1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50
51 #include <linux/audit.h>
52
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #include <linux/security.h>
57 #include <linux/lsm_hooks.h>
58 #include <linux/freezer.h>
59 #include <linux/pid_namespace.h>
60 #include <net/netns/generic.h>
61
62 #include "audit.h"
63
64 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
65 * (Initialization happens after skb_init is called.) */
66 #define AUDIT_DISABLED -1
67 #define AUDIT_UNINITIALIZED 0
68 #define AUDIT_INITIALIZED 1
69 static int audit_initialized = AUDIT_UNINITIALIZED;
70
71 u32 audit_enabled = AUDIT_OFF;
72 bool audit_ever_enabled = !!AUDIT_OFF;
73
74 EXPORT_SYMBOL_GPL(audit_enabled);
75
76 /* Default state when kernel boots without any parameters. */
77 static u32 audit_default = AUDIT_OFF;
78
79 /* If auditing cannot proceed, audit_failure selects what happens. */
80 static u32 audit_failure = AUDIT_FAIL_PRINTK;
81
82 /* private audit network namespace index */
83 static unsigned int audit_net_id;
84
85 /* Number of modules that provide a security context.
86 List of lsms that provide a security context */
87 static u32 audit_subj_secctx_cnt;
88 static u32 audit_obj_secctx_cnt;
89 static const struct lsm_id *audit_subj_lsms[MAX_LSM_COUNT];
90 static const struct lsm_id *audit_obj_lsms[MAX_LSM_COUNT];
91
92 /**
93 * struct audit_net - audit private network namespace data
94 * @sk: communication socket
95 */
96 struct audit_net {
97 struct sock *sk;
98 };
99
100 /**
101 * struct auditd_connection - kernel/auditd connection state
102 * @pid: auditd PID
103 * @portid: netlink portid
104 * @net: the associated network namespace
105 * @rcu: RCU head
106 *
107 * Description:
108 * This struct is RCU protected; you must either hold the RCU lock for reading
109 * or the associated spinlock for writing.
110 */
111 struct auditd_connection {
112 struct pid *pid;
113 u32 portid;
114 struct net *net;
115 struct rcu_head rcu;
116 };
117 static struct auditd_connection __rcu *auditd_conn;
118 static DEFINE_SPINLOCK(auditd_conn_lock);
119
120 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
121 * to that number per second. This prevents DoS attacks, but results in
122 * audit records being dropped. */
123 static u32 audit_rate_limit;
124
125 /* Number of outstanding audit_buffers allowed.
126 * When set to zero, this means unlimited. */
127 static u32 audit_backlog_limit = 64;
128 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
129 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
130
131 /* The identity of the user shutting down the audit system. */
132 static kuid_t audit_sig_uid = INVALID_UID;
133 static pid_t audit_sig_pid = -1;
134 static struct lsm_prop audit_sig_lsm;
135
136 /* Records can be lost in several ways:
137 0) [suppressed in audit_alloc]
138 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
139 2) out of memory in audit_log_move [alloc_skb]
140 3) suppressed due to audit_rate_limit
141 4) suppressed due to audit_backlog_limit
142 */
143 static atomic_t audit_lost = ATOMIC_INIT(0);
144
145 /* Monotonically increasing sum of time the kernel has spent
146 * waiting while the backlog limit is exceeded.
147 */
148 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
149
150 /* Hash for inode-based rules */
151 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
152
153 static struct kmem_cache *audit_buffer_cache;
154
155 /* queue msgs to send via kauditd_task */
156 static struct sk_buff_head audit_queue;
157 /* queue msgs due to temporary unicast send problems */
158 static struct sk_buff_head audit_retry_queue;
159 /* queue msgs waiting for new auditd connection */
160 static struct sk_buff_head audit_hold_queue;
161
162 /* queue servicing thread */
163 static struct task_struct *kauditd_task;
164 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
165
166 /* waitqueue for callers who are blocked on the audit backlog */
167 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
168
169 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
170 .mask = -1,
171 .features = 0,
172 .lock = 0,};
173
174 static char *audit_feature_names[2] = {
175 "only_unset_loginuid",
176 "loginuid_immutable",
177 };
178
179 /**
180 * struct audit_ctl_mutex - serialize requests from userspace
181 * @lock: the mutex used for locking
182 * @owner: the task which owns the lock
183 *
184 * Description:
185 * This is the lock struct used to ensure we only process userspace requests
186 * in an orderly fashion. We can't simply use a mutex/lock here because we
187 * need to track lock ownership so we don't end up blocking the lock owner in
188 * audit_log_start() or similar.
189 */
190 static struct audit_ctl_mutex {
191 struct mutex lock;
192 void *owner;
193 } audit_cmd_mutex;
194
195 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
196 * audit records. Since printk uses a 1024 byte buffer, this buffer
197 * should be at least that large. */
198 #define AUDIT_BUFSIZ 1024
199
200 /* The audit_buffer is used when formatting an audit record. The caller
201 * locks briefly to get the record off the freelist or to allocate the
202 * buffer, and locks briefly to send the buffer to the netlink layer or
203 * to place it on a transmit queue. Multiple audit_buffers can be in
204 * use simultaneously. */
205 struct audit_buffer {
206 struct sk_buff *skb; /* the skb for audit_log functions */
207 struct sk_buff_head skb_list; /* formatted skbs, ready to send */
208 struct audit_context *ctx; /* NULL or associated context */
209 struct audit_stamp stamp; /* audit stamp for these records */
210 gfp_t gfp_mask;
211 };
212
213 struct audit_reply {
214 __u32 portid;
215 struct net *net;
216 struct sk_buff *skb;
217 };
218
219 /**
220 * auditd_test_task - Check to see if a given task is an audit daemon
221 * @task: the task to check
222 *
223 * Description:
224 * Return 1 if the task is a registered audit daemon, 0 otherwise.
225 */
auditd_test_task(struct task_struct * task)226 int auditd_test_task(struct task_struct *task)
227 {
228 int rc;
229 struct auditd_connection *ac;
230
231 rcu_read_lock();
232 ac = rcu_dereference(auditd_conn);
233 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
234 rcu_read_unlock();
235
236 return rc;
237 }
238
239 /**
240 * audit_ctl_lock - Take the audit control lock
241 */
audit_ctl_lock(void)242 void audit_ctl_lock(void)
243 {
244 mutex_lock(&audit_cmd_mutex.lock);
245 audit_cmd_mutex.owner = current;
246 }
247
248 /**
249 * audit_ctl_unlock - Drop the audit control lock
250 */
audit_ctl_unlock(void)251 void audit_ctl_unlock(void)
252 {
253 audit_cmd_mutex.owner = NULL;
254 mutex_unlock(&audit_cmd_mutex.lock);
255 }
256
257 /**
258 * audit_ctl_owner_current - Test to see if the current task owns the lock
259 *
260 * Description:
261 * Return true if the current task owns the audit control lock, false if it
262 * doesn't own the lock.
263 */
audit_ctl_owner_current(void)264 static bool audit_ctl_owner_current(void)
265 {
266 return (current == audit_cmd_mutex.owner);
267 }
268
269 /**
270 * auditd_pid_vnr - Return the auditd PID relative to the namespace
271 *
272 * Description:
273 * Returns the PID in relation to the namespace, 0 on failure.
