAGES = 2,
323 DATA_MODE_VMALLOC = 3,
324 DATA_MODE_LIMIT = 4
325 };
326
327 struct dm_buffer {
328 /* protected by the locks in dm_buffer_cache */
329 struct rb_node node;
330
331 /* immutable, so don't need protecting */
332 sector_t block;
333 void *data;
334 unsigned char data_mode; /* DATA_MODE_* */
335
336 /*
337 * These two fields are used in isolation, so do not need
338 * a surrounding lock.
339 */
340 atomic_t hold_count;
341 unsigned long last_accessed;
342
343 /*
344 * Everything else is protected by the mutex in
345 * dm_bufio_client
346 */
347 unsigned long state;
348 struct lru_entry lru;
349 unsigned char list_mode; /* LIST_* */
350 blk_status_t read_error;
351 blk_status_t write_error;
352 unsigned int dirty_start;
353 unsigned int dirty_end;
354 unsigned int write_start;
355 unsigned int write_end;
356 struct list_head write_list;
357 struct dm_bufio_client *c;
358 void (*end_io)(struct dm_buffer *b, blk_status_t bs);
359 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
360 #define MAX_STACK 10
361 unsigned int stack_len;
362 unsigned long stack_entries[MAX_STACK];
363 #endif
364 };
365
366 /*--------------------------------------------------------------*/
367
368 /*
369 * The buffer cache manages buffers, particularly:
370 * - inc/dec of holder count
371 * - setting the last_accessed field
372 * - maintains clean/dirty state along with lru
373 * - selecting buffers that match predicates
374 *
375 * It does *not* handle:
376 * - allocation/freeing of buffers.
377 * - IO
378 * - Eviction or cache sizing.
379 *
380 * cache_get() and cache_put() are threadsafe, you do not need to
381 * protect these calls with a surrounding mutex. All the other
382 * methods are not threadsafe; they do use locking primitives, but
383 * only enough to ensure get/put are threadsafe.
384 */
385
386 struct buffer_tree {
387 union {
388 struct rw_semaphore lock;
389 rwlock_t spinlock;
390 } u;
391 struct rb_root root;
392 } ____cacheline_aligned_in_smp;
393
394 struct dm_buffer_cache {
395 struct lru lru[LIST_SIZE];
396 /*
397 * We spread entries across multiple trees to reduce contention
398 * on the locks.
399 */
400 unsigned int num_locks;
401 bool no_sleep;
402 struct buffer_tree trees[];
403 };
404
405 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
406
cache_index(sector_t block,unsigned int num_locks)407 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
408 {
409 return dm_hash_locks_index(block, num_locks);
410 }
411
cache_read_lock(struct dm_buffer_cache * bc,sector_t block)412 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
413 {
414 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
415 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
416 else
417 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
418 }
419
cache_read_unlock(struct dm_buffer_cache * bc,sector_t block)420 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
421 {
422 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
423 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
424 else
425 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
426 }
427
cache_write_lock(struct dm_buffer_cache * bc,sector_t block)428 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
429 {
430 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
431 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
432 else
433 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
434 }
435
cache_write_unlock(struct dm_buffer_cache * bc,sector_t block)436 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
437 {
438 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
439 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
440 else
441 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
442 }
443
444 /*
445 * Sometimes we want to repeatedly get and drop locks as part of an iteration.
446 * This struct helps avoid redundant drop and gets of the same lock.
447 */
448 struct lock_history {
449 struct dm_buffer_cache *cache;
450 bool write;
451 unsigned int previous;
452 unsigned int no_previous;
453 };
454
lh_init(struct lock_history * lh,struct dm_buffer_cache * cache,bool write)455 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
456 {
457 lh->cache = cache;
458 lh->write = write;
459 lh->no_previous = cache->num_locks;
460 lh->previous = lh->no_previous;
461 }
462
__lh_lock(struct lock_history * lh,unsigned int index)463 static void __lh_lock(struct lock_history *lh, unsigned int index)
464 {
465 if (lh->write) {
466 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
467 write_lock_bh(&lh->cache->trees[index].u.spinlock);
468 else
469 down_write(&lh->cache->trees[index].u.lock);
470 } else {
471 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
472 read_lock_bh(&lh->cache->trees[index].u.spinlock);
473 else
474 down_read(&lh->cache->trees[index].u.lock);
475 }
476 }
477
__lh_unlock(struct lock_history * lh,unsigned int index)478 static void __lh_unlock(struct lock_history *lh, unsigned int index)
479 {
480 if (lh->write) {
481 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
482 write_unlock_bh(&lh->cache->trees[index].u.spinlock);
483 else
484 up_write(&lh->cache->trees[index].u.lock);
485 } else {
486 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
487 read_unlock_bh(&lh->cache->trees[index].u.spinlock);
488 else
489 up_read(&lh->cache->trees[index].u.lock);
490 }
491 }
492
493 /*
494 * Make sure you call this since it will unlock the final lock.
495 */
lh_exit(struct lock_history * lh)496 static void lh_exit(struct lock_history *lh)
497 {
498 if (lh->previous != lh->no_previous) {
499 __lh_unlock(lh, lh->previous);
500 lh->previous = lh->no_previous;
501 }
502 }
503
504 /*
505 * Named 'next' because there is no corresponding
506 * 'up/unlock' call since it's done automatically.
507 */
lh_next(struct lock_history * lh,sector_t b)508 static void lh_next(struct lock_history *lh, sector_t b)
509 {
510 unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
511
512 if (lh->previous != lh->no_previous) {
513 if (lh->previous != index) {
514 __lh_unlock(lh, lh->previous);
515 __lh_lock(lh, index);
516 lh->previous = index;
517 }
518 } else {
519 __lh_lock(lh, index);
520 lh->previous = index;
521 }
522 }
523
le_to_buffer(struct lru_entry * le)524 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
525 {
526 return container_of(le, struct dm_buffer, lru);
527 }
528
list_to_buffer(struct list_head * l)529 static struct dm_buffer *list_to_buffer(struct list_head *l)
530 {
531 struct lru_entry *le = list_entry(l, struct lru_entry, list);
532
533 return le_to_buffer(le);
534 }
535
cache_init(struct dm_buffer_cache * bc,unsigned int num_locks,bool no_sleep)536 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
537 {
538 unsigned int i;
539
540 bc->num_locks = num_locks;
541 bc->no_sleep = no_sleep;
542
543 for (i = 0; i < bc->num_locks; i++) {
544 if (no_sleep)
545 rwlock_init(&bc->trees[i].u.spinlock);
546 else
547 init_rwsem(&bc->trees[i].u.lock);
548 bc->trees[i].root = RB_ROOT;
549 }
550
551 lru_init(&bc->lru[LIST_CLEAN]);
552 lru_init(&bc->lru[LIST_DIRTY]);
553 }
554
cache_destroy(struct dm_buffer_cache * bc)555 static void cache_destroy(struct dm_buffer_cache *bc)
556 {
557 unsigned int i;
558
559 for (i = 0; i < bc->num_locks; i++)
560 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
561
562 lru_destroy(&bc->lru[LIST_CLEAN]);
563 lru_destroy(&bc->lru[LIST_DIRTY]);
564 }
565
566 /*--------------*/
567
568 /*
569 * not threadsafe, or racey depending how you look at it
570 */
cache_count(struct dm_buffer_cache * bc,int list_mode)571 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
572 {
573 return bc->lru[list_mode].count;
574 }
575
cache_total(struct dm_buffer_cache * bc)576 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
577 {
578 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
579 }
580
581 /*--------------*/
582
583 /*
584 * Gets a specific buffer, indexed by block.
585 * If the buffer is found then its holder count will be incremented and
586 * lru_reference will be called.
587 *
588 * threadsafe
589 */
__cache_get(const struct rb_root * root,sector_t block)590 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
591 {
592 struct rb_node *n = root->rb_node;
593 struct dm_buffer *b;
594
595 while (n) {
596 b = container_of(n, struct dm_buffer, node);
597
598 if (b->block == block)
599 return b;
600
601 n = block < b->block ? n->rb_left : n->rb_right;
602 }
603
604 return NULL;
605 }
606
__cache_inc_buffer(struct dm_buffer * b)607 static void __cache_inc_buffer(struct dm_buffer *b)
608 {
609 atomic_inc(&b->hold_count);
610 WRITE_ONCE(b->last_accessed, jiffies);
611 }
612
cache_get(struct dm_buffer_cache * bc,sector_t block)613 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
614 {
615 struct dm_buffer *b;
616
617 cache_read_lock(bc, block);
618 b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
619 if (b) {
620 lru_reference(&b->lru);
621 __cache_inc_buffer(b);
622 }
623 cache_read_unlock(bc, block);
624
625 return b;
626 }
627
628 /*--------------*/
629
630 /*
631 * Returns true if the hold count hits zero.
632 * threadsafe
633 */
cache_put(struct dm_buffer_cache * bc,struct dm_buffer * b)634 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
635 {
636 bool r;
637
638 cache_read_lock(bc, b->block);
639 BUG_ON(!atomic_read(&b->hold_count));
640 r = atomic_dec_and_test(&b->hold_count);
641 cache_read_unlock(bc, b->block);
642
643 return r;
644 }
645
646 /*--------------*/
647
648 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
649
650 /*
651 * Evicts a buffer based on a predicate. The oldest buffer that
652 * matches the predicate will be selected. In addition to the
653 * predicate the hold_count of the selected buffer will be zero.
654 */
655 struct evict_wrapper {
656 struct lock_history *lh;
657 b_predicate pred;
658 void *context;
659 };
660
661 /*
662 * Wraps the buffer predicate turning it into an lru predicate. Adds
663 * extra test for hold_count.
