1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/hex.h> 36 #include <linux/init.h> 37 #include <linux/types.h> 38 #include <linux/atomic.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/err.h> 43 #include <linux/kthread.h> 44 #include <linux/kernel.h> 45 #include <linux/syscalls.h> 46 #include <linux/spinlock.h> 47 #include <linux/rcupdate.h> 48 #include <linux/mutex.h> 49 #include <linux/gfp.h> 50 #include <linux/pid.h> 51 52 #include <linux/audit.h> 53 54 #include <net/sock.h> 55 #include <net/netlink.h> 56 #include <linux/skbuff.h> 57 #include <linux/security.h> 58 #include <linux/lsm_hooks.h> 59 #include <linux/freezer.h> 60 #include <linux/pid_namespace.h> 61 #include <net/netns/generic.h> 62 #include <net/ip.h> 63 #include <net/ipv6.h> 64 #include <linux/sctp.h> 65 66 #include "audit.h" 67 68 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 69 * (Initialization happens after skb_init is called.) */ 70 #define AUDIT_DISABLED -1 71 #define AUDIT_UNINITIALIZED 0 72 #define AUDIT_INITIALIZED 1 73 static int audit_initialized = AUDIT_UNINITIALIZED; 74 75 u32 audit_enabled = AUDIT_OFF; 76 bool audit_ever_enabled = !!AUDIT_OFF; 77 78 EXPORT_SYMBOL_GPL(audit_enabled); 79 80 /* Default state when kernel boots without any parameters. */ 81 static u32 audit_default = AUDIT_OFF; 82 83 /* If auditing cannot proceed, audit_failure selects what happens. */ 84 static u32 audit_failure = AUDIT_FAIL_PRINTK; 85 86 /* private audit network namespace index */ 87 static unsigned int audit_net_id; 88 89 /* Number of modules that provide a security context. 90 List of lsms that provide a security context */ 91 static u32 audit_subj_secctx_cnt; 92 static u32 audit_obj_secctx_cnt; 93 static const struct lsm_id *audit_subj_lsms[MAX_LSM_COUNT]; 94 static const struct lsm_id *audit_obj_lsms[MAX_LSM_COUNT]; 95 96 /** 97 * struct audit_net - audit private network namespace data 98 * @sk: communication socket 99 */ 100 struct audit_net { 101 struct sock *sk; 102 }; 103 104 /** 105 * struct auditd_connection - kernel/auditd connection state 106 * @pid: auditd PID 107 * @portid: netlink portid 108 * @net: the associated network namespace 109 * @rcu: RCU head 110 * 111 * Description: 112 * This struct is RCU protected; you must either hold the RCU lock for reading 113 * or the associated spinlock for writing. 114 */ 115 struct auditd_connection { 116 struct pid *pid; 117 u32 portid; 118 struct net *net; 119 struct rcu_head rcu; 120 }; 121 static struct auditd_connection __rcu *auditd_conn; 122 static DEFINE_SPINLOCK(auditd_conn_lock); 123 124 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 125 * to that number per second. This prevents DoS attacks, but results in 126 * audit records being dropped. */ 127 static u32 audit_rate_limit; 128 129 /* Number of outstanding audit_buffers allowed. 130 * When set to zero, this means unlimited. */ 131 static u32 audit_backlog_limit = 64; 132 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 133 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 134 135 /* The identity of the user shutting down the audit system. */ 136 static kuid_t audit_sig_uid = INVALID_UID; 137 static pid_t audit_sig_pid = -1; 138 static struct lsm_prop audit_sig_lsm; 139 140 /* Records can be lost in several ways: 141 0) [suppressed in audit_alloc] 142 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 143 2) out of memory in audit_log_move [alloc_skb] 144 3) suppressed due to audit_rate_limit 145 4) suppressed due to audit_backlog_limit 146 */ 147 static atomic_t audit_lost = ATOMIC_INIT(0); 148 149 /* Monotonically increasing sum of time the kernel has spent 150 * waiting while the backlog limit is exceeded. 151 */ 152 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); 153 154 /* Hash for inode-based rules */ 155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 156 157 static struct kmem_cache *audit_buffer_cache; 158 159 /* queue msgs to send via kauditd_task */ 160 static struct sk_buff_head audit_queue; 161 /* queue msgs due to temporary unicast send problems */ 162 static struct sk_buff_head audit_retry_queue; 163 /* queue msgs waiting for new auditd connection */ 164 static struct sk_buff_head audit_hold_queue; 165 166 /* queue servicing thread */ 167 static struct task_struct *kauditd_task; 168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 169 170 /* waitqueue for callers who are blocked on the audit backlog */ 171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 172 173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 174 .mask = -1, 175 .features = 0, 176 .lock = 0,}; 177 178 static char *audit_feature_names[2] = { 179 "only_unset_loginuid", 180 "loginuid_immutable", 181 }; 182 183 /** 184 * struct audit_ctl_mutex - serialize requests from userspace 185 * @lock: the mutex used for locking 186 * @owner: the task which owns the lock 187 * 188 * Description: 189 * This is the lock struct used to ensure we only process userspace requests 190 * in an orderly fashion. We can't simply use a mutex/lock here because we 191 * need to track lock ownership so we don't end up blocking the lock owner in 192 * audit_log_start() or similar. 193 */ 194 static struct audit_ctl_mutex { 195 struct mutex lock; 196 void *owner; 197 } audit_cmd_mutex; 198 199 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 200 * audit records. Since printk uses a 1024 byte buffer, this buffer 201 * should be at least that large. */ 202 #define AUDIT_BUFSIZ 1024 203 204 /* The audit_buffer is used when formatting an audit record. The caller 205 * locks briefly to get the record off the freelist or to allocate the 206 * buffer, and locks briefly to send the buffer to the netlink layer or 207 * to place it on a transmit queue. Multiple audit_buffers can be in 208 * use simultaneously. */ 209 struct audit_buffer { 210 struct sk_buff *skb; /* the skb for audit_log functions */ 211 struct sk_buff_head skb_list; /* formatted skbs, ready to send */ 212 struct audit_context *ctx; /* NULL or associated context */ 213 struct audit_stamp stamp; /* audit stamp for these records */ 214 gfp_t gfp_mask; 215 }; 216 217 struct audit_reply { 218 __u32 portid; 219 struct net *net; 220 struct sk_buff *skb; 221 }; 222 223 /** 224 * auditd_test_task - Check to see if a given task is an audit daemon 225 * @task: the task to check 226 * 227 * Description: 228 * Return 1 if the task is a registered audit daemon, 0 otherwise. 229 */ 230 int auditd_test_task(struct task_struct *task) 231 { 232 int rc; 233 struct auditd_connection *ac; 234 235 rcu_read_lock(); 236 ac = rcu_dereference(auditd_conn); 237 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 238 rcu_read_unlock(); 239 240 return rc; 241 } 242 243 /** 244 * audit_ctl_lock - Take the audit control lock 245 */ 246 void audit_ctl_lock(void) 247 { 248 mutex_lock(&audit_cmd_mutex.lock); 249 audit_cmd_mutex.owner = current; 250 } 251 252 /** 253 * audit_ctl_unlock - Drop the audit control lock 254 */ 255 void audit_ctl_unlock(void) 256 { 257 audit_cmd_mutex.owner = NULL; 258 mutex_unlock(&audit_cmd_mutex.lock); 259 } 260 261 /** 262 * audit_ctl_owner_current - Test to see if the current task owns the lock 263 * 264 * Description: 265 * Return true if the current task owns the audit control lock, false if it 266 * doesn't own the lock. 267 */ 268 static bool audit_ctl_owner_current(void) 269 { 270 return (current == audit_cmd_mutex.owner); 271 } 272 273 /** 274 * auditd_pid_vnr - Return the auditd PID relative to the namespace 275 * 276 * Description: 277 * Returns the PID in relation to the namespace, 0 on failure. 278 */ 279 static pid_t auditd_pid_vnr(void) 280 { 281 pid_t pid; 282 const struct auditd_connection *ac; 283 284 rcu_read_lock(); 285 ac = rcu_dereference(auditd_conn); 286 if (!ac || !ac->pid) 287 pid = 0; 288 else 289 pid = pid_vnr(ac->pid); 290 rcu_read_unlock(); 291 292 return pid; 293 } 294 295 /** 296 * audit_cfg_lsm - Identify a security module as providing a secctx. 297 * @lsmid: LSM identity 298 * @flags: which contexts are provided 299 * 300 * Description: 301 * Increments the count of the security modules providing a secctx. 302 * If the LSM id is already in the list leave it alone. 303 */ 304 void audit_cfg_lsm(const struct lsm_id *lsmid, int flags) 305 { 306 int i; 307 308 if (flags & AUDIT_CFG_LSM_SECCTX_SUBJECT) { 309 for (i = 0 ; i < audit_subj_secctx_cnt; i++) 310 if (audit_subj_lsms[i] == lsmid) 311 return; 312 audit_subj_lsms[audit_subj_secctx_cnt++] = lsmid; 313 } 314 if (flags & AUDIT_CFG_LSM_SECCTX_OBJECT) { 315 for (i = 0 ; i < audit_obj_secctx_cnt; i++) 316 if (audit_obj_lsms[i] == lsmid) 317 return; 318 audit_obj_lsms[audit_obj_secctx_cnt++] = lsmid; 319 } 320 } 321 322 /** 323 * audit_get_sk - Return the audit socket for the given network namespace 324 * @net: the destination network namespace 325 * 326 * Description: 327 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 328 * that a reference is held for the network namespace while the sock is in use. 329 */ 330 static struct sock *audit_get_sk(const struct net *net) 331 { 332 struct audit_net *aunet; 333 334 if (!net) 335 return NULL; 336 337 aunet = net_generic(net, audit_net_id); 338 return aunet->sk; 339 } 340 341 void audit_panic(const char *message) 342 { 343 switch (audit_failure) { 344 case AUDIT_FAIL_SILENT: 345 break; 346 case AUDIT_FAIL_PRINTK: 347 if (printk_ratelimit()) 348 pr_err("%s\n", message); 349 break; 350 case AUDIT_FAIL_PANIC: 351 panic("audit: %s\n", message); 352 break; 353 } 354 } 355 356 static inline int audit_rate_check(void) 357 { 358 static unsigned long last_check = 0; 359 static int messages = 0; 360 static DEFINE_SPINLOCK(lock); 361 unsigned long flags; 362 unsigned long now; 363 int retval = 0; 364 365 if (!audit_rate_limit) 366 return 1; 367 368 spin_lock_irqsave(&lock, flags); 369 if (++messages < audit_rate_limit) { 370 retval = 1; 371 } else { 372 now = jiffies; 373 if (time_after(now, last_check + HZ)) { 374 last_check = now; 375 messages = 0; 376 retval = 1; 377 } 378 } 379 spin_unlock_irqrestore(&lock, flags); 380 381 return retval; 382 } 383 384 /** 385 * audit_log_lost - conditionally log lost audit message event 386 * @message: the message stating reason for lost audit message 387 * 388 * Emit at least 1 message per second, even if audit_rate_check is 389 * throttling. 