274 */
auditd_pid_vnr(void)275 static pid_t auditd_pid_vnr(void)
276 {
277 pid_t pid;
278 const struct auditd_connection *ac;
279
280 rcu_read_lock();
281 ac = rcu_dereference(auditd_conn);
282 if (!ac || !ac->pid)
283 pid = 0;
284 else
285 pid = pid_vnr(ac->pid);
286 rcu_read_unlock();
287
288 return pid;
289 }
290
291 /**
292 * audit_cfg_lsm - Identify a security module as providing a secctx.
293 * @lsmid: LSM identity
294 * @flags: which contexts are provided
295 *
296 * Description:
297 * Increments the count of the security modules providing a secctx.
298 * If the LSM id is already in the list leave it alone.
299 */
audit_cfg_lsm(const struct lsm_id * lsmid,int flags)300 void audit_cfg_lsm(const struct lsm_id *lsmid, int flags)
301 {
302 int i;
303
304 if (flags & AUDIT_CFG_LSM_SECCTX_SUBJECT) {
305 for (i = 0 ; i < audit_subj_secctx_cnt; i++)
306 if (audit_subj_lsms[i] == lsmid)
307 return;
308 audit_subj_lsms[audit_subj_secctx_cnt++] = lsmid;
309 }
310 if (flags & AUDIT_CFG_LSM_SECCTX_OBJECT) {
311 for (i = 0 ; i < audit_obj_secctx_cnt; i++)
312 if (audit_obj_lsms[i] == lsmid)
313 return;
314 audit_obj_lsms[audit_obj_secctx_cnt++] = lsmid;
315 }
316 }
317
318 /**
319 * audit_get_sk - Return the audit socket for the given network namespace
320 * @net: the destination network namespace
321 *
322 * Description:
323 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
324 * that a reference is held for the network namespace while the sock is in use.
325 */
audit_get_sk(const struct net * net)326 static struct sock *audit_get_sk(const struct net *net)
327 {
328 struct audit_net *aunet;
329
330 if (!net)
331 return NULL;
332
333 aunet = net_generic(net, audit_net_id);
334 return aunet->sk;
335 }
336
audit_panic(const char * message)337 void audit_panic(const char *message)
338 {
339 switch (audit_failure) {
340 case AUDIT_FAIL_SILENT:
341 break;
342 case AUDIT_FAIL_PRINTK:
343 if (printk_ratelimit())
344 pr_err("%s\n", message);
345 break;
346 case AUDIT_FAIL_PANIC:
347 panic("audit: %s\n", message);
348 break;
349 }
350 }
351
audit_rate_check(void)352 static inline int audit_rate_check(void)
353 {
354 static unsigned long last_check = 0;
355 static int messages = 0;
356 static DEFINE_SPINLOCK(lock);
357 unsigned long flags;
358 unsigned long now;
359 int retval = 0;
360
361 if (!audit_rate_limit)
362 return 1;
363
364 spin_lock_irqsave(&lock, flags);
365 if (++messages < audit_rate_limit) {
366 retval = 1;
367 } else {
368 now = jiffies;
369 if (time_after(now, last_check + HZ)) {
370 last_check = now;
371 messages = 0;
372 retval = 1;
373 }
374 }
375 spin_unlock_irqrestore(&lock, flags);
376
377 return retval;
378 }
379
380 /**
381 * audit_log_lost - conditionally log lost audit message event
382 * @message: the message stating reason for lost audit message
383 *
384 * Emit at least 1 message per second, even if audit_rate_check is
385 * throttling.
386 * Always increment the lost messages counter.
387 */
audit_log_lost(const char * message)388 void audit_log_lost(const char *message)
389 {
390 static unsigned long last_msg = 0;
391 static DEFINE_SPINLOCK(lock);
392 unsigned long flags;
393 unsigned long now;
394 int print;
395
396 atomic_inc(&audit_lost);
397
398 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
399
400 if (!print) {
401 spin_lock_irqsave(&lock, flags);
402 now = jiffies;
403 if (time_after(now, last_msg + HZ)) {
404 print = 1;
405 last_msg = now;
406 }
407 spin_unlock_irqrestore(&lock, flags);
408 }
409
410 if (print) {
411 if (printk_ratelimit())
412 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
413 atomic_read(&audit_lost),
414 audit_rate_limit,
415 audit_backlog_limit);
416 audit_panic(message);
417 }
418 }
419
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)420 static int audit_log_config_change(char *function_name, u32 new, u32 old,
421 int allow_changes)
422 {
423 struct audit_buffer *ab;
424 int rc = 0;
425
426 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
427 if (unlikely(!ab))
428 return rc;
429 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
430 audit_log_session_info(ab);
431 rc = audit_log_task_context(ab);
432 if (rc)
433 allow_changes = 0; /* Something weird, deny request */
434 audit_log_format(ab, " res=%d", allow_changes);
435 audit_log_end(ab);
436 return rc;
437 }
438
audit_do_config_change(char * function_name,u32 * to_change,u32 new)439 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
440 {
441 int allow_changes, rc = 0;
442 u32 old = *to_change;
443
444 /* check if we are locked */
445 if (audit_enabled == AUDIT_LOCKED)
446 allow_changes = 0;
447 else
448 allow_changes = 1;
449
450 if (audit_enabled != AUDIT_OFF) {
451 rc = audit_log_config_change(function_name, new, old, allow_changes);
452 if (rc)
453 allow_changes = 0;
454 }
455
456 /* If we are allowed, make the change */
457 if (allow_changes == 1)
458 *to_change = new;
459 /* Not allowed, update reason */
460 else if (rc == 0)
461 rc = -EPERM;
462 return rc;
463 }
464
audit_set_rate_limit(u32 limit)465 static int audit_set_rate_limit(u32 limit)
466 {
467 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
468 }
469
audit_set_backlog_limit(u32 limit)470 static int audit_set_backlog_limit(u32 limit)
471 {
472 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
473 }
474
audit_set_backlog_wait_time(u32 timeout)475 static int audit_set_backlog_wait_time(u32 timeout)
476 {
477 return audit_do_config_change("audit_backlog_wait_time",
478 &audit_backlog_wait_time, timeout);
479 }
480
audit_set_enabled(u32 state)481 static int audit_set_enabled(u32 state)
482 {
483 int rc;
484 if (state > AUDIT_LOCKED)
485 return -EINVAL;
486
487 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
488 if (!rc)
489 audit_ever_enabled |= !!state;
490
491 return rc;
492 }
493
audit_set_failure(u32 state)494 static int audit_set_failure(u32 state)
495 {
496 if (state != AUDIT_FAIL_SILENT
497 && state != AUDIT_FAIL_PRINTK
498 && state != AUDIT_FAIL_PANIC)
499 return -EINVAL;
500
501 return audit_do_config_change("audit_failure", &audit_failure, state);
502 }
503
504 /**
505 * auditd_conn_free - RCU helper to release an auditd connection struct
506 * @rcu: RCU head
507 *
508 * Description:
509 * Drop any references inside the auditd connection tracking struct and free
510 * the memory.
511 */
auditd_conn_free(struct rcu_head * rcu)512 static void auditd_conn_free(struct rcu_head *rcu)
513 {
514 struct auditd_connection *ac;
515
516 ac = container_of(rcu, struct auditd_connection, rcu);
517 put_pid(ac->pid);
518 put_net(ac->net);
519 kfree(ac);
520 }
521
522 /**
523 * auditd_set - Set/Reset the auditd connection state
524 * @pid: auditd PID
525 * @portid: auditd netlink portid
526 * @net: auditd network namespace pointer
527 * @skb: the netlink command from the audit daemon
528 * @ack: netlink ack flag, cleared if ack'd here
529 *
530 * Description:
531 * This function will obtain and drop network namespace references as
532 * necessary. Returns zero on success, negative values on failure.