664 */
__evict_pred(struct lru_entry * le,void * context)665 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
666 {
667 struct evict_wrapper *w = context;
668 struct dm_buffer *b = le_to_buffer(le);
669
670 lh_next(w->lh, b->block);
671
672 if (atomic_read(&b->hold_count))
673 return ER_DONT_EVICT;
674
675 return w->pred(b, w->context);
676 }
677
__cache_evict(struct dm_buffer_cache * bc,int list_mode,b_predicate pred,void * context,struct lock_history * lh)678 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
679 b_predicate pred, void *context,
680 struct lock_history *lh)
681 {
682 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
683 struct lru_entry *le;
684 struct dm_buffer *b;
685
686 le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
687 if (!le)
688 return NULL;
689
690 b = le_to_buffer(le);
691 /* __evict_pred will have locked the appropriate tree. */
692 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
693
694 return b;
695 }
696
cache_evict(struct dm_buffer_cache * bc,int list_mode,b_predicate pred,void * context)697 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
698 b_predicate pred, void *context)
699 {
700 struct dm_buffer *b;
701 struct lock_history lh;
702
703 lh_init(&lh, bc, true);
704 b = __cache_evict(bc, list_mode, pred, context, &lh);
705 lh_exit(&lh);
706
707 return b;
708 }
709
710 /*--------------*/
711
712 /*
713 * Mark a buffer as clean or dirty. Not threadsafe.
714 */
cache_mark(struct dm_buffer_cache * bc,struct dm_buffer * b,int list_mode)715 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
716 {
717 cache_write_lock(bc, b->block);
718 if (list_mode != b->list_mode) {
719 lru_remove(&bc->lru[b->list_mode], &b->lru);
720 b->list_mode = list_mode;
721 lru_insert(&bc->lru[b->list_mode], &b->lru);
722 }
723 cache_write_unlock(bc, b->block);
724 }
725
726 /*--------------*/
727
728 /*
729 * Runs through the lru associated with 'old_mode', if the predicate matches then
730 * it moves them to 'new_mode'. Not threadsafe.
731 */
__cache_mark_many(struct dm_buffer_cache * bc,int old_mode,int new_mode,b_predicate pred,void * context,struct lock_history * lh)732 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
733 b_predicate pred, void *context, struct lock_history *lh)
734 {
735 struct lru_entry *le;
736 struct dm_buffer *b;
737 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
738
739 while (true) {
740 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
741 if (!le)
742 break;
743
744 b = le_to_buffer(le);
745 b->list_mode = new_mode;
746 lru_insert(&bc->lru[b->list_mode], &b->lru);
747 }
748 }
749
cache_mark_many(struct dm_buffer_cache * bc,int old_mode,int new_mode,b_predicate pred,void * context)750 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
751 b_predicate pred, void *context)
752 {
753 struct lock_history lh;
754
755 lh_init(&lh, bc, true);
756 __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
757 lh_exit(&lh);
758 }
759
760 /*--------------*/
761
762 /*
763 * Iterates through all clean or dirty entries calling a function for each
764 * entry. The callback may terminate the iteration early. Not threadsafe.
765 */
766
767 /*
768 * Iterator functions should return one of these actions to indicate
769 * how the iteration should proceed.
770 */
771 enum it_action {
772 IT_NEXT,
773 IT_COMPLETE,
774 };
775
776 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
777
__cache_iterate(struct dm_buffer_cache * bc,int list_mode,iter_fn fn,void * context,struct lock_history * lh)778 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
779 iter_fn fn, void *context, struct lock_history *lh)
780 {
781 struct lru *lru = &bc->lru[list_mode];
782 struct lru_entry *le, *first;
783
784 if (!lru->cursor)
785 return;
786
787 first = le = to_le(lru->cursor);
788 do {
789 struct dm_buffer *b = le_to_buffer(le);
790
791 lh_next(lh, b->block);
792
793 switch (fn(b, context)) {
794 case IT_NEXT:
795 break;
796
797 case IT_COMPLETE:
798 return;
799 }
800 cond_resched();
801
802 le = to_le(le->list.next);
803 } while (le != first);
804 }
805
cache_iterate(struct dm_buffer_cache * bc,int list_mode,iter_fn fn,void * context)806 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
807 iter_fn fn, void *context)
808 {
809 struct lock_history lh;
810
811 lh_init(&lh, bc, false);
812 __cache_iterate(bc, list_mode, fn, context, &lh);
813 lh_exit(&lh);
814 }
815
816 /*--------------*/
817
818 /*
819 * Passes ownership of the buffer to the cache. Returns false if the
820 * buffer was already present (in which case ownership does not pass).
821 * eg, a race with another thread.
822 *
823 * Holder count should be 1 on insertion.
824 *
825 * Not threadsafe.
826 */
__cache_insert(struct rb_root * root,struct dm_buffer * b)827 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
828 {
829 struct rb_node **new = &root->rb_node, *parent = NULL;
830 struct dm_buffer *found;
831
832 while (*new) {
833 found = container_of(*new, struct dm_buffer, node);
834
835 if (found->block == b->block)
836 return false;
837
838 parent = *new;
839 new = b->block < found->block ?
840 &found->node.rb_left : &found->node.rb_right;
841 }
842
843 rb_link_node(&b->node, parent, new);
844 rb_insert_color(&b->node, root);
845
846 return true;
847 }
848
cache_insert(struct dm_buffer_cache * bc,struct dm_buffer * b)849 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
850 {
851 bool r;
852
853 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
854 return false;
855
856 cache_write_lock(bc, b->block);
857 BUG_ON(atomic_read(&b->hold_count) != 1);
858 r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
859 if (r)
860 lru_insert(&bc->lru[b->list_mode], &b->lru);
861 cache_write_unlock(bc, b->block);
862
863 return r;
864 }
865
866 /*--------------*/
867
868 /*
869 * Removes buffer from cache, ownership of the buffer passes back to the caller.
870 * Fails if the hold_count is not one (ie. the caller holds the only reference).
871 *
872 * Not threadsafe.
873 */
cache_remove(struct dm_buffer_cache * bc,struct dm_buffer * b)874 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
875 {
876 bool r;
877
878 cache_write_lock(bc, b->block);
879
880 if (atomic_read(&b->hold_count) != 1) {
881 r = false;
882 } else {
883 r = true;
884 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
885 lru_remove(&bc->lru[b->list_mode], &b->lru);
886 }
887
888 cache_write_unlock(bc, b->block);
889
890 return r;
891 }
892
893 /*--------------*/
894
895 typedef void (*b_release)(struct dm_buffer *);
896
__find_next(struct rb_root * root,sector_t block)897 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
898 {
899 struct rb_node *n = root->rb_node;
900 struct dm_buffer *b;
901 struct dm_buffer *best = NULL;
902
903 while (n) {
904 b = container_of(n, struct dm_buffer, node);
905
906 if (b->block == block)
907 return b;
908
909 if (block <= b->block) {
910 n = n->rb_left;
911 best = b;
912 } else {
913 n = n->rb_right;
914 }
915 }
916
917 return best;
918 }
919
__remove_range(struct dm_buffer_cache * bc,struct rb_root * root,sector_t begin,sector_t end,b_predicate pred,b_release release)920 static void __remove_range(struct dm_buffer_cache *bc,
921 struct rb_root *root,
922 sector_t begin, sector_t end,
923 b_predicate pred, b_release release)
924 {
925 struct dm_buffer *b;
926
927 while (true) {
928 cond_resched();
929
930 b = __find_next(root, begin);
931 if (!b || (b->block >= end))
932 break;
933
934 begin = b->block + 1;
935
936 if (atomic_read(&b->hold_count))
937 continue;
938
939 if (pred(b, NULL) == ER_EVICT) {
940 rb_erase(&b->node, root);
941 lru_remove(&bc->lru[b->list_mode], &b->lru);
942 release(b);
943 }
944 }
945 }
946
cache_remove_range(struct dm_buffer_cache * bc,sector_t begin,sector_t end,b_predicate pred,b_release release)947 static void cache_remove_range(struct dm_buffer_cache *bc,
948 sector_t begin, sector_t end,
949 b_predicate pred, b_release release)
950 {
951 unsigned int i;
952
953 BUG_ON(bc->no_sleep);
954 for (i = 0; i < bc->num_locks; i++) {
955 down_write(&bc->trees[i].u.lock);
956 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
957 up_write(&bc->trees[i].u.lock);
958 }
959 }
960
961 /*----------------------------------------------------------------*/
962
963 /*
964 * Linking of buffers:
965 * All buffers are linked to buffer_cache with their node field.
966 *
967 * Clean buffers that are not being written (B_WRITING not set)
968 * are linked to lru[LIST_CLEAN] with their lru_list field.
969 *
970 * Dirty and clean buffers that are being written are linked to
971 * lru[LIST_DIRTY] with their lru_list field. When the write
972 * finishes, the buffer cannot be relinked immediately (because we
973 * are in an interrupt context and relinking requires process
974 * context), so some clean-not-writing buffers can be held on
975 * dirty_lru too. They are later added to lru in the process
976 * context.
977 */
978 struct dm_bufio_client {
979 struct block_device *bdev;
980 unsigned int block_size;
981 s8 sectors_per_block_bits;
982
983 bool no_sleep;
984 struct mutex lock;
985 spinlock_t spinlock;
986
987 int async_write_error;
988
989 void (*alloc_callback)(struct dm_buffer *buf);
990 void (*write_callback)(struct dm_buffer *buf);
991 struct kmem_cache *slab_buffer;
992 struct kmem_cache *slab_cache;
993 struct dm_io_client *dm_io;
994
995 struct list_head reserved_buffers;
996 unsigned int need_reserved_buffers;
997
998 unsigned int minimum_buffers;
999
1000 sector_t start;
1001
1002 struct shrinker *shrinker;
1003 struct work_struct shrink_work;
1004 atomic_long_t need_shrink;
1005
1006 wait_queue_head_t free_buffer_wait;
1007
1008 struct list_head client_list;
1009
1010 /*
1011 * Used by global_cleanup to sort the clients list.
1012 */
1013 unsigned long oldest_buffer;
1014
1015 struct dm_buffer_cache cache; /* must be last member */
1016 };
1017
1018 /*----------------------------------------------------------------*/
1019
1020 #define dm_bufio_in_request() (!!current->bio_list)
1021
dm_bufio_lock(struct dm_bufio_client * c)1022 static void dm_bufio_lock(struct dm_bufio_client *c)
1023 {
1024 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1025 spin_lock_bh(&c->spinlock);
1026 else
1027 mutex_lock_nested(&c->lock, dm_bufio_in_request());
1028 }
1029
dm_bufio_unlock(struct dm_bufio_client * c)1030 static void dm_bufio_unlock(struct dm_bufio_client *c)
1031 {
1032 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1033 spin_unlock_bh(&c->spinlock);
1034 else
1035 mutex_unlock(&c->lock);
1036 }
1037
1038 /*----------------------------------------------------------------*/
1039
1040 /*
1041 * Default cache size: available memory divided by the ratio.
