xref: /linux/drivers/md/dm-bufio.c (revision 5014bebee0cffda14fafae5a2534d08120b7b9e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009-2011 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/dm-bufio.h>
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
23 
24 #include "dm.h"
25 
26 #define DM_MSG_PREFIX "bufio"
27 
28 /*
29  * Memory management policy:
30  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34  *	dirty buffers.
35  */
36 #define DM_BUFIO_MIN_BUFFERS		8
37 
38 #define DM_BUFIO_MEMORY_PERCENT		2
39 #define DM_BUFIO_VMALLOC_PERCENT	25
40 #define DM_BUFIO_WRITEBACK_RATIO	3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO	16
42 
43 /*
44  * Check buffer ages in this interval (seconds)
45  */
46 #define DM_BUFIO_WORK_TIMER_SECS	30
47 
48 /*
49  * Free buffers when they are older than this (seconds)
50  */
51 #define DM_BUFIO_DEFAULT_AGE_SECS	300
52 
53 /*
54  * The nr of bytes of cached data to keep around.
55  */
56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
57 
58 /*
59  * Align buffer writes to this boundary.
60  * Tests show that SSDs have the highest IOPS when using 4k writes.
61  */
62 #define DM_BUFIO_WRITE_ALIGN		4096
63 
64 /*
65  * dm_buffer->list_mode
66  */
67 #define LIST_CLEAN	0
68 #define LIST_DIRTY	1
69 #define LIST_SIZE	2
70 
71 /*--------------------------------------------------------------*/
72 
73 /*
74  * Rather than use an LRU list, we use a clock algorithm where entries
75  * are held in a circular list.  When an entry is 'hit' a reference bit
76  * is set.  The least recently used entry is approximated by running a
77  * cursor around the list selecting unreferenced entries. Referenced
78  * entries have their reference bit cleared as the cursor passes them.
79  */
80 struct lru_entry {
81 	struct list_head list;
82 	atomic_t referenced;
83 };
84 
85 struct lru_iter {
86 	struct lru *lru;
87 	struct list_head list;
88 	struct lru_entry *stop;
89 	struct lru_entry *e;
90 };
91 
92 struct lru {
93 	struct list_head *cursor;
94 	unsigned long count;
95 
96 	struct list_head iterators;
97 };
98 
99 /*--------------*/
100 
lru_init(struct lru * lru)101 static void lru_init(struct lru *lru)
102 {
103 	lru->cursor = NULL;
104 	lru->count = 0;
105 	INIT_LIST_HEAD(&lru->iterators);
106 }
107 
lru_destroy(struct lru * lru)108 static void lru_destroy(struct lru *lru)
109 {
110 	WARN_ON_ONCE(lru->cursor);
111 	WARN_ON_ONCE(!list_empty(&lru->iterators));
112 }
113 
114 /*
115  * Insert a new entry into the lru.
116  */
lru_insert(struct lru * lru,struct lru_entry * le)117 static void lru_insert(struct lru *lru, struct lru_entry *le)
118 {
119 	/*
120 	 * Don't be tempted to set to 1, makes the lru aspect
121 	 * perform poorly.
122 	 */
123 	atomic_set(&le->referenced, 0);
124 
125 	if (lru->cursor) {
126 		list_add_tail(&le->list, lru->cursor);
127 	} else {
128 		INIT_LIST_HEAD(&le->list);
129 		lru->cursor = &le->list;
130 	}
131 	lru->count++;
132 }
133 
134 /*--------------*/
135 
136 /*
137  * Convert a list_head pointer to an lru_entry pointer.
138  */
to_le(struct list_head * l)139 static inline struct lru_entry *to_le(struct list_head *l)
140 {
141 	return container_of(l, struct lru_entry, list);
142 }
143 
144 /*
145  * Initialize an lru_iter and add it to the list of cursors in the lru.
146  */
lru_iter_begin(struct lru * lru,struct lru_iter * it)147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
148 {
149 	it->lru = lru;
150 	it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
151 	it->e = lru->cursor ? to_le(lru->cursor) : NULL;
152 	list_add(&it->list, &lru->iterators);
153 }
154 
155 /*
156  * Remove an lru_iter from the list of cursors in the lru.
157  */
lru_iter_end(struct lru_iter * it)158 static inline void lru_iter_end(struct lru_iter *it)
159 {
160 	list_del(&it->list);
161 }
162 
163 /* Predicate function type to be used with lru_iter_next */
164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
165 
166 /*
167  * Advance the cursor to the next entry that passes the
168  * predicate, and return that entry.  Returns NULL if the
169  * iteration is complete.
170  */
lru_iter_next(struct lru_iter * it,iter_predicate pred,void * context)171 static struct lru_entry *lru_iter_next(struct lru_iter *it,
172 				       iter_predicate pred, void *context)
173 {
174 	struct lru_entry *e;
175 
176 	while (it->e) {
177 		e = it->e;
178 
179 		/* advance the cursor */
180 		if (it->e == it->stop)
181 			it->e = NULL;
182 		else
183 			it->e = to_le(it->e->list.next);
184 
185 		if (pred(e, context))
186 			return e;
187 	}
188 
189 	return NULL;
190 }
191 
192 /*
193  * Invalidate a specific lru_entry and update all cursors in
194  * the lru accordingly.
195  */
lru_iter_invalidate(struct lru * lru,struct lru_entry * e)196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
197 {
198 	struct lru_iter *it;
199 
200 	list_for_each_entry(it, &lru->iterators, list) {
201 		/* Move c->e forwards if necc. */
202 		if (it->e == e) {
203 			it->e = to_le(it->e->list.next);
204 			if (it->e == e)
205 				it->e = NULL;
206 		}
207 
208 		/* Move it->stop backwards if necc. */
209 		if (it->stop == e) {
210 			it->stop = to_le(it->stop->list.prev);
211 			if (it->stop == e)
212 				it->stop = NULL;
213 		}
214 	}
215 }
216 
217 /*--------------*/
218 
219 /*
220  * Remove a specific entry from the lru.
221  */
lru_remove(struct lru * lru,struct lru_entry * le)222 static void lru_remove(struct lru *lru, struct lru_entry *le)
223 {
224 	lru_iter_invalidate(lru, le);
225 	if (lru->count == 1) {
226 		lru->cursor = NULL;
227 	} else {
228 		if (lru->cursor == &le->list)
229 			lru->cursor = lru->cursor->next;
230 		list_del(&le->list);
231 	}
232 	lru->count--;
233 }
234 
235 /*
236  * Mark as referenced.
237  */
lru_reference(struct lru_entry * le)238 static inline void lru_reference(struct lru_entry *le)
239 {
240 	atomic_set(&le->referenced, 1);
241 }
242 
243 /*--------------*/
244 
245 /*
246  * Remove the least recently used entry (approx), that passes the predicate.
247  * Returns NULL on failure.
248  */
249 enum evict_result {
250 	ER_EVICT,
251 	ER_DONT_EVICT,
252 	ER_STOP, /* stop looking for something to evict */
253 };
254 
255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
256 
lru_evict(struct lru * lru,le_predicate pred,void * context,bool no_sleep)257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
258 {
259 	unsigned long tested = 0;
260 	struct list_head *h = lru->cursor;
261 	struct lru_entry *le;
262 
263 	if (!h)
264 		return NULL;
265 	/*
266 	 * In the worst case we have to loop around twice. Once to clear
267 	 * the reference flags, and then again to discover the predicate
268 	 * fails for all entries.
269 	 */
270 	while (tested < lru->count) {
271 		le = container_of(h, struct lru_entry, list);
272 
273 		if (atomic_read(&le->referenced)) {
274 			atomic_set(&le->referenced, 0);
275 		} else {
276 			tested++;
277 			switch (pred(le, context)) {
278 			case ER_EVICT:
279 				/*
280 				 * Adjust the cursor, so we start the next
281 				 * search from here.
282 				 */
283 				lru->cursor = le->list.next;
284 				lru_remove(lru, le);
285 				return le;
286 
287 			case ER_DONT_EVICT:
288 				break;
289 
290 			case ER_STOP:
291 				lru->cursor = le->list.next;
292 				return NULL;
293 			}
294 		}
295 
296 		h = h->next;
297 
298 		if (!no_sleep)
299 			cond_resched();
300 	}
301 
302 	return NULL;
303 }
304 
305 /*--------------------------------------------------------------*/
306 
307 /*
308  * Buffer state bits.
309  */
310 #define B_READING	0
311 #define B_WRITING	1
312 #define B_DIRTY		2
313 
314 /*
315  * Describes how the block was allocated:
316  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
317  * See the comment at alloc_buffer_data.
318  */
319 enum data_mode {
320 	DATA_MODE_SLAB = 0,
321 	DATA_MODE_KMALLOC = 1,
322 	DATA_MODE_GET_FREE_PAGES = 2,
323 	DATA_MODE_VMALLOC = 3,
324 	DATA_MODE_LIMIT = 4
325 };
326 
327 struct dm_buffer {
328 	/* protected by the locks in dm_buffer_cache */
329 	struct rb_node node;
330 
331 	/* immutable, so don't need protecting */
332 	sector_t block;
333 	void *data;
334 	unsigned char data_mode;		/* DATA_MODE_* */
335 
336 	/*
337 	 * These two fields are used in isolation, so do not need
338 	 * a surrounding lock.
339 	 */
340 	atomic_t hold_count;
341 	unsigned long last_accessed;
342 
343 	/*
344 	 * Everything else is protected by the mutex in
345 	 * dm_bufio_client
346 	 */
347 	unsigned long state;
348 	struct lru_entry lru;
349 	unsigned char list_mode;		/* LIST_* */
350 	blk_status_t read_error;
351 	blk_status_t write_error;
352 	unsigned int dirty_start;
353 	unsigned int dirty_end;
354 	unsigned int write_start;
355 	unsigned int write_end;
356 	struct list_head write_list;
357 	struct dm_bufio_client *c;
358 	void (*end_io)(struct dm_buffer *b, blk_status_t bs);
359 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
360 #define MAX_STACK 10
361 	unsigned int stack_len;
362 	unsigned long stack_entries[MAX_STACK];
363 #endif
364 };
365 
366 /*--------------------------------------------------------------*/
367 
368 /*
369  * The buffer cache manages buffers, particularly:
370  *  - inc/dec of holder count
371  *  - setting the last_accessed field
372  *  - maintains clean/dirty state along with lru
373  *  - selecting buffers that match predicates
374  *
375  * It does *not* handle:
376  *  - allocation/freeing of buffers.
377  *  - IO
378  *  - Eviction or cache sizing.
379  *
380  * cache_get() and cache_put() are threadsafe, you do not need to
381  * protect these calls with a surrounding mutex.  All the other
382  * methods are not threadsafe; they do use locking primitives, but
383  * only enough to ensure get/put are threadsafe.
384  */
385 
386 struct buffer_tree {
387 	union {
388 		struct rw_semaphore lock;
389 		rwlock_t spinlock;
390 	} u;
391 	struct rb_root root;
392 } ____cacheline_aligned_in_smp;
393 
394 struct dm_buffer_cache {
395 	struct lru lru[LIST_SIZE];
396 	/*
397 	 * We spread entries across multiple trees to reduce contention
398 	 * on the locks.
399 	 */
400 	unsigned int num_locks;
401 	bool no_sleep;
402 	struct buffer_tree trees[];
403 };
404 
405 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
406 
cache_index(sector_t block,unsigned int num_locks)407 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
408 {
409 	return dm_hash_locks_index(block, num_locks);
410 }
411 
cache_read_lock(struct dm_buffer_cache * bc,sector_t block)412 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
413 {
414 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
415 		read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
416 	else
417 		down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
418 }
419 
cache_read_unlock(struct dm_buffer_cache * bc,sector_t block)420 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
421 {
422 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
423 		read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
424 	else
425 		up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
426 }
427 
cache_write_lock(struct dm_buffer_cache * bc,sector_t block)428 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
429 {
430 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
431 		write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
432 	else
433 		down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
434 }
435 
cache_write_unlock(struct dm_buffer_cache * bc,sector_t block)436 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
437 {
438 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
439 		write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
440 	else
441 		up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
442 }
443 
444 /*
445  * Sometimes we want to repeatedly get and drop locks as part of an iteration.
