xref: /linux/security/selinux/avc.c (revision 57bc683896c55ff348e1a592175e76f9478035d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the kernel access vector cache (AVC).
4  *
5  * Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
9  *	Replaced the avc_lock spinlock by RCU.
10  *
11  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12  */
13 #include <linux/types.h>
14 #include <linux/stddef.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/dcache.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/percpu.h>
22 #include <linux/list.h>
23 #include <net/sock.h>
24 #include <linux/un.h>
25 #include <net/af_unix.h>
26 #include <linux/ip.h>
27 #include <linux/audit.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include "avc.h"
31 #include "avc_ss.h"
32 #include "classmap.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/avc.h>
36 
37 #define AVC_CACHE_SLOTS			512
38 #define AVC_DEF_CACHE_THRESHOLD		512
39 #define AVC_CACHE_RECLAIM		16
40 
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field)	do {} while (0)
45 #endif
46 
47 struct avc_entry {
48 	u32			ssid;
49 	u32			tsid;
50 	u16			tclass;
51 	struct av_decision	avd;
52 	struct avc_xperms_node	*xp_node;
53 };
54 
55 struct avc_node {
56 	struct avc_entry	ae;
57 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
58 	struct rcu_head		rhead;
59 };
60 
61 struct avc_xperms_decision_node {
62 	struct extended_perms_decision xpd;
63 	struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65 
66 struct avc_xperms_node {
67 	struct extended_perms xp;
68 	struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70 
71 struct avc_cache {
72 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
75 	atomic_t		active_nodes;
76 	u32			latest_notif;	/* latest revocation notification */
77 };
78 
79 struct avc_callback_node {
80 	int (*callback) (u32 event);
81 	u32 events;
82 	struct avc_callback_node *next;
83 };
84 
85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
87 #endif
88 
89 struct selinux_avc {
90 	unsigned int avc_cache_threshold;
91 	struct avc_cache avc_cache;
92 };
93 
94 static struct selinux_avc selinux_avc;
95 
selinux_avc_init(void)96 void selinux_avc_init(void)
97 {
98 	int i;
99 
100 	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
101 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
102 		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
103 		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
104 	}
105 	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
106 	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
107 }
108 
avc_get_cache_threshold(void)109 unsigned int avc_get_cache_threshold(void)
110 {
111 	return selinux_avc.avc_cache_threshold;
112 }
113 
avc_set_cache_threshold(unsigned int cache_threshold)114 void avc_set_cache_threshold(unsigned int cache_threshold)
115 {
116 	selinux_avc.avc_cache_threshold = cache_threshold;
117 }
118 
119 static struct avc_callback_node *avc_callbacks __ro_after_init;
120 static struct kmem_cache *avc_node_cachep __ro_after_init;
121 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
122 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
123 static struct kmem_cache *avc_xperms_cachep __ro_after_init;
124 
avc_hash(u32 ssid,u32 tsid,u16 tclass)125 static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass)
126 {
127 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
128 }
129 
130 /**
131  * avc_init - Initialize the AVC.
132  *
133  * Initialize the access vector cache.
134  */
avc_init(void)135 void __init avc_init(void)
136 {
137 	avc_node_cachep = KMEM_CACHE(avc_node, SLAB_PANIC);
138 	avc_xperms_cachep = KMEM_CACHE(avc_xperms_node, SLAB_PANIC);
139 	avc_xperms_decision_cachep = KMEM_CACHE(avc_xperms_decision_node, SLAB_PANIC);
140 	avc_xperms_data_cachep = KMEM_CACHE(extended_perms_data, SLAB_PANIC);
141 }
142 
avc_get_hash_stats(char * page)143 int avc_get_hash_stats(char *page)
144 {
145 	int i, chain_len, max_chain_len, slots_used;
146 	struct avc_node *node;
147 	struct hlist_head *head;
148 
149 	rcu_read_lock();
150 
151 	slots_used = 0;
152 	max_chain_len = 0;
153 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
154 		head = &selinux_avc.avc_cache.slots[i];
155 		if (!hlist_empty(head)) {
156 			slots_used++;
157 			chain_len = 0;
158 			hlist_for_each_entry_rcu(node, head, list)
159 				chain_len++;
160 			if (chain_len > max_chain_len)
161 				max_chain_len = chain_len;
162 		}
163 	}
164 
165 	rcu_read_unlock();
166 
167 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
168 			 "longest chain: %d\n",
169 			 atomic_read(&selinux_avc.avc_cache.active_nodes),
170 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