390 * Always increment the lost messages counter. 391 */ 392 void audit_log_lost(const char *message) 393 { 394 static unsigned long last_msg = 0; 395 static DEFINE_SPINLOCK(lock); 396 unsigned long flags; 397 unsigned long now; 398 int print; 399 400 atomic_inc(&audit_lost); 401 402 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 403 404 if (!print) { 405 spin_lock_irqsave(&lock, flags); 406 now = jiffies; 407 if (time_after(now, last_msg + HZ)) { 408 print = 1; 409 last_msg = now; 410 } 411 spin_unlock_irqrestore(&lock, flags); 412 } 413 414 if (print) { 415 if (printk_ratelimit()) 416 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 417 atomic_read(&audit_lost), 418 audit_rate_limit, 419 audit_backlog_limit); 420 audit_panic(message); 421 } 422 } 423 424 static int audit_log_config_change(char *function_name, u32 new, u32 old, 425 int allow_changes) 426 { 427 struct audit_buffer *ab; 428 int rc = 0; 429 430 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 431 if (unlikely(!ab)) 432 return rc; 433 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 434 audit_log_session_info(ab); 435 rc = audit_log_task_context(ab); 436 if (rc) 437 allow_changes = 0; /* Something weird, deny request */ 438 audit_log_format(ab, " res=%d", allow_changes); 439 audit_log_end(ab); 440 return rc; 441 } 442 443 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 444 { 445 int allow_changes, rc = 0; 446 u32 old = *to_change; 447 448 /* check if we are locked */ 449 if (audit_enabled == AUDIT_LOCKED) 450 allow_changes = 0; 451 else 452 allow_changes = 1; 453 454 if (audit_enabled != AUDIT_OFF) { 455 rc = audit_log_config_change(function_name, new, old, allow_changes); 456 if (rc) 457 allow_changes = 0; 458 } 459 460 /* If we are allowed, make the change */ 461 if (allow_changes == 1) 462 *to_change = new; 463 /* Not allowed, update reason */ 464 else if (rc == 0) 465 rc = -EPERM; 466 return rc; 467 } 468 469 static int audit_set_rate_limit(u32 limit) 470 { 471 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 472 } 473 474 static int audit_set_backlog_limit(u32 limit) 475 { 476 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 477 } 478 479 static int audit_set_backlog_wait_time(u32 timeout) 480 { 481 return audit_do_config_change("audit_backlog_wait_time", 482 &audit_backlog_wait_time, timeout); 483 } 484 485 static int audit_set_enabled(u32 state) 486 { 487 int rc; 488 if (state > AUDIT_LOCKED) 489 return -EINVAL; 490 491 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 492 if (!rc) 493 audit_ever_enabled |= !!state; 494 495 return rc; 496 } 497 498 static int audit_set_failure(u32 state) 499 { 500 if (state != AUDIT_FAIL_SILENT 501 && state != AUDIT_FAIL_PRINTK 502 && state != AUDIT_FAIL_PANIC) 503 return -EINVAL; 504 505 return audit_do_config_change("audit_failure", &audit_failure, state); 506 } 507 508 /** 509 * auditd_conn_free - RCU helper to release an auditd connection struct 510 * @rcu: RCU head 511 * 512 * Description: 513 * Drop any references inside the auditd connection tracking struct and free 514 * the memory. 515 */ 516 static void auditd_conn_free(struct rcu_head *rcu) 517 { 518 struct auditd_connection *ac; 519 520 ac = container_of(rcu, struct auditd_connection, rcu); 521 put_pid(ac->pid); 522 put_net(ac->net); 523 kfree(ac); 524 } 525 526 /** 527 * auditd_set - Set/Reset the auditd connection state 528 * @pid: auditd PID 529 * @portid: auditd netlink portid 530 * @net: auditd network namespace pointer 531 * @skb: the netlink command from the audit daemon 532 * @ack: netlink ack flag, cleared if ack'd here 533 * 534 * Description: 535 * This function will obtain and drop network namespace references as 536 * necessary. Returns zero on success, negative values on failure. 537 */ 538 static int auditd_set(struct pid *pid, u32 portid, struct net *net, 539 struct sk_buff *skb, bool *ack) 540 { 541 unsigned long flags; 542 struct auditd_connection *ac_old, *ac_new; 543 struct nlmsghdr *nlh; 544 545 if (!pid || !net) 546 return -EINVAL; 547 548 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 549 if (!ac_new) 550 return -ENOMEM; 551 ac_new->pid = get_pid(pid); 552 ac_new->portid = portid; 553 ac_new->net = get_net(net); 554 555 /* send the ack now to avoid a race with the queue backlog */ 556 if (*ack) { 557 nlh = nlmsg_hdr(skb); 558 netlink_ack(skb, nlh, 0, NULL); 559 *ack = false; 560 } 561 562 spin_lock_irqsave(&auditd_conn_lock, flags); 563 ac_old = rcu_dereference_protected(auditd_conn, 564 lockdep_is_held(&auditd_conn_lock)); 565 rcu_assign_pointer(auditd_conn, ac_new); 566 spin_unlock_irqrestore(&auditd_conn_lock, flags); 567 568 if (ac_old) 569 call_rcu(&ac_old->rcu, auditd_conn_free); 570 571 return 0; 572 } 573 574 /** 575 * kauditd_printk_skb - Print the audit record to the ring buffer 576 * @skb: audit record 577 * 578 * Whatever the reason, this packet may not make it to the auditd connection 579 * so write it via printk so the information isn't completely lost. 580 */ 581 static void kauditd_printk_skb(struct sk_buff *skb) 582 { 583 struct nlmsghdr *nlh = nlmsg_hdr(skb); 584 char *data = nlmsg_data(nlh); 585 586 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 587 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 588 } 589 590 /** 591 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 592 * @skb: audit record 593 * @error: error code (unused) 594 * 595 * Description: 596 * This should only be used by the kauditd_thread when it fails to flush the 597 * hold queue. 598 */ 599 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error) 600 { 601 /* put the record back in the queue */ 602 skb_queue_tail(&audit_hold_queue, skb); 603 } 604 605 /** 606 * kauditd_hold_skb - Queue an audit record, waiting for auditd 607 * @skb: audit record 608 * @error: error code 609 * 610 * Description: 611 * Queue the audit record, waiting for an instance of auditd. When this 612 * function is called we haven't given up yet on sending the record, but things 613 * are not looking good. The first thing we want to do is try to write the 614 * record via printk and then see if we want to try and hold on to the record 615 * and queue it, if we have room. If we want to hold on to the record, but we 616 * don't have room, record a record lost message. 617 */ 618 static void kauditd_hold_skb(struct sk_buff *skb, int error) 619 { 620 /* at this point it is uncertain if we will ever send this to auditd so 621 * try to send the message via printk before we go any further */ 622 kauditd_printk_skb(skb); 623 624 /* can we just silently drop the message? */ 625 if (!audit_default) 626 goto drop; 627 628 /* the hold queue is only for when the daemon goes away completely, 629 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the 630 * record on the retry queue unless it's full, in which case drop it 631 */ 632 if (error == -EAGAIN) { 633 if (!audit_backlog_limit || 634 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 635 skb_queue_tail(&audit_retry_queue, skb); 636 return; 637 } 638 audit_log_lost("kauditd retry queue overflow"); 639 goto drop; 640 } 641 642 /* if we have room in the hold queue, queue the message */ 643 if (!audit_backlog_limit || 644 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 645 skb_queue_tail(&audit_hold_queue, skb); 646 return; 647 } 648 649 /* we have no other options - drop the message */ 650 audit_log_lost("kauditd hold queue overflow"); 651 drop: 652 kfree_skb(skb); 653 } 654 655 /** 656 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 657 * @skb: audit record 658 * @error: error code (unused) 659 * 660 * Description: 661 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 662 * but for some reason we are having problems sending it audit records so 663 * queue the given record and attempt to resend. 664 */ 665 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error) 666 { 667 if (!audit_backlog_limit || 668 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 669 skb_queue_tail(&audit_retry_queue, skb); 670 return; 671 } 672 673 /* we have to drop the record, send it via printk as a last effort */ 674 kauditd_printk_skb(skb); 675 audit_log_lost("kauditd retry queue overflow"); 676 kfree_skb(skb); 677 } 678 679 /** 680 * auditd_reset - Disconnect the auditd connection 681 * @ac: auditd connection state 682 * 683 * Description: 684 * Break the auditd/kauditd connection and move all the queued records into the 685 * hold queue in case auditd reconnects. It is important to note that the @ac 686 * pointer should never be dereferenced inside this function as it may be NULL 687 * or invalid, you can only compare the memory address! If @ac is NULL then 688 * the connection will always be reset. 689 */ 690 static void auditd_reset(const struct auditd_connection *ac) 691 { 692 unsigned long flags; 693 struct sk_buff *skb; 694 struct auditd_connection *ac_old; 695 696 /* if it isn't already broken, break the connection */ 697 spin_lock_irqsave(&auditd_conn_lock, flags); 698 ac_old = rcu_dereference_protected(auditd_conn, 699 lockdep_is_held(&auditd_conn_lock)); 700 if (ac && ac != ac_old) { 701 /* someone already registered a new auditd connection */ 702 spin_unlock_irqrestore(&auditd_conn_lock, flags); 703 return; 704 } 705 rcu_assign_pointer(auditd_conn, NULL); 706 spin_unlock_irqrestore(&auditd_conn_lock, flags); 707 708 if (ac_old) 709 call_rcu(&ac_old->rcu, auditd_conn_free); 710 711 /* flush the retry queue to the hold queue, but don't touch the main 712 * queue since we need to process that normally for multicast */ 713 while ((skb = skb_dequeue(&audit_retry_queue))) 714 kauditd_hold_skb(skb, -ECONNREFUSED); 715 } 716 717 /** 718 * auditd_send_unicast_skb - Send a record via unicast to auditd 719 * @skb: audit record 720 * 721 * Description: 722 * Send a skb to the audit daemon, returns positive/zero values on success and 723 * negative values on failure; in all cases the skb will be consumed by this 724 * function. If the send results in -ECONNREFUSED the connection with auditd 725 * will be reset. This function may sleep so callers should not hold any locks 726 * where this would cause a problem. 