446  * This struct helps avoid redundant drop and gets of the same lock.
447  */
448 struct lock_history {
449 	struct dm_buffer_cache *cache;
450 	bool write;
451 	unsigned int previous;
452 	unsigned int no_previous;
453 };
454 
lh_init(struct lock_history * lh,struct dm_buffer_cache * cache,bool write)455 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
456 {
457 	lh->cache = cache;
458 	lh->write = write;
459 	lh->no_previous = cache->num_locks;
460 	lh->previous = lh->no_previous;
461 }
462 
__lh_lock(struct lock_history * lh,unsigned int index)463 static void __lh_lock(struct lock_history *lh, unsigned int index)
464 {
465 	if (lh->write) {
466 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
467 			write_lock_bh(&lh->cache->trees[index].u.spinlock);
468 		else
469 			down_write(&lh->cache->trees[index].u.lock);
470 	} else {
471 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
472 			read_lock_bh(&lh->cache->trees[index].u.spinlock);
473 		else
474 			down_read(&lh->cache->trees[index].u.lock);
475 	}
476 }
477 
__lh_unlock(struct lock_history * lh,unsigned int index)478 static void __lh_unlock(struct lock_history *lh, unsigned int index)
479 {
480 	if (lh->write) {
481 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
482 			write_unlock_bh(&lh->cache->trees[index].u.spinlock);
483 		else
484 			up_write(&lh->cache->trees[index].u.lock);
485 	} else {
486 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
487 			read_unlock_bh(&lh->cache->trees[index].u.spinlock);
488 		else
489 			up_read(&lh->cache->trees[index].u.lock);
490 	}
491 }
492 
493 /*
494  * Make sure you call this since it will unlock the final lock.
495  */
lh_exit(struct lock_history * lh)496 static void lh_exit(struct lock_history *lh)
497 {
498 	if (lh->previous != lh->no_previous) {
499 		__lh_unlock(lh, lh->previous);
500 		lh->previous = lh->no_previous;
501 	}
502 }
503 
504 /*
505  * Named 'next' because there is no corresponding
506  * 'up/unlock' call since it's done automatically.
507  */
lh_next(struct lock_history * lh,sector_t b)508 static void lh_next(struct lock_history *lh, sector_t b)
509 {
510 	unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
511 
512 	if (lh->previous != lh->no_previous) {
513 		if (lh->previous != index) {
514 			__lh_unlock(lh, lh->previous);
515 			__lh_lock(lh, index);
516 			lh->previous = index;
517 		}
518 	} else {
519 		__lh_lock(lh, index);
520 		lh->previous = index;
521 	}
522 }
523 
le_to_buffer(struct lru_entry * le)524 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
525 {
526 	return container_of(le, struct dm_buffer, lru);
527 }
528 
list_to_buffer(struct list_head * l)529 static struct dm_buffer *list_to_buffer(struct list_head *l)
530 {
531 	struct lru_entry *le = list_entry(l, struct lru_entry, list);
532 
533 	return le_to_buffer(le);
534 }
535 
cache_init(struct dm_buffer_cache * bc,unsigned int num_locks,bool no_sleep)536 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
537 {
538 	unsigned int i;
539 
540 	bc->num_locks = num_locks;
541 	bc->no_sleep = no_sleep;
542 
543 	for (i = 0; i < bc->num_locks; i++) {
544 		if (no_sleep)
545 			rwlock_init(&bc->trees[i].u.spinlock);
546 		else
547 			init_rwsem(&bc->trees[i].u.lock);
548 		bc->trees[i].root = RB_ROOT;
549 	}
550 
551 	lru_init(&bc->lru[LIST_CLEAN]);
552 	lru_init(&bc->lru[LIST_DIRTY]);
553 }
554 
cache_destroy(struct dm_buffer_cache * bc)555 static void cache_destroy(struct dm_buffer_cache *bc)
556 {
557 	unsigned int i;
558 
559 	for (i = 0; i < bc->num_locks; i++)
560 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
561 
562 	lru_destroy(&bc->lru[LIST_CLEAN]);
563 	lru_destroy(&bc->lru[LIST_DIRTY]);
564 }
565 
566 /*--------------*/
567 
568 /*
569  * not threadsafe, or racey depending how you look at it
570  */
cache_count(struct dm_buffer_cache * bc,int list_mode)571 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
572 {
573 	return bc->lru[list_mode].count;
574 }
575 
cache_total(struct dm_buffer_cache * bc)576 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
577 {
578 	return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
579 }
580 
581 /*--------------*/
582 
583 /*
584  * Gets a specific buffer, indexed by block.
585  * If the buffer is found then its holder count will be incremented and
586  * lru_reference will be called.
587  *
588  * threadsafe
589  */
__cache_get(const struct rb_root * root,sector_t block)590 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
591 {
592 	struct rb_node *n = root->rb_node;
593 	struct dm_buffer *b;
594 
595 	while (n) {
596 		b = container_of(n, struct dm_buffer, node);
597 
598 		if (b->block == block)
599 			return b;
600 
601 		n = block < b->block ? n->rb_left : n->rb_right;
602 	}
603 
604 	return NULL;
605 }
606 
__cache_inc_buffer(struct dm_buffer * b)607 static void __cache_inc_buffer(struct dm_buffer *b)
608 {
609 	atomic_inc(&b->hold_count);
610 	WRITE_ONCE(b->last_accessed, jiffies);
611 }
612 
cache_get(struct dm_buffer_cache * bc,sector_t block)613 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
614 {
615 	struct dm_buffer *b;
616 
617 	cache_read_lock(bc, block);
618 	b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
619 	if (b) {
620 		lru_reference(&b->lru);
621 		__cache_inc_buffer(b);
622 	}
623 	cache_read_unlock(bc, block);
624 
625 	return b;
626 }
627 
628 /*--------------*/
629 
630 /*
631  * Returns true if the hold count hits zero.
632  * threadsafe
633  */
cache_put(struct dm_buffer_cache * bc,struct dm_buffer * b)634 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
635 {
636 	bool r;
637 
638 	cache_read_lock(bc, b->block);
639 	BUG_ON(!atomic_read(&b->hold_count));
640 	r = atomic_dec_and_test(&b->hold_count);
641 	cache_read_unlock(bc, b->block);
642 
643 	return r;
644 }
645 
646 /*--------------*/
647 
648 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
649 
650 /*
651  * Evicts a buffer based on a predicate.  The oldest buffer that
652  * matches the predicate will be selected.  In addition to the
653  * predicate the hold_count of the selected buffer will be zero.
654  */
655 struct evict_wrapper {
656 	struct lock_history *lh;
657 	b_predicate pred;
658 	void *context;
659 };
660 
661 /*
662  * Wraps the buffer predicate turning it into an lru predicate.  Adds
663  * extra test for hold_count.
664  */
__evict_pred(struct lru_entry * le,void * context)665 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
666 {
667 	struct evict_wrapper *w = context;
668 	struct dm_buffer *b = le_to_buffer(le);
669 
670 	lh_next(w->lh, b->block);
671 
672 	if (atomic_read(&b->hold_count))
673 		return ER_DONT_EVICT;
674 
675 	return w->pred(b, w->context);
676 }
677 
__cache_evict(struct dm_buffer_cache * bc,int list_mode,b_predicate pred,void * context,struct lock_history * lh)678 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
679 				       b_predicate pred, void *context,
680 				       struct lock_history *lh)
681 {
682 	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
683 	struct lru_entry *le;
684 	struct dm_buffer *b;
685 
686 	le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
687 	if (!le)
688 		return NULL;
689 
690 	b = le_to_buffer(le);
691 	/* __evict_pred will have locked the appropriate tree. */
692 	rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
693 
694 	return b;
695 }
696 
cache_evict(struct dm_buffer_cache * bc,int list_mode,b_predicate pred,void * context)697 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
698 				     b_predicate pred, void *context)
699 {
700 	struct dm_buffer *b;
701 	struct lock_history lh;
702 
703 	lh_init(&lh, bc, true);
704 	b = __cache_evict(bc, list_mode, pred, context, &lh);
705 	lh_exit(&lh);
706 
707 	return b;
708 }
709 
710 /*--------------*/
711 
712 /*
713  * Mark a buffer as clean or dirty. Not threadsafe.
714  */
cache_mark(struct dm_buffer_cache * bc,struct dm_buffer * b,int list_mode)715 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
716 {
717 	cache_write_lock(bc, b->block);
718 	if (list_mode != b->list_mode) {
719 		lru_remove(&bc->lru[b->list_mode], &b->lru);
720 		b->list_mode = list_mode;
721 		lru_insert(&bc->lru[b->list_mode], &b->lru);
722 	}
723 	cache_write_unlock(bc, b->block);
724 }
725 
726 /*--------------*/
727 
728 /*
729  * Runs through the lru associated with 'old_mode', if the predicate matches then
730  * it moves them to 'new_mode'.  Not threadsafe.
731  */
__cache_mark_many(struct dm_buffer_cache * bc,int old_mode,int new_mode,b_predicate pred,void * context,struct lock_history * lh)732 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
733 			      b_predicate pred, void *context, struct lock_history *lh)
734 {
735 	struct lru_entry *le;
736 	struct dm_buffer *b;
737 	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
738 
739 	while (true) {
740 		le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
741 		if (!le)
742 			break;
743 
744 		b = le_to_buffer(le);
745 		b->list_mode = new_mode;
746 		lru_insert(&bc->lru[b->list_mode], &b->lru);
747 	}
748 }
749 
cache_mark_many(struct dm_buffer_cache * bc,int old_mode,int new_mode,b_predicate pred,void * context)750 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
751 			    b_predicate pred, void *context)
752 {
753 	struct lock_history lh;
754 
755 	lh_init(&lh, bc, true);
756 	__cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
757 	lh_exit(&lh);
758 }
759 
760 /*--------------*/
761 
762 /*
763  * Iterates through all clean or dirty entries calling a function for each
764  * entry.  The callback may terminate the iteration early.  Not threadsafe.
765  */
766 
767 /*
768  * Iterator functions should return one of these actions to indicate
769  * how the iteration should proceed.
770  */
771 enum it_action {
772 	IT_NEXT,
773 	IT_COMPLETE,
774 };
775 
776 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
777 
__cache_iterate(struct dm_buffer_cache * bc,int list_mode,iter_fn fn,void * context,struct lock_history * lh)778 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
779 			    iter_fn fn, void *context, struct lock_history *lh)
780 {
781 	struct lru *lru = &bc->lru[list_mode];
782 	struct lru_entry *le, *first;
783 
784 	if (!lru->cursor)
785 		return;
786 
787 	first = le = to_le(lru->cursor);
788 	do {
789 		struct dm_buffer *b = le_to_buffer(le);
790 
791 		lh_next(lh, b->block);
792 
793 		switch (fn(b, context)) {
794 		case IT_NEXT:
795 			break;
796 
797 		case IT_COMPLETE:
798 			return;
799 		}
800 		cond_resched();
801 
802 		le = to_le(le->list.next);
803 	} while (le != first);
804 }
805 
cache_iterate(struct dm_buffer_cache * bc,int list_mode,iter_fn fn,void * context)806 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
807 			  iter_fn fn, void *context)
808 {
809 	struct lock_history lh;
810 
811 	lh_init(&lh, bc, false);
812 	__cache_iterate(bc, list_mode, fn, context, &lh);
813 	lh_exit(&lh);
814 }
815 
816 /*--------------*/
817 
818 /*
819  * Passes ownership of the buffer to the cache. Returns false if the
820  * buffer was already present (in which case ownership does not pass).