1042 */
1043 static unsigned long dm_bufio_default_cache_size;
1044
1045 /*
1046 * Total cache size set by the user.
1047 */
1048 static unsigned long dm_bufio_cache_size;
1049
1050 /*
1051 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1052 * at any time. If it disagrees, the user has changed cache size.
1053 */
1054 static unsigned long dm_bufio_cache_size_latch;
1055
1056 static DEFINE_SPINLOCK(global_spinlock);
1057
1058 /*
1059 * Buffers are freed after this timeout
1060 */
1061 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1062 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1063
1064 static unsigned long dm_bufio_peak_allocated;
1065 static unsigned long dm_bufio_allocated_kmem_cache;
1066 static unsigned long dm_bufio_allocated_kmalloc;
1067 static unsigned long dm_bufio_allocated_get_free_pages;
1068 static unsigned long dm_bufio_allocated_vmalloc;
1069 static unsigned long dm_bufio_current_allocated;
1070
1071 /*----------------------------------------------------------------*/
1072
1073 /*
1074 * The current number of clients.
1075 */
1076 static int dm_bufio_client_count;
1077
1078 /*
1079 * The list of all clients.
1080 */
1081 static LIST_HEAD(dm_bufio_all_clients);
1082
1083 /*
1084 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1085 */
1086 static DEFINE_MUTEX(dm_bufio_clients_lock);
1087
1088 static struct workqueue_struct *dm_bufio_wq;
1089 static struct delayed_work dm_bufio_cleanup_old_work;
1090 static struct work_struct dm_bufio_replacement_work;
1091
1092
1093 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
buffer_record_stack(struct dm_buffer * b)1094 static void buffer_record_stack(struct dm_buffer *b)
1095 {
1096 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1097 }
1098 #endif
1099
1100 /*----------------------------------------------------------------*/
1101
adjust_total_allocated(struct dm_buffer * b,bool unlink)1102 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1103 {
1104 unsigned char data_mode;
1105 long diff;
1106
1107 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1108 &dm_bufio_allocated_kmem_cache,
1109 &dm_bufio_allocated_kmalloc,
1110 &dm_bufio_allocated_get_free_pages,
1111 &dm_bufio_allocated_vmalloc,
1112 };
1113
1114 data_mode = b->data_mode;
1115 diff = (long)b->c->block_size;
1116 if (unlink)
1117 diff = -diff;
1118
1119 spin_lock(&global_spinlock);
1120
1121 *class_ptr[data_mode] += diff;
1122
1123 dm_bufio_current_allocated += diff;
1124
1125 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1126 dm_bufio_peak_allocated = dm_bufio_current_allocated;
1127
1128 if (!unlink) {
1129 if (dm_bufio_current_allocated > dm_bufio_cache_size)
1130 queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1131 }
1132
1133 spin_unlock(&global_spinlock);
1134 }
1135
1136 /*
1137 * Change the number of clients and recalculate per-client limit.
1138 */
__cache_size_refresh(void)1139 static void __cache_size_refresh(void)
1140 {
1141 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1142 return;
1143 if (WARN_ON(dm_bufio_client_count < 0))
1144 return;
1145
1146 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1147
1148 /*
1149 * Use default if set to 0 and report the actual cache size used.
1150 */
1151 if (!dm_bufio_cache_size_latch) {
1152 (void)cmpxchg(&dm_bufio_cache_size, 0,
1153 dm_bufio_default_cache_size);
1154 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1155 }
1156 }
1157
1158 /*
1159 * Allocating buffer data.
1160 *
1161 * Small buffers are allocated with kmem_cache, to use space optimally.
1162 *
1163 * For large buffers, we choose between get_free_pages and vmalloc.
1164 * Each has advantages and disadvantages.
1165 *
1166 * __get_free_pages can randomly fail if the memory is fragmented.
1167 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1168 * as low as 128M) so using it for caching is not appropriate.
1169 *
1170 * If the allocation may fail we use __get_free_pages. Memory fragmentation
1171 * won't have a fatal effect here, but it just causes flushes of some other
1172 * buffers and more I/O will be performed. Don't use __get_free_pages if it
1173 * always fails (i.e. order > MAX_PAGE_ORDER).
1174 *
1175 * If the allocation shouldn't fail we use __vmalloc. This is only for the
1176 * initial reserve allocation, so there's no risk of wasting all vmalloc
1177 * space.
1178 */
alloc_buffer_data(struct dm_bufio_client * c,gfp_t gfp_mask,unsigned char * data_mode)1179 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1180 unsigned char *data_mode)
1181 {
1182 if (unlikely(c->slab_cache != NULL)) {
1183 *data_mode = DATA_MODE_SLAB;
1184 return kmem_cache_alloc(c->slab_cache, gfp_mask);
1185 }
1186
1187 if (unlikely(c->block_size < PAGE_SIZE)) {
1188 *data_mode = DATA_MODE_KMALLOC;
1189 return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE);
1190 }
1191
1192 if (c->block_size <= KMALLOC_MAX_SIZE &&
1193 gfp_mask & __GFP_NORETRY) {
1194 *data_mode = DATA_MODE_GET_FREE_PAGES;
1195 return (void *)__get_free_pages(gfp_mask,
1196 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1197 }
1198
1199 *data_mode = DATA_MODE_VMALLOC;
1200
1201 return __vmalloc(c->block_size, gfp_mask);
1202 }
1203
1204 /*
1205 * Free buffer's data.
1206 */
free_buffer_data(struct dm_bufio_client * c,void * data,unsigned char data_mode)1207 static void free_buffer_data(struct dm_bufio_client *c,
1208 void *data, unsigned char data_mode)
1209 {
1210 switch (data_mode) {
1211 case DATA_MODE_SLAB:
1212 kmem_cache_free(c->slab_cache, data);
1213 break;
1214
1215 case DATA_MODE_KMALLOC:
1216 kfree(data);
1217 break;
1218
1219 case DATA_MODE_GET_FREE_PAGES:
1220 free_pages((unsigned long)data,
1221 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1222 break;
1223
1224 case DATA_MODE_VMALLOC:
1225 vfree(data);
1226 break;
1227
1228 default:
1229 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1230 data_mode);
1231 BUG();
1232 }
1233 }
1234
1235 /*
1236 * Allocate buffer and its data.
1237 */
alloc_buffer(struct dm_bufio_client * c,gfp_t gfp_mask)1238 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1239 {
1240 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1241
1242 if (!b)
1243 return NULL;
1244
1245 b->c = c;
1246
1247 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1248 if (!b->data) {
1249 kmem_cache_free(c->slab_buffer, b);
1250 return NULL;
1251 }
1252 adjust_total_allocated(b, false);
1253
1254 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1255 b->stack_len = 0;
1256 #endif
1257 return b;
1258 }
1259
1260 /*
1261 * Free buffer and its data.
1262 */
free_buffer(struct dm_buffer * b)1263 static void free_buffer(struct dm_buffer *b)
1264 {
1265 struct dm_bufio_client *c = b->c;
1266
1267 adjust_total_allocated(b, true);
1268 free_buffer_data(c, b->data, b->data_mode);
1269 kmem_cache_free(c->slab_buffer, b);
1270 }
1271
1272 /*
1273 *--------------------------------------------------------------------------
1274 * Submit I/O on the buffer.
1275 *
1276 * Bio interface is faster but it has some problems:
1277 * the vector list is limited (increasing this limit increases
1278 * memory-consumption per buffer, so it is not viable);
1279 *
1280 * the memory must be direct-mapped, not vmalloced;
1281 *
1282 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1283 * it is not vmalloced, try using the bio interface.
1284 *
1285 * If the buffer is big, if it is vmalloced or if the underlying device
1286 * rejects the bio because it is too large, use dm-io layer to do the I/O.
1287 * The dm-io layer splits the I/O into multiple requests, avoiding the above
1288 * shortcomings.
1289 *--------------------------------------------------------------------------
1290 */
1291
1292 /*
1293 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1294 * that the request was handled directly with bio interface.