171 }
172 
173 /*
174  * using a linked list for extended_perms_decision lookup because the list is
175  * always small. i.e. less than 5, typically 1
176  */
177 static struct extended_perms_decision *
avc_xperms_decision_lookup(u8 driver,u8 base_perm,struct avc_xperms_node * xp_node)178 avc_xperms_decision_lookup(u8 driver, u8 base_perm,
179 			   struct avc_xperms_node *xp_node)
180 {
181 	struct avc_xperms_decision_node *xpd_node;
182 
183 	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
184 		if (xpd_node->xpd.driver == driver &&
185 		    xpd_node->xpd.base_perm == base_perm)
186 			return &xpd_node->xpd;
187 	}
188 	return NULL;
189 }
190 
191 static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision * xpd,u8 perm,u8 which)192 avc_xperms_has_perm(struct extended_perms_decision *xpd,
193 					u8 perm, u8 which)
194 {
195 	unsigned int rc = 0;
196 
197 	if ((which == XPERMS_ALLOWED) &&
198 			(xpd->used & XPERMS_ALLOWED))
199 		rc = security_xperm_test(xpd->allowed->p, perm);
200 	else if ((which == XPERMS_AUDITALLOW) &&
201 			(xpd->used & XPERMS_AUDITALLOW))
202 		rc = security_xperm_test(xpd->auditallow->p, perm);
203 	else if ((which == XPERMS_DONTAUDIT) &&
204 			(xpd->used & XPERMS_DONTAUDIT))
205 		rc = security_xperm_test(xpd->dontaudit->p, perm);
206 	return rc;
207 }
208 
avc_xperms_allow_perm(struct avc_xperms_node * xp_node,u8 driver,u8 base_perm,u8 perm)209 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
210 				  u8 driver, u8 base_perm, u8 perm)
211 {
212 	struct extended_perms_decision *xpd;
213 	security_xperm_set(xp_node->xp.drivers.p, driver);
214 	xp_node->xp.base_perms |= base_perm;
215 	xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node);
216 	if (xpd && xpd->allowed)
217 		security_xperm_set(xpd->allowed->p, perm);
218 }
219 
avc_xperms_decision_free(struct avc_xperms_decision_node * xpd_node)220 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
221 {
222 	struct extended_perms_decision *xpd;
223 
224 	xpd = &xpd_node->xpd;
225 	if (xpd->allowed)
226 		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
227 	if (xpd->auditallow)
228 		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
229 	if (xpd->dontaudit)
230 		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
231 	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
232 }
233 
avc_xperms_free(struct avc_xperms_node * xp_node)234 static void avc_xperms_free(struct avc_xperms_node *xp_node)
235 {
236 	struct avc_xperms_decision_node *xpd_node, *tmp;
237 
238 	if (!xp_node)
239 		return;
240 
241 	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
242 		list_del(&xpd_node->xpd_list);
243 		avc_xperms_decision_free(xpd_node);
244 	}
245 	kmem_cache_free(avc_xperms_cachep, xp_node);
246 }
247 
avc_copy_xperms_decision(struct extended_perms_decision * dest,struct extended_perms_decision * src)248 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
249 					struct extended_perms_decision *src)
250 {
251 	dest->base_perm = src->base_perm;
252 	dest->driver = src->driver;
253 	dest->used = src->used;
254 	if (dest->used & XPERMS_ALLOWED)
255 		memcpy(dest->allowed->p, src->allowed->p,
256 				sizeof(src->allowed->p));
257 	if (dest->used & XPERMS_AUDITALLOW)
258 		memcpy(dest->auditallow->p, src->auditallow->p,
259 				sizeof(src->auditallow->p));
260 	if (dest->used & XPERMS_DONTAUDIT)
261 		memcpy(dest->dontaudit->p, src->dontaudit->p,
262 				sizeof(src->dontaudit->p));
263 }
264 
265 /*
266  * similar to avc_copy_xperms_decision, but only copy decision
267  * information relevant to this perm
268  */
avc_quick_copy_xperms_decision(u8 perm,struct extended_perms_decision * dest,struct extended_perms_decision * src)269 static inline void avc_quick_copy_xperms_decision(u8 perm,
270 			struct extended_perms_decision *dest,
271 			struct extended_perms_decision *src)
272 {
273 	/*
274 	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
275 	 * command permission
276 	 */
277 	u8 i = perm >> 5;
278 
279 	dest->base_perm = src->base_perm;
280 	dest->used = src->used;
281 	if (dest->used & XPERMS_ALLOWED)
282 		dest->allowed->p[i] = src->allowed->p[i];
283 	if (dest->used & XPERMS_AUDITALLOW)
284 		dest->auditallow->p[i] = src->auditallow->p[i];
285 	if (dest->used & XPERMS_DONTAUDIT)
286 		dest->dontaudit->p[i] = src->dontaudit->p[i];
287 }
288 
289 static struct avc_xperms_decision_node
avc_xperms_decision_alloc(u8 which)290 		*avc_xperms_decision_alloc(u8 which)
291 {
292 	struct avc_xperms_decision_node *xpd_node;
293 	struct extended_perms_decision *xpd;
294 
295 	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
296 	if (!xpd_node)
297 		return NULL;
298 
299 	xpd = &xpd_node->xpd;