533 */
auditd_set(struct pid * pid,u32 portid,struct net * net,struct sk_buff * skb,bool * ack)534 static int auditd_set(struct pid *pid, u32 portid, struct net *net,
535 struct sk_buff *skb, bool *ack)
536 {
537 unsigned long flags;
538 struct auditd_connection *ac_old, *ac_new;
539 struct nlmsghdr *nlh;
540
541 if (!pid || !net)
542 return -EINVAL;
543
544 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
545 if (!ac_new)
546 return -ENOMEM;
547 ac_new->pid = get_pid(pid);
548 ac_new->portid = portid;
549 ac_new->net = get_net(net);
550
551 /* send the ack now to avoid a race with the queue backlog */
552 if (*ack) {
553 nlh = nlmsg_hdr(skb);
554 netlink_ack(skb, nlh, 0, NULL);
555 *ack = false;
556 }
557
558 spin_lock_irqsave(&auditd_conn_lock, flags);
559 ac_old = rcu_dereference_protected(auditd_conn,
560 lockdep_is_held(&auditd_conn_lock));
561 rcu_assign_pointer(auditd_conn, ac_new);
562 spin_unlock_irqrestore(&auditd_conn_lock, flags);
563
564 if (ac_old)
565 call_rcu(&ac_old->rcu, auditd_conn_free);
566
567 return 0;
568 }
569
570 /**
571 * kauditd_printk_skb - Print the audit record to the ring buffer
572 * @skb: audit record
573 *
574 * Whatever the reason, this packet may not make it to the auditd connection
575 * so write it via printk so the information isn't completely lost.
576 */
kauditd_printk_skb(struct sk_buff * skb)577 static void kauditd_printk_skb(struct sk_buff *skb)
578 {
579 struct nlmsghdr *nlh = nlmsg_hdr(skb);
580 char *data = nlmsg_data(nlh);
581
582 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
583 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
584 }
585
586 /**
587 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
588 * @skb: audit record
589 * @error: error code (unused)
590 *
591 * Description:
592 * This should only be used by the kauditd_thread when it fails to flush the
593 * hold queue.
594 */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)595 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
596 {
597 /* put the record back in the queue */
598 skb_queue_tail(&audit_hold_queue, skb);
599 }
600
601 /**
602 * kauditd_hold_skb - Queue an audit record, waiting for auditd
603 * @skb: audit record
604 * @error: error code
605 *
606 * Description:
607 * Queue the audit record, waiting for an instance of auditd. When this
608 * function is called we haven't given up yet on sending the record, but things
609 * are not looking good. The first thing we want to do is try to write the
610 * record via printk and then see if we want to try and hold on to the record
611 * and queue it, if we have room. If we want to hold on to the record, but we
612 * don't have room, record a record lost message.
613 */
kauditd_hold_skb(struct sk_buff * skb,int error)614 static void kauditd_hold_skb(struct sk_buff *skb, int error)
615 {
616 /* at this point it is uncertain if we will ever send this to auditd so
617 * try to send the message via printk before we go any further */
618 kauditd_printk_skb(skb);
619
620 /* can we just silently drop the message? */
621 if (!audit_default)
622 goto drop;
623
624 /* the hold queue is only for when the daemon goes away completely,
625 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
626 * record on the retry queue unless it's full, in which case drop it
627 */
628 if (error == -EAGAIN) {
629 if (!audit_backlog_limit ||
630 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
631 skb_queue_tail(&audit_retry_queue, skb);
632 return;
633 }
634 audit_log_lost("kauditd retry queue overflow");
635 goto drop;
636 }
637
638 /* if we have room in the hold queue, queue the message */
639 if (!audit_backlog_limit ||
640 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
641 skb_queue_tail(&audit_hold_queue, skb);
642 return;
643 }
644
645 /* we have no other options - drop the message */
646 audit_log_lost("kauditd hold queue overflow");
647 drop:
648 kfree_skb(skb);
649 }
650
651 /**
652 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
653 * @skb: audit record
654 * @error: error code (unused)
655 *
656 * Description:
657 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
658 * but for some reason we are having problems sending it audit records so
659 * queue the given record and attempt to resend.
660 */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)661 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
662 {
663 if (!audit_backlog_limit ||
664 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
665 skb_queue_tail(&audit_retry_queue, skb);
666 return;
667 }
668
669 /* we have to drop the record, send it via printk as a last effort */
670 kauditd_printk_skb(skb);
671 audit_log_lost("kauditd retry queue overflow");
672 kfree_skb(skb);
673 }
674
675 /**
676 * auditd_reset - Disconnect the auditd connection
677 * @ac: auditd connection state
678 *
679 * Description:
680 * Break the auditd/kauditd connection and move all the queued records into the
681 * hold queue in case auditd reconnects. It is important to note that the @ac
682 * pointer should never be dereferenced inside this function as it may be NULL
683 * or invalid, you can only compare the memory address! If @ac is NULL then
684 * the connection will always be reset.
685 */
auditd_reset(const struct auditd_connection * ac)686 static void auditd_reset(const struct auditd_connection *ac)
687 {
688 unsigned long flags;
689 struct sk_buff *skb;
690 struct auditd_connection *ac_old;
691
692 /* if it isn't already broken, break the connection */
693 spin_lock_irqsave(&auditd_conn_lock, flags);
694 ac_old = rcu_dereference_protected(auditd_conn,
695 lockdep_is_held(&auditd_conn_lock));
696 if (ac && ac != ac_old) {
697 /* someone already registered a new auditd connection */
698 spin_unlock_irqrestore(&auditd_conn_lock, flags);
699 return;
700 }
701 rcu_assign_pointer(auditd_conn, NULL);
702 spin_unlock_irqrestore(&auditd_conn_lock, flags);
703
704 if (ac_old)
705 call_rcu(&ac_old->rcu, auditd_conn_free);
706
707 /* flush the retry queue to the hold queue, but don't touch the main
708 * queue since we need to process that normally for multicast */
709 while ((skb = skb_dequeue(&audit_retry_queue)))
710 kauditd_hold_skb(skb, -ECONNREFUSED);
711 }
712
713 /**
714 * auditd_send_unicast_skb - Send a record via unicast to auditd
715 * @skb: audit record
716 *
717 * Description:
718 * Send a skb to the audit daemon, returns positive/zero values on success and
719 * negative values on failure; in all cases the skb will be consumed by this
720 * function. If the send results in -ECONNREFUSED the connection with auditd
721 * will be reset. This function may sleep so callers should not hold any locks
722 * where this would cause a problem.