1295 */
dmio_complete(unsigned long error,void * context)1296 static void dmio_complete(unsigned long error, void *context)
1297 {
1298 struct dm_buffer *b = context;
1299
1300 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1301 }
1302
use_dmio(struct dm_buffer * b,enum req_op op,sector_t sector,unsigned int n_sectors,unsigned int offset,unsigned short ioprio)1303 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1304 unsigned int n_sectors, unsigned int offset,
1305 unsigned short ioprio)
1306 {
1307 int r;
1308 struct dm_io_request io_req = {
1309 .bi_opf = op,
1310 .notify.fn = dmio_complete,
1311 .notify.context = b,
1312 .client = b->c->dm_io,
1313 };
1314 struct dm_io_region region = {
1315 .bdev = b->c->bdev,
1316 .sector = sector,
1317 .count = n_sectors,
1318 };
1319
1320 if (b->data_mode != DATA_MODE_VMALLOC) {
1321 io_req.mem.type = DM_IO_KMEM;
1322 io_req.mem.ptr.addr = (char *)b->data + offset;
1323 } else {
1324 io_req.mem.type = DM_IO_VMA;
1325 io_req.mem.ptr.vma = (char *)b->data + offset;
1326 }
1327
1328 r = dm_io(&io_req, 1, ®ion, NULL, ioprio);
1329 if (unlikely(r))
1330 b->end_io(b, errno_to_blk_status(r));
1331 }
1332
bio_complete(struct bio * bio)1333 static void bio_complete(struct bio *bio)
1334 {
1335 struct dm_buffer *b = bio->bi_private;
1336 blk_status_t status = bio->bi_status;
1337
1338 bio_uninit(bio);
1339 kfree(bio);
1340 b->end_io(b, status);
1341 }
1342
use_bio(struct dm_buffer * b,enum req_op op,sector_t sector,unsigned int n_sectors,unsigned int offset,unsigned short ioprio)1343 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1344 unsigned int n_sectors, unsigned int offset,
1345 unsigned short ioprio)
1346 {
1347 struct bio *bio;
1348 char *ptr;
1349 unsigned int len;
1350
1351 bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
1352 if (!bio) {
1353 use_dmio(b, op, sector, n_sectors, offset, ioprio);
1354 return;
1355 }
1356 bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
1357 bio->bi_iter.bi_sector = sector;
1358 bio->bi_end_io = bio_complete;
1359 bio->bi_private = b;
1360 bio->bi_ioprio = ioprio;
1361
1362 ptr = (char *)b->data + offset;
1363 len = n_sectors << SECTOR_SHIFT;
1364
1365 __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
1366
1367 submit_bio(bio);
1368 }
1369
block_to_sector(struct dm_bufio_client * c,sector_t block)1370 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1371 {
1372 sector_t sector;
1373
1374 if (likely(c->sectors_per_block_bits >= 0))
1375 sector = block << c->sectors_per_block_bits;
1376 else
1377 sector = block * (c->block_size >> SECTOR_SHIFT);
1378 sector += c->start;
1379
1380 return sector;
1381 }
1382
submit_io(struct dm_buffer * b,enum req_op op,unsigned short ioprio,void (* end_io)(struct dm_buffer *,blk_status_t))1383 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio,
1384 void (*end_io)(struct dm_buffer *, blk_status_t))
1385 {
1386 unsigned int n_sectors;
1387 sector_t sector;
1388 unsigned int offset, end;
1389
1390 b->end_io = end_io;
1391
1392 sector = block_to_sector(b->c, b->block);
1393
1394 if (op != REQ_OP_WRITE) {
1395 n_sectors = b->c->block_size >> SECTOR_SHIFT;
1396 offset = 0;
1397 } else {
1398 if (b->c->write_callback)
1399 b->c->write_callback(b);
1400 offset = b->write_start;
1401 end = b->write_end;
1402 offset &= -DM_BUFIO_WRITE_ALIGN;
1403 end += DM_BUFIO_WRITE_ALIGN - 1;
1404 end &= -DM_BUFIO_WRITE_ALIGN;
1405 if (unlikely(end > b->c->block_size))
1406 end = b->c->block_size;
1407
1408 sector += offset >> SECTOR_SHIFT;
1409 n_sectors = (end - offset) >> SECTOR_SHIFT;
1410 }
1411
1412 if (b->data_mode != DATA_MODE_VMALLOC)
1413 use_bio(b, op, sector, n_sectors, offset, ioprio);
1414 else
1415 use_dmio(b, op, sector, n_sectors, offset, ioprio);
1416 }
1417
1418 /*
1419 *--------------------------------------------------------------
1420 * Writing dirty buffers
1421 *--------------------------------------------------------------
1422 */
1423
1424 /*
1425 * The endio routine for write.
1426 *
1427 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1428 * it.
1429 */
write_endio(struct dm_buffer * b,blk_status_t status)1430 static void write_endio(struct dm_buffer *b, blk_status_t status)
1431 {
1432 b->write_error = status;
1433 if (unlikely(status)) {
1434 struct dm_bufio_client *c = b->c;
1435
1436 (void)cmpxchg(&c->async_write_error, 0,
1437 blk_status_to_errno(status));
1438 }
1439
1440 BUG_ON(!test_bit(B_WRITING, &b->state));
1441
1442 smp_mb__before_atomic();
1443 clear_bit(B_WRITING, &b->state);
1444 smp_mb__after_atomic();
1445
1446 wake_up_bit(&b->state, B_WRITING);
1447 }
1448
1449 /*
1450 * Initiate a write on a dirty buffer, but don't wait for it.
1451 *
1452 * - If the buffer is not dirty, exit.
1453 * - If there some previous write going on, wait for it to finish (we can't
1454 * have two writes on the same buffer simultaneously).
1455 * - Submit our write and don't wait on it. We set B_WRITING indicating
1456 * that there is a write in progress.
1457 */
__write_dirty_buffer(struct dm_buffer * b,struct list_head * write_list)1458 static void __write_dirty_buffer(struct dm_buffer *b,
1459 struct list_head *write_list)
1460 {
1461 if (!test_bit(B_DIRTY, &b->state))
1462 return;
1463
1464 clear_bit(B_DIRTY, &b->state);
1465 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1466
1467 b->write_start = b->dirty_start;
1468 b->write_end = b->dirty_end;
1469
1470 if (!write_list)
1471 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1472 else
1473 list_add_tail(&b->write_list, write_list);
1474 }
1475
__flush_write_list(struct list_head * write_list)1476 static void __flush_write_list(struct list_head *write_list)
1477 {
1478 struct blk_plug plug;
1479
1480 blk_start_plug(&plug);
1481 while (!list_empty(write_list)) {
1482 struct dm_buffer *b =
1483 list_entry(write_list->next, struct dm_buffer, write_list);
1484 list_del(&b->write_list);
1485 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1486 cond_resched();
1487 }
1488 blk_finish_plug(&plug);
1489 }
1490
1491 /*
1492 * Wait until any activity on the buffer finishes. Possibly write the
1493 * buffer if it is dirty. When this function finishes, there is no I/O
1494 * running on the buffer and the buffer is not dirty.
1495 */
__make_buffer_clean(struct dm_buffer * b)1496 static void __make_buffer_clean(struct dm_buffer *b)
1497 {
1498 BUG_ON(atomic_read(&b->hold_count));
1499
1500 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1501 if (!smp_load_acquire(&b->state)) /* fast case */
1502 return;
1503
1504 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1505 __write_dirty_buffer(b, NULL);
1506 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1507 }
1508
is_clean(struct dm_buffer * b,void * context)1509 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1510 {
1511 struct dm_bufio_client *c = context;
1512
1513 /* These should never happen */
1514 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1515 return ER_DONT_EVICT;
1516 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1517 return ER_DONT_EVICT;
1518 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1519 return ER_DONT_EVICT;
1520
1521 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1522 unlikely(test_bit(B_READING, &b->state)))
1523 return ER_DONT_EVICT;
1524
1525 return ER_EVICT;
1526 }
1527
is_dirty(struct dm_buffer * b,void * context)1528 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1529 {
1530 /* These should never happen */
1531 if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1532 return ER_DONT_EVICT;
1533 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1534 return ER_DONT_EVICT;
1535
1536 return ER_EVICT;
1537 }
1538
1539 /*
1540 * Find some buffer that is not held by anybody, clean it, unlink it and
1541 * return it.
1542 */
__get_unclaimed_buffer(struct dm_bufio_client * c)1543 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1544 {
1545 struct dm_buffer *b;
1546
1547 b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1548 if (b) {
1549 /* this also waits for pending reads */
1550 __make_buffer_clean(b);
1551 return b;
1552 }
1553
1554 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1555 return NULL;
1556
1557 b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1558 if (b) {
1559 __make_buffer_clean(b);
1560 return b;
1561 }
1562
1563 return NULL;
1564 }
1565
1566 /*
1567 * Wait until some other threads free some buffer or release hold count on
1568 * some buffer.
1569 *
1570 * This function is entered with c->lock held, drops it and regains it
1571 * before exiting.
1572 */
__wait_for_free_buffer(struct dm_bufio_client * c)1573 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1574 {
1575 DECLARE_WAITQUEUE(wait, current);
1576
1577 add_wait_queue(&c->free_buffer_wait, &wait);
1578 set_current_state(TASK_UNINTERRUPTIBLE);
1579 dm_bufio_unlock(c);
1580
1581 /*
1582 * It's possible to miss a wake up event since we don't always
1583 * hold c->lock when wake_up is called. So we have a timeout here,
1584 * just in case.
1585 */
1586 io_schedule_timeout(5 * HZ);
1587
1588 remove_wait_queue(&c->free_buffer_wait, &wait);
1589
1590 dm_bufio_lock(c);
1591 }
1592
1593 enum new_flag {
1594 NF_FRESH = 0,
1595 NF_READ = 1,
1596 NF_GET = 2,
1597 NF_PREFETCH = 3
1598 };
1599
1600 /*
1601 * Allocate a new buffer. If the allocation is not possible, wait until
1602 * some other thread frees a buffer.
1603 *
1604 * May drop the lock and regain it.
1605 */
__alloc_buffer_wait_no_callback(struct dm_bufio_client * c,enum new_flag nf)1606 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1607 {
1608 struct dm_buffer *b;
1609 bool tried_noio_alloc = false;
1610
1611 /*
1612 * dm-bufio is resistant to allocation failures (it just keeps
1613 * one buffer reserved in cases all the allocations fail).
1614 * So set flags to not try too hard:
1615 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1616 * mutex and wait ourselves.
1617 * __GFP_NORETRY: don't retry and rather return failure
1618 * __GFP_NOMEMALLOC: don't use emergency reserves
1619 * __GFP_NOWARN: don't print a warning in case of failure
1620 *
1621 * For debugging, if we set the cache size to 1, no new buffers will
1622 * be allocated.
1623 */
1624 while (1) {
1625 if (dm_bufio_cache_size_latch != 1) {
1626 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1627 if (b)
1628 return b;
1629 }
1630
1631 if (nf == NF_PREFETCH)
1632 return NULL;
1633
1634 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1635 dm_bufio_unlock(c);
1636 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1637 dm_bufio_lock(c);
1638 if (b)
1639 return b;
1640 tried_noio_alloc = true;
1641 }
1642
1643 if (!list_empty(&c->reserved_buffers)) {
1644 b = list_to_buffer(c->reserved_buffers.next);
1645 list_del(&b->lru.list);
1646 c->need_reserved_buffers++;
1647
1648 return b;
1649 }
1650
1651 b = __get_unclaimed_buffer(c);
1652 if (b)
1653 return b;
1654
1655 __wait_for_free_buffer(c);
1656 }
1657 }
1658
__alloc_buffer_wait(struct dm_bufio_client * c,enum new_flag nf)1659 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1660 {
1661 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1662
1663 if (!b)
1664 return NULL;
1665
1666 if (c->alloc_callback)
1667 c->alloc_callback(b);
1668
1669 return b;
1670 }
1671
1672 /*
1673 * Free a buffer and wake other threads waiting for free buffers.