300 	if (which & XPERMS_ALLOWED) {
301 		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
302 						 GFP_NOWAIT);
303 		if (!xpd->allowed)
304 			goto error;
305 	}
306 	if (which & XPERMS_AUDITALLOW) {
307 		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
308 						    GFP_NOWAIT);
309 		if (!xpd->auditallow)
310 			goto error;
311 	}
312 	if (which & XPERMS_DONTAUDIT) {
313 		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
314 						   GFP_NOWAIT);
315 		if (!xpd->dontaudit)
316 			goto error;
317 	}
318 	return xpd_node;
319 error:
320 	avc_xperms_decision_free(xpd_node);
321 	return NULL;
322 }
323 
avc_add_xperms_decision(struct avc_node * node,struct extended_perms_decision * src)324 static int avc_add_xperms_decision(struct avc_node *node,
325 			struct extended_perms_decision *src)
326 {
327 	struct avc_xperms_decision_node *dest_xpd;
328 
329 	dest_xpd = avc_xperms_decision_alloc(src->used);
330 	if (!dest_xpd)
331 		return -ENOMEM;
332 	avc_copy_xperms_decision(&dest_xpd->xpd, src);
333 	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
334 	node->ae.xp_node->xp.len++;
335 	return 0;
336 }
337 
avc_xperms_alloc(void)338 static struct avc_xperms_node *avc_xperms_alloc(void)
339 {
340 	struct avc_xperms_node *xp_node;
341 
342 	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
343 	if (!xp_node)
344 		return xp_node;
345 	INIT_LIST_HEAD(&xp_node->xpd_head);
346 	return xp_node;
347 }
348 
avc_xperms_populate(struct avc_node * node,struct avc_xperms_node * src)349 static int avc_xperms_populate(struct avc_node *node,
350 				struct avc_xperms_node *src)
351 {
352 	struct avc_xperms_node *dest;
353 	struct avc_xperms_decision_node *dest_xpd;
354 	struct avc_xperms_decision_node *src_xpd;
355 
356 	if (src->xp.len == 0)
357 		return 0;
358 	dest = avc_xperms_alloc();
359 	if (!dest)
360 		return -ENOMEM;
361 
362 	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
363 	dest->xp.len = src->xp.len;
364 	dest->xp.base_perms = src->xp.base_perms;
365 
366 	/* for each source xpd allocate a destination xpd and copy */
367 	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
368 		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
369 		if (!dest_xpd)
370 			goto error;
371 		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
372 		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
373 	}
374 	node->ae.xp_node = dest;
375 	return 0;
376 error:
377 	avc_xperms_free(dest);
378 	return -ENOMEM;
379 
380 }
381 
avc_xperms_audit_required(u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,u32 * deniedp)382 static inline u32 avc_xperms_audit_required(u32 requested,
383 					struct av_decision *avd,
384 					struct extended_perms_decision *xpd,
385 					u8 perm,
386 					int result,
387 					u32 *deniedp)
388 {
389 	u32 denied, audited;
390 
391 	denied = requested & ~avd->allowed;
392 	if (unlikely(denied)) {
393 		audited = denied & avd->auditdeny;
394 		if (audited && xpd) {
395 			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
396 				audited = 0;
397 		}
398 	} else if (result) {
399 		audited = denied = requested;
400 	} else {
401 		audited = requested & avd->auditallow;
402 		if (audited && xpd) {
403 			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
404 				audited = 0;
405 		}
406 	}
407 
408 	*deniedp = denied;
409 	return audited;
410 }
411 
avc_xperms_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,struct common_audit_data * ad)412 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
413 				   u32 requested, struct av_decision *avd,
414 				   struct extended_perms_decision *xpd,
415 				   u8 perm, int result,
416 				   struct common_audit_data *ad)
417 {
418 	u32 audited, denied;
419 
420 	audited = avc_xperms_audit_required(
421 			requested, avd, xpd, perm, result, &denied);
422 	if (likely(!audited))
423 		return 0;
424 	return slow_avc_audit(ssid, tsid, tclass, requested,
425 			audited, denied, result, ad);
426 }
427 
avc_node_free(struct rcu_head * rhead)428 static void avc_node_free(struct rcu_head *rhead)
429 {
430 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
431 	avc_xperms_free(node->ae.xp_node);
432 	kmem_cache_free(avc_node_cachep, node);
433 	avc_cache_stats_incr(frees);
434 }
435 
avc_node_delete(struct avc_node * node)436 static void avc_node_delete(struct avc_node *node)
437 {
438 	hlist_del_rcu(&node->list);
439 	call_rcu(&node->rhead, avc_node_free);
440 	atomic_dec(&selinux_avc.avc_cache.active_nodes);
441 }
442 
avc_node_kill(struct avc_node * node)443 static void avc_node_kill(struct avc_node *node)
444 {
445 	avc_xperms_free(node->ae.xp_node);
446 	kmem_cache_free(avc_node_cachep, node);
447 	avc_cache_stats_incr(frees);