821  * eg, a race with another thread.
822  *
823  * Holder count should be 1 on insertion.
824  *
825  * Not threadsafe.
826  */
__cache_insert(struct rb_root * root,struct dm_buffer * b)827 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
828 {
829 	struct rb_node **new = &root->rb_node, *parent = NULL;
830 	struct dm_buffer *found;
831 
832 	while (*new) {
833 		found = container_of(*new, struct dm_buffer, node);
834 
835 		if (found->block == b->block)
836 			return false;
837 
838 		parent = *new;
839 		new = b->block < found->block ?
840 			&found->node.rb_left : &found->node.rb_right;
841 	}
842 
843 	rb_link_node(&b->node, parent, new);
844 	rb_insert_color(&b->node, root);
845 
846 	return true;
847 }
848 
cache_insert(struct dm_buffer_cache * bc,struct dm_buffer * b)849 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
850 {
851 	bool r;
852 
853 	if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
854 		return false;
855 
856 	cache_write_lock(bc, b->block);
857 	BUG_ON(atomic_read(&b->hold_count) != 1);
858 	r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
859 	if (r)
860 		lru_insert(&bc->lru[b->list_mode], &b->lru);
861 	cache_write_unlock(bc, b->block);
862 
863 	return r;
864 }
865 
866 /*--------------*/
867 
868 /*
869  * Removes buffer from cache, ownership of the buffer passes back to the caller.
870  * Fails if the hold_count is not one (ie. the caller holds the only reference).
871  *
872  * Not threadsafe.
873  */
cache_remove(struct dm_buffer_cache * bc,struct dm_buffer * b)874 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
875 {
876 	bool r;
877 
878 	cache_write_lock(bc, b->block);
879 
880 	if (atomic_read(&b->hold_count) != 1) {
881 		r = false;
882 	} else {
883 		r = true;
884 		rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
885 		lru_remove(&bc->lru[b->list_mode], &b->lru);
886 	}
887 
888 	cache_write_unlock(bc, b->block);
889 
890 	return r;
891 }
892 
893 /*--------------*/
894 
895 typedef void (*b_release)(struct dm_buffer *);
896 
__find_next(struct rb_root * root,sector_t block)897 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
898 {
899 	struct rb_node *n = root->rb_node;
900 	struct dm_buffer *b;
901 	struct dm_buffer *best = NULL;
902 
903 	while (n) {
904 		b = container_of(n, struct dm_buffer, node);
905 
906 		if (b->block == block)
907 			return b;
908 
909 		if (block <= b->block) {
910 			n = n->rb_left;
911 			best = b;
912 		} else {
913 			n = n->rb_right;
914 		}
915 	}
916 
917 	return best;
918 }
919 
__remove_range(struct dm_buffer_cache * bc,struct rb_root * root,sector_t begin,sector_t end,b_predicate pred,b_release release)920 static void __remove_range(struct dm_buffer_cache *bc,
921 			   struct rb_root *root,
922 			   sector_t begin, sector_t end,
923 			   b_predicate pred, b_release release)
924 {
925 	struct dm_buffer *b;
926 
927 	while (true) {
928 		cond_resched();
929 
930 		b = __find_next(root, begin);
931 		if (!b || (b->block >= end))
932 			break;
933 
934 		begin = b->block + 1;
935 
936 		if (atomic_read(&b->hold_count))
937 			continue;
938 
939 		if (pred(b, NULL) == ER_EVICT) {
940 			rb_erase(&b->node, root);
941 			lru_remove(&bc->lru[b->list_mode], &b->lru);
942 			release(b);
943 		}
944 	}
945 }
946 
cache_remove_range(struct dm_buffer_cache * bc,sector_t begin,sector_t end,b_predicate pred,b_release release)947 static void cache_remove_range(struct dm_buffer_cache *bc,
948 			       sector_t begin, sector_t end,
949 			       b_predicate pred, b_release release)
950 {
951 	unsigned int i;
952 
953 	BUG_ON(bc->no_sleep);
954 	for (i = 0; i < bc->num_locks; i++) {
955 		down_write(&bc->trees[i].u.lock);
956 		__remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
957 		up_write(&bc->trees[i].u.lock);
958 	}
959 }
960 
961 /*----------------------------------------------------------------*/
962 
963 /*
964  * Linking of buffers:
965  *	All buffers are linked to buffer_cache with their node field.
966  *
967  *	Clean buffers that are not being written (B_WRITING not set)
968  *	are linked to lru[LIST_CLEAN] with their lru_list field.
969  *
970  *	Dirty and clean buffers that are being written are linked to
971  *	lru[LIST_DIRTY] with their lru_list field. When the write
972  *	finishes, the buffer cannot be relinked immediately (because we
973  *	are in an interrupt context and relinking requires process
974  *	context), so some clean-not-writing buffers can be held on
975  *	dirty_lru too.  They are later added to lru in the process
976  *	context.
977  */
978 struct dm_bufio_client {
979 	struct block_device *bdev;
980 	unsigned int block_size;
981 	s8 sectors_per_block_bits;
982 
983 	bool no_sleep;
984 	struct mutex lock;
985 	spinlock_t spinlock;
986 
987 	int async_write_error;
988 
989 	void (*alloc_callback)(struct dm_buffer *buf);
990 	void (*write_callback)(struct dm_buffer *buf);
991 	struct kmem_cache *slab_buffer;
992 	struct kmem_cache *slab_cache;
993 	struct dm_io_client *dm_io;
994 
995 	struct list_head reserved_buffers;
996 	unsigned int need_reserved_buffers;
997 
998 	unsigned int minimum_buffers;
999 
1000 	sector_t start;
1001 
1002 	struct shrinker *shrinker;
1003 	struct work_struct shrink_work;
1004 	atomic_long_t need_shrink;
1005 
1006 	wait_queue_head_t free_buffer_wait;
1007 
1008 	struct list_head client_list;
1009 
1010 	/*
1011 	 * Used by global_cleanup to sort the clients list.
1012 	 */
1013 	unsigned long oldest_buffer;
1014 
1015 	struct dm_buffer_cache cache; /* must be last member */
1016 };
1017 
1018 /*----------------------------------------------------------------*/
1019 
1020 #define dm_bufio_in_request()	(!!current->bio_list)
1021 
dm_bufio_lock(struct dm_bufio_client * c)1022 static void dm_bufio_lock(struct dm_bufio_client *c)
1023 {
1024 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1025 		spin_lock_bh(&c->spinlock);
1026 	else
1027 		mutex_lock_nested(&c->lock, dm_bufio_in_request());
1028 }
1029 
dm_bufio_unlock(struct dm_bufio_client * c)1030 static void dm_bufio_unlock(struct dm_bufio_client *c)
1031 {
1032 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1033 		spin_unlock_bh(&c->spinlock);
1034 	else
1035 		mutex_unlock(&c->lock);
1036 }
1037 
1038 /*----------------------------------------------------------------*/
1039 
1040 /*
1041  * Default cache size: available memory divided by the ratio.
1042  */
1043 static unsigned long dm_bufio_default_cache_size;
1044 
1045 /*
1046  * Total cache size set by the user.
1047  */
1048 static unsigned long dm_bufio_cache_size;
1049 
1050 /*
1051  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1052  * at any time.  If it disagrees, the user has changed cache size.
1053  */
1054 static unsigned long dm_bufio_cache_size_latch;
1055 
1056 static DEFINE_SPINLOCK(global_spinlock);
1057 
1058 /*
1059  * Buffers are freed after this timeout
1060  */
1061 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1062 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1063 
1064 static unsigned long dm_bufio_peak_allocated;
1065 static unsigned long dm_bufio_allocated_kmem_cache;
1066 static unsigned long dm_bufio_allocated_kmalloc;
1067 static unsigned long dm_bufio_allocated_get_free_pages;
1068 static unsigned long dm_bufio_allocated_vmalloc;
1069 static unsigned long dm_bufio_current_allocated;
1070 
1071 /*----------------------------------------------------------------*/
1072 
1073 /*
1074  * The current number of clients.
1075  */
1076 static int dm_bufio_client_count;
1077 
1078 /*
1079  * The list of all clients.
1080  */
1081 static LIST_HEAD(dm_bufio_all_clients);
1082 
1083 /*
1084  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1085  */
1086 static DEFINE_MUTEX(dm_bufio_clients_lock);
1087 
1088 static struct workqueue_struct *dm_bufio_wq;
1089 static struct delayed_work dm_bufio_cleanup_old_work;
1090 static struct work_struct dm_bufio_replacement_work;
1091 
1092 
1093 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
buffer_record_stack(struct dm_buffer * b)1094 static void buffer_record_stack(struct dm_buffer *b)
1095 {
1096 	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1097 }
1098 #endif
1099 
1100 /*----------------------------------------------------------------*/
1101 
adjust_total_allocated(struct dm_buffer * b,bool unlink)1102 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1103 {
1104 	unsigned char data_mode;
1105 	long diff;
1106 
1107 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1108 		&dm_bufio_allocated_kmem_cache,
1109 		&dm_bufio_allocated_kmalloc,
1110 		&dm_bufio_allocated_get_free_pages,
1111 		&dm_bufio_allocated_vmalloc,
1112 	};
1113 
1114 	data_mode = b->data_mode;
1115 	diff = (long)b->c->block_size;
1116 	if (unlink)
1117 		diff = -diff;
1118 
1119 	spin_lock(&global_spinlock);
1120 
1121 	*class_ptr[data_mode] += diff;
1122 
1123 	dm_bufio_current_allocated += diff;
1124 
1125 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1126 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
1127 
1128 	if (!unlink) {
1129 		if (dm_bufio_current_allocated > dm_bufio_cache_size)
1130 			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1131 	}
1132 
1133 	spin_unlock(&global_spinlock);
1134 }
1135 
1136 /*
1137  * Change the number of clients and recalculate per-client limit.
1138  */
__cache_size_refresh(void)1139 static void __cache_size_refresh(void)
1140 {
1141 	if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1142 		return;
1143 	if (WARN_ON(dm_bufio_client_count < 0))
1144 		return;
1145 
1146 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1147 
1148 	/*
1149 	 * Use default if set to 0 and report the actual cache size used.
1150 	 */
1151 	if (!dm_bufio_cache_size_latch) {
1152 		(void)cmpxchg(&dm_bufio_cache_size, 0,
1153 			      dm_bufio_default_cache_size);
1154 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1155 	}
1156 }
1157 
1158 /*
1159  * Allocating buffer data.
1160  *
1161  * Small buffers are allocated with kmem_cache, to use space optimally.
1162  *
1163  * For large buffers, we choose between get_free_pages and vmalloc.
1164  * Each has advantages and disadvantages.
1165  *
1166  * __get_free_pages can randomly fail if the memory is fragmented.
1167  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1168  * as low as 128M) so using it for caching is not appropriate.
1169  *
1170  * If the allocation may fail we use __get_free_pages. Memory fragmentation
1171  * won't have a fatal effect here, but it just causes flushes of some other
1172  * buffers and more I/O will be performed. Don't use __get_free_pages if it
1173  * always fails (i.e. order > MAX_PAGE_ORDER).
1174  *
1175  * If the allocation shouldn't fail we use __vmalloc. This is only for the
1176  * initial reserve allocation, so there's no risk of wasting all vmalloc
1177  * space.