727 */ 728 static int auditd_send_unicast_skb(struct sk_buff *skb) 729 { 730 int rc; 731 u32 portid; 732 struct net *net; 733 struct sock *sk; 734 struct auditd_connection *ac; 735 736 /* NOTE: we can't call netlink_unicast while in the RCU section so 737 * take a reference to the network namespace and grab local 738 * copies of the namespace, the sock, and the portid; the 739 * namespace and sock aren't going to go away while we hold a 740 * reference and if the portid does become invalid after the RCU 741 * section netlink_unicast() should safely return an error */ 742 743 rcu_read_lock(); 744 ac = rcu_dereference(auditd_conn); 745 if (!ac) { 746 rcu_read_unlock(); 747 kfree_skb(skb); 748 rc = -ECONNREFUSED; 749 goto err; 750 } 751 net = get_net(ac->net); 752 sk = audit_get_sk(net); 753 portid = ac->portid; 754 rcu_read_unlock(); 755 756 rc = netlink_unicast(sk, skb, portid, 0); 757 put_net(net); 758 if (rc < 0) 759 goto err; 760 761 return rc; 762 763 err: 764 if (ac && rc == -ECONNREFUSED) 765 auditd_reset(ac); 766 return rc; 767 } 768 769 /** 770 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 771 * @sk: the sending sock 772 * @portid: the netlink destination 773 * @queue: the skb queue to process 774 * @retry_limit: limit on number of netlink unicast failures 775 * @skb_hook: per-skb hook for additional processing 776 * @err_hook: hook called if the skb fails the netlink unicast send 777 * 778 * Description: 779 * Run through the given queue and attempt to send the audit records to auditd, 780 * returns zero on success, negative values on failure. It is up to the caller 781 * to ensure that the @sk is valid for the duration of this function. 782 * 783 */ 784 static int kauditd_send_queue(struct sock *sk, u32 portid, 785 struct sk_buff_head *queue, 786 unsigned int retry_limit, 787 void (*skb_hook)(struct sk_buff *skb), 788 void (*err_hook)(struct sk_buff *skb, int error)) 789 { 790 int rc = 0; 791 struct sk_buff *skb = NULL; 792 struct sk_buff *skb_tail; 793 unsigned int failed = 0; 794 795 /* NOTE: kauditd_thread takes care of all our locking, we just use 796 * the netlink info passed to us (e.g. sk and portid) */ 797 798 skb_tail = skb_peek_tail(queue); 799 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) { 800 /* call the skb_hook for each skb we touch */ 801 if (skb_hook) 802 (*skb_hook)(skb); 803 804 /* can we send to anyone via unicast? */ 805 if (!sk) { 806 if (err_hook) 807 (*err_hook)(skb, -ECONNREFUSED); 808 continue; 809 } 810 811 retry: 812 /* grab an extra skb reference in case of error */ 813 skb_get(skb); 814 rc = netlink_unicast(sk, skb, portid, 0); 815 if (rc < 0) { 816 /* send failed - try a few times unless fatal error */ 817 if (++failed >= retry_limit || 818 rc == -ECONNREFUSED || rc == -EPERM) { 819 sk = NULL; 820 if (err_hook) 821 (*err_hook)(skb, rc); 822 if (rc == -EAGAIN) 823 rc = 0; 824 /* continue to drain the queue */ 825 continue; 826 } else 827 goto retry; 828 } else { 829 /* skb sent - drop the extra reference and continue */ 830 consume_skb(skb); 831 failed = 0; 832 } 833 } 834 835 return (rc >= 0 ? 0 : rc); 836 } 837 838 /* 839 * kauditd_send_multicast_skb - Send a record to any multicast listeners 840 * @skb: audit record 841 * 842 * Description: 843 * Write a multicast message to anyone listening in the initial network 844 * namespace. This function doesn't consume an skb as might be expected since 845 * it has to copy it anyways. 846 */ 847 static void kauditd_send_multicast_skb(struct sk_buff *skb) 848 { 849 struct sk_buff *copy; 850 struct sock *sock = audit_get_sk(&init_net); 851 struct nlmsghdr *nlh; 852 853 /* NOTE: we are not taking an additional reference for init_net since 854 * we don't have to worry about it going away */ 855 856 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 857 return; 858 859 /* 860 * The seemingly wasteful skb_copy() rather than bumping the refcount 861 * using skb_get() is necessary because non-standard mods are made to 862 * the skb by the original kaudit unicast socket send routine. The 863 * existing auditd daemon assumes this breakage. Fixing this would 864 * require co-ordinating a change in the established protocol between 865 * the kaudit kernel subsystem and the auditd userspace code. There is 866 * no reason for new multicast clients to continue with this 867 * non-compliance. 868 */ 869 copy = skb_copy(skb, GFP_KERNEL); 870 if (!copy) 871 return; 872 nlh = nlmsg_hdr(copy); 873 nlh->nlmsg_len = skb->len; 874 875 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 876 } 877 878 /** 879 * kauditd_thread - Worker thread to send audit records to userspace 880 * @dummy: unused 881 */ 882 static int kauditd_thread(void *dummy) 883 { 884 int rc; 885 u32 portid = 0; 886 struct net *net = NULL; 887 struct sock *sk = NULL; 888 struct auditd_connection *ac; 889 890 #define UNICAST_RETRIES 5 891 892 set_freezable(); 893 while (!kthread_should_stop()) { 894 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 895 rcu_read_lock(); 896 ac = rcu_dereference(auditd_conn); 897 if (!ac) { 898 rcu_read_unlock(); 899 goto main_queue; 900 } 901 net = get_net(ac->net); 902 sk = audit_get_sk(net); 903 portid = ac->portid; 904 rcu_read_unlock(); 905 906 /* attempt to flush the hold queue */ 907 rc = kauditd_send_queue(sk, portid, 908 &audit_hold_queue, UNICAST_RETRIES, 909 NULL, kauditd_rehold_skb); 910 if (rc < 0) { 911 sk = NULL; 912 auditd_reset(ac); 913 goto main_queue; 914 } 915 916 /* attempt to flush the retry queue */ 917 rc = kauditd_send_queue(sk, portid, 918 &audit_retry_queue, UNICAST_RETRIES, 919 NULL, kauditd_hold_skb); 920 if (rc < 0) { 921 sk = NULL; 922 auditd_reset(ac); 923 goto main_queue; 924 } 925 926 main_queue: 927 /* process the main queue - do the multicast send and attempt 928 * unicast, dump failed record sends to the retry queue; if 929 * sk == NULL due to previous failures we will just do the 930 * multicast send and move the record to the hold queue */ 931 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 932 kauditd_send_multicast_skb, 933 (sk ? 934 kauditd_retry_skb : kauditd_hold_skb)); 935 if (ac && rc < 0) 936 auditd_reset(ac); 937 sk = NULL; 938 939 /* drop our netns reference, no auditd sends past this line */ 940 if (net) { 941 put_net(net); 942 net = NULL; 943 } 944 945 /* we have processed all the queues so wake everyone */ 946 wake_up(&audit_backlog_wait); 947 948 /* NOTE: we want to wake up if there is anything on the queue, 949 * regardless of if an auditd is connected, as we need to 950 * do the multicast send and rotate records from the 951 * main queue to the retry/hold queues */ 952 wait_event_freezable(kauditd_wait, 953 (skb_queue_len(&audit_queue) ? 1 : 0)); 954 } 955 956 return 0; 957 } 958 959 int audit_send_list_thread(void *_dest) 960 { 961 struct audit_netlink_list *dest = _dest; 962 struct sk_buff *skb; 963 struct sock *sk = audit_get_sk(dest->net); 964 965 /* wait for parent to finish and send an ACK */ 966 audit_ctl_lock(); 967 audit_ctl_unlock(); 968 969 while ((skb = __skb_dequeue(&dest->q)) != NULL) 970 netlink_unicast(sk, skb, dest->portid, 0); 971 972 put_net(dest->net); 973 kfree(dest); 974 975 return 0; 976 } 977 978 struct sk_buff *audit_make_reply(int seq, int type, int done, 979 int multi, const void *payload, int size) 980 { 981 struct sk_buff *skb; 982 struct nlmsghdr *nlh; 983 void *data; 984 int flags = multi ? NLM_F_MULTI : 0; 985 int t = done ? NLMSG_DONE : type; 986 987 skb = nlmsg_new(size, GFP_KERNEL); 988 if (!skb) 989 return NULL; 990 991 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 992 if (!nlh) 993 goto out_kfree_skb; 994 data = nlmsg_data(nlh); 995 memcpy(data, payload, size); 996 return skb; 997 998 out_kfree_skb: 999 kfree_skb(skb); 1000 return NULL; 1001 } 1002 1003 static void audit_free_reply(struct audit_reply *reply) 1004 { 1005 if (!reply) 1006 return; 1007 1008 kfree_skb(reply->skb); 1009 if (reply->net) 1010 put_net(reply->net); 1011 kfree(reply); 1012 } 1013 1014 static int audit_send_reply_thread(void *arg) 1015 { 1016 struct audit_reply *reply = (struct audit_reply *)arg; 1017 1018 audit_ctl_lock(); 1019 audit_ctl_unlock(); 1020 1021 /* Ignore failure. It'll only happen if the sender goes away, 1022 because our timeout is set to infinite. */ 1023 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 1024 reply->skb = NULL; 1025 audit_free_reply(reply); 1026 return 0; 1027 } 1028 1029 /** 1030 * audit_send_reply - send an audit reply message via netlink 1031 * @request_skb: skb of request we are replying to (used to target the reply) 1032 * @seq: sequence number 1033 * @type: audit message type 1034 * @done: done (last) flag 1035 * @multi: multi-part message flag 1036 * @payload: payload data 1037 * @size: payload size 1038 * 1039 * Allocates a skb, builds the netlink message, and sends it to the port id. 1040 */ 1041 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 1042 int multi, const void *payload, int size) 1043 { 1044 struct task_struct *tsk; 1045 struct audit_reply *reply; 1046 1047 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 1048 if (!reply) 1049 return; 1050 1051 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 1052 if (!reply->skb) 1053 goto err; 1054 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 1055 reply->portid = NETLINK_CB(request_skb).portid; 1056 1057 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 1058 if (IS_ERR(tsk)) 1059 goto err; 1060 1061 return; 1062 1063 err: 1064 audit_free_reply(reply); 1065 } 1066 1067 /* 1068 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 1069 * control messages. 1070 */ 1071 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1072 { 1073 int err = 0; 1074 1075 /* Only support initial user namespace for now. */ 1076 /* 1077 * We return ECONNREFUSED because it tricks userspace into thinking 1078 * that audit was not configured into the kernel. Lots of users 1079 * configure their PAM stack (because that's what the distro does) 1080 * to reject login if unable to send messages to audit. If we return 1081 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1082 * configured in and will let login proceed. If we return EPERM 1083 * userspace will reject all logins. This should be removed when we 1084 * support non init namespaces!! 