448 	atomic_dec(&selinux_avc.avc_cache.active_nodes);
449 }
450 
avc_node_replace(struct avc_node * new,struct avc_node * old)451 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
452 {
453 	hlist_replace_rcu(&old->list, &new->list);
454 	call_rcu(&old->rhead, avc_node_free);
455 	atomic_dec(&selinux_avc.avc_cache.active_nodes);
456 }
457 
avc_reclaim_node(void)458 static inline int avc_reclaim_node(void)
459 {
460 	struct avc_node *node;
461 	int hvalue, try, ecx;
462 	unsigned long flags;
463 	struct hlist_head *head;
464 	spinlock_t *lock;
465 
466 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
467 		hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) &
468 			(AVC_CACHE_SLOTS - 1);
469 		head = &selinux_avc.avc_cache.slots[hvalue];
470 		lock = &selinux_avc.avc_cache.slots_lock[hvalue];
471 
472 		if (!spin_trylock_irqsave(lock, flags))
473 			continue;
474 
475 		rcu_read_lock();
476 		hlist_for_each_entry(node, head, list) {
477 			avc_node_delete(node);
478 			avc_cache_stats_incr(reclaims);
479 			ecx++;
480 			if (ecx >= AVC_CACHE_RECLAIM) {
481 				rcu_read_unlock();
482 				spin_unlock_irqrestore(lock, flags);
483 				goto out;
484 			}
485 		}
486 		rcu_read_unlock();
487 		spin_unlock_irqrestore(lock, flags);
488 	}
489 out:
490 	return ecx;
491 }
492 
avc_alloc_node(void)493 static struct avc_node *avc_alloc_node(void)
494 {
495 	struct avc_node *node;
496 
497 	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
498 	if (!node)
499 		goto out;
500 
501 	INIT_HLIST_NODE(&node->list);
502 	avc_cache_stats_incr(allocations);
503 
504 	if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) >
505 	    selinux_avc.avc_cache_threshold)
506 		avc_reclaim_node();
507 
508 out:
509 	return node;
510 }
511 
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)512 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
513 {
514 	node->ae.ssid = ssid;
515 	node->ae.tsid = tsid;
516 	node->ae.tclass = tclass;
517 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
518 }
519 
avc_search_node(u32 ssid,u32 tsid,u16 tclass)520 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
521 {
522 	struct avc_node *node, *ret = NULL;
523 	u32 hvalue;
524 	struct hlist_head *head;
525 
526 	hvalue = avc_hash(ssid, tsid, tclass);
527 	head = &selinux_avc.avc_cache.slots[hvalue];
528 	hlist_for_each_entry_rcu(node, head, list) {
529 		if (ssid == node->ae.ssid &&
530 		    tclass == node->ae.tclass &&
531 		    tsid == node->ae.tsid) {
532 			ret = node;
533 			break;
534 		}
535 	}
536 
537 	return ret;
538 }
539 
540 /**
541  * avc_lookup - Look up an AVC entry.
542  * @ssid: source security identifier
543  * @tsid: target security identifier
544  * @tclass: target security class
545  *
546  * Look up an AVC entry that is valid for the
547  * (@ssid, @tsid), interpreting the permissions
548  * based on @tclass.  If a valid AVC entry exists,
549  * then this function returns the avc_node.
550  * Otherwise, this function returns NULL.
551  */
avc_lookup(u32 ssid,u32 tsid,u16 tclass)552 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
553 {
554 	struct avc_node *node;
555 
556 	avc_cache_stats_incr(lookups);
557 	node = avc_search_node(ssid, tsid, tclass);
558 
559 	if (node)
560 		return node;
561 
562 	avc_cache_stats_incr(misses);
563 	return NULL;
564 }
565 
avc_latest_notif_update(u32 seqno,int is_insert)566 static int avc_latest_notif_update(u32 seqno, int is_insert)
567 {
568 	int ret = 0;
569 	static DEFINE_SPINLOCK(notif_lock);
570 	unsigned long flag;
571 
572 	spin_lock_irqsave(&notif_lock, flag);
573 	if (is_insert) {
574 		if (seqno < selinux_avc.avc_cache.latest_notif) {
575 			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
576 			       seqno, selinux_avc.avc_cache.latest_notif);
577 			ret = -EAGAIN;
578 		}
579 	} else {
580 		if (seqno > selinux_avc.avc_cache.latest_notif)
581 			selinux_avc.avc_cache.latest_notif = seqno;
582 	}
583 	spin_unlock_irqrestore(&notif_lock, flag);
584 
585 	return ret;
586 }
587 
588 /**
589  * avc_insert - Insert an AVC entry.
590  * @ssid: source security identifier
591  * @tsid: target security identifier
592  * @tclass: target security class
593  * @avd: resulting av decision
594  * @xp_node: resulting extended permissions
595  *
596  * Insert an AVC entry for the SID pair
597  * (@ssid, @tsid) and class @tclass.
598  * The access vectors and the sequence number are
599  * normally provided by the security server in
600  * response to a security_compute_av() call.  If the
601  * sequence number @avd->seqno is not less than the latest
602  * revocation notification, then the function copies
603  * the access vectors into a cache entry.