1674 */
__free_buffer_wake(struct dm_buffer * b)1675 static void __free_buffer_wake(struct dm_buffer *b)
1676 {
1677 struct dm_bufio_client *c = b->c;
1678
1679 b->block = -1;
1680 if (!c->need_reserved_buffers)
1681 free_buffer(b);
1682 else {
1683 list_add(&b->lru.list, &c->reserved_buffers);
1684 c->need_reserved_buffers--;
1685 }
1686
1687 /*
1688 * We hold the bufio lock here, so no one can add entries to the
1689 * wait queue anyway.
1690 */
1691 if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1692 wake_up(&c->free_buffer_wait);
1693 }
1694
cleaned(struct dm_buffer * b,void * context)1695 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1696 {
1697 if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1698 return ER_DONT_EVICT; /* should never happen */
1699
1700 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1701 return ER_DONT_EVICT;
1702 else
1703 return ER_EVICT;
1704 }
1705
__move_clean_buffers(struct dm_bufio_client * c)1706 static void __move_clean_buffers(struct dm_bufio_client *c)
1707 {
1708 cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1709 }
1710
1711 struct write_context {
1712 int no_wait;
1713 struct list_head *write_list;
1714 };
1715
write_one(struct dm_buffer * b,void * context)1716 static enum it_action write_one(struct dm_buffer *b, void *context)
1717 {
1718 struct write_context *wc = context;
1719
1720 if (wc->no_wait && test_bit(B_WRITING, &b->state))
1721 return IT_COMPLETE;
1722
1723 __write_dirty_buffer(b, wc->write_list);
1724 return IT_NEXT;
1725 }
1726
__write_dirty_buffers_async(struct dm_bufio_client * c,int no_wait,struct list_head * write_list)1727 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1728 struct list_head *write_list)
1729 {
1730 struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1731
1732 __move_clean_buffers(c);
1733 cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1734 }
1735
1736 /*
1737 * Check if we're over watermark.
1738 * If we are over threshold_buffers, start freeing buffers.
1739 * If we're over "limit_buffers", block until we get under the limit.
1740 */
__check_watermark(struct dm_bufio_client * c,struct list_head * write_list)1741 static void __check_watermark(struct dm_bufio_client *c,
1742 struct list_head *write_list)
1743 {
1744 if (cache_count(&c->cache, LIST_DIRTY) >
1745 cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1746 __write_dirty_buffers_async(c, 1, write_list);
1747 }
1748
1749 /*
1750 *--------------------------------------------------------------
1751 * Getting a buffer
1752 *--------------------------------------------------------------
1753 */
1754
cache_put_and_wake(struct dm_bufio_client * c,struct dm_buffer * b)1755 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1756 {
1757 /*
1758 * Relying on waitqueue_active() is racey, but we sleep
1759 * with schedule_timeout anyway.
1760 */
1761 if (cache_put(&c->cache, b) &&
1762 unlikely(waitqueue_active(&c->free_buffer_wait)))
1763 wake_up(&c->free_buffer_wait);
1764 }
1765
1766 /*
1767 * This assumes you have already checked the cache to see if the buffer
1768 * is already present (it will recheck after dropping the lock for allocation).
1769 */
__bufio_new(struct dm_bufio_client * c,sector_t block,enum new_flag nf,int * need_submit,struct list_head * write_list)1770 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1771 enum new_flag nf, int *need_submit,
1772 struct list_head *write_list)
1773 {
1774 struct dm_buffer *b, *new_b = NULL;
1775
1776 *need_submit = 0;
1777
1778 /* This can't be called with NF_GET */
1779 if (WARN_ON_ONCE(nf == NF_GET))
1780 return NULL;
1781
1782 new_b = __alloc_buffer_wait(c, nf);
1783 if (!new_b)
1784 return NULL;
1785
1786 /*
1787 * We've had a period where the mutex was unlocked, so need to
1788 * recheck the buffer tree.
1789 */
1790 b = cache_get(&c->cache, block);
1791 if (b) {
1792 __free_buffer_wake(new_b);
1793 goto found_buffer;
1794 }
1795
1796 __check_watermark(c, write_list);
1797
1798 b = new_b;
1799 atomic_set(&b->hold_count, 1);
1800 WRITE_ONCE(b->last_accessed, jiffies);
1801 b->block = block;
1802 b->read_error = 0;
1803 b->write_error = 0;
1804 b->list_mode = LIST_CLEAN;
1805
1806 if (nf == NF_FRESH)
1807 b->state = 0;
1808 else {
1809 b->state = 1 << B_READING;
1810 *need_submit = 1;
1811 }
1812
1813 /*
1814 * We mustn't insert into the cache until the B_READING state
1815 * is set. Otherwise another thread could get it and use
1816 * it before it had been read.
1817 */
1818 cache_insert(&c->cache, b);
1819
1820 return b;
1821
1822 found_buffer:
1823 if (nf == NF_PREFETCH) {
1824 cache_put_and_wake(c, b);
1825 return NULL;
1826 }
1827
1828 /*
1829 * Note: it is essential that we don't wait for the buffer to be
1830 * read if dm_bufio_get function is used. Both dm_bufio_get and
1831 * dm_bufio_prefetch can be used in the driver request routine.
1832 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1833 * the same buffer, it would deadlock if we waited.
1834 */
1835 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1836 cache_put_and_wake(c, b);
1837 return NULL;
1838 }
1839
1840 return b;
1841 }
1842
1843 /*
1844 * The endio routine for reading: set the error, clear the bit and wake up
1845 * anyone waiting on the buffer.
1846 */
read_endio(struct dm_buffer * b,blk_status_t status)1847 static void read_endio(struct dm_buffer *b, blk_status_t status)
1848 {
1849 b->read_error = status;
1850
1851 BUG_ON(!test_bit(B_READING, &b->state));
1852
1853 smp_mb__before_atomic();
1854 clear_bit(B_READING, &b->state);
1855 smp_mb__after_atomic();
1856
1857 wake_up_bit(&b->state, B_READING);
1858 }
1859
1860 /*
1861 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1862 * functions is similar except that dm_bufio_new doesn't read the
1863 * buffer from the disk (assuming that the caller overwrites all the data
1864 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1865 */
new_read(struct dm_bufio_client * c,sector_t block,enum new_flag nf,struct dm_buffer ** bp,unsigned short ioprio)1866 static void *new_read(struct dm_bufio_client *c, sector_t block,
1867 enum new_flag nf, struct dm_buffer **bp,
1868 unsigned short ioprio)
1869 {
1870 int need_submit = 0;
1871 struct dm_buffer *b;
1872
1873 LIST_HEAD(write_list);
1874
1875 *bp = NULL;
1876
1877 /*
1878 * Fast path, hopefully the block is already in the cache. No need
1879 * to get the client lock for this.
1880 */
1881 b = cache_get(&c->cache, block);
1882 if (b) {
1883 if (nf == NF_PREFETCH) {
1884 cache_put_and_wake(c, b);
1885 return NULL;
1886 }
1887
1888 /*
1889 * Note: it is essential that we don't wait for the buffer to be
1890 * read if dm_bufio_get function is used. Both dm_bufio_get and
1891 * dm_bufio_prefetch can be used in the driver request routine.
1892 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1893 * the same buffer, it would deadlock if we waited.
1894 */
1895 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1896 cache_put_and_wake(c, b);
1897 return NULL;
1898 }
1899 }
1900
1901 if (!b) {
1902 if (nf == NF_GET)
1903 return NULL;
1904
1905 dm_bufio_lock(c);
1906 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1907 dm_bufio_unlock(c);
1908 }
1909
1910 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1911 if (b && (atomic_read(&b->hold_count) == 1))
1912 buffer_record_stack(b);
1913 #endif
1914
1915 __flush_write_list(&write_list);
1916
1917 if (!b)
1918 return NULL;
1919
1920 if (need_submit)
1921 submit_io(b, REQ_OP_READ, ioprio, read_endio);
1922
1923 if (nf != NF_GET) /* we already tested this condition above */
1924 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1925
1926 if (b->read_error) {
1927 int error = blk_status_to_errno(b->read_error);
1928
1929 dm_bufio_release(b);
1930
1931 return ERR_PTR(error);
1932 }
1933
1934 *bp = b;
1935
1936 return b->data;
1937 }
1938
dm_bufio_get(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1939 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1940 struct dm_buffer **bp)
1941 {
1942 return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT);
1943 }
1944 EXPORT_SYMBOL_GPL(dm_bufio_get);
1945
__dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp,unsigned short ioprio)1946 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1947 struct dm_buffer **bp, unsigned short ioprio)
1948 {
1949 if (WARN_ON_ONCE(dm_bufio_in_request()))
1950 return ERR_PTR(-EINVAL);
1951
1952 return new_read(c, block, NF_READ, bp, ioprio);
1953 }
1954
dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1955 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1956 struct dm_buffer **bp)
1957 {
1958 return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT);
1959 }
1960 EXPORT_SYMBOL_GPL(dm_bufio_read);
1961
dm_bufio_read_with_ioprio(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp,unsigned short ioprio)1962 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block,
1963 struct dm_buffer **bp, unsigned short ioprio)
1964 {
1965 return __dm_bufio_read(c, block, bp, ioprio);
1966 }
1967 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio);
1968
dm_bufio_new(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1969 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1970 struct dm_buffer **bp)
1971 {
1972 if (WARN_ON_ONCE(dm_bufio_in_request()))
1973 return ERR_PTR(-EINVAL);
1974
1975 return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT);
1976 }
1977 EXPORT_SYMBOL_GPL(dm_bufio_new);
1978
__dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks,unsigned short ioprio)1979 static void __dm_bufio_prefetch(struct dm_bufio_client *c,
1980 sector_t block, unsigned int n_blocks,
1981 unsigned short ioprio)
1982 {
1983 struct blk_plug plug;
1984
1985 LIST_HEAD(write_list);
1986
1987 if (WARN_ON_ONCE(dm_bufio_in_request()))
1988 return; /* should never happen */
1989
1990 blk_start_plug(&plug);
1991
1992 for (; n_blocks--; block++) {
1993 int need_submit;
1994 struct dm_buffer *b;
1995
1996 b = cache_get(&c->cache, block);
1997 if (b) {
1998 /* already in cache */
1999 cache_put_and_wake(c, b);
2000 continue;
2001 }
2002
2003 dm_bufio_lock(c);
2004 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
2005 &write_list);
2006 if (unlikely(!list_empty(&write_list))) {
2007 dm_bufio_unlock(c);
2008 blk_finish_plug(&plug);
2009 __flush_write_list(&write_list);
2010 blk_start_plug(&plug);
2011 dm_bufio_lock(c);
2012 }
2013 if (unlikely(b != NULL)) {
2014 dm_bufio_unlock(c);
2015
2016 if (need_submit)
2017 submit_io(b, REQ_OP_READ, ioprio, read_endio);
2018 dm_bufio_release(b);
2019
2020 cond_resched();
2021
2022 if (!n_blocks)
2023 goto flush_plug;
2024 dm_bufio_lock(c);
2025 }
2026 dm_bufio_unlock(c);
2027 }
2028
2029 flush_plug:
2030 blk_finish_plug(&plug);
2031 }
2032
dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks)2033 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks)
2034 {
2035 return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT);
2036 }
2037 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2038
dm_bufio_prefetch_with_ioprio(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks,unsigned short ioprio)2039 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block,
2040 unsigned int n_blocks, unsigned short ioprio)
2041 {
2042 return __dm_bufio_prefetch(c, block, n_blocks, ioprio);
2043 }
2044 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio);
2045
dm_bufio_release(struct dm_buffer * b)2046 void dm_bufio_release(struct dm_buffer *b)
2047 {
2048 struct dm_bufio_client *c = b->c;
2049
2050 /*
2051 * If there were errors on the buffer, and the buffer is not
2052 * to be written, free the buffer. There is no point in caching
2053 * invalid buffer.