1085 */ 1086 if (current_user_ns() != &init_user_ns) 1087 return -ECONNREFUSED; 1088 1089 switch (msg_type) { 1090 case AUDIT_LIST: 1091 case AUDIT_ADD: 1092 case AUDIT_DEL: 1093 return -EOPNOTSUPP; 1094 case AUDIT_GET: 1095 case AUDIT_SET: 1096 case AUDIT_GET_FEATURE: 1097 case AUDIT_SET_FEATURE: 1098 case AUDIT_LIST_RULES: 1099 case AUDIT_ADD_RULE: 1100 case AUDIT_DEL_RULE: 1101 case AUDIT_SIGNAL_INFO: 1102 case AUDIT_TTY_GET: 1103 case AUDIT_TTY_SET: 1104 case AUDIT_TRIM: 1105 case AUDIT_MAKE_EQUIV: 1106 /* Only support auditd and auditctl in initial pid namespace 1107 * for now. */ 1108 if (task_active_pid_ns(current) != &init_pid_ns) 1109 return -EPERM; 1110 1111 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1112 err = -EPERM; 1113 break; 1114 case AUDIT_USER: 1115 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1116 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1117 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1118 err = -EPERM; 1119 break; 1120 default: /* bad msg */ 1121 err = -EINVAL; 1122 } 1123 1124 return err; 1125 } 1126 1127 static void audit_log_common_recv_msg(struct audit_context *context, 1128 struct audit_buffer **ab, u16 msg_type) 1129 { 1130 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1131 pid_t pid = task_tgid_nr(current); 1132 1133 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1134 *ab = NULL; 1135 return; 1136 } 1137 1138 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1139 if (unlikely(!*ab)) 1140 return; 1141 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1142 audit_log_session_info(*ab); 1143 audit_log_task_context(*ab); 1144 } 1145 1146 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1147 u16 msg_type) 1148 { 1149 audit_log_common_recv_msg(NULL, ab, msg_type); 1150 } 1151 1152 static int is_audit_feature_set(int i) 1153 { 1154 return af.features & AUDIT_FEATURE_TO_MASK(i); 1155 } 1156 1157 static int audit_get_feature(struct sk_buff *skb) 1158 { 1159 u32 seq; 1160 1161 seq = nlmsg_hdr(skb)->nlmsg_seq; 1162 1163 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1164 1165 return 0; 1166 } 1167 1168 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1169 u32 old_lock, u32 new_lock, int res) 1170 { 1171 struct audit_buffer *ab; 1172 1173 if (audit_enabled == AUDIT_OFF) 1174 return; 1175 1176 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1177 if (!ab) 1178 return; 1179 audit_log_task_info(ab); 1180 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1181 audit_feature_names[which], !!old_feature, !!new_feature, 1182 !!old_lock, !!new_lock, res); 1183 audit_log_end(ab); 1184 } 1185 1186 static int audit_set_feature(struct audit_features *uaf) 1187 { 1188 int i; 1189 1190 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1191 1192 /* if there is ever a version 2 we should handle that here */ 1193 1194 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1195 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1196 u32 old_feature, new_feature, old_lock, new_lock; 1197 1198 /* if we are not changing this feature, move along */ 1199 if (!(feature & uaf->mask)) 1200 continue; 1201 1202 old_feature = af.features & feature; 1203 new_feature = uaf->features & feature; 1204 new_lock = (uaf->lock | af.lock) & feature; 1205 old_lock = af.lock & feature; 1206 1207 /* are we changing a locked feature? */ 1208 if (old_lock && (new_feature != old_feature)) { 1209 audit_log_feature_change(i, old_feature, new_feature, 1210 old_lock, new_lock, 0); 1211 return -EPERM; 1212 } 1213 } 1214 /* nothing invalid, do the changes */ 1215 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1216 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1217 u32 old_feature, new_feature, old_lock, new_lock; 1218 1219 /* if we are not changing this feature, move along */ 1220 if (!(feature & uaf->mask)) 1221 continue; 1222 1223 old_feature = af.features & feature; 1224 new_feature = uaf->features & feature; 1225 old_lock = af.lock & feature; 1226 new_lock = (uaf->lock | af.lock) & feature; 1227 1228 if (new_feature != old_feature) 1229 audit_log_feature_change(i, old_feature, new_feature, 1230 old_lock, new_lock, 1); 1231 1232 if (new_feature) 1233 af.features |= feature; 1234 else 1235 af.features &= ~feature; 1236 af.lock |= new_lock; 1237 } 1238 1239 return 0; 1240 } 1241 1242 static int audit_replace(struct pid *pid) 1243 { 1244 pid_t pvnr; 1245 struct sk_buff *skb; 1246 1247 pvnr = pid_vnr(pid); 1248 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1249 if (!skb) 1250 return -ENOMEM; 1251 return auditd_send_unicast_skb(skb); 1252 } 1253 1254 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh, 1255 bool *ack) 1256 { 1257 u32 seq; 1258 void *data; 1259 int data_len; 1260 int err; 1261 struct audit_buffer *ab; 1262 u16 msg_type = nlh->nlmsg_type; 1263 struct audit_sig_info *sig_data; 1264 struct lsm_context lsmctx = { NULL, 0, 0 }; 1265 1266 err = audit_netlink_ok(skb, msg_type); 1267 if (err) 1268 return err; 1269 1270 seq = nlh->nlmsg_seq; 1271 data = nlmsg_data(nlh); 1272 data_len = nlmsg_len(nlh); 1273 1274 switch (msg_type) { 1275 case AUDIT_GET: { 1276 struct audit_status s; 1277 memset(&s, 0, sizeof(s)); 1278 s.enabled = audit_enabled; 1279 s.failure = audit_failure; 1280 /* NOTE: use pid_vnr() so the PID is relative to the current 1281 * namespace */ 1282 s.pid = auditd_pid_vnr(); 1283 s.rate_limit = audit_rate_limit; 1284 s.backlog_limit = audit_backlog_limit; 1285 s.lost = atomic_read(&audit_lost); 1286 s.backlog = skb_queue_len(&audit_queue); 1287 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1288 s.backlog_wait_time = audit_backlog_wait_time; 1289 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual); 1290 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1291 break; 1292 } 1293 case AUDIT_SET: { 1294 struct audit_status s; 1295 memset(&s, 0, sizeof(s)); 1296 /* guard against past and future API changes */ 1297 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1298 if (s.mask & AUDIT_STATUS_ENABLED) { 1299 err = audit_set_enabled(s.enabled); 1300 if (err < 0) 1301 return err; 1302 } 1303 if (s.mask & AUDIT_STATUS_FAILURE) { 1304 err = audit_set_failure(s.failure); 1305 if (err < 0) 1306 return err; 1307 } 1308 if (s.mask & AUDIT_STATUS_PID) { 1309 /* NOTE: we are using the vnr PID functions below 1310 * because the s.pid value is relative to the 1311 * namespace of the caller; at present this 1312 * doesn't matter much since you can really only 1313 * run auditd from the initial pid namespace, but 1314 * something to keep in mind if this changes */ 1315 pid_t new_pid = s.pid; 1316 pid_t auditd_pid; 1317 struct pid *req_pid = task_tgid(current); 1318 1319 /* Sanity check - PID values must match. Setting 1320 * pid to 0 is how auditd ends auditing. */ 1321 if (new_pid && (new_pid != pid_vnr(req_pid))) 1322 return -EINVAL; 1323 1324 /* test the auditd connection */ 1325 audit_replace(req_pid); 1326 1327 auditd_pid = auditd_pid_vnr(); 1328 if (auditd_pid) { 1329 /* replacing a healthy auditd is not allowed */ 1330 if (new_pid) { 1331 audit_log_config_change("audit_pid", 1332 new_pid, auditd_pid, 0); 1333 return -EEXIST; 1334 } 1335 /* only current auditd can unregister itself */ 1336 if (pid_vnr(req_pid) != auditd_pid) { 1337 audit_log_config_change("audit_pid", 1338 new_pid, auditd_pid, 0); 1339 return -EACCES; 1340 } 1341 } 1342 1343 if (new_pid) { 1344 /* register a new auditd connection */ 1345 err = auditd_set(req_pid, 1346 NETLINK_CB(skb).portid, 1347 sock_net(NETLINK_CB(skb).sk), 1348 skb, ack); 1349 if (audit_enabled != AUDIT_OFF) 1350 audit_log_config_change("audit_pid", 1351 new_pid, 1352 auditd_pid, 1353 err ? 0 : 1); 1354 if (err) 1355 return err; 1356 1357 /* try to process any backlog */ 1358 wake_up_interruptible(&kauditd_wait); 1359 } else { 1360 if (audit_enabled != AUDIT_OFF) 1361 audit_log_config_change("audit_pid", 1362 new_pid, 1363 auditd_pid, 1); 1364 1365 /* unregister the auditd connection */ 1366 auditd_reset(NULL); 1367 } 1368 } 1369 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1370 err = audit_set_rate_limit(s.rate_limit); 1371 if (err < 0) 1372 return err; 1373 } 1374 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1375 err = audit_set_backlog_limit(s.backlog_limit); 1376 if (err < 0) 1377 return err; 1378 } 1379 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1380 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1381 return -EINVAL; 1382 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1383 return -EINVAL; 1384 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1385 if (err < 0) 1386 return err; 1387 } 1388 if (s.mask == AUDIT_STATUS_LOST) { 1389 u32 lost = atomic_xchg(&audit_lost, 0); 1390 1391 audit_log_config_change("lost", 0, lost, 1); 1392 return lost; 1393 } 1394 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { 1395 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0); 1396 1397 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1); 1398 return actual; 1399 } 1400 break; 1401 } 1402 case AUDIT_GET_FEATURE: 1403 err = audit_get_feature(skb); 1404 if (err) 1405 return err; 1406 break; 1407 case AUDIT_SET_FEATURE: 1408 if (data_len < sizeof(struct audit_features)) 1409 return -EINVAL; 1410 err = audit_set_feature(data); 1411 if (err) 1412 return err; 1413 break; 1414 case AUDIT_USER: 1415 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1416 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1417 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1418 return 0; 1419 /* exit early if there isn't at least one character to print */ 1420 if (data_len < 2) 1421 return -EINVAL; 1422 1423 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1424 if (err == 1) { /* match or error */ 1425 char *str = data; 1426 1427 err = 0; 1428 if (msg_type == AUDIT_USER_TTY) { 1429 err = tty_audit_push(); 1430 if (err) 1431 break; 1432 } 1433 audit_log_user_recv_msg(&ab, msg_type); 1434 if (msg_type != AUDIT_USER_TTY) { 1435 /* ensure NULL termination */ 1436 str[data_len - 1] = '\0'; 1437 audit_log_format(ab, " msg='%.