1178  */
alloc_buffer_data(struct dm_bufio_client * c,gfp_t gfp_mask,unsigned char * data_mode)1179 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1180 			       unsigned char *data_mode)
1181 {
1182 	if (unlikely(c->slab_cache != NULL)) {
1183 		*data_mode = DATA_MODE_SLAB;
1184 		return kmem_cache_alloc(c->slab_cache, gfp_mask);
1185 	}
1186 
1187 	if (unlikely(c->block_size < PAGE_SIZE)) {
1188 		*data_mode = DATA_MODE_KMALLOC;
1189 		return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE);
1190 	}
1191 
1192 	if (c->block_size <= KMALLOC_MAX_SIZE &&
1193 	    gfp_mask & __GFP_NORETRY) {
1194 		*data_mode = DATA_MODE_GET_FREE_PAGES;
1195 		return (void *)__get_free_pages(gfp_mask,
1196 						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1197 	}
1198 
1199 	*data_mode = DATA_MODE_VMALLOC;
1200 
1201 	return __vmalloc(c->block_size, gfp_mask);
1202 }
1203 
1204 /*
1205  * Free buffer's data.
1206  */
free_buffer_data(struct dm_bufio_client * c,void * data,unsigned char data_mode)1207 static void free_buffer_data(struct dm_bufio_client *c,
1208 			     void *data, unsigned char data_mode)
1209 {
1210 	switch (data_mode) {
1211 	case DATA_MODE_SLAB:
1212 		kmem_cache_free(c->slab_cache, data);
1213 		break;
1214 
1215 	case DATA_MODE_KMALLOC:
1216 		kfree(data);
1217 		break;
1218 
1219 	case DATA_MODE_GET_FREE_PAGES:
1220 		free_pages((unsigned long)data,
1221 			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1222 		break;
1223 
1224 	case DATA_MODE_VMALLOC:
1225 		vfree(data);
1226 		break;
1227 
1228 	default:
1229 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1230 		       data_mode);
1231 		BUG();
1232 	}
1233 }
1234 
1235 /*
1236  * Allocate buffer and its data.
1237  */
alloc_buffer(struct dm_bufio_client * c,gfp_t gfp_mask)1238 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1239 {
1240 	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1241 
1242 	if (!b)
1243 		return NULL;
1244 
1245 	b->c = c;
1246 
1247 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1248 	if (!b->data) {
1249 		kmem_cache_free(c->slab_buffer, b);
1250 		return NULL;
1251 	}
1252 	adjust_total_allocated(b, false);
1253 
1254 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1255 	b->stack_len = 0;
1256 #endif
1257 	return b;
1258 }
1259 
1260 /*
1261  * Free buffer and its data.
1262  */
free_buffer(struct dm_buffer * b)1263 static void free_buffer(struct dm_buffer *b)
1264 {
1265 	struct dm_bufio_client *c = b->c;
1266 
1267 	adjust_total_allocated(b, true);
1268 	free_buffer_data(c, b->data, b->data_mode);
1269 	kmem_cache_free(c->slab_buffer, b);
1270 }
1271 
1272 /*
1273  *--------------------------------------------------------------------------
1274  * Submit I/O on the buffer.
1275  *
1276  * Bio interface is faster but it has some problems:
1277  *	the vector list is limited (increasing this limit increases
1278  *	memory-consumption per buffer, so it is not viable);
1279  *
1280  *	the memory must be direct-mapped, not vmalloced;
1281  *
1282  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1283  * it is not vmalloced, try using the bio interface.
1284  *
1285  * If the buffer is big, if it is vmalloced or if the underlying device
1286  * rejects the bio because it is too large, use dm-io layer to do the I/O.
1287  * The dm-io layer splits the I/O into multiple requests, avoiding the above
1288  * shortcomings.
1289  *--------------------------------------------------------------------------
1290  */
1291 
1292 /*
1293  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1294  * that the request was handled directly with bio interface.
1295  */
dmio_complete(unsigned long error,void * context)1296 static void dmio_complete(unsigned long error, void *context)
1297 {
1298 	struct dm_buffer *b = context;
1299 
1300 	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1301 }
1302 
use_dmio(struct dm_buffer * b,enum req_op op,sector_t sector,unsigned int n_sectors,unsigned int offset,unsigned short ioprio)1303 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1304 		     unsigned int n_sectors, unsigned int offset,
1305 		     unsigned short ioprio)
1306 {
1307 	int r;
1308 	struct dm_io_request io_req = {
1309 		.bi_opf = op,
1310 		.notify.fn = dmio_complete,
1311 		.notify.context = b,
1312 		.client = b->c->dm_io,
1313 	};
1314 	struct dm_io_region region = {
1315 		.bdev = b->c->bdev,
1316 		.sector = sector,
1317 		.count = n_sectors,
1318 	};
1319 
1320 	if (b->data_mode != DATA_MODE_VMALLOC) {
1321 		io_req.mem.type = DM_IO_KMEM;
1322 		io_req.mem.ptr.addr = (char *)b->data + offset;
1323 	} else {
1324 		io_req.mem.type = DM_IO_VMA;
1325 		io_req.mem.ptr.vma = (char *)b->data + offset;
1326 	}
1327 
1328 	r = dm_io(&io_req, 1, &region, NULL, ioprio);
1329 	if (unlikely(r))
1330 		b->end_io(b, errno_to_blk_status(r));
1331 }
1332 
bio_complete(struct bio * bio)1333 static void bio_complete(struct bio *bio)
1334 {
1335 	struct dm_buffer *b = bio->bi_private;
1336 	blk_status_t status = bio->bi_status;
1337 
1338 	bio_uninit(bio);
1339 	kfree(bio);
1340 	b->end_io(b, status);
1341 }
1342 
use_bio(struct dm_buffer * b,enum req_op op,sector_t sector,unsigned int n_sectors,unsigned int offset,unsigned short ioprio)1343 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1344 		    unsigned int n_sectors, unsigned int offset,
1345 		    unsigned short ioprio)
1346 {
1347 	struct bio *bio;
1348 	char *ptr;
1349 	unsigned int len;
1350 
1351 	bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
1352 	if (!bio) {
1353 		use_dmio(b, op, sector, n_sectors, offset, ioprio);
1354 		return;
1355 	}
1356 	bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
1357 	bio->bi_iter.bi_sector = sector;
1358 	bio->bi_end_io = bio_complete;
1359 	bio->bi_private = b;
1360 	bio->bi_ioprio = ioprio;
1361 
1362 	ptr = (char *)b->data + offset;
1363 	len = n_sectors << SECTOR_SHIFT;
1364 
1365 	__bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
1366 
1367 	submit_bio(bio);
1368 }
1369 
block_to_sector(struct dm_bufio_client * c,sector_t block)1370 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1371 {
1372 	sector_t sector;
1373 
1374 	if (likely(c->sectors_per_block_bits >= 0))
1375 		sector = block << c->sectors_per_block_bits;
1376 	else
1377 		sector = block * (c->block_size >> SECTOR_SHIFT);
1378 	sector += c->start;
1379 
1380 	return sector;
1381 }
1382 
submit_io(struct dm_buffer * b,enum req_op op,unsigned short ioprio,void (* end_io)(struct dm_buffer *,blk_status_t))1383 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio,
1384 		      void (*end_io)(struct dm_buffer *, blk_status_t))
1385 {
1386 	unsigned int n_sectors;
1387 	sector_t sector;
1388 	unsigned int offset, end;
1389 
1390 	b->end_io = end_io;
1391 
1392 	sector = block_to_sector(b->c, b->block);
1393 
1394 	if (op != REQ_OP_WRITE) {
1395 		n_sectors = b->c->block_size >> SECTOR_SHIFT;
1396 		offset = 0;
1397 	} else {
1398 		if (b->c->write_callback)
1399 			b->c->write_callback(b);
1400 		offset = b->write_start;
1401 		end = b->write_end;
1402 		offset &= -DM_BUFIO_WRITE_ALIGN;
1403 		end += DM_BUFIO_WRITE_ALIGN - 1;
1404 		end &= -DM_BUFIO_WRITE_ALIGN;
1405 		if (unlikely(end > b->c->block_size))
1406 			end = b->c->block_size;
1407 
1408 		sector += offset >> SECTOR_SHIFT;
1409 		n_sectors = (end - offset) >> SECTOR_SHIFT;
1410 	}
1411 
1412 	if (b->data_mode != DATA_MODE_VMALLOC)
1413 		use_bio(b, op, sector, n_sectors, offset, ioprio);
1414 	else
1415 		use_dmio(b, op, sector, n_sectors, offset, ioprio);
1416 }
1417 
1418 /*
1419  *--------------------------------------------------------------
1420  * Writing dirty buffers
1421  *--------------------------------------------------------------
1422  */
1423 
1424 /*
1425  * The endio routine for write.
1426  *
1427  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1428  * it.
1429  */
write_endio(struct dm_buffer * b,blk_status_t status)1430 static void write_endio(struct dm_buffer *b, blk_status_t status)
1431 {
1432 	b->write_error = status;
1433 	if (unlikely(status)) {
1434 		struct dm_bufio_client *c = b->c;
1435 
1436 		(void)cmpxchg(&c->async_write_error, 0,
1437 				blk_status_to_errno(status));
1438 	}
1439 
1440 	BUG_ON(!test_bit(B_WRITING, &b->state));
1441 
1442 	smp_mb__before_atomic();
1443 	clear_bit(B_WRITING, &b->state);
1444 	smp_mb__after_atomic();
1445 
1446 	wake_up_bit(&b->state, B_WRITING);
1447 }
1448 
1449 /*
1450  * Initiate a write on a dirty buffer, but don't wait for it.
1451  *
1452  * - If the buffer is not dirty, exit.
1453  * - If there some previous write going on, wait for it to finish (we can't
1454  *   have two writes on the same buffer simultaneously).
1455  * - Submit our write and don't wait on it. We set B_WRITING indicating
1456  *   that there is a write in progress.
1457  */
__write_dirty_buffer(struct dm_buffer * b,struct list_head * write_list)1458 static void __write_dirty_buffer(struct dm_buffer *b,
1459 				 struct list_head *write_list)
1460 {
1461 	if (!test_bit(B_DIRTY, &b->state))
1462 		return;
1463 
1464 	clear_bit(B_DIRTY, &b->state);
1465 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1466 
1467 	b->write_start = b->dirty_start;
1468 	b->write_end = b->dirty_end;
1469 
1470 	if (!write_list)
1471 		submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1472 	else
1473 		list_add_tail(&b->write_list, write_list);
1474 }
1475 
__flush_write_list(struct list_head * write_list)1476 static void __flush_write_list(struct list_head *write_list)
1477 {
1478 	struct blk_plug plug;
1479 
1480 	blk_start_plug(&plug);
1481 	while (!list_empty(write_list)) {
1482 		struct dm_buffer *b =
1483 			list_entry(write_list->next, struct dm_buffer, write_list);
1484 		list_del(&b->write_list);
1485 		submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1486 		cond_resched();
1487 	}
1488 	blk_finish_plug(&plug);
1489 }
1490 
1491 /*
1492  * Wait until any activity on the buffer finishes.  Possibly write the
1493  * buffer if it is dirty.  When this function finishes, there is no I/O
1494  * running on the buffer and the buffer is not dirty.
1495  */
__make_buffer_clean(struct dm_buffer * b)1496 static void __make_buffer_clean(struct dm_buffer *b)
1497 {
1498 	BUG_ON(atomic_read(&b->hold_count));
1499 
1500 	/* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1501 	if (!smp_load_acquire(&b->state))	/* fast case */
1502 		return;
1503 
1504 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1505 	__write_dirty_buffer(b, NULL);
1506 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1507 }
1508 
is_clean(struct dm_buffer * b,void * context)1509 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1510 {
1511 	struct dm_bufio_client *c = context;
1512 
1513 	/* These should never happen */
1514 	if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1515 		return ER_DONT_EVICT;
1516 	if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1517 		return ER_DONT_EVICT;
1518 	if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1519 		return ER_DONT_EVICT;
1520 
1521 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1522 	    unlikely(test_bit(B_READING, &b->state)))
1523 		return ER_DONT_EVICT;
1524 
1525 	return ER_EVICT;
1526 }
1527 
is_dirty(struct dm_buffer * b,void * context)1528 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1529 {
1530 	/* These should never happen */
1531 	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1532 		return ER_DONT_EVICT;
1533 	if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1534 		return ER_DONT_EVICT;
1535 
1536 	return ER_EVICT;
1537 }
1538 
1539 /*
1540  * Find some buffer that is not held by anybody, clean it, unlink it and
1541  * return it.