2054 */
2055 if ((b->read_error || b->write_error) &&
2056 !test_bit_acquire(B_READING, &b->state) &&
2057 !test_bit(B_WRITING, &b->state) &&
2058 !test_bit(B_DIRTY, &b->state)) {
2059 dm_bufio_lock(c);
2060
2061 /* cache remove can fail if there are other holders */
2062 if (cache_remove(&c->cache, b)) {
2063 __free_buffer_wake(b);
2064 dm_bufio_unlock(c);
2065 return;
2066 }
2067
2068 dm_bufio_unlock(c);
2069 }
2070
2071 cache_put_and_wake(c, b);
2072 }
2073 EXPORT_SYMBOL_GPL(dm_bufio_release);
2074
dm_bufio_mark_partial_buffer_dirty(struct dm_buffer * b,unsigned int start,unsigned int end)2075 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2076 unsigned int start, unsigned int end)
2077 {
2078 struct dm_bufio_client *c = b->c;
2079
2080 BUG_ON(start >= end);
2081 BUG_ON(end > b->c->block_size);
2082
2083 dm_bufio_lock(c);
2084
2085 BUG_ON(test_bit(B_READING, &b->state));
2086
2087 if (!test_and_set_bit(B_DIRTY, &b->state)) {
2088 b->dirty_start = start;
2089 b->dirty_end = end;
2090 cache_mark(&c->cache, b, LIST_DIRTY);
2091 } else {
2092 if (start < b->dirty_start)
2093 b->dirty_start = start;
2094 if (end > b->dirty_end)
2095 b->dirty_end = end;
2096 }
2097
2098 dm_bufio_unlock(c);
2099 }
2100 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2101
dm_bufio_mark_buffer_dirty(struct dm_buffer * b)2102 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2103 {
2104 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2105 }
2106 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2107
dm_bufio_write_dirty_buffers_async(struct dm_bufio_client * c)2108 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2109 {
2110 LIST_HEAD(write_list);
2111
2112 if (WARN_ON_ONCE(dm_bufio_in_request()))
2113 return; /* should never happen */
2114
2115 dm_bufio_lock(c);
2116 __write_dirty_buffers_async(c, 0, &write_list);
2117 dm_bufio_unlock(c);
2118 __flush_write_list(&write_list);
2119 }
2120 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2121
2122 /*
2123 * For performance, it is essential that the buffers are written asynchronously
2124 * and simultaneously (so that the block layer can merge the writes) and then
2125 * waited upon.
2126 *
2127 * Finally, we flush hardware disk cache.
2128 */
is_writing(struct lru_entry * e,void * context)2129 static bool is_writing(struct lru_entry *e, void *context)
2130 {
2131 struct dm_buffer *b = le_to_buffer(e);
2132
2133 return test_bit(B_WRITING, &b->state);
2134 }
2135
dm_bufio_write_dirty_buffers(struct dm_bufio_client * c)2136 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2137 {
2138 int a, f;
2139 unsigned long nr_buffers;
2140 struct lru_entry *e;
2141 struct lru_iter it;
2142
2143 LIST_HEAD(write_list);
2144
2145 dm_bufio_lock(c);
2146 __write_dirty_buffers_async(c, 0, &write_list);
2147 dm_bufio_unlock(c);
2148 __flush_write_list(&write_list);
2149 dm_bufio_lock(c);
2150
2151 nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2152 lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2153 while ((e = lru_iter_next(&it, is_writing, c))) {
2154 struct dm_buffer *b = le_to_buffer(e);
2155 __cache_inc_buffer(b);
2156
2157 BUG_ON(test_bit(B_READING, &b->state));
2158
2159 if (nr_buffers) {
2160 nr_buffers--;
2161 dm_bufio_unlock(c);
2162 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2163 dm_bufio_lock(c);
2164 } else {
2165 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2166 }
2167
2168 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2169 cache_mark(&c->cache, b, LIST_CLEAN);
2170
2171 cache_put_and_wake(c, b);
2172
2173 cond_resched();
2174 }
2175 lru_iter_end(&it);
2176
2177 wake_up(&c->free_buffer_wait);
2178 dm_bufio_unlock(c);
2179
2180 a = xchg(&c->async_write_error, 0);
2181 f = dm_bufio_issue_flush(c);
2182 if (a)
2183 return a;
2184
2185 return f;
2186 }
2187 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2188
2189 /*
2190 * Use dm-io to send an empty barrier to flush the device.
2191 */
dm_bufio_issue_flush(struct dm_bufio_client * c)2192 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2193 {
2194 struct dm_io_request io_req = {
2195 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2196 .mem.type = DM_IO_KMEM,
2197 .mem.ptr.addr = NULL,
2198 .client = c->dm_io,
2199 };
2200 struct dm_io_region io_reg = {
2201 .bdev = c->bdev,
2202 .sector = 0,
2203 .count = 0,
2204 };
2205
2206 if (WARN_ON_ONCE(dm_bufio_in_request()))
2207 return -EINVAL;
2208
2209 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2210 }
2211 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2212
2213 /*
2214 * Use dm-io to send a discard request to flush the device.
2215 */
dm_bufio_issue_discard(struct dm_bufio_client * c,sector_t block,sector_t count)2216 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2217 {
2218 struct dm_io_request io_req = {
2219 .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2220 .mem.type = DM_IO_KMEM,
2221 .mem.ptr.addr = NULL,
2222 .client = c->dm_io,
2223 };
2224 struct dm_io_region io_reg = {
2225 .bdev = c->bdev,
2226 .sector = block_to_sector(c, block),
2227 .count = block_to_sector(c, count),
2228 };
2229
2230 if (WARN_ON_ONCE(dm_bufio_in_request()))
2231 return -EINVAL; /* discards are optional */
2232
2233 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2234 }
2235 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2236
forget_buffer(struct dm_bufio_client * c,sector_t block)2237 static void forget_buffer(struct dm_bufio_client *c, sector_t block)
2238 {
2239 struct dm_buffer *b;
2240
2241 b = cache_get(&c->cache, block);
2242 if (b) {
2243 if (likely(!smp_load_acquire(&b->state))) {
2244 if (cache_remove(&c->cache, b))
2245 __free_buffer_wake(b);
2246 else
2247 cache_put_and_wake(c, b);
2248 } else {
2249 cache_put_and_wake(c, b);
2250 }
2251 }
2252 }
2253
2254 /*
2255 * Free the given buffer.
2256 *
2257 * This is just a hint, if the buffer is in use or dirty, this function
2258 * does nothing.
2259 */
dm_bufio_forget(struct dm_bufio_client * c,sector_t block)2260 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2261 {
2262 dm_bufio_lock(c);
2263 forget_buffer(c, block);
2264 dm_bufio_unlock(c);
2265 }
2266 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2267
idle(struct dm_buffer * b,void * context)2268 static enum evict_result idle(struct dm_buffer *b, void *context)
2269 {
2270 return b->state ? ER_DONT_EVICT : ER_EVICT;
2271 }
2272
dm_bufio_forget_buffers(struct dm_bufio_client * c,sector_t block,sector_t n_blocks)2273 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2274 {
2275 dm_bufio_lock(c);
2276 cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2277 dm_bufio_unlock(c);
2278 }
2279 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2280
dm_bufio_set_minimum_buffers(struct dm_bufio_client * c,unsigned int n)2281 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2282 {
2283 c->minimum_buffers = n;
2284 }
2285 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2286
dm_bufio_get_block_size(struct dm_bufio_client * c)2287 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2288 {
2289 return c->block_size;
2290 }
2291 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2292
dm_bufio_get_device_size(struct dm_bufio_client * c)2293 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2294 {
2295 sector_t s = bdev_nr_sectors(c->bdev);
2296
2297 if (s >= c->start)
2298 s -= c->start;
2299 else
2300 s = 0;
2301 if (likely(c->sectors_per_block_bits >= 0))
2302 s >>= c->sectors_per_block_bits;
2303 else
2304 sector_div(s, c->block_size >> SECTOR_SHIFT);
2305 return s;
2306 }
2307 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2308
dm_bufio_get_dm_io_client(struct dm_bufio_client * c)2309 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2310 {
2311 return c->dm_io;
2312 }
2313 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2314
dm_bufio_get_block_number(struct dm_buffer * b)2315 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2316 {
2317 return b->block;
2318 }
2319 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2320
dm_bufio_get_block_data(struct dm_buffer * b)2321 void *dm_bufio_get_block_data(struct dm_buffer *b)
2322 {
2323 return b->data;
2324 }
2325 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2326
dm_bufio_get_aux_data(struct dm_buffer * b)2327 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2328 {
2329 return b + 1;
2330 }
2331 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2332
dm_bufio_get_client(struct dm_buffer * b)2333 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2334 {
2335 return b->c;
2336 }
2337 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2338
warn_leak(struct dm_buffer * b,void * context)2339 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2340 {
2341 bool *warned = context;
2342
2343 WARN_ON(!(*warned));
2344 *warned = true;
2345 DMERR("leaked buffer %llx, hold count %u, list %d",
2346 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2347 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2348 stack_trace_print(b->stack_entries, b->stack_len, 1);
2349 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2350 atomic_set(&b->hold_count, 0);
2351 #endif
2352 return IT_NEXT;
2353 }
2354
drop_buffers(struct dm_bufio_client * c)2355 static void drop_buffers(struct dm_bufio_client *c)
2356 {
2357 int i;
2358 struct dm_buffer *b;
2359
2360 if (WARN_ON(dm_bufio_in_request()))
2361 return; /* should never happen */
2362
2363 /*
2364 * An optimization so that the buffers are not written one-by-one.