*s'", 1438 AUDIT_MESSAGE_TEXT_MAX, 1439 str); 1440 } else { 1441 audit_log_format(ab, " data="); 1442 if (str[data_len - 1] == '\0') 1443 data_len--; 1444 audit_log_n_untrustedstring(ab, str, data_len); 1445 } 1446 audit_log_end(ab); 1447 } 1448 break; 1449 case AUDIT_ADD_RULE: 1450 case AUDIT_DEL_RULE: 1451 if (data_len < sizeof(struct audit_rule_data)) 1452 return -EINVAL; 1453 if (audit_enabled == AUDIT_LOCKED) { 1454 audit_log_common_recv_msg(audit_context(), &ab, 1455 AUDIT_CONFIG_CHANGE); 1456 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1457 msg_type == AUDIT_ADD_RULE ? 1458 "add_rule" : "remove_rule", 1459 audit_enabled); 1460 audit_log_end(ab); 1461 return -EPERM; 1462 } 1463 err = audit_rule_change(msg_type, seq, data, data_len); 1464 break; 1465 case AUDIT_LIST_RULES: 1466 err = audit_list_rules_send(skb, seq); 1467 break; 1468 case AUDIT_TRIM: 1469 audit_trim_trees(); 1470 audit_log_common_recv_msg(audit_context(), &ab, 1471 AUDIT_CONFIG_CHANGE); 1472 audit_log_format(ab, " op=trim res=1"); 1473 audit_log_end(ab); 1474 break; 1475 case AUDIT_MAKE_EQUIV: { 1476 void *bufp = data; 1477 u32 sizes[2]; 1478 size_t msglen = data_len; 1479 char *old, *new; 1480 1481 err = -EINVAL; 1482 if (msglen < 2 * sizeof(u32)) 1483 break; 1484 memcpy(sizes, bufp, 2 * sizeof(u32)); 1485 bufp += 2 * sizeof(u32); 1486 msglen -= 2 * sizeof(u32); 1487 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1488 if (IS_ERR(old)) { 1489 err = PTR_ERR(old); 1490 break; 1491 } 1492 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1493 if (IS_ERR(new)) { 1494 err = PTR_ERR(new); 1495 kfree(old); 1496 break; 1497 } 1498 /* OK, here comes... */ 1499 err = audit_tag_tree(old, new); 1500 1501 audit_log_common_recv_msg(audit_context(), &ab, 1502 AUDIT_CONFIG_CHANGE); 1503 audit_log_format(ab, " op=make_equiv old="); 1504 audit_log_untrustedstring(ab, old); 1505 audit_log_format(ab, " new="); 1506 audit_log_untrustedstring(ab, new); 1507 audit_log_format(ab, " res=%d", !err); 1508 audit_log_end(ab); 1509 kfree(old); 1510 kfree(new); 1511 break; 1512 } 1513 case AUDIT_SIGNAL_INFO: 1514 if (lsmprop_is_set(&audit_sig_lsm)) { 1515 err = security_lsmprop_to_secctx(&audit_sig_lsm, 1516 &lsmctx, LSM_ID_UNDEF); 1517 if (err < 0) 1518 return err; 1519 } 1520 sig_data = kmalloc(struct_size(sig_data, ctx, lsmctx.len), 1521 GFP_KERNEL); 1522 if (!sig_data) { 1523 if (lsmprop_is_set(&audit_sig_lsm)) 1524 security_release_secctx(&lsmctx); 1525 return -ENOMEM; 1526 } 1527 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1528 sig_data->pid = audit_sig_pid; 1529 if (lsmprop_is_set(&audit_sig_lsm)) { 1530 memcpy(sig_data->ctx, lsmctx.context, lsmctx.len); 1531 security_release_secctx(&lsmctx); 1532 } 1533 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1534 sig_data, struct_size(sig_data, ctx, 1535 lsmctx.len)); 1536 kfree(sig_data); 1537 break; 1538 case AUDIT_TTY_GET: { 1539 struct audit_tty_status s; 1540 unsigned int t; 1541 1542 t = READ_ONCE(current->signal->audit_tty); 1543 s.enabled = t & AUDIT_TTY_ENABLE; 1544 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1545 1546 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1547 break; 1548 } 1549 case AUDIT_TTY_SET: { 1550 struct audit_tty_status s, old; 1551 struct audit_buffer *ab; 1552 unsigned int t; 1553 1554 memset(&s, 0, sizeof(s)); 1555 /* guard against past and future API changes */ 1556 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1557 /* check if new data is valid */ 1558 if ((s.enabled != 0 && s.enabled != 1) || 1559 (s.log_passwd != 0 && s.log_passwd != 1)) 1560 err = -EINVAL; 1561 1562 if (err) 1563 t = READ_ONCE(current->signal->audit_tty); 1564 else { 1565 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1566 t = xchg(¤t->signal->audit_tty, t); 1567 } 1568 old.enabled = t & AUDIT_TTY_ENABLE; 1569 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1570 1571 audit_log_common_recv_msg(audit_context(), &ab, 1572 AUDIT_CONFIG_CHANGE); 1573 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1574 " old-log_passwd=%d new-log_passwd=%d res=%d", 1575 old.enabled, s.enabled, old.log_passwd, 1576 s.log_passwd, !err); 1577 audit_log_end(ab); 1578 break; 1579 } 1580 default: 1581 err = -EINVAL; 1582 break; 1583 } 1584 1585 return err < 0 ? err : 0; 1586 } 1587 1588 /** 1589 * audit_receive - receive messages from a netlink control socket 1590 * @skb: the message buffer 1591 * 1592 * Parse the provided skb and deal with any messages that may be present, 1593 * malformed skbs are discarded. 1594 */ 1595 static void audit_receive(struct sk_buff *skb) 1596 { 1597 struct nlmsghdr *nlh; 1598 bool ack; 1599 /* 1600 * len MUST be signed for nlmsg_next to be able to dec it below 0 1601 * if the nlmsg_len was not aligned 1602 */ 1603 int len; 1604 int err; 1605 1606 nlh = nlmsg_hdr(skb); 1607 len = skb->len; 1608 1609 audit_ctl_lock(); 1610 while (nlmsg_ok(nlh, len)) { 1611 ack = nlh->nlmsg_flags & NLM_F_ACK; 1612 err = audit_receive_msg(skb, nlh, &ack); 1613 1614 /* send an ack if the user asked for one and audit_receive_msg 1615 * didn't already do it, or if there was an error. */ 1616 if (ack || err) 1617 netlink_ack(skb, nlh, err, NULL); 1618 1619 nlh = nlmsg_next(nlh, &len); 1620 } 1621 audit_ctl_unlock(); 1622 1623 /* can't block with the ctrl lock, so penalize the sender now */ 1624 if (audit_backlog_limit && 1625 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1626 DECLARE_WAITQUEUE(wait, current); 1627 1628 /* wake kauditd to try and flush the queue */ 1629 wake_up_interruptible(&kauditd_wait); 1630 1631 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1632 set_current_state(TASK_UNINTERRUPTIBLE); 1633 schedule_timeout(audit_backlog_wait_time); 1634 remove_wait_queue(&audit_backlog_wait, &wait); 1635 } 1636 } 1637 1638 /* Log information about who is connecting to the audit multicast socket */ 1639 static void audit_log_multicast(int group, const char *op, int err) 1640 { 1641 const struct cred *cred; 1642 struct tty_struct *tty; 1643 char comm[sizeof(current->comm)]; 1644 struct audit_buffer *ab; 1645 1646 if (!audit_enabled) 1647 return; 1648 1649 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1650 if (!ab) 1651 return; 1652 1653 cred = current_cred(); 1654 tty = audit_get_tty(); 1655 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1656 task_tgid_nr(current), 1657 from_kuid(&init_user_ns, cred->uid), 1658 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1659 tty ? tty_name(tty) : "(none)", 1660 audit_get_sessionid(current)); 1661 audit_put_tty(tty); 1662 audit_log_task_context(ab); /* subj= */ 1663 audit_log_format(ab, " comm="); 1664 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1665 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1666 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1667 audit_log_end(ab); 1668 } 1669 1670 /* Run custom bind function on netlink socket group connect or bind requests. */ 1671 static int audit_multicast_bind(struct net *net, int group) 1672 { 1673 int err = 0; 1674 1675 if (!capable(CAP_AUDIT_READ)) 1676 err = -EPERM; 1677 audit_log_multicast(group, "connect", err); 1678 return err; 1679 } 1680 1681 static void audit_multicast_unbind(struct net *net, int group) 1682 { 1683 audit_log_multicast(group, "disconnect", 0); 1684 } 1685 1686 static int __net_init audit_net_init(struct net *net) 1687 { 1688 struct netlink_kernel_cfg cfg = { 1689 .input = audit_receive, 1690 .bind = audit_multicast_bind, 1691 .unbind = audit_multicast_unbind, 1692 .flags = NL_CFG_F_NONROOT_RECV, 1693 .groups = AUDIT_NLGRP_MAX, 1694 }; 1695 1696 struct audit_net *aunet = net_generic(net, audit_net_id); 1697 1698 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1699 if (aunet->sk == NULL) { 1700 audit_panic("cannot initialize netlink socket in namespace"); 1701 return -ENOMEM; 1702 } 1703 /* limit the timeout in case auditd is blocked/stopped */ 1704 aunet->sk->sk_sndtimeo = HZ / 10; 1705 1706 return 0; 1707 } 1708 1709 static void __net_exit audit_net_exit(struct net *net) 1710 { 1711 struct audit_net *aunet = net_generic(net, audit_net_id); 1712 1713 /* NOTE: you would think that we would want to check the auditd 1714 * connection and potentially reset it here if it lives in this 1715 * namespace, but since the auditd connection tracking struct holds a 1716 * reference to this namespace (see auditd_set()) we are only ever 1717 * going to get here after that connection has been released */ 1718 1719 netlink_kernel_release(aunet->sk); 1720 } 1721 1722 static struct pernet_operations audit_net_ops __net_initdata = { 1723 .init = audit_net_init, 1724 .exit = audit_net_exit, 1725 .id = &audit_net_id, 1726 .size = sizeof(struct audit_net), 1727 }; 1728 1729 /* Initialize audit support at boot time. */ 1730 static int __init audit_init(void) 1731 { 1732 int i; 1733 1734 if (audit_initialized == AUDIT_DISABLED) 1735 return 0; 1736 1737 audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC); 1738 1739 skb_queue_head_init(&audit_queue); 1740 skb_queue_head_init(&audit_retry_queue); 1741 skb_queue_head_init(&audit_hold_queue); 1742 1743 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1744 INIT_LIST_HEAD(&audit_inode_hash[i]); 1745 1746 mutex_init(&audit_cmd_mutex.lock); 1747 audit_cmd_mutex.owner = NULL; 1748 1749 pr_info("initializing netlink subsys (%s)\n", 1750 str_enabled_disabled(audit_default)); 1751 register_pernet_subsys(&audit_net_ops); 1752 1753 audit_initialized = AUDIT_INITIALIZED; 1754 1755 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1756 if (IS_ERR(kauditd_task)) { 1757 int err = PTR_ERR(kauditd_task); 1758 panic("audit: failed to start the kauditd thread (%d)\n", err); 1759 } 1760 1761 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1762 "state=initialized audit_enabled=%u res=1", 1763 audit_enabled); 1764 1765 return 0; 1766 } 1767 postcore_initcall(audit_init); 1768 1769 /* 1770 * Process kernel command-line parameter at boot time. 1771 * audit={0|off} or audit={1|on}. 1772 */ 1773 static int __init audit_enable(char *str) 1774 { 1775 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1776 audit_default = AUDIT_OFF; 1777 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1778 audit_default = AUDIT_ON; 1779 else { 1780 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1781 audit_default = AUDIT_ON; 1782 } 1783 1784 if (audit_default == AUDIT_OFF) 1785 audit_initialized = AUDIT_DISABLED; 1786 if (audit_set_enabled(audit_default)) 1787 pr_err("audit: error setting audit state (%d)\n", 1788 audit_default); 1789 1790 pr_info("%s\n", audit_default ? 