723 */
auditd_send_unicast_skb(struct sk_buff * skb)724 static int auditd_send_unicast_skb(struct sk_buff *skb)
725 {
726 int rc;
727 u32 portid;
728 struct net *net;
729 struct sock *sk;
730 struct auditd_connection *ac;
731
732 /* NOTE: we can't call netlink_unicast while in the RCU section so
733 * take a reference to the network namespace and grab local
734 * copies of the namespace, the sock, and the portid; the
735 * namespace and sock aren't going to go away while we hold a
736 * reference and if the portid does become invalid after the RCU
737 * section netlink_unicast() should safely return an error */
738
739 rcu_read_lock();
740 ac = rcu_dereference(auditd_conn);
741 if (!ac) {
742 rcu_read_unlock();
743 kfree_skb(skb);
744 rc = -ECONNREFUSED;
745 goto err;
746 }
747 net = get_net(ac->net);
748 sk = audit_get_sk(net);
749 portid = ac->portid;
750 rcu_read_unlock();
751
752 rc = netlink_unicast(sk, skb, portid, 0);
753 put_net(net);
754 if (rc < 0)
755 goto err;
756
757 return rc;
758
759 err:
760 if (ac && rc == -ECONNREFUSED)
761 auditd_reset(ac);
762 return rc;
763 }
764
765 /**
766 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
767 * @sk: the sending sock
768 * @portid: the netlink destination
769 * @queue: the skb queue to process
770 * @retry_limit: limit on number of netlink unicast failures
771 * @skb_hook: per-skb hook for additional processing
772 * @err_hook: hook called if the skb fails the netlink unicast send
773 *
774 * Description:
775 * Run through the given queue and attempt to send the audit records to auditd,
776 * returns zero on success, negative values on failure. It is up to the caller
777 * to ensure that the @sk is valid for the duration of this function.
778 *
779 */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))780 static int kauditd_send_queue(struct sock *sk, u32 portid,
781 struct sk_buff_head *queue,
782 unsigned int retry_limit,
783 void (*skb_hook)(struct sk_buff *skb),
784 void (*err_hook)(struct sk_buff *skb, int error))
785 {
786 int rc = 0;
787 struct sk_buff *skb = NULL;
788 struct sk_buff *skb_tail;
789 unsigned int failed = 0;
790
791 /* NOTE: kauditd_thread takes care of all our locking, we just use
792 * the netlink info passed to us (e.g. sk and portid) */
793
794 skb_tail = skb_peek_tail(queue);
795 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
796 /* call the skb_hook for each skb we touch */
797 if (skb_hook)
798 (*skb_hook)(skb);
799
800 /* can we send to anyone via unicast? */
801 if (!sk) {
802 if (err_hook)
803 (*err_hook)(skb, -ECONNREFUSED);
804 continue;
805 }
806
807 retry:
808 /* grab an extra skb reference in case of error */
809 skb_get(skb);
810 rc = netlink_unicast(sk, skb, portid, 0);
811 if (rc < 0) {
812 /* send failed - try a few times unless fatal error */
813 if (++failed >= retry_limit ||
814 rc == -ECONNREFUSED || rc == -EPERM) {
815 sk = NULL;
816 if (err_hook)
817 (*err_hook)(skb, rc);
818 if (rc == -EAGAIN)
819 rc = 0;
820 /* continue to drain the queue */
821 continue;
822 } else
823 goto retry;
824 } else {
825 /* skb sent - drop the extra reference and continue */
826 consume_skb(skb);
827 failed = 0;
828 }
829 }
830
831 return (rc >= 0 ? 0 : rc);
832 }
833
834 /*
835 * kauditd_send_multicast_skb - Send a record to any multicast listeners
836 * @skb: audit record
837 *
838 * Description:
839 * Write a multicast message to anyone listening in the initial network
840 * namespace. This function doesn't consume an skb as might be expected since
841 * it has to copy it anyways.
842 */
kauditd_send_multicast_skb(struct sk_buff * skb)843 static void kauditd_send_multicast_skb(struct sk_buff *skb)
844 {
845 struct sk_buff *copy;
846 struct sock *sock = audit_get_sk(&init_net);
847 struct nlmsghdr *nlh;
848
849 /* NOTE: we are not taking an additional reference for init_net since
850 * we don't have to worry about it going away */
851
852 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
853 return;
854
855 /*
856 * The seemingly wasteful skb_copy() rather than bumping the refcount
857 * using skb_get() is necessary because non-standard mods are made to
858 * the skb by the original kaudit unicast socket send routine. The
859 * existing auditd daemon assumes this breakage. Fixing this would
860 * require co-ordinating a change in the established protocol between
861 * the kaudit kernel subsystem and the auditd userspace code. There is
862 * no reason for new multicast clients to continue with this
863 * non-compliance.
864 */
865 copy = skb_copy(skb, GFP_KERNEL);
866 if (!copy)
867 return;
868 nlh = nlmsg_hdr(copy);
869 nlh->nlmsg_len = skb->len;
870
871 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
872 }
873
874 /**
875 * kauditd_thread - Worker thread to send audit records to userspace
876 * @dummy: unused
877 */
kauditd_thread(void * dummy)878 static int kauditd_thread(void *dummy)
879 {
880 int rc;
881 u32 portid = 0;
882 struct net *net = NULL;
883 struct sock *sk = NULL;
884 struct auditd_connection *ac;
885
886 #define UNICAST_RETRIES 5
887
888 set_freezable();
889 while (!kthread_should_stop()) {
890 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
891 rcu_read_lock();
892 ac = rcu_dereference(auditd_conn);
893 if (!ac) {
894 rcu_read_unlock();
895 goto main_queue;
896 }
897 net = get_net(ac->net);
898 sk = audit_get_sk(net);
899 portid = ac->portid;
900 rcu_read_unlock();
901
902 /* attempt to flush the hold queue */
903 rc = kauditd_send_queue(sk, portid,
904 &audit_hold_queue, UNICAST_RETRIES,
905 NULL, kauditd_rehold_skb);
906 if (rc < 0) {
907 sk = NULL;
908 auditd_reset(ac);
909 goto main_queue;
910 }
911
912 /* attempt to flush the retry queue */
913 rc = kauditd_send_queue(sk, portid,
914 &audit_retry_queue, UNICAST_RETRIES,
915 NULL, kauditd_hold_skb);
916 if (rc < 0) {
917 sk = NULL;
918 auditd_reset(ac);
919 goto main_queue;
920 }
921
922 main_queue:
923 /* process the main queue - do the multicast send and attempt
924 * unicast, dump failed record sends to the retry queue; if
925 * sk == NULL due to previous failures we will just do the
926 * multicast send and move the record to the hold queue */
927 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
928 kauditd_send_multicast_skb,
929 (sk ?