2365 */
2366 dm_bufio_write_dirty_buffers_async(c);
2367
2368 dm_bufio_lock(c);
2369
2370 while ((b = __get_unclaimed_buffer(c)))
2371 __free_buffer_wake(b);
2372
2373 for (i = 0; i < LIST_SIZE; i++) {
2374 bool warned = false;
2375
2376 cache_iterate(&c->cache, i, warn_leak, &warned);
2377 }
2378
2379 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2380 while ((b = __get_unclaimed_buffer(c)))
2381 __free_buffer_wake(b);
2382 #endif
2383
2384 for (i = 0; i < LIST_SIZE; i++)
2385 WARN_ON(cache_count(&c->cache, i));
2386
2387 dm_bufio_unlock(c);
2388 }
2389
get_retain_buffers(struct dm_bufio_client * c)2390 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2391 {
2392 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2393
2394 if (likely(c->sectors_per_block_bits >= 0))
2395 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2396 else
2397 retain_bytes /= c->block_size;
2398
2399 return retain_bytes;
2400 }
2401
__scan(struct dm_bufio_client * c)2402 static void __scan(struct dm_bufio_client *c)
2403 {
2404 int l;
2405 struct dm_buffer *b;
2406 unsigned long freed = 0;
2407 unsigned long retain_target = get_retain_buffers(c);
2408 unsigned long count = cache_total(&c->cache);
2409
2410 for (l = 0; l < LIST_SIZE; l++) {
2411 while (true) {
2412 if (count - freed <= retain_target)
2413 atomic_long_set(&c->need_shrink, 0);
2414 if (!atomic_long_read(&c->need_shrink))
2415 break;
2416
2417 b = cache_evict(&c->cache, l,
2418 l == LIST_CLEAN ? is_clean : is_dirty, c);
2419 if (!b)
2420 break;
2421
2422 __make_buffer_clean(b);
2423 __free_buffer_wake(b);
2424
2425 atomic_long_dec(&c->need_shrink);
2426 freed++;
2427 cond_resched();
2428 }
2429 }
2430 }
2431
shrink_work(struct work_struct * w)2432 static void shrink_work(struct work_struct *w)
2433 {
2434 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2435
2436 dm_bufio_lock(c);
2437 __scan(c);
2438 dm_bufio_unlock(c);
2439 }
2440
dm_bufio_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)2441 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2442 {
2443 struct dm_bufio_client *c;
2444
2445 c = shrink->private_data;
2446 atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2447 queue_work(dm_bufio_wq, &c->shrink_work);
2448
2449 return sc->nr_to_scan;
2450 }
2451
dm_bufio_shrink_count(struct shrinker * shrink,struct shrink_control * sc)2452 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2453 {
2454 struct dm_bufio_client *c = shrink->private_data;
2455 unsigned long count = cache_total(&c->cache);
2456 unsigned long retain_target = get_retain_buffers(c);
2457 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2458
2459 if (unlikely(count < retain_target))
2460 count = 0;
2461 else
2462 count -= retain_target;
2463
2464 if (unlikely(count < queued_for_cleanup))
2465 count = 0;
2466 else
2467 count -= queued_for_cleanup;
2468
2469 return count;
2470 }
2471
2472 /*
2473 * Create the buffering interface
2474 */
dm_bufio_client_create(struct block_device * bdev,unsigned int block_size,unsigned int reserved_buffers,unsigned int aux_size,void (* alloc_callback)(struct dm_buffer *),void (* write_callback)(struct dm_buffer *),unsigned int flags)2475 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2476 unsigned int reserved_buffers, unsigned int aux_size,
2477 void (*alloc_callback)(struct dm_buffer *),
2478 void (*write_callback)(struct dm_buffer *),
2479 unsigned int flags)
2480 {
2481 int r;
2482 unsigned int num_locks;
2483 struct dm_bufio_client *c;
2484 char slab_name[64];
2485 static atomic_t seqno = ATOMIC_INIT(0);
2486
2487 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2488 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2489 r = -EINVAL;
2490 goto bad_client;
2491 }
2492
2493 num_locks = dm_num_hash_locks();
2494 c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2495 if (!c) {
2496 r = -ENOMEM;
2497 goto bad_client;
2498 }
2499 cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2500
2501 c->bdev = bdev;
2502 c->block_size = block_size;
2503 if (is_power_of_2(block_size))
2504 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2505 else
2506 c->sectors_per_block_bits = -1;
2507
2508 c->alloc_callback = alloc_callback;
2509 c->write_callback = write_callback;
2510
2511 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2512 c->no_sleep = true;
2513 static_branch_inc(&no_sleep_enabled);
2514 }
2515
2516 mutex_init(&c->lock);
2517 spin_lock_init(&c->spinlock);
2518 INIT_LIST_HEAD(&c->reserved_buffers);
2519 c->need_reserved_buffers = reserved_buffers;
2520
2521 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2522
2523 init_waitqueue_head(&c->free_buffer_wait);
2524 c->async_write_error = 0;
2525
2526 c->dm_io = dm_io_client_create();
2527 if (IS_ERR(c->dm_io)) {
2528 r = PTR_ERR(c->dm_io);
2529 goto bad_dm_io;
2530 }
2531
2532 if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) {
2533 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2534
2535 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u",
2536 block_size, atomic_inc_return(&seqno));
2537 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2538 SLAB_RECLAIM_ACCOUNT, NULL);
2539 if (!c->slab_cache) {
2540 r = -ENOMEM;
2541 goto bad;
2542 }
2543 }
2544 if (aux_size)
2545 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u",
2546 aux_size, atomic_inc_return(&seqno));
2547 else
2548 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u",
2549 atomic_inc_return(&seqno));
2550 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2551 0, SLAB_RECLAIM_ACCOUNT, NULL);
2552 if (!c->slab_buffer) {
2553 r = -ENOMEM;
2554 goto bad;
2555 }
2556
2557 while (c->need_reserved_buffers) {
2558 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2559
2560 if (!b) {
2561 r = -ENOMEM;
2562 goto bad;
2563 }
2564 __free_buffer_wake(b);
2565 }
2566
2567 INIT_WORK(&c->shrink_work, shrink_work);
2568 atomic_long_set(&c->need_shrink, 0);
2569
2570 c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
2571 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2572 if (!c->shrinker) {
2573 r = -ENOMEM;
2574 goto bad;
2575 }
2576
2577 c->shrinker->count_objects = dm_bufio_shrink_count;
2578 c->shrinker->scan_objects = dm_bufio_shrink_scan;
2579 c->shrinker->seeks = 1;
2580 c->shrinker->batch = 0;
2581 c->shrinker->private_data = c;
2582
2583 shrinker_register(c->shrinker);
2584
2585 mutex_lock(&dm_bufio_clients_lock);
2586 dm_bufio_client_count++;
2587 list_add(&c->client_list, &dm_bufio_all_clients);
2588 __cache_size_refresh();
2589 mutex_unlock(&dm_bufio_clients_lock);
2590
2591 return c;
2592
2593 bad:
2594 while (!list_empty(&c->reserved_buffers)) {
2595 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2596
2597 list_del(&b->lru.list);
2598 free_buffer(b);
2599 }
2600 kmem_cache_destroy(c->slab_cache);
2601 kmem_cache_destroy(c->slab_buffer);
2602 dm_io_client_destroy(c->dm_io);
2603 bad_dm_io:
2604 mutex_destroy(&c->lock);
2605 if (c->no_sleep)
2606 static_branch_dec(&no_sleep_enabled);
2607 kfree(c);
2608 bad_client:
2609 return ERR_PTR(r);
2610 }
2611 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2612
2613 /*
2614 * Free the buffering interface.
2615 * It is required that there are no references on any buffers.
2616 */
dm_bufio_client_destroy(struct dm_bufio_client * c)2617 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2618 {
2619 unsigned int i;
2620
2621 drop_buffers(c);
2622
2623 shrinker_free(c->shrinker);
2624 flush_work(&c->shrink_work);
2625
2626 mutex_lock(&dm_bufio_clients_lock);
2627
2628 list_del(&c->client_list);
2629 dm_bufio_client_count--;
2630 __cache_size_refresh();
2631
2632 mutex_unlock(&dm_bufio_clients_lock);
2633
2634 WARN_ON(c->need_reserved_buffers);
2635
2636 while (!list_empty(&c->reserved_buffers)) {
2637 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2638
2639 list_del(&b->lru.list);
2640 free_buffer(b);
2641 }
2642
2643 for (i = 0; i < LIST_SIZE; i++)
2644 if (cache_count(&c->cache, i))
2645 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2646
2647 for (i = 0; i < LIST_SIZE; i++)
2648 WARN_ON(cache_count(&c->cache, i));
2649
2650 cache_destroy(&c->cache);
2651 kmem_cache_destroy(c->slab_cache);
2652 kmem_cache_destroy(c->slab_buffer);
2653 dm_io_client_destroy(c->dm_io);
2654 mutex_destroy(&c->lock);
2655 if (c->no_sleep)
2656 static_branch_dec(&no_sleep_enabled);
2657 kfree(c);
2658 }
2659 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2660
dm_bufio_client_reset(struct dm_bufio_client * c)2661 void dm_bufio_client_reset(struct dm_bufio_client *c)
2662 {
2663 drop_buffers(c);
2664 flush_work(&c->shrink_work);
2665 }
2666 EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2667
dm_bufio_set_sector_offset(struct dm_bufio_client * c,sector_t start)2668 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2669 {
2670 c->start = start;
2671 }
2672 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2673
2674 /*--------------------------------------------------------------*/
2675
get_max_age_hz(void)2676 static unsigned int get_max_age_hz(void)
2677 {
2678 unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2679
2680 if (max_age > UINT_MAX / HZ)
2681 max_age = UINT_MAX / HZ;
2682
2683 return max_age * HZ;
2684 }
2685
older_than(struct dm_buffer * b,unsigned long age_hz)2686 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2687 {
2688 return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2689 }
2690
2691 struct evict_params {
2692 gfp_t gfp;
2693 unsigned long age_hz;
2694
2695 /*
2696 * This gets updated with the largest last_accessed (ie. most
2697 * recently used) of the evicted buffers. It will not be reinitialised
2698 * by __evict_many(), so you can use it across multiple invocations.