1791 "enabled (after initialization)" : "disabled (until reboot)"); 1792 1793 return 1; 1794 } 1795 __setup("audit=", audit_enable); 1796 1797 /* Process kernel command-line parameter at boot time. 1798 * audit_backlog_limit=<n> */ 1799 static int __init audit_backlog_limit_set(char *str) 1800 { 1801 u32 audit_backlog_limit_arg; 1802 1803 pr_info("audit_backlog_limit: "); 1804 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1805 pr_cont("using default of %u, unable to parse %s\n", 1806 audit_backlog_limit, str); 1807 return 1; 1808 } 1809 1810 audit_backlog_limit = audit_backlog_limit_arg; 1811 pr_cont("%d\n", audit_backlog_limit); 1812 1813 return 1; 1814 } 1815 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1816 1817 static void audit_buffer_free(struct audit_buffer *ab) 1818 { 1819 struct sk_buff *skb; 1820 1821 if (!ab) 1822 return; 1823 1824 while ((skb = skb_dequeue(&ab->skb_list))) 1825 kfree_skb(skb); 1826 kmem_cache_free(audit_buffer_cache, ab); 1827 } 1828 1829 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1830 gfp_t gfp_mask, int type) 1831 { 1832 struct audit_buffer *ab; 1833 1834 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1835 if (!ab) 1836 return NULL; 1837 1838 skb_queue_head_init(&ab->skb_list); 1839 1840 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1841 if (!ab->skb) 1842 goto err; 1843 1844 skb_queue_tail(&ab->skb_list, ab->skb); 1845 1846 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1847 goto err; 1848 1849 ab->ctx = ctx; 1850 ab->gfp_mask = gfp_mask; 1851 1852 return ab; 1853 1854 err: 1855 audit_buffer_free(ab); 1856 return NULL; 1857 } 1858 1859 /** 1860 * audit_serial - compute a serial number for the audit record 1861 * 1862 * Compute a serial number for the audit record. Audit records are 1863 * written to user-space as soon as they are generated, so a complete 1864 * audit record may be written in several pieces. The timestamp of the 1865 * record and this serial number are used by the user-space tools to 1866 * determine which pieces belong to the same audit record. The 1867 * (timestamp,serial) tuple is unique for each syscall and is live from 1868 * syscall entry to syscall exit. 1869 * 1870 * NOTE: Another possibility is to store the formatted records off the 1871 * audit context (for those records that have a context), and emit them 1872 * all at syscall exit. However, this could delay the reporting of 1873 * significant errors until syscall exit (or never, if the system 1874 * halts). 1875 */ 1876 unsigned int audit_serial(void) 1877 { 1878 static atomic_t serial = ATOMIC_INIT(0); 1879 1880 return atomic_inc_return(&serial); 1881 } 1882 1883 static inline void audit_get_stamp(struct audit_context *ctx, 1884 struct audit_stamp *stamp) 1885 { 1886 if (!ctx || !auditsc_get_stamp(ctx, stamp)) { 1887 ktime_get_coarse_real_ts64(&stamp->ctime); 1888 stamp->serial = audit_serial(); 1889 } 1890 } 1891 1892 /** 1893 * audit_log_start - obtain an audit buffer 1894 * @ctx: audit_context (may be NULL) 1895 * @gfp_mask: type of allocation 1896 * @type: audit message type 1897 * 1898 * Returns audit_buffer pointer on success or NULL on error. 1899 * 1900 * Obtain an audit buffer. This routine does locking to obtain the 1901 * audit buffer, but then no locking is required for calls to 1902 * audit_log_*format. If the task (ctx) is a task that is currently in a 1903 * syscall, then the syscall is marked as auditable and an audit record 1904 * will be written at syscall exit. If there is no associated task, then 1905 * task context (ctx) should be NULL. 1906 */ 1907 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1908 int type) 1909 { 1910 struct audit_buffer *ab; 1911 1912 if (audit_initialized != AUDIT_INITIALIZED) 1913 return NULL; 1914 1915 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1916 return NULL; 1917 1918 /* NOTE: don't ever fail/sleep on these two conditions: 1919 * 1. auditd generated record - since we need auditd to drain the 1920 * queue; also, when we are checking for auditd, compare PIDs using 1921 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1922 * using a PID anchored in the caller's namespace 1923 * 2. generator holding the audit_cmd_mutex - we don't want to block 1924 * while holding the mutex, although we do penalize the sender 1925 * later in audit_receive() when it is safe to block 1926 */ 1927 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1928 long stime = audit_backlog_wait_time; 1929 1930 while (audit_backlog_limit && 1931 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1932 /* wake kauditd to try and flush the queue */ 1933 wake_up_interruptible(&kauditd_wait); 1934 1935 /* sleep if we are allowed and we haven't exhausted our 1936 * backlog wait limit */ 1937 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1938 long rtime = stime; 1939 1940 DECLARE_WAITQUEUE(wait, current); 1941 1942 add_wait_queue_exclusive(&audit_backlog_wait, 1943 &wait); 1944 set_current_state(TASK_UNINTERRUPTIBLE); 1945 stime = schedule_timeout(rtime); 1946 atomic_add(rtime - stime, &audit_backlog_wait_time_actual); 1947 remove_wait_queue(&audit_backlog_wait, &wait); 1948 } else { 1949 if (audit_rate_check() && printk_ratelimit()) 1950 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1951 skb_queue_len(&audit_queue), 1952 audit_backlog_limit); 1953 audit_log_lost("backlog limit exceeded"); 1954 return NULL; 1955 } 1956 } 1957 } 1958 1959 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1960 if (!ab) { 1961 audit_log_lost("out of memory in audit_log_start"); 1962 return NULL; 1963 } 1964 1965 audit_get_stamp(ab->ctx, &ab->stamp); 1966 /* cancel dummy context to enable supporting records */ 1967 if (ctx) 1968 ctx->dummy = 0; 1969 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1970 (unsigned long long)ab->stamp.ctime.tv_sec, 1971 ab->stamp.ctime.tv_nsec/1000000, 1972 ab->stamp.serial); 1973 1974 return ab; 1975 } 1976 1977 /** 1978 * audit_expand - expand skb in the audit buffer 1979 * @ab: audit_buffer 1980 * @extra: space to add at tail of the skb 1981 * 1982 * Returns 0 (no space) on failed expansion, or available space if 1983 * successful. 1984 */ 1985 static inline int audit_expand(struct audit_buffer *ab, int extra) 1986 { 1987 struct sk_buff *skb = ab->skb; 1988 int oldtail = skb_tailroom(skb); 1989 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1990 int newtail = skb_tailroom(skb); 1991 1992 if (ret < 0) { 1993 audit_log_lost("out of memory in audit_expand"); 1994 return 0; 1995 } 1996 1997 skb->truesize += newtail - oldtail; 1998 return newtail; 1999 } 2000 2001 /* 2002 * Format an audit message into the audit buffer. If there isn't enough 2003 * room in the audit buffer, more room will be allocated and vsnprint 2004 * will be called a second time. Currently, we assume that a printk 2005 * can't format message larger than 1024 bytes, so we don't either. 2006 */ 2007 static __printf(2, 0) 2008 void audit_log_vformat(struct audit_buffer *ab, const char *fmt, va_list args) 2009 { 2010 int len, avail; 2011 struct sk_buff *skb; 2012 va_list args2; 2013 2014 if (!ab) 2015 return; 2016 2017 BUG_ON(!ab->skb); 2018 skb = ab->skb; 2019 avail = skb_tailroom(skb); 2020 if (avail == 0) { 2021 avail = audit_expand(ab, AUDIT_BUFSIZ); 2022 if (!avail) 2023 goto out; 2024 } 2025 va_copy(args2, args); 2026 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 2027 if (len >= avail) { 2028 /* The printk buffer is 1024 bytes long, so if we get 2029 * here and AUDIT_BUFSIZ is at least 1024, then we can 2030 * log everything that printk could have logged. */ 2031 avail = audit_expand(ab, 2032 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 2033 if (!avail) 2034 goto out_va_end; 2035 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 2036 } 2037 if (len > 0) 2038 skb_put(skb, len); 2039 out_va_end: 2040 va_end(args2); 2041 out: 2042 return; 2043 } 2044 2045 /** 2046 * audit_log_format - format a message into the audit buffer. 2047 * @ab: audit_buffer 2048 * @fmt: format string 2049 * @...: optional parameters matching @fmt string 2050 * 2051 * All the work is done in audit_log_vformat. 2052 */ 2053 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 2054 { 2055 va_list args; 2056 2057 if (!ab) 2058 return; 2059 va_start(args, fmt); 2060 audit_log_vformat(ab, fmt, args); 2061 va_end(args); 2062 } 2063 2064 /** 2065 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 2066 * @ab: the audit_buffer 2067 * @buf: buffer to convert to hex 2068 * @len: length of @buf to be converted 2069 * 2070 * No return value; failure to expand is silently ignored. 2071 * 2072 * This function will take the passed buf and convert it into a string of 2073 * ascii hex digits. The new string is placed onto the skb. 2074 */ 2075 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 2076 size_t len) 2077 { 2078 int i, avail, new_len; 2079 unsigned char *ptr; 2080 struct sk_buff *skb; 2081 2082 if (!ab) 2083 return; 2084 2085 BUG_ON(!ab->skb); 2086 skb = ab->skb; 2087 avail = skb_tailroom(skb); 2088 new_len = len<<1; 2089 if (new_len >= avail) { 2090 /* Round the buffer request up to the next multiple */ 2091 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 2092 avail = audit_expand(ab, new_len); 2093 if (!avail) 2094 return; 2095 } 2096 2097 ptr = skb_tail_pointer(skb); 2098 for (i = 0; i < len; i++) 2099 ptr = hex_byte_pack_upper(ptr, buf[i]); 2100 *ptr = 0; 2101 skb_put(skb, len << 1); /* new string is twice the old string */ 2102 } 2103 2104 /* 2105 * Format a string of no more than slen characters into the audit buffer, 2106 * enclosed in quote marks. 