930 kauditd_retry_skb : kauditd_hold_skb));
931 if (ac && rc < 0)
932 auditd_reset(ac);
933 sk = NULL;
934
935 /* drop our netns reference, no auditd sends past this line */
936 if (net) {
937 put_net(net);
938 net = NULL;
939 }
940
941 /* we have processed all the queues so wake everyone */
942 wake_up(&audit_backlog_wait);
943
944 /* NOTE: we want to wake up if there is anything on the queue,
945 * regardless of if an auditd is connected, as we need to
946 * do the multicast send and rotate records from the
947 * main queue to the retry/hold queues */
948 wait_event_freezable(kauditd_wait,
949 (skb_queue_len(&audit_queue) ? 1 : 0));
950 }
951
952 return 0;
953 }
954
audit_send_list_thread(void * _dest)955 int audit_send_list_thread(void *_dest)
956 {
957 struct audit_netlink_list *dest = _dest;
958 struct sk_buff *skb;
959 struct sock *sk = audit_get_sk(dest->net);
960
961 /* wait for parent to finish and send an ACK */
962 audit_ctl_lock();
963 audit_ctl_unlock();
964
965 while ((skb = __skb_dequeue(&dest->q)) != NULL)
966 netlink_unicast(sk, skb, dest->portid, 0);
967
968 put_net(dest->net);
969 kfree(dest);
970
971 return 0;
972 }
973
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)974 struct sk_buff *audit_make_reply(int seq, int type, int done,
975 int multi, const void *payload, int size)
976 {
977 struct sk_buff *skb;
978 struct nlmsghdr *nlh;
979 void *data;
980 int flags = multi ? NLM_F_MULTI : 0;
981 int t = done ? NLMSG_DONE : type;
982
983 skb = nlmsg_new(size, GFP_KERNEL);
984 if (!skb)
985 return NULL;
986
987 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
988 if (!nlh)
989 goto out_kfree_skb;
990 data = nlmsg_data(nlh);
991 memcpy(data, payload, size);
992 return skb;
993
994 out_kfree_skb:
995 kfree_skb(skb);
996 return NULL;
997 }
998
audit_free_reply(struct audit_reply * reply)999 static void audit_free_reply(struct audit_reply *reply)
1000 {
1001 if (!reply)
1002 return;
1003
1004 kfree_skb(reply->skb);
1005 if (reply->net)
1006 put_net(reply->net);
1007 kfree(reply);
1008 }
1009
audit_send_reply_thread(void * arg)1010 static int audit_send_reply_thread(void *arg)
1011 {
1012 struct audit_reply *reply = (struct audit_reply *)arg;
1013
1014 audit_ctl_lock();
1015 audit_ctl_unlock();
1016
1017 /* Ignore failure. It'll only happen if the sender goes away,
1018 because our timeout is set to infinite. */
1019 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
1020 reply->skb = NULL;
1021 audit_free_reply(reply);
1022 return 0;
1023 }
1024
1025 /**
1026 * audit_send_reply - send an audit reply message via netlink
1027 * @request_skb: skb of request we are replying to (used to target the reply)
1028 * @seq: sequence number
1029 * @type: audit message type
1030 * @done: done (last) flag
1031 * @multi: multi-part message flag
1032 * @payload: payload data
1033 * @size: payload size
1034 *
1035 * Allocates a skb, builds the netlink message, and sends it to the port id.
1036 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)1037 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1038 int multi, const void *payload, int size)
1039 {
1040 struct task_struct *tsk;
1041 struct audit_reply *reply;
1042
1043 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1044 if (!reply)
1045 return;
1046
1047 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1048 if (!reply->skb)
1049 goto err;
1050 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1051 reply->portid = NETLINK_CB(request_skb).portid;
1052
1053 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1054 if (IS_ERR(tsk))
1055 goto err;
1056
1057 return;
1058
1059 err:
1060 audit_free_reply(reply);
1061 }
1062
1063 /*
1064 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1065 * control messages.
1066 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1067 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1068 {
1069 int err = 0;
1070
1071 /* Only support initial user namespace for now. */
1072 /*
1073 * We return ECONNREFUSED because it tricks userspace into thinking
1074 * that audit was not configured into the kernel. Lots of users
1075 * configure their PAM stack (because that's what the distro does)
1076 * to reject login if unable to send messages to audit. If we return
1077 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1078 * configured in and will let login proceed. If we return EPERM
1079 * userspace will reject all logins. This should be removed when we
1080 * support non init namespaces!!
1081 */
1082 if (current_user_ns() != &init_user_ns)
1083 return -ECONNREFUSED;
1084
1085 switch (msg_type) {
1086 case AUDIT_LIST:
1087 case AUDIT_ADD:
1088 case AUDIT_DEL:
1089 return -EOPNOTSUPP;
1090 case AUDIT_GET:
1091 case AUDIT_SET:
1092 case AUDIT_GET_FEATURE:
1093 case AUDIT_SET_FEATURE:
1094 case AUDIT_LIST_RULES:
1095 case AUDIT_ADD_RULE:
1096 case AUDIT_DEL_RULE:
1097 case AUDIT_SIGNAL_INFO:
1098 case AUDIT_TTY_GET:
1099 case AUDIT_TTY_SET:
1100 case AUDIT_TRIM:
1101 case AUDIT_MAKE_EQUIV:
1102 /* Only support auditd and auditctl in initial pid namespace
1103 * for now. */
1104 if (task_active_pid_ns(current) != &init_pid_ns)
1105 return -EPERM;
1106
1107 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1108 err = -EPERM;
1109 break;
1110 case AUDIT_USER:
1111 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1112 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1113 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1114 err = -EPERM;
1115 break;
1116 default: /* bad msg */
1117 err = -EINVAL;
1118 }
1119
1120 return err;
1121 }
1122
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1123 static void audit_log_common_recv_msg(struct audit_context *context,
1124 struct audit_buffer **ab, u16 msg_type)
1125 {
1126 uid_t uid = from_kuid(&init_user_ns, current_uid());
1127 pid_t pid = task_tgid_nr(current);
1128
1129 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1130 *ab = NULL;
1131 return;
1132 }
1133
1134 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1135 if (unlikely(!*ab))
1136 return;
1137 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1138 audit_log_session_info(*ab);
1139 audit_log_task_context(*ab);
1140 }
1141
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1142 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1143 u16 msg_type)
1144 {
1145 audit_log_common_recv_msg(NULL, ab, msg_type);
1146 }
1147
is_audit_feature_set(int i)1148 static int is_audit_feature_set(int i)
1149 {
1150 return af.features & AUDIT_FEATURE_TO_MASK(i);
1151 }
1152
audit_get_feature(struct sk_buff * skb)1153 static int audit_get_feature(struct sk_buff *skb)
1154 {
1155 u32 seq;
1156
1157 seq = nlmsg_hdr(skb)->nlmsg_seq;
1158
1159 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1160
1161 return 0;
1162 }
1163
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1164 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1165 u32 old_lock, u32 new_lock, int res)
1166 {
1167 struct audit_buffer *ab;
1168
1169 if (audit_enabled == AUDIT_OFF)
1170 return;
1171
1172 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1173 if (!ab)
1174 return;
1175 audit_log_task_info(ab);
1176 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1177 audit_feature_names[which], !!old_feature, !!new_feature,
1178 !!old_lock, !!new_lock, res);
1179 audit_log_end(ab);
1180 }
1181
audit_set_feature(struct audit_features * uaf)1182 static int audit_set_feature(struct audit_features *uaf)
1183 {
1184 int i;
1185
1186 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1187
1188 /* if there is ever a version 2 we should handle that here */
1189
1190 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1191 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1192 u32 old_feature, new_feature, old_lock, new_lock;