604  */
avc_insert(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)605 static void avc_insert(u32 ssid, u32 tsid, u16 tclass,
606 		       struct av_decision *avd, struct avc_xperms_node *xp_node)
607 {
608 	struct avc_node *pos, *node = NULL;
609 	u32 hvalue;
610 	unsigned long flag;
611 	spinlock_t *lock;
612 	struct hlist_head *head;
613 
614 	if (avc_latest_notif_update(avd->seqno, 1))
615 		return;
616 
617 	node = avc_alloc_node();
618 	if (!node)
619 		return;
620 
621 	avc_node_populate(node, ssid, tsid, tclass, avd);
622 	if (avc_xperms_populate(node, xp_node)) {
623 		avc_node_kill(node);
624 		return;
625 	}
626 
627 	hvalue = avc_hash(ssid, tsid, tclass);
628 	head = &selinux_avc.avc_cache.slots[hvalue];
629 	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
630 	spin_lock_irqsave(lock, flag);
631 	hlist_for_each_entry(pos, head, list) {
632 		if (pos->ae.ssid == ssid &&
633 			pos->ae.tsid == tsid &&
634 			pos->ae.tclass == tclass) {
635 			avc_node_replace(node, pos);
636 			goto found;
637 		}
638 	}
639 	hlist_add_head_rcu(&node->list, head);
640 found:
641 	spin_unlock_irqrestore(lock, flag);
642 }
643 
644 /**
645  * avc_audit_pre_callback - SELinux specific information
646  * will be called by generic audit code
647  * @ab: the audit buffer
648  * @a: audit_data
649  */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)650 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
651 {
652 	struct common_audit_data *ad = a;
653 	struct selinux_audit_data *sad = ad->selinux_audit_data;
654 	u32 av = sad->audited, perm;
655 	const char *const *perms;
656 	u32 i;
657 
658 	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
659 
660 	if (av == 0) {
661 		audit_log_format(ab, " null");
662 		return;
663 	}
664 
665 	perms = secclass_map[sad->tclass-1].perms;
666 
667 	audit_log_format(ab, " {");
668 	i = 0;
669 	perm = 1;
670 	while (i < (sizeof(av) * 8)) {
671 		if ((perm & av) && perms[i]) {
672 			audit_log_format(ab, " %s", perms[i]);
673 			av &= ~perm;
674 		}
675 		i++;
676 		perm <<= 1;
677 	}
678 
679 	if (av)
680 		audit_log_format(ab, " 0x%x", av);
681 
682 	audit_log_format(ab, " } for ");
683 }
684 
685 /**
686  * avc_audit_post_callback - SELinux specific information
687  * will be called by generic audit code
688  * @ab: the audit buffer
689  * @a: audit_data
690  */
avc_audit_post_callback(struct audit_buffer * ab,void * a)691 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
692 {
693 	struct common_audit_data *ad = a;
694 	struct selinux_audit_data *sad = ad->selinux_audit_data;
695 	char *scontext = NULL;
696 	char *tcontext = NULL;
697 	const char *tclass = NULL;
698 	u32 scontext_len;
699 	u32 tcontext_len;
700 	int rc;
701 
702 	rc = security_sid_to_context(sad->ssid, &scontext,
703 				     &scontext_len);
704 	if (rc)
705 		audit_log_format(ab, " ssid=%d", sad->ssid);
706 	else
707 		audit_log_format(ab, " scontext=%s", scontext);
708 
709 	rc = security_sid_to_context(sad->tsid, &tcontext,
710 				     &tcontext_len);
711 	if (rc)
712 		audit_log_format(ab, " tsid=%d", sad->tsid);
713 	else
714 		audit_log_format(ab, " tcontext=%s", tcontext);
715 
716 	tclass = secclass_map[sad->tclass-1].name;
717 	audit_log_format(ab, " tclass=%s", tclass);
718 
719 	if (sad->denied)
720 		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
721 
722 	trace_selinux_audited(sad, scontext, tcontext, tclass);
723 	kfree(tcontext);
724 	kfree(scontext);
725 
726 	/* in case of invalid context report also the actual context string */
727 	rc = security_sid_to_context_inval(sad->ssid, &scontext,
728 					   &scontext_len);
729 	if (!rc && scontext) {
730 		if (scontext_len && scontext[scontext_len - 1] == '\0')
731 			scontext_len--;
732 		audit_log_format(ab, " srawcon=");
733 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
734 		kfree(scontext);
735 	}
736 
737 	rc = security_sid_to_context_inval(sad->tsid, &scontext,
738 					   &scontext_len);
739 	if (!rc && scontext) {
740 		if (scontext_len && scontext[scontext_len - 1] == '\0')
741 			scontext_len--;
742 		audit_log_format(ab, " trawcon=");
743 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
744 		kfree(scontext);
745 	}
746 }
747 
748 /*
749  * This is the slow part of avc audit with big stack footprint.
750  * Note that it is non-blocking and can be called from under
751  * rcu_read_lock().
752  */
slow_avc_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,u32 audited,u32 denied,int result,struct common_audit_data * a)753 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
754 			    u32 requested, u32 audited, u32 denied, int result,
755 			    struct common_audit_data *a)
756 {
757 	struct common_audit_data stack_data;
758 	struct selinux_audit_data sad;
759 
760 	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
761 		return -EINVAL;
762 
763 	if (!a) {
764 		a = &stack_data;
765 		a->type = LSM_AUDIT_DATA_NONE;
766 	}
767 
768 	sad.tclass = tclass;
769 	sad.requested = requested;
770 	sad.ssid = ssid;
771 	sad.tsid = tsid;
772 	sad.audited = audited;
773 	sad.denied = denied;
774 	sad.result = result;
775 
776 	a->selinux_audit_data = &sad;
777 
778 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
779 	return 0;
780 }
781 
782 /**
783  * avc_add_callback - Register a callback for security events.