2699 */
2700 unsigned long last_accessed;
2701 };
2702
2703 /*
2704 * We may not be able to evict this buffer if IO pending or the client
2705 * is still using it.
2706 *
2707 * And if GFP_NOFS is used, we must not do any I/O because we hold
2708 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2709 * rerouted to different bufio client.
2710 */
select_for_evict(struct dm_buffer * b,void * context)2711 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2712 {
2713 struct evict_params *params = context;
2714
2715 if (!(params->gfp & __GFP_FS) ||
2716 (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2717 if (test_bit_acquire(B_READING, &b->state) ||
2718 test_bit(B_WRITING, &b->state) ||
2719 test_bit(B_DIRTY, &b->state))
2720 return ER_DONT_EVICT;
2721 }
2722
2723 return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
2724 }
2725
__evict_many(struct dm_bufio_client * c,struct evict_params * params,int list_mode,unsigned long max_count)2726 static unsigned long __evict_many(struct dm_bufio_client *c,
2727 struct evict_params *params,
2728 int list_mode, unsigned long max_count)
2729 {
2730 unsigned long count;
2731 unsigned long last_accessed;
2732 struct dm_buffer *b;
2733
2734 for (count = 0; count < max_count; count++) {
2735 b = cache_evict(&c->cache, list_mode, select_for_evict, params);
2736 if (!b)
2737 break;
2738
2739 last_accessed = READ_ONCE(b->last_accessed);
2740 if (time_after_eq(params->last_accessed, last_accessed))
2741 params->last_accessed = last_accessed;
2742
2743 __make_buffer_clean(b);
2744 __free_buffer_wake(b);
2745
2746 cond_resched();
2747 }
2748
2749 return count;
2750 }
2751
evict_old_buffers(struct dm_bufio_client * c,unsigned long age_hz)2752 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2753 {
2754 struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2755 unsigned long retain = get_retain_buffers(c);
2756 unsigned long count;
2757 LIST_HEAD(write_list);
2758
2759 dm_bufio_lock(c);
2760
2761 __check_watermark(c, &write_list);
2762 if (unlikely(!list_empty(&write_list))) {
2763 dm_bufio_unlock(c);
2764 __flush_write_list(&write_list);
2765 dm_bufio_lock(c);
2766 }
2767
2768 count = cache_total(&c->cache);
2769 if (count > retain)
2770 __evict_many(c, ¶ms, LIST_CLEAN, count - retain);
2771
2772 dm_bufio_unlock(c);
2773 }
2774
cleanup_old_buffers(void)2775 static void cleanup_old_buffers(void)
2776 {
2777 unsigned long max_age_hz = get_max_age_hz();
2778 struct dm_bufio_client *c;
2779
2780 mutex_lock(&dm_bufio_clients_lock);
2781
2782 __cache_size_refresh();
2783
2784 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2785 evict_old_buffers(c, max_age_hz);
2786
2787 mutex_unlock(&dm_bufio_clients_lock);
2788 }
2789
work_fn(struct work_struct * w)2790 static void work_fn(struct work_struct *w)
2791 {
2792 cleanup_old_buffers();
2793
2794 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2795 DM_BUFIO_WORK_TIMER_SECS * HZ);
2796 }
2797
2798 /*--------------------------------------------------------------*/
2799
2800 /*
2801 * Global cleanup tries to evict the oldest buffers from across _all_
2802 * the clients. It does this by repeatedly evicting a few buffers from
2803 * the client that holds the oldest buffer. It's approximate, but hopefully
2804 * good enough.
2805 */
__pop_client(void)2806 static struct dm_bufio_client *__pop_client(void)
2807 {
2808 struct list_head *h;
2809
2810 if (list_empty(&dm_bufio_all_clients))
2811 return NULL;
2812
2813 h = dm_bufio_all_clients.next;
2814 list_del(h);
2815 return container_of(h, struct dm_bufio_client, client_list);
2816 }
2817
2818 /*
2819 * Inserts the client in the global client list based on its
2820 * 'oldest_buffer' field.
2821 */
__insert_client(struct dm_bufio_client * new_client)2822 static void __insert_client(struct dm_bufio_client *new_client)
2823 {
2824 struct dm_bufio_client *c;
2825 struct list_head *h = dm_bufio_all_clients.next;
2826
2827 while (h != &dm_bufio_all_clients) {
2828 c = container_of(h, struct dm_bufio_client, client_list);
2829 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2830 break;
2831 h = h->next;
2832 }
2833
2834 list_add_tail(&new_client->client_list, h);
2835 }
2836
__evict_a_few(unsigned long nr_buffers)2837 static unsigned long __evict_a_few(unsigned long nr_buffers)
2838 {
2839 unsigned long count;
2840 struct dm_bufio_client *c;
2841 struct evict_params params = {
2842 .gfp = GFP_KERNEL,
2843 .age_hz = 0,
2844 /* set to jiffies in case there are no buffers in this client */
2845 .last_accessed = jiffies
2846 };
2847
2848 c = __pop_client();
2849 if (!c)
2850 return 0;
2851
2852 dm_bufio_lock(c);
2853 count = __evict_many(c, ¶ms, LIST_CLEAN, nr_buffers);
2854 dm_bufio_unlock(c);
2855
2856 if (count)
2857 c->oldest_buffer = params.last_accessed;
2858 __insert_client(c);
2859
2860 return count;
2861 }
2862
check_watermarks(void)2863 static void check_watermarks(void)
2864 {
2865 LIST_HEAD(write_list);
2866 struct dm_bufio_client *c;
2867
2868 mutex_lock(&dm_bufio_clients_lock);
2869 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2870 dm_bufio_lock(c);
2871 __check_watermark(c, &write_list);
2872 dm_bufio_unlock(c);
2873 }
2874 mutex_unlock(&dm_bufio_clients_lock);
2875
2876 __flush_write_list(&write_list);
2877 }
2878
evict_old(void)2879 static void evict_old(void)
2880 {
2881 unsigned long threshold = dm_bufio_cache_size -
2882 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2883
2884 mutex_lock(&dm_bufio_clients_lock);
2885 while (dm_bufio_current_allocated > threshold) {
2886 if (!__evict_a_few(64))
2887 break;
2888 cond_resched();
2889 }
2890 mutex_unlock(&dm_bufio_clients_lock);
2891 }
2892
do_global_cleanup(struct work_struct * w)2893 static void do_global_cleanup(struct work_struct *w)
2894 {
2895 check_watermarks();
2896 evict_old();
2897 }
2898
2899 /*
2900 *--------------------------------------------------------------
2901 * Module setup
2902 *--------------------------------------------------------------
2903 */
2904
2905 /*
2906 * This is called only once for the whole dm_bufio module.
2907 * It initializes memory limit.
2908 */
dm_bufio_init(void)2909 static int __init dm_bufio_init(void)
2910 {
2911 __u64 mem;
2912
2913 dm_bufio_allocated_kmem_cache = 0;
2914 dm_bufio_allocated_kmalloc = 0;
2915 dm_bufio_allocated_get_free_pages = 0;
2916 dm_bufio_allocated_vmalloc = 0;
2917 dm_bufio_current_allocated = 0;
2918
2919 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2920 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2921
2922 if (mem > ULONG_MAX)
2923 mem = ULONG_MAX;
2924
2925 #ifdef CONFIG_MMU
2926 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2927 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2928 #endif
2929
2930 dm_bufio_default_cache_size = mem;
2931
2932 mutex_lock(&dm_bufio_clients_lock);
2933 __cache_size_refresh();
2934 mutex_unlock(&dm_bufio_clients_lock);
2935
2936 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2937 if (!dm_bufio_wq)
2938 return -ENOMEM;
2939
2940 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2941 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2942 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2943 DM_BUFIO_WORK_TIMER_SECS * HZ);
2944
2945 return 0;
2946 }
2947
2948 /*
2949 * This is called once when unloading the dm_bufio module.
2950 */
dm_bufio_exit(void)2951 static void __exit dm_bufio_exit(void)
2952 {
2953 int bug = 0;
2954
2955 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2956 destroy_workqueue(dm_bufio_wq);
2957
2958 if (dm_bufio_client_count) {
2959 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2960 __func__, dm_bufio_client_count);
2961 bug = 1;
2962 }
2963
2964 if (dm_bufio_current_allocated) {
2965 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2966 __func__, dm_bufio_current_allocated);
2967 bug = 1;
2968 }
2969
2970 if (dm_bufio_allocated_get_free_pages) {
2971 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2972 __func__, dm_bufio_allocated_get_free_pages);
2973 bug = 1;
2974 }
2975
2976 if (dm_bufio_allocated_vmalloc) {
2977 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2978 __func__, dm_bufio_allocated_vmalloc);
2979 bug = 1;
2980 }
2981
2982 WARN_ON(bug); /* leaks are not worth crashing the system */
2983 }
2984
2985 module_init(dm_bufio_init)
2986 module_exit(dm_bufio_exit)
2987
2988 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2989 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2990
2991 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2992 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2993
2994 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2995 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2996
2997 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
2998 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2999
3000 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
3001 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
3002
3003 module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444);
3004 MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc");
3005
3006 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
3007 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
3008
3009 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
3010 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
3011
3012 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
3013 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
3014
3015 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>");
3016 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
3017 MODULE_LICENSE("GPL");
3018