1193
1194 /* if we are not changing this feature, move along */
1195 if (!(feature & uaf->mask))
1196 continue;
1197
1198 old_feature = af.features & feature;
1199 new_feature = uaf->features & feature;
1200 new_lock = (uaf->lock | af.lock) & feature;
1201 old_lock = af.lock & feature;
1202
1203 /* are we changing a locked feature? */
1204 if (old_lock && (new_feature != old_feature)) {
1205 audit_log_feature_change(i, old_feature, new_feature,
1206 old_lock, new_lock, 0);
1207 return -EPERM;
1208 }
1209 }
1210 /* nothing invalid, do the changes */
1211 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1212 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1213 u32 old_feature, new_feature, old_lock, new_lock;
1214
1215 /* if we are not changing this feature, move along */
1216 if (!(feature & uaf->mask))
1217 continue;
1218
1219 old_feature = af.features & feature;
1220 new_feature = uaf->features & feature;
1221 old_lock = af.lock & feature;
1222 new_lock = (uaf->lock | af.lock) & feature;
1223
1224 if (new_feature != old_feature)
1225 audit_log_feature_change(i, old_feature, new_feature,
1226 old_lock, new_lock, 1);
1227
1228 if (new_feature)
1229 af.features |= feature;
1230 else
1231 af.features &= ~feature;
1232 af.lock |= new_lock;
1233 }
1234
1235 return 0;
1236 }
1237
audit_replace(struct pid * pid)1238 static int audit_replace(struct pid *pid)
1239 {
1240 pid_t pvnr;
1241 struct sk_buff *skb;
1242
1243 pvnr = pid_vnr(pid);
1244 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1245 if (!skb)
1246 return -ENOMEM;
1247 return auditd_send_unicast_skb(skb);
1248 }
1249
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh,bool * ack)1250 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1251 bool *ack)
1252 {
1253 u32 seq;
1254 void *data;
1255 int data_len;
1256 int err;
1257 struct audit_buffer *ab;
1258 u16 msg_type = nlh->nlmsg_type;
1259 struct audit_sig_info *sig_data;
1260 struct lsm_context lsmctx = { NULL, 0, 0 };
1261
1262 err = audit_netlink_ok(skb, msg_type);
1263 if (err)
1264 return err;
1265
1266 seq = nlh->nlmsg_seq;
1267 data = nlmsg_data(nlh);
1268 data_len = nlmsg_len(nlh);
1269
1270 switch (msg_type) {
1271 case AUDIT_GET: {
1272 struct audit_status s;
1273 memset(&s, 0, sizeof(s));
1274 s.enabled = audit_enabled;
1275 s.failure = audit_failure;
1276 /* NOTE: use pid_vnr() so the PID is relative to the current
1277 * namespace */
1278 s.pid = auditd_pid_vnr();
1279 s.rate_limit = audit_rate_limit;
1280 s.backlog_limit = audit_backlog_limit;
1281 s.lost = atomic_read(&audit_lost);
1282 s.backlog = skb_queue_len(&audit_queue);
1283 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1284 s.backlog_wait_time = audit_backlog_wait_time;
1285 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1286 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1287 break;
1288 }
1289 case AUDIT_SET: {
1290 struct audit_status s;
1291 memset(&s, 0, sizeof(s));
1292 /* guard against past and future API changes */
1293 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1294 if (s.mask & AUDIT_STATUS_ENABLED) {
1295 err = audit_set_enabled(s.enabled);
1296 if (err < 0)
1297 return err;
1298 }
1299 if (s.mask & AUDIT_STATUS_FAILURE) {
1300 err = audit_set_failure(s.failure);
1301 if (err < 0)
1302 return err;
1303 }
1304 if (s.mask & AUDIT_STATUS_PID) {
1305 /* NOTE: we are using the vnr PID functions below
1306 * because the s.pid value is relative to the
1307 * namespace of the caller; at present this
1308 * doesn't matter much since you can really only
1309 * run auditd from the initial pid namespace, but
1310 * something to keep in mind if this changes */
1311 pid_t new_pid = s.pid;
1312 pid_t auditd_pid;
1313 struct pid *req_pid = task_tgid(current);
1314
1315 /* Sanity check - PID values must match. Setting
1316 * pid to 0 is how auditd ends auditing. */
1317 if (new_pid && (new_pid != pid_vnr(req_pid)))
1318 return -EINVAL;
1319
1320 /* test the auditd connection */
1321 audit_replace(req_pid);
1322
1323 auditd_pid = auditd_pid_vnr();
1324 if (auditd_pid) {
1325 /* replacing a healthy auditd is not allowed */
1326 if (new_pid) {
1327 audit_log_config_change("audit_pid",
1328 new_pid, auditd_pid, 0);
1329 return -EEXIST;
1330 }
1331 /* only current auditd can unregister itself */
1332 if (pid_vnr(req_pid) != auditd_pid) {
1333 audit_log_config_change("audit_pid",
1334 new_pid, auditd_pid, 0);
1335 return -EACCES;
1336 }
1337 }
1338
1339 if (new_pid) {
1340 /* register a new auditd connection */
1341 err = auditd_set(req_pid,
1342 NETLINK_CB(skb).portid,
1343 sock_net(NETLINK_CB(skb).sk),
1344 skb, ack);
1345 if (audit_enabled != AUDIT_OFF)
1346 audit_log_config_change("audit_pid",
1347 new_pid,
1348 auditd_pid,
1349 err ? 0 : 1);
1350 if (err)
1351 return err;
1352
1353 /* try to process any backlog */
1354 wake_up_interruptible(&kauditd_wait);
1355 } else {
1356 if (audit_enabled != AUDIT_OFF)
1357 audit_log_config_change("audit_pid",
1358 new_pid,
1359 auditd_pid, 1);
1360
1361 /* unregister the auditd connection */
1362 auditd_reset(NULL);
1363 }
1364 }
1365 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1366 err = audit_set_rate_limit(s.rate_limit);
1367 if (err < 0)
1368 return err;
1369 }
1370 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1371 err = audit_set_backlog_limit(s.backlog_limit);
1372 if (err < 0)
1373 return err;
1374 }
1375 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1376 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1377 return -EINVAL;
1378 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1379 return -EINVAL;
1380 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1381 if (err < 0)
1382 return err;
1383 }
1384 if (s.mask == AUDIT_STATUS_LOST) {
1385 u32 lost = atomic_xchg(&audit_lost, 0);
1386
1387 audit_log_config_change("lost", 0, lost, 1);
1388 return lost;
1389 }
1390 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1391 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1392
1393 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1394 return actual;
1395 }
1396 break;
1397 }
1398 case AUDIT_GET_FEATURE:
1399 err = audit_get_feature(skb);
1400 if (err)
1401 return err;
1402 break;
1403 case AUDIT_SET_FEATURE:
1404 if (data_len < sizeof(struct audit_features))
1405 return -EINVAL;
1406 err = audit_set_feature(data);
1407 if (err)
1408 return err;
1409 break;
1410 case AUDIT_USER:
1411 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1412 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1413 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1414 return 0;
1415 /* exit early if there isn't at least one character to print */
1416 if (data_len < 2)
1417 return -EINVAL;
1418
1419 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1420 if (err == 1) { /* match or error */
1421 char *str = data;
1422
1423 err = 0;
1424 if (msg_type == AUDIT_USER_TTY) {
1425 err = tty_audit_push();
1426 if (err)
1427 break;
1428 }
1429 audit_log_user_recv_msg(&ab, msg_type);
1430 if (msg_type != AUDIT_USER_TTY) {
1431 /* ensure NULL termination */
1432 str[data_len - 1] = '\0';
1433 audit_log_format(ab, " msg='%.*s'",
1434 AUDIT_MESSAGE_TEXT_MAX,
1435 str);
1436 } else {
1437 audit_log_format(ab, " data=");
1438 if (str[data_len - 1] == '\0')
1439 data_len--;
1440 audit_log_n_untrustedstring(ab, str, data_len);
1441 }
1442 audit_log_end(ab);
1443 }
1444 break;
1445 case AUDIT_ADD_RULE:
1446 case AUDIT_DEL_RULE:
1447 if (data_len < sizeof(struct audit_rule_data))
1448 return -EINVAL;
1449 if (audit_enabled == AUDIT_LOCKED) {
1450 audit_log_common_recv_msg(audit_context(), &ab,
1451 AUDIT_CONFIG_CHANGE);
1452 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1453 msg_type == AUDIT_ADD_RULE ?