784  * @callback: callback function
785  * @events: security events
786  *
787  * Register a callback function for events in the set @events.
788  * Returns %0 on success or -%ENOMEM if insufficient memory
789  * exists to add the callback.
790  */
avc_add_callback(int (* callback)(u32 event),u32 events)791 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
792 {
793 	struct avc_callback_node *c;
794 	int rc = 0;
795 
796 	c = kmalloc(sizeof(*c), GFP_KERNEL);
797 	if (!c) {
798 		rc = -ENOMEM;
799 		goto out;
800 	}
801 
802 	c->callback = callback;
803 	c->events = events;
804 	c->next = avc_callbacks;
805 	avc_callbacks = c;
806 out:
807 	return rc;
808 }
809 
810 /**
811  * avc_update_node - Update an AVC entry
812  * @event : Updating event
813  * @perms : Permission mask bits
814  * @driver: xperm driver information
815  * @base_perm: the base permission associated with the extended permission
816  * @xperm: xperm permissions
817  * @ssid: AVC entry source sid
818  * @tsid: AVC entry target sid
819  * @tclass : AVC entry target object class
820  * @seqno : sequence number when decision was made
821  * @xpd: extended_perms_decision to be added to the node
822  * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
823  *
824  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
825  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
826  * otherwise, this function updates the AVC entry. The original AVC-entry object
827  * will release later by RCU.
828  */
avc_update_node(u32 event,u32 perms,u8 driver,u8 base_perm,u8 xperm,u32 ssid,u32 tsid,u16 tclass,u32 seqno,struct extended_perms_decision * xpd,u32 flags)829 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 base_perm,
830 			   u8 xperm, u32 ssid, u32 tsid, u16 tclass, u32 seqno,
831 			   struct extended_perms_decision *xpd, u32 flags)
832 {
833 	u32 hvalue;
834 	int rc = 0;
835 	unsigned long flag;
836 	struct avc_node *pos, *node, *orig = NULL;
837 	struct hlist_head *head;
838 	spinlock_t *lock;
839 
840 	node = avc_alloc_node();
841 	if (!node) {
842 		rc = -ENOMEM;
843 		goto out;
844 	}
845 
846 	/* Lock the target slot */
847 	hvalue = avc_hash(ssid, tsid, tclass);
848 
849 	head = &selinux_avc.avc_cache.slots[hvalue];
850 	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
851 
852 	spin_lock_irqsave(lock, flag);
853 
854 	hlist_for_each_entry(pos, head, list) {
855 		if (ssid == pos->ae.ssid &&
856 		    tsid == pos->ae.tsid &&
857 		    tclass == pos->ae.tclass &&
858 		    seqno == pos->ae.avd.seqno){
859 			orig = pos;
860 			break;
861 		}
862 	}
863 
864 	if (!orig) {
865 		rc = -ENOENT;
866 		avc_node_kill(node);
867 		goto out_unlock;
868 	}
869 
870 	/*
871 	 * Copy and replace original node.
872 	 */
873 
874 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
875 
876 	if (orig->ae.xp_node) {
877 		rc = avc_xperms_populate(node, orig->ae.xp_node);
878 		if (rc) {
879 			avc_node_kill(node);
880 			goto out_unlock;
881 		}
882 	}
883 
884 	switch (event) {
885 	case AVC_CALLBACK_GRANT:
886 		node->ae.avd.allowed |= perms;
887 		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
888 			avc_xperms_allow_perm(node->ae.xp_node, driver, base_perm, xperm);
889 		break;
890 	case AVC_CALLBACK_TRY_REVOKE:
891 	case AVC_CALLBACK_REVOKE:
892 		node->ae.avd.allowed &= ~perms;
893 		break;
894 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
895 		node->ae.avd.auditallow |= perms;
896 		break;
897 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
898 		node->ae.avd.auditallow &= ~perms;
899 		break;
900 	case AVC_CALLBACK_AUDITDENY_ENABLE:
901 		node->ae.avd.auditdeny |= perms;
902 		break;
903 	case AVC_CALLBACK_AUDITDENY_DISABLE:
904 		node->ae.avd.auditdeny &= ~perms;
905 		break;
906 	case AVC_CALLBACK_ADD_XPERMS:
907 		rc = avc_add_xperms_decision(node, xpd);
908 		if (rc) {
909 			avc_node_kill(node);
910 			goto out_unlock;
911 		}
912 		break;
913 	}
914 	avc_node_replace(node, orig);
915 out_unlock:
916 	spin_unlock_irqrestore(lock, flag);
917 out:
918 	return rc;
919 }
920 
921 /**
922  * avc_flush - Flush the cache
923  */
avc_flush(void)924 static void avc_flush(void)
925 {
926 	struct hlist_head *head;
927 	struct avc_node *node;
928 	spinlock_t *lock;
929 	unsigned long flag;
930 	int i;
931 
932 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
933 		head = &selinux_avc.avc_cache.slots[i];
934 		lock = &selinux_avc.avc_cache.slots_lock[i];
935 
936 		spin_lock_irqsave(lock, flag);
937 		/*
938 		 * With preemptible RCU, the outer spinlock does not
939 		 * prevent RCU grace periods from ending.