1542  */
__get_unclaimed_buffer(struct dm_bufio_client * c)1543 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1544 {
1545 	struct dm_buffer *b;
1546 
1547 	b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1548 	if (b) {
1549 		/* this also waits for pending reads */
1550 		__make_buffer_clean(b);
1551 		return b;
1552 	}
1553 
1554 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1555 		return NULL;
1556 
1557 	b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1558 	if (b) {
1559 		__make_buffer_clean(b);
1560 		return b;
1561 	}
1562 
1563 	return NULL;
1564 }
1565 
1566 /*
1567  * Wait until some other threads free some buffer or release hold count on
1568  * some buffer.
1569  *
1570  * This function is entered with c->lock held, drops it and regains it
1571  * before exiting.
1572  */
__wait_for_free_buffer(struct dm_bufio_client * c)1573 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1574 {
1575 	DECLARE_WAITQUEUE(wait, current);
1576 
1577 	add_wait_queue(&c->free_buffer_wait, &wait);
1578 	set_current_state(TASK_UNINTERRUPTIBLE);
1579 	dm_bufio_unlock(c);
1580 
1581 	/*
1582 	 * It's possible to miss a wake up event since we don't always
1583 	 * hold c->lock when wake_up is called.  So we have a timeout here,
1584 	 * just in case.
1585 	 */
1586 	io_schedule_timeout(5 * HZ);
1587 
1588 	remove_wait_queue(&c->free_buffer_wait, &wait);
1589 
1590 	dm_bufio_lock(c);
1591 }
1592 
1593 enum new_flag {
1594 	NF_FRESH = 0,
1595 	NF_READ = 1,
1596 	NF_GET = 2,
1597 	NF_PREFETCH = 3
1598 };
1599 
1600 /*
1601  * Allocate a new buffer. If the allocation is not possible, wait until
1602  * some other thread frees a buffer.
1603  *
1604  * May drop the lock and regain it.
1605  */
__alloc_buffer_wait_no_callback(struct dm_bufio_client * c,enum new_flag nf)1606 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1607 {
1608 	struct dm_buffer *b;
1609 	bool tried_noio_alloc = false;
1610 
1611 	/*
1612 	 * dm-bufio is resistant to allocation failures (it just keeps
1613 	 * one buffer reserved in cases all the allocations fail).
1614 	 * So set flags to not try too hard:
1615 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1616 	 *		    mutex and wait ourselves.
1617 	 *	__GFP_NORETRY: don't retry and rather return failure
1618 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
1619 	 *	__GFP_NOWARN: don't print a warning in case of failure
1620 	 *
1621 	 * For debugging, if we set the cache size to 1, no new buffers will
1622 	 * be allocated.
1623 	 */
1624 	while (1) {
1625 		if (dm_bufio_cache_size_latch != 1) {
1626 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1627 			if (b)
1628 				return b;
1629 		}
1630 
1631 		if (nf == NF_PREFETCH)
1632 			return NULL;
1633 
1634 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1635 			dm_bufio_unlock(c);
1636 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1637 			dm_bufio_lock(c);
1638 			if (b)
1639 				return b;
1640 			tried_noio_alloc = true;
1641 		}
1642 
1643 		if (!list_empty(&c->reserved_buffers)) {
1644 			b = list_to_buffer(c->reserved_buffers.next);
1645 			list_del(&b->lru.list);
1646 			c->need_reserved_buffers++;
1647 
1648 			return b;
1649 		}
1650 
1651 		b = __get_unclaimed_buffer(c);
1652 		if (b)
1653 			return b;
1654 
1655 		__wait_for_free_buffer(c);
1656 	}
1657 }
1658 
__alloc_buffer_wait(struct dm_bufio_client * c,enum new_flag nf)1659 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1660 {
1661 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1662 
1663 	if (!b)
1664 		return NULL;
1665 
1666 	if (c->alloc_callback)
1667 		c->alloc_callback(b);
1668 
1669 	return b;
1670 }
1671 
1672 /*
1673  * Free a buffer and wake other threads waiting for free buffers.
1674  */
__free_buffer_wake(struct dm_buffer * b)1675 static void __free_buffer_wake(struct dm_buffer *b)
1676 {
1677 	struct dm_bufio_client *c = b->c;
1678 
1679 	b->block = -1;
1680 	if (!c->need_reserved_buffers)
1681 		free_buffer(b);
1682 	else {
1683 		list_add(&b->lru.list, &c->reserved_buffers);
1684 		c->need_reserved_buffers--;
1685 	}
1686 
1687 	/*
1688 	 * We hold the bufio lock here, so no one can add entries to the
1689 	 * wait queue anyway.
1690 	 */
1691 	if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1692 		wake_up(&c->free_buffer_wait);
1693 }
1694 
cleaned(struct dm_buffer * b,void * context)1695 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1696 {
1697 	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1698 		return ER_DONT_EVICT; /* should never happen */
1699 
1700 	if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1701 		return ER_DONT_EVICT;
1702 	else
1703 		return ER_EVICT;
1704 }
1705 
__move_clean_buffers(struct dm_bufio_client * c)1706 static void __move_clean_buffers(struct dm_bufio_client *c)
1707 {
1708 	cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1709 }
1710 
1711 struct write_context {
1712 	int no_wait;
1713 	struct list_head *write_list;
1714 };
1715 
write_one(struct dm_buffer * b,void * context)1716 static enum it_action write_one(struct dm_buffer *b, void *context)
1717 {
1718 	struct write_context *wc = context;
1719 
1720 	if (wc->no_wait && test_bit(B_WRITING, &b->state))
1721 		return IT_COMPLETE;
1722 
1723 	__write_dirty_buffer(b, wc->write_list);
1724 	return IT_NEXT;
1725 }
1726 
__write_dirty_buffers_async(struct dm_bufio_client * c,int no_wait,struct list_head * write_list)1727 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1728 					struct list_head *write_list)
1729 {
1730 	struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1731 
1732 	__move_clean_buffers(c);
1733 	cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1734 }
1735 
1736 /*
1737  * Check if we're over watermark.
1738  * If we are over threshold_buffers, start freeing buffers.
1739  * If we're over "limit_buffers", block until we get under the limit.
1740  */
__check_watermark(struct dm_bufio_client * c,struct list_head * write_list)1741 static void __check_watermark(struct dm_bufio_client *c,
1742 			      struct list_head *write_list)
1743 {
1744 	if (cache_count(&c->cache, LIST_DIRTY) >
1745 	    cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1746 		__write_dirty_buffers_async(c, 1, write_list);
1747 }
1748 
1749 /*
1750  *--------------------------------------------------------------
1751  * Getting a buffer
1752  *--------------------------------------------------------------
1753  */
1754 
cache_put_and_wake(struct dm_bufio_client * c,struct dm_buffer * b)1755 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1756 {
1757 	/*
1758 	 * Relying on waitqueue_active() is racey, but we sleep
1759 	 * with schedule_timeout anyway.
1760 	 */
1761 	if (cache_put(&c->cache, b) &&
1762 	    unlikely(waitqueue_active(&c->free_buffer_wait)))
1763 		wake_up(&c->free_buffer_wait);
1764 }
1765 
1766 /*
1767  * This assumes you have already checked the cache to see if the buffer
1768  * is already present (it will recheck after dropping the lock for allocation).
1769  */
__bufio_new(struct dm_bufio_client * c,sector_t block,enum new_flag nf,int * need_submit,struct list_head * write_list)1770 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1771 				     enum new_flag nf, int *need_submit,
1772 				     struct list_head *write_list)
1773 {
1774 	struct dm_buffer *b, *new_b = NULL;
1775 
1776 	*need_submit = 0;
1777 
1778 	/* This can't be called with NF_GET */
1779 	if (WARN_ON_ONCE(nf == NF_GET))
1780 		return NULL;
1781 
1782 	new_b = __alloc_buffer_wait(c, nf);
1783 	if (!new_b)
1784 		return NULL;
1785 
1786 	/*
1787 	 * We've had a period where the mutex was unlocked, so need to
1788 	 * recheck the buffer tree.
1789 	 */
1790 	b = cache_get(&c->cache, block);
1791 	if (b) {
1792 		__free_buffer_wake(new_b);
1793 		goto found_buffer;
1794 	}
1795 
1796 	__check_watermark(c, write_list);
1797 
1798 	b = new_b;
1799 	atomic_set(&b->hold_count, 1);
1800 	WRITE_ONCE(b->last_accessed, jiffies);
1801 	b->block = block;
1802 	b->read_error = 0;
1803 	b->write_error = 0;
1804 	b->list_mode = LIST_CLEAN;
1805 
1806 	if (nf == NF_FRESH)
1807 		b->state = 0;
1808 	else {
1809 		b->state = 1 << B_READING;
1810 		*need_submit = 1;
1811 	}
1812 
1813 	/*
1814 	 * We mustn't insert into the cache until the B_READING state
1815 	 * is set.  Otherwise another thread could get it and use
1816 	 * it before it had been read.
1817 	 */
1818 	cache_insert(&c->cache, b);
1819 
1820 	return b;
1821 
1822 found_buffer:
1823 	if (nf == NF_PREFETCH) {
1824 		cache_put_and_wake(c, b);
1825 		return NULL;
1826 	}
1827 
1828 	/*
1829 	 * Note: it is essential that we don't wait for the buffer to be
1830 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1831 	 * dm_bufio_prefetch can be used in the driver request routine.
1832 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1833 	 * the same buffer, it would deadlock if we waited.
1834 	 */
1835 	if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1836 		cache_put_and_wake(c, b);
1837 		return NULL;
1838 	}
1839 
1840 	return b;
1841 }
1842 
1843 /*
1844  * The endio routine for reading: set the error, clear the bit and wake up
1845  * anyone waiting on the buffer.
1846  */
read_endio(struct dm_buffer * b,blk_status_t status)1847 static void read_endio(struct dm_buffer *b, blk_status_t status)
1848 {
1849 	b->read_error = status;
1850 
1851 	BUG_ON(!test_bit(B_READING, &b->state));
1852 
1853 	smp_mb__before_atomic();
1854 	clear_bit(B_READING, &b->state);
1855 	smp_mb__after_atomic();
1856 
1857 	wake_up_bit(&b->state, B_READING);
1858 }
1859 
1860 /*
1861  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1862  * functions is similar except that dm_bufio_new doesn't read the
1863  * buffer from the disk (assuming that the caller overwrites all the data
1864  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1865  */
new_read(struct dm_bufio_client * c,sector_t block,enum new_flag nf,struct dm_buffer ** bp,unsigned short ioprio)1866 static void *new_read(struct dm_bufio_client *c, sector_t block,
1867 		      enum new_flag nf, struct dm_buffer **bp,
1868 		      unsigned short ioprio)
1869 {
1870 	int need_submit = 0;
1871 	struct dm_buffer *b;
1872 
1873 	LIST_HEAD(write_list);
1874 
1875 	*bp = NULL;
1876 
1877 	/*
1878 	 * Fast path, hopefully the block is already in the cache.  No need
1879 	 * to get the client lock for this.
1880 	 */
1881 	b = cache_get(&c->cache, block);
1882 	if (b) {
1883 		if (nf == NF_PREFETCH) {
1884 			cache_put_and_wake(c, b);
1885 			return NULL;
1886 		}
1887 
1888 		/*
1889 		 * Note: it is essential that we don't wait for the buffer to be
1890 		 * read if dm_bufio_get function is used. Both dm_bufio_get and
1891 		 * dm_bufio_prefetch can be used in the driver request routine.