1454 "add_rule" : "remove_rule",
1455 audit_enabled);
1456 audit_log_end(ab);
1457 return -EPERM;
1458 }
1459 err = audit_rule_change(msg_type, seq, data, data_len);
1460 break;
1461 case AUDIT_LIST_RULES:
1462 err = audit_list_rules_send(skb, seq);
1463 break;
1464 case AUDIT_TRIM:
1465 audit_trim_trees();
1466 audit_log_common_recv_msg(audit_context(), &ab,
1467 AUDIT_CONFIG_CHANGE);
1468 audit_log_format(ab, " op=trim res=1");
1469 audit_log_end(ab);
1470 break;
1471 case AUDIT_MAKE_EQUIV: {
1472 void *bufp = data;
1473 u32 sizes[2];
1474 size_t msglen = data_len;
1475 char *old, *new;
1476
1477 err = -EINVAL;
1478 if (msglen < 2 * sizeof(u32))
1479 break;
1480 memcpy(sizes, bufp, 2 * sizeof(u32));
1481 bufp += 2 * sizeof(u32);
1482 msglen -= 2 * sizeof(u32);
1483 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1484 if (IS_ERR(old)) {
1485 err = PTR_ERR(old);
1486 break;
1487 }
1488 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1489 if (IS_ERR(new)) {
1490 err = PTR_ERR(new);
1491 kfree(old);
1492 break;
1493 }
1494 /* OK, here comes... */
1495 err = audit_tag_tree(old, new);
1496
1497 audit_log_common_recv_msg(audit_context(), &ab,
1498 AUDIT_CONFIG_CHANGE);
1499 audit_log_format(ab, " op=make_equiv old=");
1500 audit_log_untrustedstring(ab, old);
1501 audit_log_format(ab, " new=");
1502 audit_log_untrustedstring(ab, new);
1503 audit_log_format(ab, " res=%d", !err);
1504 audit_log_end(ab);
1505 kfree(old);
1506 kfree(new);
1507 break;
1508 }
1509 case AUDIT_SIGNAL_INFO:
1510 if (lsmprop_is_set(&audit_sig_lsm)) {
1511 err = security_lsmprop_to_secctx(&audit_sig_lsm,
1512 &lsmctx, LSM_ID_UNDEF);
1513 if (err < 0)
1514 return err;
1515 }
1516 sig_data = kmalloc(struct_size(sig_data, ctx, lsmctx.len),
1517 GFP_KERNEL);
1518 if (!sig_data) {
1519 if (lsmprop_is_set(&audit_sig_lsm))
1520 security_release_secctx(&lsmctx);
1521 return -ENOMEM;
1522 }
1523 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1524 sig_data->pid = audit_sig_pid;
1525 if (lsmprop_is_set(&audit_sig_lsm)) {
1526 memcpy(sig_data->ctx, lsmctx.context, lsmctx.len);
1527 security_release_secctx(&lsmctx);
1528 }
1529 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1530 sig_data, struct_size(sig_data, ctx,
1531 lsmctx.len));
1532 kfree(sig_data);
1533 break;
1534 case AUDIT_TTY_GET: {
1535 struct audit_tty_status s;
1536 unsigned int t;
1537
1538 t = READ_ONCE(current->signal->audit_tty);
1539 s.enabled = t & AUDIT_TTY_ENABLE;
1540 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1541
1542 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1543 break;
1544 }
1545 case AUDIT_TTY_SET: {
1546 struct audit_tty_status s, old;
1547 struct audit_buffer *ab;
1548 unsigned int t;
1549
1550 memset(&s, 0, sizeof(s));
1551 /* guard against past and future API changes */
1552 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1553 /* check if new data is valid */
1554 if ((s.enabled != 0 && s.enabled != 1) ||
1555 (s.log_passwd != 0 && s.log_passwd != 1))
1556 err = -EINVAL;
1557
1558 if (err)
1559 t = READ_ONCE(current->signal->audit_tty);
1560 else {
1561 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1562 t = xchg(¤t->signal->audit_tty, t);
1563 }
1564 old.enabled = t & AUDIT_TTY_ENABLE;
1565 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1566
1567 audit_log_common_recv_msg(audit_context(), &ab,
1568 AUDIT_CONFIG_CHANGE);
1569 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1570 " old-log_passwd=%d new-log_passwd=%d res=%d",
1571 old.enabled, s.enabled, old.log_passwd,
1572 s.log_passwd, !err);
1573 audit_log_end(ab);
1574 break;
1575 }
1576 default:
1577 err = -EINVAL;
1578 break;
1579 }
1580
1581 return err < 0 ? err : 0;
1582 }
1583
1584 /**
1585 * audit_receive - receive messages from a netlink control socket
1586 * @skb: the message buffer
1587 *
1588 * Parse the provided skb and deal with any messages that may be present,
1589 * malformed skbs are discarded.