2107 */ 2108 void audit_log_n_string(struct audit_buffer *ab, const char *string, 2109 size_t slen) 2110 { 2111 int avail, new_len; 2112 unsigned char *ptr; 2113 struct sk_buff *skb; 2114 2115 if (!ab) 2116 return; 2117 2118 BUG_ON(!ab->skb); 2119 skb = ab->skb; 2120 avail = skb_tailroom(skb); 2121 new_len = slen + 3; /* enclosing quotes + null terminator */ 2122 if (new_len > avail) { 2123 avail = audit_expand(ab, new_len); 2124 if (!avail) 2125 return; 2126 } 2127 ptr = skb_tail_pointer(skb); 2128 *ptr++ = '"'; 2129 memcpy(ptr, string, slen); 2130 ptr += slen; 2131 *ptr++ = '"'; 2132 *ptr = 0; 2133 skb_put(skb, slen + 2); /* don't include null terminator */ 2134 } 2135 2136 /** 2137 * audit_string_contains_control - does a string need to be logged in hex 2138 * @string: string to be checked 2139 * @len: max length of the string to check 2140 */ 2141 bool audit_string_contains_control(const char *string, size_t len) 2142 { 2143 const unsigned char *p; 2144 for (p = string; p < (const unsigned char *)string + len; p++) { 2145 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2146 return true; 2147 } 2148 return false; 2149 } 2150 2151 /** 2152 * audit_log_n_untrustedstring - log a string that may contain random characters 2153 * @ab: audit_buffer 2154 * @string: string to be logged 2155 * @len: length of string (not including trailing null) 2156 * 2157 * This code will escape a string that is passed to it if the string 2158 * contains a control character, unprintable character, double quote mark, 2159 * or a space. Unescaped strings will start and end with a double quote mark. 2160 * Strings that are escaped are printed in hex (2 digits per char). 2161 * 2162 * The caller specifies the number of characters in the string to log, which may 2163 * or may not be the entire string. 2164 */ 2165 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2166 size_t len) 2167 { 2168 if (audit_string_contains_control(string, len)) 2169 audit_log_n_hex(ab, string, len); 2170 else 2171 audit_log_n_string(ab, string, len); 2172 } 2173 2174 /** 2175 * audit_log_untrustedstring - log a string that may contain random characters 2176 * @ab: audit_buffer 2177 * @string: string to be logged 2178 * 2179 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2180 * determine string length. 2181 */ 2182 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2183 { 2184 audit_log_n_untrustedstring(ab, string, strlen(string)); 2185 } 2186 2187 /* This is a helper-function to print the escaped d_path */ 2188 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2189 const struct path *path) 2190 { 2191 char *p, *pathname; 2192 2193 if (prefix) 2194 audit_log_format(ab, "%s", prefix); 2195 2196 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2197 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2198 if (!pathname) { 2199 audit_log_format(ab, "\"<no_memory>\""); 2200 return; 2201 } 2202 p = d_path(path, pathname, PATH_MAX+11); 2203 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2204 /* FIXME: can we save some information here? */ 2205 audit_log_format(ab, "\"<too_long>\""); 2206 } else 2207 audit_log_untrustedstring(ab, p); 2208 kfree(pathname); 2209 } 2210 2211 void audit_log_session_info(struct audit_buffer *ab) 2212 { 2213 unsigned int sessionid = audit_get_sessionid(current); 2214 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2215 2216 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2217 } 2218 2219 void audit_log_key(struct audit_buffer *ab, char *key) 2220 { 2221 audit_log_format(ab, " key="); 2222 if (key) 2223 audit_log_untrustedstring(ab, key); 2224 else 2225 audit_log_format(ab, "(null)"); 2226 } 2227 2228 /** 2229 * audit_buffer_aux_new - Add an aux record buffer to the skb list 2230 * @ab: audit_buffer 2231 * @type: message type 2232 * 2233 * Aux records are allocated and added to the skb list of 2234 * the "main" record. The ab->skb is reset to point to the 2235 * aux record on its creation. When the aux record in complete 2236 * ab->skb has to be reset to point to the "main" record. 2237 * This allows the audit_log_ functions to be ignorant of 2238 * which kind of record it is logging to. It also avoids adding 2239 * special data for aux records. 2240 * 2241 * On success ab->skb will point to the new aux record. 2242 * Returns 0 on success, -ENOMEM should allocation fail. 2243 */ 2244 static int audit_buffer_aux_new(struct audit_buffer *ab, int type) 2245 { 2246 WARN_ON(ab->skb != skb_peek(&ab->skb_list)); 2247 2248 ab->skb = nlmsg_new(AUDIT_BUFSIZ, ab->gfp_mask); 2249 if (!ab->skb) 2250 goto err; 2251 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 2252 goto err; 2253 skb_queue_tail(&ab->skb_list, ab->skb); 2254 2255 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 2256 (unsigned long long)ab->stamp.ctime.tv_sec, 2257 ab->stamp.ctime.tv_nsec/1000000, 2258 ab->stamp.serial); 2259 2260 return 0; 2261 2262 err: 2263 kfree_skb(ab->skb); 2264 ab->skb = skb_peek(&ab->skb_list); 2265 return -ENOMEM; 2266 } 2267 2268 /** 2269 * audit_buffer_aux_end - Switch back to the "main" record from an aux record 2270 * @ab: audit_buffer 2271 * 2272 * Restores the "main" audit record to ab->skb. 2273 */ 2274 static void audit_buffer_aux_end(struct audit_buffer *ab) 2275 { 2276 ab->skb = skb_peek(&ab->skb_list); 2277 } 2278 2279 /** 2280 * audit_log_subj_ctx - Add LSM subject information 2281 * @ab: audit_buffer 2282 * @prop: LSM subject properties. 2283 * 2284 * Add a subj= field and, if necessary, a AUDIT_MAC_TASK_CONTEXTS record. 2285 */ 2286 int audit_log_subj_ctx(struct audit_buffer *ab, struct lsm_prop *prop) 2287 { 2288 struct lsm_context ctx; 2289 char *space = ""; 2290 int error; 2291 int i; 2292 2293 security_current_getlsmprop_subj(prop); 2294 if (!lsmprop_is_set(prop)) 2295 return 0; 2296 2297 if (audit_subj_secctx_cnt < 2) { 2298 error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF); 2299 if (error < 0) { 2300 if (error != -EINVAL) 2301 goto error_path; 2302 return 0; 2303 } 2304 audit_log_format(ab, " subj=%s", ctx.context); 2305 security_release_secctx(&ctx); 2306 return 0; 2307 } 2308 /* Multiple LSMs provide contexts. Include an aux record. */ 2309 audit_log_format(ab, " subj=?"); 2310 error = audit_buffer_aux_new(ab, AUDIT_MAC_TASK_CONTEXTS); 2311 if (error) 2312 goto error_path; 2313 2314 for (i = 0; i < audit_subj_secctx_cnt; i++) { 2315 error = security_lsmprop_to_secctx(prop, &ctx, 2316 audit_subj_lsms[i]->id); 2317 if (error < 0) { 2318 /* 2319 * Don't print anything. An LSM like BPF could 2320 * claim to support contexts, but only do so under 2321 * certain conditions. 2322 */ 2323 if (error == -EOPNOTSUPP) 2324 continue; 2325 if (error != -EINVAL) 2326 audit_panic("error in audit_log_subj_ctx"); 2327 } else { 2328 audit_log_format(ab, "%ssubj_%s=%s", space, 2329 audit_subj_lsms[i]->name, ctx.context); 2330 space = " "; 2331 security_release_secctx(&ctx); 2332 } 2333 } 2334 audit_buffer_aux_end(ab); 2335 return 0; 2336 2337 error_path: 2338 audit_panic("error in audit_log_subj_ctx"); 2339 return error; 2340 } 2341 EXPORT_SYMBOL(audit_log_subj_ctx); 2342 2343 int audit_log_task_context(struct audit_buffer *ab) 2344 { 2345 struct lsm_prop prop; 2346 2347 security_current_getlsmprop_subj(&prop); 2348 return audit_log_subj_ctx(ab, &prop); 2349 } 2350 EXPORT_SYMBOL(audit_log_task_context); 2351 2352 int audit_log_obj_ctx(struct audit_buffer *ab, struct lsm_prop *prop) 2353 { 2354 int i; 2355 int rc; 2356 int error = 0; 2357 char *space = ""; 2358 struct lsm_context ctx; 2359 2360 if (audit_obj_secctx_cnt < 2) { 2361 error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF); 2362 if (error < 0) { 2363 if (error != -EINVAL) 2364 goto error_path; 2365 return error; 2366 } 2367 audit_log_format(ab, " obj=%s", ctx.context); 2368 security_release_secctx(&ctx); 2369 return 0; 2370 } 2371 audit_log_format(ab, " obj=?"); 2372 error = audit_buffer_aux_new(ab, AUDIT_MAC_OBJ_CONTEXTS); 2373 if (error) 2374 goto error_path; 2375 2376 for (i = 0; i < audit_obj_secctx_cnt; i++) { 2377 rc = security_lsmprop_to_secctx(prop, &ctx, 2378 audit_obj_lsms[i]->id); 2379 if (rc < 0) { 2380 audit_log_format(ab, "%sobj_%s=?", space, 2381 audit_obj_lsms[i]->name); 2382 if (rc != -EINVAL) 2383 audit_panic("error in audit_log_obj_ctx"); 2384 error = rc; 2385 } else { 2386 audit_log_format(ab, "%sobj_%s=%s", space, 2387 audit_obj_lsms[i]->name, ctx.context); 2388 security_release_secctx(&ctx); 2389 } 2390 space = " "; 2391 } 2392 2393 audit_buffer_aux_end(ab); 2394 return error; 2395 2396 error_path: 2397 audit_panic("error in audit_log_obj_ctx"); 2398 return error; 2399 } 2400 2401 void audit_log_d_path_exe(struct audit_buffer *ab, 2402 struct mm_struct *mm) 2403 { 2404 struct file *exe_file; 2405 2406 if (!mm) 2407 goto out_null; 2408 2409 exe_file = get_mm_exe_file(mm); 2410 if (!exe_file) 2411 goto out_null; 2412 2413 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2414 fput(exe_file); 2415 return; 2416 out_null: 2417 audit_log_format(ab, " exe=(null)"); 2418 } 2419 2420 struct tty_struct *audit_get_tty(void) 2421 { 2422 struct tty_struct *tty = NULL; 2423 unsigned long flags; 2424 2425 spin_lock_irqsave(¤t->sighand->siglock, flags); 2426 if (current->signal) 2427 tty = tty_kref_get(current->signal->tty); 2428 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2429 return tty; 2430 } 2431 2432 void audit_put_tty(struct tty_struct *tty) 2433 { 2434 tty_kref_put(tty); 2435 } 2436 2437 void audit_log_task_info(struct audit_buffer *ab) 2438 { 2439 const struct cred *cred; 2440 char comm[sizeof(current->comm)]; 2441 struct tty_struct *tty; 2442 2443 if (!ab) 2444 return; 2445 2446 cred = current_cred(); 2447 tty = audit_get_tty(); 2448 audit_log_format(ab, 2449 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2450 " euid=%u suid=%u fsuid=%u" 2451 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2452 task_ppid_nr(current), 2453 task_tgid_nr(current), 2454 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2455 from_kuid(&init_user_ns, cred->uid), 2456 from_kgid(&init_user_ns, cred->gid), 2457 from_kuid(&init_user_ns, cred->euid), 2458 from_kuid(&init_user_ns, cred->suid), 2459 from_kuid(&init_user_ns, cred->fsuid), 2460 from_kgid(&init_user_ns, cred->egid), 2461 from_kgid(&init_user_ns, cred->sgid), 2462 from_kgid(&init_user_ns, cred->fsgid), 2463 tty ? tty_name(tty) : "(none)", 2464 audit_get_sessionid(current)); 2465 audit_put_tty(tty); 2466 audit_log_format(ab, " comm="); 2467 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2468 audit_log_d_path_exe(ab, current->mm); 2469 audit_log_task_context(ab); 2470 } 2471 EXPORT_SYMBOL(audit_log_task_info); 