1892 		 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1893 		 * the same buffer, it would deadlock if we waited.
1894 		 */
1895 		if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1896 			cache_put_and_wake(c, b);
1897 			return NULL;
1898 		}
1899 	}
1900 
1901 	if (!b) {
1902 		if (nf == NF_GET)
1903 			return NULL;
1904 
1905 		dm_bufio_lock(c);
1906 		b = __bufio_new(c, block, nf, &need_submit, &write_list);
1907 		dm_bufio_unlock(c);
1908 	}
1909 
1910 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1911 	if (b && (atomic_read(&b->hold_count) == 1))
1912 		buffer_record_stack(b);
1913 #endif
1914 
1915 	__flush_write_list(&write_list);
1916 
1917 	if (!b)
1918 		return NULL;
1919 
1920 	if (need_submit)
1921 		submit_io(b, REQ_OP_READ, ioprio, read_endio);
1922 
1923 	if (nf != NF_GET)	/* we already tested this condition above */
1924 		wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1925 
1926 	if (b->read_error) {
1927 		int error = blk_status_to_errno(b->read_error);
1928 
1929 		dm_bufio_release(b);
1930 
1931 		return ERR_PTR(error);
1932 	}
1933 
1934 	*bp = b;
1935 
1936 	return b->data;
1937 }
1938 
dm_bufio_get(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1939 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1940 		   struct dm_buffer **bp)
1941 {
1942 	return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT);
1943 }
1944 EXPORT_SYMBOL_GPL(dm_bufio_get);
1945 
__dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp,unsigned short ioprio)1946 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1947 			struct dm_buffer **bp, unsigned short ioprio)
1948 {
1949 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1950 		return ERR_PTR(-EINVAL);
1951 
1952 	return new_read(c, block, NF_READ, bp, ioprio);
1953 }
1954 
dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1955 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1956 		    struct dm_buffer **bp)
1957 {
1958 	return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT);
1959 }
1960 EXPORT_SYMBOL_GPL(dm_bufio_read);
1961 
dm_bufio_read_with_ioprio(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp,unsigned short ioprio)1962 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block,
1963 				struct dm_buffer **bp, unsigned short ioprio)
1964 {
1965 	return __dm_bufio_read(c, block, bp, ioprio);
1966 }
1967 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio);
1968 
dm_bufio_new(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1969 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1970 		   struct dm_buffer **bp)
1971 {
1972 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1973 		return ERR_PTR(-EINVAL);
1974 
1975 	return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT);
1976 }
1977 EXPORT_SYMBOL_GPL(dm_bufio_new);
1978 
__dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks,unsigned short ioprio)1979 static void __dm_bufio_prefetch(struct dm_bufio_client *c,
1980 			sector_t block, unsigned int n_blocks,
1981 			unsigned short ioprio)
1982 {
1983 	struct blk_plug plug;
1984 
1985 	LIST_HEAD(write_list);
1986 
1987 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1988 		return; /* should never happen */
1989 
1990 	blk_start_plug(&plug);
1991 
1992 	for (; n_blocks--; block++) {
1993 		int need_submit;
1994 		struct dm_buffer *b;
1995 
1996 		b = cache_get(&c->cache, block);
1997 		if (b) {
1998 			/* already in cache */
1999 			cache_put_and_wake(c, b);
2000 			continue;
2001 		}
2002 
2003 		dm_bufio_lock(c);
2004 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
2005 				&write_list);
2006 		if (unlikely(!list_empty(&write_list))) {
2007 			dm_bufio_unlock(c);
2008 			blk_finish_plug(&plug);
2009 			__flush_write_list(&write_list);
2010 			blk_start_plug(&plug);
2011 			dm_bufio_lock(c);
2012 		}
2013 		if (unlikely(b != NULL)) {
2014 			dm_bufio_unlock(c);
2015 
2016 			if (need_submit)
2017 				submit_io(b, REQ_OP_READ, ioprio, read_endio);
2018 			dm_bufio_release(b);
2019 
2020 			cond_resched();
2021 
2022 			if (!n_blocks)
2023 				goto flush_plug;
2024 			dm_bufio_lock(c);
2025 		}
2026 		dm_bufio_unlock(c);
2027 	}
2028 
2029 flush_plug:
2030 	blk_finish_plug(&plug);
2031 }
2032 
dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks)2033 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks)
2034 {
2035 	return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT);
2036 }
2037 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2038 
dm_bufio_prefetch_with_ioprio(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks,unsigned short ioprio)2039 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block,
2040 				unsigned int n_blocks, unsigned short ioprio)
2041 {
2042 	return __dm_bufio_prefetch(c, block, n_blocks, ioprio);
2043 }
2044 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio);
2045 
dm_bufio_release(struct dm_buffer * b)2046 void dm_bufio_release(struct dm_buffer *b)
2047 {
2048 	struct dm_bufio_client *c = b->c;
2049 
2050 	/*
2051 	 * If there were errors on the buffer, and the buffer is not
2052 	 * to be written, free the buffer. There is no point in caching
2053 	 * invalid buffer.
2054 	 */
2055 	if ((b->read_error || b->write_error) &&
2056 	    !test_bit_acquire(B_READING, &b->state) &&
2057 	    !test_bit(B_WRITING, &b->state) &&
2058 	    !test_bit(B_DIRTY, &b->state)) {
2059 		dm_bufio_lock(c);
2060 
2061 		/* cache remove can fail if there are other holders */
2062 		if (cache_remove(&c->cache, b)) {
2063 			__free_buffer_wake(b);
2064 			dm_bufio_unlock(c);
2065 			return;
2066 		}
2067 
2068 		dm_bufio_unlock(c);
2069 	}
2070 
2071 	cache_put_and_wake(c, b);
2072 }
2073 EXPORT_SYMBOL_GPL(dm_bufio_release);
2074 
dm_bufio_mark_partial_buffer_dirty(struct dm_buffer * b,unsigned int start,unsigned int end)2075 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2076 					unsigned int start, unsigned int end)
2077 {
2078 	struct dm_bufio_client *c = b->c;
2079 
2080 	BUG_ON(start >= end);
2081 	BUG_ON(end > b->c->block_size);
2082 
2083 	dm_bufio_lock(c);
2084 
2085 	BUG_ON(test_bit(B_READING, &b->state));
2086 
2087 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
2088 		b->dirty_start = start;
2089 		b->dirty_end = end;
2090 		cache_mark(&c->cache, b, LIST_DIRTY);
2091 	} else {
2092 		if (start < b->dirty_start)
2093 			b->dirty_start = start;
2094 		if (end > b->dirty_end)
2095 			b->dirty_end = end;
2096 	}
2097 
2098 	dm_bufio_unlock(c);
2099 }
2100 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2101 
dm_bufio_mark_buffer_dirty(struct dm_buffer * b)2102 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2103 {
2104 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2105 }
2106 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2107 
dm_bufio_write_dirty_buffers_async(struct dm_bufio_client * c)2108 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2109 {
2110 	LIST_HEAD(write_list);
2111 
2112 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2113 		return; /* should never happen */
2114 
2115 	dm_bufio_lock(c);
2116 	__write_dirty_buffers_async(c, 0, &write_list);
2117 	dm_bufio_unlock(c);
2118 	__flush_write_list(&write_list);
2119 }
2120 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2121 
2122 /*
2123  * For performance, it is essential that the buffers are written asynchronously
2124  * and simultaneously (so that the block layer can merge the writes) and then
2125  * waited upon.
2126  *
2127  * Finally, we flush hardware disk cache.
2128  */
is_writing(struct lru_entry * e,void * context)2129 static bool is_writing(struct lru_entry *e, void *context)
2130 {
2131 	struct dm_buffer *b = le_to_buffer(e);
2132 
2133 	return test_bit(B_WRITING, &b->state);
2134 }
2135 
dm_bufio_write_dirty_buffers(struct dm_bufio_client * c)2136 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2137 {
2138 	int a, f;
2139 	unsigned long nr_buffers;
2140 	struct lru_entry *e;
2141 	struct lru_iter it;
2142 
2143 	LIST_HEAD(write_list);
2144 
2145 	dm_bufio_lock(c);
2146 	__write_dirty_buffers_async(c, 0, &write_list);
2147 	dm_bufio_unlock(c);
2148 	__flush_write_list(&write_list);
2149 	dm_bufio_lock(c);
2150 
2151 	nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2152 	lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2153 	while ((e = lru_iter_next(&it, is_writing, c))) {
2154 		struct dm_buffer *b = le_to_buffer(e);
2155 		__cache_inc_buffer(b);
2156 
2157 		BUG_ON(test_bit(B_READING, &b->state));
2158 
2159 		if (nr_buffers) {
2160 			nr_buffers--;
2161 			dm_bufio_unlock(c);
2162 			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2163 			dm_bufio_lock(c);
2164 		} else {
2165 			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2166 		}
2167 
2168 		if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2169 			cache_mark(&c->cache, b, LIST_CLEAN);
2170 
2171 		cache_put_and_wake(c, b);
2172 
2173 		cond_resched();
2174 	}
2175 	lru_iter_end(&it);
2176 
2177 	wake_up(&c->free_buffer_wait);
2178 	dm_bufio_unlock(c);
2179 
2180 	a = xchg(&c->async_write_error, 0);
2181 	f = dm_bufio_issue_flush(c);
2182 	if (a)
2183 		return a;
2184 
2185 	return f;
2186 }
2187 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2188 
2189 /*
2190  * Use dm-io to send an empty barrier to flush the device.
2191  */
dm_bufio_issue_flush(struct dm_bufio_client * c)2192 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2193 {
2194 	struct dm_io_request io_req = {
2195 		.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2196 		.mem.type = DM_IO_KMEM,
2197 		.mem.ptr.addr = NULL,
2198 		.client = c->dm_io,
2199 	};
2200 	struct dm_io_region io_reg = {
2201 		.bdev = c->bdev,
2202 		.sector = 0,
2203 		.count = 0,
2204 	};
2205 
2206 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2207 		return -EINVAL;
2208 
2209 	return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2210 }
2211 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2212 
2213 /*
2214  * Use dm-io to send a discard request to flush the device.
2215  */
dm_bufio_issue_discard(struct dm_bufio_client * c,sector_t block,sector_t count)2216 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2217 {
2218 	struct dm_io_request io_req = {
2219 		.bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2220 		.mem.type = DM_IO_KMEM,
2221 		.mem.ptr.addr = NULL,
2222 		.client = c->dm_io,
2223 	};
2224 	struct dm_io_region io_reg = {
2225 		.bdev = c->bdev,
2226 		.sector = block_to_sector(c, block),
2227 		.count = block_to_sector(c, count),
2228 	};
2229 
2230 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2231 		return -EINVAL; /* discards are optional */
2232 
2233 	return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2234 }
2235 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2236 
forget_buffer(struct dm_bufio_client * c,sector_t block)2237 static void forget_buffer(struct dm_bufio_client *c, sector_t block)
2238 {
2239 	struct dm_buffer *b;
2240 
2241 	b = cache_get(&c->cache, block);
2242 	if (b) {
2243 		if (likely(!smp_load_acquire(&b->state))) {
2244 			if (cache_remove(&c->cache, b))
2245 				__free_buffer_wake(b);
2246 			else
2247 				cache_put_and_wake(c, b);
2248 		} else {
2249 			cache_put_and_wake(c, b);
2250 		}
2251 	}
2252 }
2253 
2254 /*
2255  * Free the given buffer.
2256  *
2257  * This is just a hint, if the buffer is in use or dirty, this function
2258  * does nothing.