940 		 */
941 		rcu_read_lock();
942 		hlist_for_each_entry(node, head, list)
943 			avc_node_delete(node);
944 		rcu_read_unlock();
945 		spin_unlock_irqrestore(lock, flag);
946 	}
947 }
948 
949 /**
950  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
951  * @seqno: policy sequence number
952  */
avc_ss_reset(u32 seqno)953 int avc_ss_reset(u32 seqno)
954 {
955 	struct avc_callback_node *c;
956 	int rc = 0, tmprc;
957 
958 	avc_flush();
959 
960 	for (c = avc_callbacks; c; c = c->next) {
961 		if (c->events & AVC_CALLBACK_RESET) {
962 			tmprc = c->callback(AVC_CALLBACK_RESET);
963 			/* save the first error encountered for the return
964 			   value and continue processing the callbacks */
965 			if (!rc)
966 				rc = tmprc;
967 		}
968 	}
969 
970 	avc_latest_notif_update(seqno, 0);
971 	return rc;
972 }
973 
974 /**
975  * avc_compute_av - Add an entry to the AVC based on the security policy
976  * @ssid: subject
977  * @tsid: object/target
978  * @tclass: object class
979  * @avd: access vector decision
980  * @xp_node: AVC extended permissions node
981  *
982  * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup
983  * fails.  Don't inline this, since it's the slow-path and just results in a
984  * bigger stack frame.
985  */
avc_compute_av(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)986 static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass,
987 				    struct av_decision *avd,
988 				    struct avc_xperms_node *xp_node)
989 {
990 	INIT_LIST_HEAD(&xp_node->xpd_head);
991 	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
992 	avc_insert(ssid, tsid, tclass, avd, xp_node);
993 }
994 
avc_denied(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 base_perm,u8 xperm,unsigned int flags,struct av_decision * avd)995 static noinline int avc_denied(u32 ssid, u32 tsid, u16 tclass, u32 requested,
996 			       u8 driver, u8 base_perm, u8 xperm,
997 			       unsigned int flags, struct av_decision *avd)
998 {
999 	if (flags & AVC_STRICT)
1000 		return -EACCES;
1001 
1002 	if (enforcing_enabled() &&
1003 	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1004 		return -EACCES;
1005 
1006 	avc_update_node(AVC_CALLBACK_GRANT, requested, driver, base_perm,
1007 			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1008 	return 0;
1009 }
1010 
1011 /*
1012  * The avc extended permissions logic adds an additional 256 bits of
1013  * permissions to an avc node when extended permissions for that node are
1014  * specified in the avtab. If the additional 256 permissions is not adequate,
1015  * as-is the case with ioctls, then multiple may be chained together and the
1016  * driver field is used to specify which set contains the permission.
1017  */
avc_has_extended_perms(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 base_perm,u8 xperm,struct common_audit_data * ad)1018 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1019 			   u8 driver, u8 base_perm, u8 xperm,
1020 			   struct common_audit_data *ad)
1021 {
1022 	struct avc_node *node;
1023 	struct av_decision avd;
1024 	u32 denied;
1025 	struct extended_perms_decision local_xpd;
1026 	struct extended_perms_decision *xpd = NULL;
1027 	struct extended_perms_data allowed;
1028 	struct extended_perms_data auditallow;
1029 	struct extended_perms_data dontaudit;
1030 	struct avc_xperms_node local_xp_node;
1031 	struct avc_xperms_node *xp_node;
1032 	int rc = 0, rc2;
1033 
1034 	xp_node = &local_xp_node;
1035 	if (WARN_ON(!requested))
1036 		return -EACCES;
1037 
1038 	rcu_read_lock();
1039 
1040 	node = avc_lookup(ssid, tsid, tclass);
1041 	if (unlikely(!node)) {
1042 		avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1043 	} else {
1044 		memcpy(&avd, &node->ae.avd, sizeof(avd));
1045 		xp_node = node->ae.xp_node;
1046 	}
1047 	/* if extended permissions are not defined, only consider av_decision */
1048 	if (!xp_node || !xp_node->xp.len)
1049 		goto decision;
1050 
1051 	local_xpd.allowed = &allowed;
1052 	local_xpd.auditallow = &auditallow;
1053 	local_xpd.dontaudit = &dontaudit;
1054 
1055 	xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node);
1056 	if (unlikely(!xpd)) {
1057 		/*
1058 		 * Compute the extended_perms_decision only if the driver
1059 		 * is flagged and the base permission is known.