2472 2473 /** 2474 * audit_log_path_denied - report a path restriction denial 2475 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2476 * @operation: specific operation name 2477 */ 2478 void audit_log_path_denied(int type, const char *operation) 2479 { 2480 struct audit_buffer *ab; 2481 2482 if (!audit_enabled) 2483 return; 2484 2485 /* Generate log with subject, operation, outcome. */ 2486 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2487 if (!ab) 2488 return; 2489 audit_log_format(ab, "op=%s", operation); 2490 audit_log_task_info(ab); 2491 audit_log_format(ab, " res=0"); 2492 audit_log_end(ab); 2493 } 2494 2495 int audit_log_nf_skb(struct audit_buffer *ab, 2496 const struct sk_buff *skb, u8 nfproto) 2497 { 2498 /* find the IP protocol in the case of NFPROTO_BRIDGE */ 2499 if (nfproto == NFPROTO_BRIDGE) { 2500 switch (eth_hdr(skb)->h_proto) { 2501 case htons(ETH_P_IP): 2502 nfproto = NFPROTO_IPV4; 2503 break; 2504 case htons(ETH_P_IPV6): 2505 nfproto = NFPROTO_IPV6; 2506 break; 2507 default: 2508 goto unknown_proto; 2509 } 2510 } 2511 2512 switch (nfproto) { 2513 case NFPROTO_IPV4: { 2514 struct iphdr iph; 2515 const struct iphdr *ih; 2516 2517 ih = skb_header_pointer(skb, skb_network_offset(skb), 2518 sizeof(iph), &iph); 2519 if (!ih) 2520 return -ENOMEM; 2521 2522 switch (ih->protocol) { 2523 case IPPROTO_TCP: { 2524 struct tcphdr _tcph; 2525 const struct tcphdr *th; 2526 2527 th = skb_header_pointer(skb, skb_transport_offset(skb), 2528 sizeof(_tcph), &_tcph); 2529 if (!th) 2530 return -ENOMEM; 2531 2532 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu sport=%hu dport=%hu", 2533 &ih->saddr, &ih->daddr, ih->protocol, 2534 ntohs(th->source), ntohs(th->dest)); 2535 break; 2536 } 2537 case IPPROTO_UDP: 2538 case IPPROTO_UDPLITE: { 2539 struct udphdr _udph; 2540 const struct udphdr *uh; 2541 2542 uh = skb_header_pointer(skb, skb_transport_offset(skb), 2543 sizeof(_udph), &_udph); 2544 if (!uh) 2545 return -ENOMEM; 2546 2547 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu sport=%hu dport=%hu", 2548 &ih->saddr, &ih->daddr, ih->protocol, 2549 ntohs(uh->source), ntohs(uh->dest)); 2550 break; 2551 } 2552 case IPPROTO_SCTP: { 2553 struct sctphdr _sctph; 2554 const struct sctphdr *sh; 2555 2556 sh = skb_header_pointer(skb, skb_transport_offset(skb), 2557 sizeof(_sctph), &_sctph); 2558 if (!sh) 2559 return -ENOMEM; 2560 2561 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu sport=%hu dport=%hu", 2562 &ih->saddr, &ih->daddr, ih->protocol, 2563 ntohs(sh->source), ntohs(sh->dest)); 2564 break; 2565 } 2566 default: 2567 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu", 2568 &ih->saddr, &ih->daddr, ih->protocol); 2569 } 2570 2571 break; 2572 } 2573 case NFPROTO_IPV6: { 2574 struct ipv6hdr iph; 2575 const struct ipv6hdr *ih; 2576 u8 nexthdr; 2577 __be16 frag_off; 2578 2579 ih = skb_header_pointer(skb, skb_network_offset(skb), 2580 sizeof(iph), &iph); 2581 if (!ih) 2582 return -ENOMEM; 2583 2584 nexthdr = ih->nexthdr; 2585 ipv6_skip_exthdr(skb, skb_network_offset(skb) + sizeof(iph), 2586 &nexthdr, &frag_off); 2587 2588 switch (nexthdr) { 2589 case IPPROTO_TCP: { 2590 struct tcphdr _tcph; 2591 const struct tcphdr *th; 2592 2593 th = skb_header_pointer(skb, skb_transport_offset(skb), 2594 sizeof(_tcph), &_tcph); 2595 if (!th) 2596 return -ENOMEM; 2597 2598 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu sport=%hu dport=%hu", 2599 &ih->saddr, &ih->daddr, nexthdr, 2600 ntohs(th->source), ntohs(th->dest)); 2601 break; 2602 } 2603 case IPPROTO_UDP: 2604 case IPPROTO_UDPLITE: { 2605 struct udphdr _udph; 2606 const struct udphdr *uh; 2607 2608 uh = skb_header_pointer(skb, skb_transport_offset(skb), 2609 sizeof(_udph), &_udph); 2610 if (!uh) 2611 return -ENOMEM; 2612 2613 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu sport=%hu dport=%hu", 2614 &ih->saddr, &ih->daddr, nexthdr, 2615 ntohs(uh->source), ntohs(uh->dest)); 2616 break; 2617 } 2618 case IPPROTO_SCTP: { 2619 struct sctphdr _sctph; 2620 const struct sctphdr *sh; 2621 2622 sh = skb_header_pointer(skb, skb_transport_offset(skb), 2623 sizeof(_sctph), &_sctph); 2624 if (!sh) 2625 return -ENOMEM; 2626 2627 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu sport=%hu dport=%hu", 2628 &ih->saddr, &ih->daddr, nexthdr, 2629 ntohs(sh->source), ntohs(sh->dest)); 2630 break; 2631 } 2632 default: 2633 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu", 2634 &ih->saddr, &ih->daddr, nexthdr); 2635 } 2636 2637 break; 2638 } 2639 default: 2640 goto unknown_proto; 2641 } 2642 2643 return 0; 2644 2645 unknown_proto: 2646 audit_log_format(ab, " saddr=? daddr=? proto=?"); 2647 return -EPFNOSUPPORT; 2648 } 2649 EXPORT_SYMBOL(audit_log_nf_skb); 2650 2651 /* global counter which is incremented every time something logs in */ 2652 static atomic_t session_id = ATOMIC_INIT(0); 2653 2654 static int audit_set_loginuid_perm(kuid_t loginuid) 2655 { 2656 /* if we are unset, we don't need privs */ 2657 if (!audit_loginuid_set(current)) 2658 return 0; 2659 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2660 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2661 return -EPERM; 2662 /* it is set, you need permission */ 2663 if (!capable(CAP_AUDIT_CONTROL)) 2664 return -EPERM; 2665 /* reject if this is not an unset and we don't allow that */ 2666 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2667 && uid_valid(loginuid)) 2668 return -EPERM; 2669 return 0; 2670 } 2671 2672 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2673 unsigned int oldsessionid, 2674 unsigned int sessionid, int rc) 2675 { 2676 struct audit_buffer *ab; 2677 uid_t uid, oldloginuid, loginuid; 2678 struct tty_struct *tty; 2679 2680 if (!audit_enabled) 2681 return; 2682 2683 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2684 if (!ab) 2685 return; 2686 2687 uid = from_kuid(&init_user_ns, task_uid(current)); 2688 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2689 loginuid = from_kuid(&init_user_ns, kloginuid); 2690 tty = audit_get_tty(); 2691 2692 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2693 audit_log_task_context(ab); 2694 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2695 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2696 oldsessionid, sessionid, !rc); 2697 audit_put_tty(tty); 2698 audit_log_end(ab); 2699 } 2700 2701 /** 2702 * audit_set_loginuid - set current task's loginuid 2703 * @loginuid: loginuid value 2704 * 2705 * Returns 0. 2706 * 2707 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2708 */ 2709 int audit_set_loginuid(kuid_t loginuid) 2710 { 2711 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2712 kuid_t oldloginuid; 2713 int rc; 2714 2715 oldloginuid = audit_get_loginuid(current); 2716 oldsessionid = audit_get_sessionid(current); 2717 2718 rc = audit_set_loginuid_perm(loginuid); 2719 if (rc) 2720 goto out; 2721 2722 /* are we setting or clearing? */ 2723 if (uid_valid(loginuid)) { 2724 sessionid = (unsigned int)atomic_inc_return(&session_id); 2725 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2726 sessionid = (unsigned int)atomic_inc_return(&session_id); 2727 } 2728 2729 current->sessionid = sessionid; 2730 current->loginuid = loginuid; 2731 out: 2732 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2733 return rc; 2734 } 2735 2736 /** 2737 * audit_signal_info - record signal info for shutting down audit subsystem 2738 * @sig: signal value 2739 * @t: task being signaled 2740 * 2741 * If the audit subsystem is being terminated, record the task (pid) 2742 * and uid that is doing that. 2743 */ 2744 int audit_signal_info(int sig, struct task_struct *t) 2745 { 2746 kuid_t uid = current_uid(), auid; 2747 2748 if (auditd_test_task(t) && 2749 (sig == SIGTERM || sig == SIGHUP || 2750 sig == SIGUSR1 || sig == SIGUSR2)) { 2751 audit_sig_pid = task_tgid_nr(current); 2752 auid = audit_get_loginuid(current); 2753 if (uid_valid(auid)) 2754 audit_sig_uid = auid; 2755 else 2756 audit_sig_uid = uid; 2757 security_current_getlsmprop_subj(&audit_sig_lsm); 2758 } 2759 2760 return audit_signal_info_syscall(t); 2761 } 2762 2763 /** 2764 * __audit_log_end - enqueue one audit record 2765 * @skb: the buffer to send 2766 */ 2767 static void __audit_log_end(struct sk_buff *skb) 2768 { 2769 struct nlmsghdr *nlh; 2770 2771 if (audit_rate_check()) { 2772 /* setup the netlink header, see the comments in 2773 * kauditd_send_multicast_skb() for length quirks */ 2774 nlh = nlmsg_hdr(skb); 2775 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2776 2777 /* queue the netlink packet */ 2778 skb_queue_tail(&audit_queue, skb); 2779 } else { 2780 audit_log_lost("rate limit exceeded"); 2781 kfree_skb(skb); 2782 } 2783 } 2784 2785 /** 2786 * audit_log_end - end one audit record 2787 * @ab: the audit_buffer 2788 * 2789 * We can not do a netlink send inside an irq context because it blocks (last 2790 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2791 * queue and a kthread is scheduled to remove them from the queue outside the 2792 * irq context. May be called in any context. 2793 */ 2794 void audit_log_end(struct audit_buffer *ab) 2795 { 2796 struct sk_buff *skb; 2797 2798 if (!ab) 2799 return; 2800 2801 while ((skb = skb_dequeue(&ab->skb_list))) 2802 __audit_log_end(skb); 2803 2804 /* poke the kauditd thread */ 2805 wake_up_interruptible(&kauditd_wait); 2806 2807 audit_buffer_free(ab); 2808 } 2809 2810 /** 2811 * audit_log - Log an audit record 2812 * @ctx: audit context 2813 * @gfp_mask: type of allocation 2814 * @type: audit message type 2815 * @fmt: format string to use 2816 * @...: variable parameters matching the format string 2817 * 2818 * This is a convenience function that calls audit_log_start, 2819 * audit_log_vformat, and audit_log_end. It may be called 2820 * in any context. 2821 */ 2822 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2823 const char *fmt, ...) 2824 { 2825 struct audit_buffer *ab; 2826 va_list args; 2827 2828 ab = audit_log_start(ctx, gfp_mask, type); 2829 if (ab) { 2830 va_start(args, fmt); 2831 audit_log_vformat(ab, fmt, args); 2832 va_end(args); 2833 audit_log_end(ab); 2834 } 2835 } 2836 2837 EXPORT_SYMBOL(audit_log_start); 2838 EXPORT_SYMBOL(audit_log_end); 2839 EXPORT_SYMBOL(audit_log_format); 2840 EXPORT_SYMBOL(audit_log); 2841