2259  */
dm_bufio_forget(struct dm_bufio_client * c,sector_t block)2260 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2261 {
2262 	dm_bufio_lock(c);
2263 	forget_buffer(c, block);
2264 	dm_bufio_unlock(c);
2265 }
2266 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2267 
idle(struct dm_buffer * b,void * context)2268 static enum evict_result idle(struct dm_buffer *b, void *context)
2269 {
2270 	return b->state ? ER_DONT_EVICT : ER_EVICT;
2271 }
2272 
dm_bufio_forget_buffers(struct dm_bufio_client * c,sector_t block,sector_t n_blocks)2273 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2274 {
2275 	dm_bufio_lock(c);
2276 	cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2277 	dm_bufio_unlock(c);
2278 }
2279 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2280 
dm_bufio_set_minimum_buffers(struct dm_bufio_client * c,unsigned int n)2281 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2282 {
2283 	c->minimum_buffers = n;
2284 }
2285 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2286 
dm_bufio_get_block_size(struct dm_bufio_client * c)2287 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2288 {
2289 	return c->block_size;
2290 }
2291 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2292 
dm_bufio_get_device_size(struct dm_bufio_client * c)2293 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2294 {
2295 	sector_t s = bdev_nr_sectors(c->bdev);
2296 
2297 	if (s >= c->start)
2298 		s -= c->start;
2299 	else
2300 		s = 0;
2301 	if (likely(c->sectors_per_block_bits >= 0))
2302 		s >>= c->sectors_per_block_bits;
2303 	else
2304 		sector_div(s, c->block_size >> SECTOR_SHIFT);
2305 	return s;
2306 }
2307 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2308 
dm_bufio_get_dm_io_client(struct dm_bufio_client * c)2309 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2310 {
2311 	return c->dm_io;
2312 }
2313 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2314 
dm_bufio_get_block_number(struct dm_buffer * b)2315 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2316 {
2317 	return b->block;
2318 }
2319 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2320 
dm_bufio_get_block_data(struct dm_buffer * b)2321 void *dm_bufio_get_block_data(struct dm_buffer *b)
2322 {
2323 	return b->data;
2324 }
2325 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2326 
dm_bufio_get_aux_data(struct dm_buffer * b)2327 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2328 {
2329 	return b + 1;
2330 }
2331 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2332 
dm_bufio_get_client(struct dm_buffer * b)2333 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2334 {
2335 	return b->c;
2336 }
2337 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2338 
warn_leak(struct dm_buffer * b,void * context)2339 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2340 {
2341 	bool *warned = context;
2342 
2343 	WARN_ON(!(*warned));
2344 	*warned = true;
2345 	DMERR("leaked buffer %llx, hold count %u, list %d",
2346 	      (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2347 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2348 	stack_trace_print(b->stack_entries, b->stack_len, 1);
2349 	/* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2350 	atomic_set(&b->hold_count, 0);
2351 #endif
2352 	return IT_NEXT;
2353 }
2354 
drop_buffers(struct dm_bufio_client * c)2355 static void drop_buffers(struct dm_bufio_client *c)
2356 {
2357 	int i;
2358 	struct dm_buffer *b;
2359 
2360 	if (WARN_ON(dm_bufio_in_request()))
2361 		return; /* should never happen */
2362 
2363 	/*
2364 	 * An optimization so that the buffers are not written one-by-one.
2365 	 */
2366 	dm_bufio_write_dirty_buffers_async(c);
2367 
2368 	dm_bufio_lock(c);
2369 
2370 	while ((b = __get_unclaimed_buffer(c)))
2371 		__free_buffer_wake(b);
2372 
2373 	for (i = 0; i < LIST_SIZE; i++) {
2374 		bool warned = false;
2375 
2376 		cache_iterate(&c->cache, i, warn_leak, &warned);
2377 	}
2378 
2379 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2380 	while ((b = __get_unclaimed_buffer(c)))
2381 		__free_buffer_wake(b);
2382 #endif
2383 
2384 	for (i = 0; i < LIST_SIZE; i++)
2385 		WARN_ON(cache_count(&c->cache, i));
2386 
2387 	dm_bufio_unlock(c);
2388 }
2389 
get_retain_buffers(struct dm_bufio_client * c)2390 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2391 {
2392 	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2393 
2394 	if (likely(c->sectors_per_block_bits >= 0))
2395 		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2396 	else
2397 		retain_bytes /= c->block_size;
2398 
2399 	return retain_bytes;
2400 }
2401 
__scan(struct dm_bufio_client * c)2402 static void __scan(struct dm_bufio_client *c)
2403 {
2404 	int l;
2405 	struct dm_buffer *b;
2406 	unsigned long freed = 0;
2407 	unsigned long retain_target = get_retain_buffers(c);
2408 	unsigned long count = cache_total(&c->cache);
2409 
2410 	for (l = 0; l < LIST_SIZE; l++) {
2411 		while (true) {
2412 			if (count - freed <= retain_target)
2413 				atomic_long_set(&c->need_shrink, 0);
2414 			if (!atomic_long_read(&c->need_shrink))
2415 				break;
2416 
2417 			b = cache_evict(&c->cache, l,
2418 					l == LIST_CLEAN ? is_clean : is_dirty, c);
2419 			if (!b)
2420 				break;
2421 
2422 			__make_buffer_clean(b);
2423 			__free_buffer_wake(b);
2424 
2425 			atomic_long_dec(&c->need_shrink);
2426 			freed++;
2427 			cond_resched();
2428 		}
2429 	}
2430 }
2431 
shrink_work(struct work_struct * w)2432 static void shrink_work(struct work_struct *w)
2433 {
2434 	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2435 
2436 	dm_bufio_lock(c);
2437 	__scan(c);
2438 	dm_bufio_unlock(c);
2439 }
2440 
dm_bufio_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)2441 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2442 {
2443 	struct dm_bufio_client *c;
2444 
2445 	c = shrink->private_data;
2446 	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2447 	queue_work(dm_bufio_wq, &c->shrink_work);
2448 
2449 	return sc->nr_to_scan;
2450 }
2451 
dm_bufio_shrink_count(struct shrinker * shrink,struct shrink_control * sc)2452 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2453 {
2454 	struct dm_bufio_client *c = shrink->private_data;
2455 	unsigned long count = cache_total(&c->cache);
2456 	unsigned long retain_target = get_retain_buffers(c);
2457 	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2458 
2459 	if (unlikely(count < retain_target))
2460 		count = 0;
2461 	else
2462 		count -= retain_target;
2463 
2464 	if (unlikely(count < queued_for_cleanup))
2465 		count = 0;
2466 	else
2467 		count -= queued_for_cleanup;
2468 
2469 	return count;
2470 }
2471 
2472 /*
2473  * Create the buffering interface
2474  */
dm_bufio_client_create(struct block_device * bdev,unsigned int block_size,unsigned int reserved_buffers,unsigned int aux_size,void (* alloc_callback)(struct dm_buffer *),void (* write_callback)(struct dm_buffer *),unsigned int flags)2475 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2476 					       unsigned int reserved_buffers, unsigned int aux_size,
2477 					       void (*alloc_callback)(struct dm_buffer *),
2478 					       void (*write_callback)(struct dm_buffer *),
2479 					       unsigned int flags)
2480 {
2481 	int r;
2482 	unsigned int num_locks;
2483 	struct dm_bufio_client *c;
2484 	char slab_name[64];
2485 	static atomic_t seqno = ATOMIC_INIT(0);
2486 
2487 	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2488 		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2489 		r = -EINVAL;
2490 		goto bad_client;
2491 	}
2492 
2493 	num_locks = dm_num_hash_locks();
2494 	c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2495 	if (!c) {
2496 		r = -ENOMEM;
2497 		goto bad_client;
2498 	}
2499 	cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2500 
2501 	c->bdev = bdev;
2502 	c->block_size = block_size;
2503 	if (is_power_of_2(block_size))
2504 		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2505 	else
2506 		c->sectors_per_block_bits = -1;
2507 
2508 	c->alloc_callback = alloc_callback;
2509 	c->write_callback = write_callback;
2510 
2511 	if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2512 		c->no_sleep = true;
2513 		static_branch_inc(&no_sleep_enabled);
2514 	}
2515 
2516 	mutex_init(&c->lock);
2517 	spin_lock_init(&c->spinlock);
2518 	INIT_LIST_HEAD(&c->reserved_buffers);
2519 	c->need_reserved_buffers = reserved_buffers;
2520 
2521 	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2522 
2523 	init_waitqueue_head(&c->free_buffer_wait);
2524 	c->async_write_error = 0;
2525 
2526 	c->dm_io = dm_io_client_create();
2527 	if (IS_ERR(c->dm_io)) {
2528 		r = PTR_ERR(c->dm_io);
2529 		goto bad_dm_io;
2530 	}
2531 
2532 	if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) {
2533 		unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2534 
2535 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u",
2536 					block_size, atomic_inc_return(&seqno));
2537 		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2538 						  SLAB_RECLAIM_ACCOUNT, NULL);
2539 		if (!c->slab_cache) {
2540 			r = -ENOMEM;
2541 			goto bad;
2542 		}
2543 	}
2544 	if (aux_size)
2545 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u",
2546 					aux_size, atomic_inc_return(&seqno));
2547 	else
2548 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u",
2549 					atomic_inc_return(&seqno));
2550 	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2551 					   0, SLAB_RECLAIM_ACCOUNT, NULL);
2552 	if (!c->slab_buffer) {
2553 		r = -ENOMEM;
2554 		goto bad;
2555 	}
2556 
2557 	while (c->need_reserved_buffers) {
2558 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2559 
2560 		if (!b) {
2561 			r = -ENOMEM;
2562 			goto bad;
2563 		}
2564 		__free_buffer_wake(b);
2565 	}
2566 
2567 	INIT_WORK(&c->shrink_work, shrink_work);
2568 	atomic_long_set(&c->need_shrink, 0);
2569 
2570 	c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
2571 				     MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2572 	if (!c->shrinker) {
2573 		r = -ENOMEM;
2574 		goto bad;
2575 	}
2576 
2577 	c->shrinker->count_objects = dm_bufio_shrink_count;
2578 	c->shrinker->scan_objects = dm_bufio_shrink_scan;
2579 	c->shrinker->seeks = 1;
2580 	c->shrinker->batch = 0;
2581 	c->shrinker->private_data = c;
2582 
2583 	shrinker_register(c->shrinker);
2584 
2585 	mutex_lock(&dm_bufio_clients_lock);
2586 	dm_bufio_client_count++;
2587 	list_add(&c->client_list, &dm_bufio_all_clients);
2588 	__cache_size_refresh();
2589 	mutex_unlock(&dm_bufio_clients_lock);
2590 
2591 	return c;
2592 
2593 bad:
2594 	while (!list_empty(&c->reserved_buffers)) {
2595 		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2596 
2597 		list_del(&b->lru.list);
2598 		free_buffer(b);
2599 	}
2600 	kmem_cache_destroy(c->slab_cache);
2601 	kmem_cache_destroy(c->slab_buffer);
2602 	dm_io_client_destroy(c->dm_io);
2603 bad_dm_io:
2604 	mutex_destroy(&c->lock);
2605 	if (c->no_sleep)
2606 		static_branch_dec(&no_sleep_enabled);
2607 	kfree(c);
2608 bad_client:
2609 	return ERR_PTR(r);
2610 }
2611 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2612 
2613 /*
2614  * Free the buffering interface.
2615  * It is required that there are no references on any buffers.