1060 		 */
1061 		if (!security_xperm_test(xp_node->xp.drivers.p, driver) ||
1062 		    !(xp_node->xp.base_perms & base_perm)) {
1063 			avd.allowed &= ~requested;
1064 			goto decision;
1065 		}
1066 		rcu_read_unlock();
1067 		security_compute_xperms_decision(ssid, tsid, tclass, driver,
1068 						 base_perm, &local_xpd);
1069 		rcu_read_lock();
1070 		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver,
1071 				base_perm, xperm, ssid, tsid, tclass, avd.seqno,
1072 				&local_xpd, 0);
1073 	} else {
1074 		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1075 	}
1076 	xpd = &local_xpd;
1077 
1078 	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1079 		avd.allowed &= ~requested;
1080 
1081 decision:
1082 	denied = requested & ~(avd.allowed);
1083 	if (unlikely(denied))
1084 		rc = avc_denied(ssid, tsid, tclass, requested, driver,
1085 				base_perm, xperm, AVC_EXTENDED_PERMS, &avd);
1086 
1087 	rcu_read_unlock();
1088 
1089 	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1090 			&avd, xpd, xperm, rc, ad);
1091 	if (rc2)
1092 		return rc2;
1093 	return rc;
1094 }
1095 
1096 /**
1097  * avc_perm_nonode - Add an entry to the AVC
1098  * @ssid: subject
1099  * @tsid: object/target
1100  * @tclass: object class
1101  * @requested: requested permissions
1102  * @flags: AVC flags
1103  * @avd: access vector decision
1104  *
1105  * This is the "we have no node" part of avc_has_perm_noaudit(), which is
1106  * unlikely and needs extra stack space for the new node that we generate, so
1107  * don't inline it.
1108  */
avc_perm_nonode(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1109 static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass,
1110 				    u32 requested, unsigned int flags,
1111 				    struct av_decision *avd)
1112 {
1113 	u32 denied;
1114 	struct avc_xperms_node xp_node;
1115 
1116 	avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1117 	denied = requested & ~(avd->allowed);
1118 	if (unlikely(denied))
1119 		return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0,
1120 				  flags, avd);
1121 	return 0;
1122 }
1123 
1124 /**
1125  * avc_has_perm_noaudit - Check permissions but perform no auditing.
1126  * @ssid: source security identifier
1127  * @tsid: target security identifier
1128  * @tclass: target security class
1129  * @requested: requested permissions, interpreted based on @tclass
1130  * @flags:  AVC_STRICT or 0
1131  * @avd: access vector decisions
1132  *
1133  * Check the AVC to determine whether the @requested permissions are granted
1134  * for the SID pair (@ssid, @tsid), interpreting the permissions
1135  * based on @tclass, and call the security server on a cache miss to obtain
1136  * a new decision and add it to the cache.  Return a copy of the decisions
1137  * in @avd.  Return %0 if all @requested permissions are granted,
1138  * -%EACCES if any permissions are denied, or another -errno upon
1139  * other errors.  This function is typically called by avc_has_perm(),
1140  * but may also be called directly to separate permission checking from
1141  * auditing, e.g. in cases where a lock must be held for the check but
1142  * should be released for the auditing.
1143  */
avc_has_perm_noaudit(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1144 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1145 				u16 tclass, u32 requested,
1146 				unsigned int flags,
1147 				struct av_decision *avd)
1148 {
1149 	u32 denied;
1150 	struct avc_node *node;
1151 
1152 	if (WARN_ON(!requested))
1153 		return -EACCES;
1154 
1155 	rcu_read_lock();
1156 	node = avc_lookup(ssid, tsid, tclass);
1157 	if (unlikely(!node)) {
1158 		rcu_read_unlock();
1159 		return avc_perm_nonode(ssid, tsid, tclass, requested,
1160 				       flags, avd);
1161 	}
1162 	denied = requested & ~node->ae.avd.allowed;
1163 	memcpy(avd, &node->ae.avd, sizeof(*avd));
1164 	rcu_read_unlock();
1165 
1166 	if (unlikely(denied))
1167 		return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0,
1168 				  flags, avd);
1169 	return 0;
1170 }
1171 
1172 /**
1173  * avc_has_perm - Check permissions and perform any appropriate auditing.
1174  * @ssid: source security identifier
1175  * @tsid: target security identifier
1176  * @tclass: target security class
1177  * @requested: requested permissions, interpreted based on @tclass
1178  * @auditdata: auxiliary audit data
1179  *
1180  * Check the AVC to determine whether the @requested permissions are granted
1181  * for the SID pair (@ssid, @tsid), interpreting the permissions
1182  * based on @tclass, and call the security server on a cache miss to obtain
1183  * a new decision and add it to the cache.  Audit the granting or denial of
1184  * permissions in accordance with the policy.  Return %0 if all @requested
1185  * permissions are granted, -%EACCES if any permissions are denied, or
1186  * another -errno upon other errors.
1187  */
avc_has_perm(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata)1188 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1189 		 u32 requested, struct common_audit_data *auditdata)
1190 {
1191 	struct av_decision avd;
1192 	int rc, rc2;
1193 
1194 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0,
1195 				  &avd);
1196 
1197 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1198 			auditdata);
1199 	if (rc2)
1200 		return rc2;
1201 	return rc;
1202 }
1203 
avc_policy_seqno(void)1204 u32 avc_policy_seqno(void)
1205 {
1206 	return selinux_avc.avc_cache.latest_notif;
1207 }
1208