2616  */
dm_bufio_client_destroy(struct dm_bufio_client * c)2617 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2618 {
2619 	unsigned int i;
2620 
2621 	drop_buffers(c);
2622 
2623 	shrinker_free(c->shrinker);
2624 	flush_work(&c->shrink_work);
2625 
2626 	mutex_lock(&dm_bufio_clients_lock);
2627 
2628 	list_del(&c->client_list);
2629 	dm_bufio_client_count--;
2630 	__cache_size_refresh();
2631 
2632 	mutex_unlock(&dm_bufio_clients_lock);
2633 
2634 	WARN_ON(c->need_reserved_buffers);
2635 
2636 	while (!list_empty(&c->reserved_buffers)) {
2637 		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2638 
2639 		list_del(&b->lru.list);
2640 		free_buffer(b);
2641 	}
2642 
2643 	for (i = 0; i < LIST_SIZE; i++)
2644 		if (cache_count(&c->cache, i))
2645 			DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2646 
2647 	for (i = 0; i < LIST_SIZE; i++)
2648 		WARN_ON(cache_count(&c->cache, i));
2649 
2650 	cache_destroy(&c->cache);
2651 	kmem_cache_destroy(c->slab_cache);
2652 	kmem_cache_destroy(c->slab_buffer);
2653 	dm_io_client_destroy(c->dm_io);
2654 	mutex_destroy(&c->lock);
2655 	if (c->no_sleep)
2656 		static_branch_dec(&no_sleep_enabled);
2657 	kfree(c);
2658 }
2659 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2660 
dm_bufio_client_reset(struct dm_bufio_client * c)2661 void dm_bufio_client_reset(struct dm_bufio_client *c)
2662 {
2663 	drop_buffers(c);
2664 	flush_work(&c->shrink_work);
2665 }
2666 EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2667 
dm_bufio_set_sector_offset(struct dm_bufio_client * c,sector_t start)2668 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2669 {
2670 	c->start = start;
2671 }
2672 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2673 
2674 /*--------------------------------------------------------------*/
2675 
get_max_age_hz(void)2676 static unsigned int get_max_age_hz(void)
2677 {
2678 	unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2679 
2680 	if (max_age > UINT_MAX / HZ)
2681 		max_age = UINT_MAX / HZ;
2682 
2683 	return max_age * HZ;
2684 }
2685 
older_than(struct dm_buffer * b,unsigned long age_hz)2686 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2687 {
2688 	return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2689 }
2690 
2691 struct evict_params {
2692 	gfp_t gfp;
2693 	unsigned long age_hz;
2694 
2695 	/*
2696 	 * This gets updated with the largest last_accessed (ie. most
2697 	 * recently used) of the evicted buffers.  It will not be reinitialised
2698 	 * by __evict_many(), so you can use it across multiple invocations.
2699 	 */
2700 	unsigned long last_accessed;
2701 };
2702 
2703 /*
2704  * We may not be able to evict this buffer if IO pending or the client
2705  * is still using it.
2706  *
2707  * And if GFP_NOFS is used, we must not do any I/O because we hold
2708  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2709  * rerouted to different bufio client.
2710  */
select_for_evict(struct dm_buffer * b,void * context)2711 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2712 {
2713 	struct evict_params *params = context;
2714 
2715 	if (!(params->gfp & __GFP_FS) ||
2716 	    (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2717 		if (test_bit_acquire(B_READING, &b->state) ||
2718 		    test_bit(B_WRITING, &b->state) ||
2719 		    test_bit(B_DIRTY, &b->state))
2720 			return ER_DONT_EVICT;
2721 	}
2722 
2723 	return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
2724 }
2725 
__evict_many(struct dm_bufio_client * c,struct evict_params * params,int list_mode,unsigned long max_count)2726 static unsigned long __evict_many(struct dm_bufio_client *c,
2727 				  struct evict_params *params,
2728 				  int list_mode, unsigned long max_count)
2729 {
2730 	unsigned long count;
2731 	unsigned long last_accessed;
2732 	struct dm_buffer *b;
2733 
2734 	for (count = 0; count < max_count; count++) {
2735 		b = cache_evict(&c->cache, list_mode, select_for_evict, params);
2736 		if (!b)
2737 			break;
2738 
2739 		last_accessed = READ_ONCE(b->last_accessed);
2740 		if (time_after_eq(params->last_accessed, last_accessed))
2741 			params->last_accessed = last_accessed;
2742 
2743 		__make_buffer_clean(b);
2744 		__free_buffer_wake(b);
2745 
2746 		cond_resched();
2747 	}
2748 
2749 	return count;
2750 }
2751 
evict_old_buffers(struct dm_bufio_client * c,unsigned long age_hz)2752 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2753 {
2754 	struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2755 	unsigned long retain = get_retain_buffers(c);
2756 	unsigned long count;
2757 	LIST_HEAD(write_list);
2758 
2759 	dm_bufio_lock(c);
2760 
2761 	__check_watermark(c, &write_list);
2762 	if (unlikely(!list_empty(&write_list))) {
2763 		dm_bufio_unlock(c);
2764 		__flush_write_list(&write_list);
2765 		dm_bufio_lock(c);
2766 	}
2767 
2768 	count = cache_total(&c->cache);
2769 	if (count > retain)
2770 		__evict_many(c, &params, LIST_CLEAN, count - retain);
2771 
2772 	dm_bufio_unlock(c);
2773 }
2774 
cleanup_old_buffers(void)2775 static void cleanup_old_buffers(void)
2776 {
2777 	unsigned long max_age_hz = get_max_age_hz();
2778 	struct dm_bufio_client *c;
2779 
2780 	mutex_lock(&dm_bufio_clients_lock);
2781 
2782 	__cache_size_refresh();
2783 
2784 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2785 		evict_old_buffers(c, max_age_hz);
2786 
2787 	mutex_unlock(&dm_bufio_clients_lock);
2788 }
2789 
work_fn(struct work_struct * w)2790 static void work_fn(struct work_struct *w)
2791 {
2792 	cleanup_old_buffers();
2793 
2794 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2795 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2796 }
2797 
2798 /*--------------------------------------------------------------*/
2799 
2800 /*
2801  * Global cleanup tries to evict the oldest buffers from across _all_
2802  * the clients.  It does this by repeatedly evicting a few buffers from
2803  * the client that holds the oldest buffer.  It's approximate, but hopefully
2804  * good enough.
2805  */
__pop_client(void)2806 static struct dm_bufio_client *__pop_client(void)
2807 {
2808 	struct list_head *h;
2809 
2810 	if (list_empty(&dm_bufio_all_clients))
2811 		return NULL;
2812 
2813 	h = dm_bufio_all_clients.next;
2814 	list_del(h);
2815 	return container_of(h, struct dm_bufio_client, client_list);
2816 }
2817 
2818 /*
2819  * Inserts the client in the global client list based on its
2820  * 'oldest_buffer' field.
2821  */
__insert_client(struct dm_bufio_client * new_client)2822 static void __insert_client(struct dm_bufio_client *new_client)
2823 {
2824 	struct dm_bufio_client *c;
2825 	struct list_head *h = dm_bufio_all_clients.next;
2826 
2827 	while (h != &dm_bufio_all_clients) {
2828 		c = container_of(h, struct dm_bufio_client, client_list);
2829 		if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2830 			break;
2831 		h = h->next;
2832 	}
2833 
2834 	list_add_tail(&new_client->client_list, h);
2835 }
2836 
__evict_a_few(unsigned long nr_buffers)2837 static unsigned long __evict_a_few(unsigned long nr_buffers)
2838 {
2839 	unsigned long count;
2840 	struct dm_bufio_client *c;
2841 	struct evict_params params = {
2842 		.gfp = GFP_KERNEL,
2843 		.age_hz = 0,
2844 		/* set to jiffies in case there are no buffers in this client */
2845 		.last_accessed = jiffies
2846 	};
2847 
2848 	c = __pop_client();
2849 	if (!c)
2850 		return 0;
2851 
2852 	dm_bufio_lock(c);
2853 	count = __evict_many(c, &params, LIST_CLEAN, nr_buffers);
2854 	dm_bufio_unlock(c);
2855 
2856 	if (count)
2857 		c->oldest_buffer = params.last_accessed;
2858 	__insert_client(c);
2859 
2860 	return count;
2861 }
2862 
check_watermarks(void)2863 static void check_watermarks(void)
2864 {
2865 	LIST_HEAD(write_list);
2866 	struct dm_bufio_client *c;
2867 
2868 	mutex_lock(&dm_bufio_clients_lock);
2869 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2870 		dm_bufio_lock(c);
2871 		__check_watermark(c, &write_list);
2872 		dm_bufio_unlock(c);
2873 	}
2874 	mutex_unlock(&dm_bufio_clients_lock);
2875 
2876 	__flush_write_list(&write_list);
2877 }
2878 
evict_old(void)2879 static void evict_old(void)
2880 {
2881 	unsigned long threshold = dm_bufio_cache_size -
2882 		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2883 
2884 	mutex_lock(&dm_bufio_clients_lock);
2885 	while (dm_bufio_current_allocated > threshold) {
2886 		if (!__evict_a_few(64))
2887 			break;
2888 		cond_resched();
2889 	}
2890 	mutex_unlock(&dm_bufio_clients_lock);
2891 }
2892 
do_global_cleanup(struct work_struct * w)2893 static void do_global_cleanup(struct work_struct *w)
2894 {
2895 	check_watermarks();
2896 	evict_old();
2897 }
2898 
2899 /*
2900  *--------------------------------------------------------------
2901  * Module setup
2902  *--------------------------------------------------------------
2903  */
2904 
2905 /*
2906  * This is called only once for the whole dm_bufio module.
2907  * It initializes memory limit.
2908  */
dm_bufio_init(void)2909 static int __init dm_bufio_init(void)
2910 {
2911 	__u64 mem;
2912 
2913 	dm_bufio_allocated_kmem_cache = 0;
2914 	dm_bufio_allocated_kmalloc = 0;
2915 	dm_bufio_allocated_get_free_pages = 0;
2916 	dm_bufio_allocated_vmalloc = 0;
2917 	dm_bufio_current_allocated = 0;
2918 
2919 	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2920 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2921 
2922 	if (mem > ULONG_MAX)
2923 		mem = ULONG_MAX;
2924 
2925 #ifdef CONFIG_MMU
2926 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2927 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2928 #endif
2929 
2930 	dm_bufio_default_cache_size = mem;
2931 
2932 	mutex_lock(&dm_bufio_clients_lock);
2933 	__cache_size_refresh();
2934 	mutex_unlock(&dm_bufio_clients_lock);
2935 
2936 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2937 	if (!dm_bufio_wq)
2938 		return -ENOMEM;
2939 
2940 	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2941 	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2942 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2943 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2944 
2945 	return 0;
2946 }
2947 
2948 /*
2949  * This is called once when unloading the dm_bufio module.
2950  */
dm_bufio_exit(void)2951 static void __exit dm_bufio_exit(void)
2952 {
2953 	int bug = 0;
2954 
2955 	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2956 	destroy_workqueue(dm_bufio_wq);
2957 
2958 	if (dm_bufio_client_count) {
2959 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2960 			__func__, dm_bufio_client_count);
2961 		bug = 1;
2962 	}
2963 
2964 	if (dm_bufio_current_allocated) {
2965 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2966 			__func__, dm_bufio_current_allocated);
2967 		bug = 1;
2968 	}
2969 
2970 	if (dm_bufio_allocated_get_free_pages) {
2971 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2972 		       __func__, dm_bufio_allocated_get_free_pages);
2973 		bug = 1;
2974 	}
2975 
2976 	if (dm_bufio_allocated_vmalloc) {
2977 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2978 		       __func__, dm_bufio_allocated_vmalloc);
2979 		bug = 1;
2980 	}
2981 
2982 	WARN_ON(bug); /* leaks are not worth crashing the system */
2983 }
2984 
2985 module_init(dm_bufio_init)
2986 module_exit(dm_bufio_exit)
2987 
2988 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2989 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2990 
2991 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2992 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2993 
2994 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2995 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2996 
2997 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
2998 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2999 
3000 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
3001 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
3002 
3003 module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444);
3004 MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc");
3005 
3006 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
3007 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
3008 
3009 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
3010 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
3011 
3012 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
3013 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
3014 
3015 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>");
3016 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
3017 MODULE_LICENSE("GPL");
3018