1590 */
audit_receive(struct sk_buff * skb)1591 static void audit_receive(struct sk_buff *skb)
1592 {
1593 struct nlmsghdr *nlh;
1594 bool ack;
1595 /*
1596 * len MUST be signed for nlmsg_next to be able to dec it below 0
1597 * if the nlmsg_len was not aligned
1598 */
1599 int len;
1600 int err;
1601
1602 nlh = nlmsg_hdr(skb);
1603 len = skb->len;
1604
1605 audit_ctl_lock();
1606 while (nlmsg_ok(nlh, len)) {
1607 ack = nlh->nlmsg_flags & NLM_F_ACK;
1608 err = audit_receive_msg(skb, nlh, &ack);
1609
1610 /* send an ack if the user asked for one and audit_receive_msg
1611 * didn't already do it, or if there was an error. */
1612 if (ack || err)
1613 netlink_ack(skb, nlh, err, NULL);
1614
1615 nlh = nlmsg_next(nlh, &len);
1616 }
1617 audit_ctl_unlock();
1618
1619 /* can't block with the ctrl lock, so penalize the sender now */
1620 if (audit_backlog_limit &&
1621 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1622 DECLARE_WAITQUEUE(wait, current);
1623
1624 /* wake kauditd to try and flush the queue */
1625 wake_up_interruptible(&kauditd_wait);
1626
1627 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1628 set_current_state(TASK_UNINTERRUPTIBLE);
1629 schedule_timeout(audit_backlog_wait_time);
1630 remove_wait_queue(&audit_backlog_wait, &wait);
1631 }
1632 }
1633
1634 /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1635 static void audit_log_multicast(int group, const char *op, int err)
1636 {
1637 const struct cred *cred;
1638 struct tty_struct *tty;
1639 char comm[sizeof(current->comm)];
1640 struct audit_buffer *ab;
1641
1642 if (!audit_enabled)
1643 return;
1644
1645 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1646 if (!ab)
1647 return;
1648
1649 cred = current_cred();
1650 tty = audit_get_tty();
1651 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1652 task_tgid_nr(current),
1653 from_kuid(&init_user_ns, cred->uid),
1654 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1655 tty ? tty_name(tty) : "(none)",
1656 audit_get_sessionid(current));
1657 audit_put_tty(tty);
1658 audit_log_task_context(ab); /* subj= */
1659 audit_log_format(ab, " comm=");
1660 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1661 audit_log_d_path_exe(ab, current->mm); /* exe= */
1662 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1663 audit_log_end(ab);
1664 }
1665
1666 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1667 static int audit_multicast_bind(struct net *net, int group)
1668 {
1669 int err = 0;
1670
1671 if (!capable(CAP_AUDIT_READ))
1672 err = -EPERM;
1673 audit_log_multicast(group, "connect", err);
1674 return err;
1675 }
1676
audit_multicast_unbind(struct net * net,int group)1677 static void audit_multicast_unbind(struct net *net, int group)
1678 {
1679 audit_log_multicast(group, "disconnect", 0);
1680 }
1681
audit_net_init(struct net * net)1682 static int __net_init audit_net_init(struct net *net)
1683 {
1684 struct netlink_kernel_cfg cfg = {
1685 .input = audit_receive,
1686 .bind = audit_multicast_bind,
1687 .unbind = audit_multicast_unbind,
1688 .flags = NL_CFG_F_NONROOT_RECV,
1689 .groups = AUDIT_NLGRP_MAX,
1690 };
1691
1692 struct audit_net *aunet = net_generic(net, audit_net_id);
1693
1694 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1695 if (aunet->sk == NULL) {
1696 audit_panic("cannot initialize netlink socket in namespace");
1697 return -ENOMEM;
1698 }
1699 /* limit the timeout in case auditd is blocked/stopped */
1700 aunet->sk->sk_sndtimeo = HZ / 10;
1701
1702 return 0;
1703 }
1704
audit_net_exit(struct net * net)1705 static void __net_exit audit_net_exit(struct net *net)
1706 {
1707 struct audit_net *aunet = net_generic(net, audit_net_id);
1708
1709 /* NOTE: you would think that we would want to check the auditd
1710 * connection and potentially reset it here if it lives in this
1711 * namespace, but since the auditd connection tracking struct holds a
1712 * reference to this namespace (see auditd_set()) we are only ever
1713 * going to get here after that connection has been released */
1714
1715 netlink_kernel_release(aunet->sk);
1716 }
1717
1718 static struct pernet_operations audit_net_ops __net_initdata = {
1719 .init = audit_net_init,
1720 .exit = audit_net_exit,
1721 .id = &audit_net_id,
1722 .size = sizeof(struct audit_net),
1723 };
1724
1725 /* Initialize audit support at boot time. */
audit_init(void)1726 static int __init audit_init(void)
1727 {
1728 int i;
1729
1730 if (audit_initialized == AUDIT_DISABLED)
1731 return 0;
1732
1733 audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC);
1734
1735 skb_queue_head_init(&audit_queue);
1736 skb_queue_head_init(&audit_retry_queue);
1737 skb_queue_head_init(&audit_hold_queue);
1738
1739 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1740 INIT_LIST_HEAD(&audit_inode_hash[i]);
1741
1742 mutex_init(&audit_cmd_mutex.lock);
1743 audit_cmd_mutex.owner = NULL;
1744
1745 pr_info("initializing netlink subsys (%s)\n",
1746 str_enabled_disabled(audit_default));
1747 register_pernet_subsys(&audit_net_ops);
1748
1749 audit_initialized = AUDIT_INITIALIZED;
1750
1751 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1752 if (IS_ERR(kauditd_task)) {
1753 int err = PTR_ERR(kauditd_task);
1754 panic("audit: failed to start the kauditd thread (%d)\n", err);
1755 }
1756
1757 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1758 "state=initialized audit_enabled=%u res=1",
1759 audit_enabled);
1760
1761 return 0;
1762 }
1763 postcore_initcall(audit_init);
1764
1765 /*
1766 * Process kernel command-line parameter at boot time.
1767 * audit={0|off} or audit={1|on}.
1768 */
audit_enable(char * str)1769 static int __init audit_enable(char *str)
1770 {
1771 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1772 audit_default = AUDIT_OFF;
1773 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1774 audit_default = AUDIT_ON;
1775 else {
1776 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1777 audit_default = AUDIT_ON;
1778 }
1779
1780 if (audit_default == AUDIT_OFF)
1781 audit_initialized = AUDIT_DISABLED;
1782 if (audit_set_enabled(audit_default))
1783 pr_err("audit: error setting audit state (%d)\n",
1784 audit_default);
1785
1786 pr_info("%s\n", audit_default ?
1787 "enabled (after initialization)" : "disabled (until reboot)");
1788
1789 return 1;
1790 }
1791 __setup("audit=", audit_enable);
1792
1793 /* Process kernel command-line parameter at boot time.
1794 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1795 static int __init audit_backlog_limit_set(char *str)
1796 {
1797 u32 audit_backlog_limit_arg;
1798
1799 pr_info("audit_backlog_limit: ");
1800 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1801 pr_cont("using default of %u, unable to parse %s\n",
1802 audit_backlog_limit, str);
1803 return 1;
1804 }
1805
1806 audit_backlog_limit = audit_backlog_limit_arg;
1807 pr_cont("%d\n", audit_backlog_limit);
1808
1809 return 1;
1810 }
1811 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1812
audit_buffer_free(struct audit_buffer * ab)1813 static void audit_buffer_free(struct audit_buffer *ab)
1814 {
1815 struct sk_buff *skb;
1816
1817 if (!ab)
1818 return;
1819
1820 while ((skb = skb_dequeue(&ab->skb_list)))
1821 kfree_skb(skb);
1822 kmem_cache_free(audit_buffer_cache, ab);
1823 }
1824
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1825 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1826 gfp_t gfp_mask, int type)
1827 {
1828 struct audit_buffer *ab;
1829
1830 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1831 if (!ab)
1832 return NULL;
1833
1834 skb_queue_head_init(&ab->skb_list);
1835
1836 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1837 if (!ab->skb)
1838 goto err;
1839
1840 skb_queue_tail(&ab->skb_list, ab->skb);
1841
1842 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1843 goto err;
1844
1845 ab->ctx = ctx;
1846 ab->gfp_mask = gfp_mask;
1847
1848 return ab;
1849
1850 err:
1851 audit_buffer_free(ab);
1852 return NULL;
1853 }
1854
1855 /**
1856 * audit_serial - compute a serial number for the audit record
1857 *
1858 * Compute a serial number for the audit record. Audit records are
1859 * written to user-space as soon as they are generated, so a complete
1860 * audit record may be written in several pieces. The timestamp of the
1861 * record and this serial number are used by the user-space tools to
1862 * determine which pieces belong to the same audit record. The
1863 * (timestamp,serial) tuple is unique for each syscall and is live from
1864 * syscall entry to syscall exit.
1865 *
1866 * NOTE: Another possibility is to store the formatted records off the
1867 * audit context (for those records that have a context), and emit them
1868 * all at syscall exit. However, this could delay the reporting of
1869 * significant errors until syscall exit (or never, if the system
1870 * halts).
1871 */
audit_serial(void)1872 unsigned int audit_serial(void)
1873 {
1874 static atomic_t serial = ATOMIC_INIT(0);
1875
1876 return atomic_inc_return(&serial);
1877 }
1878
audit_get_stamp(struct audit_context * ctx,struct audit_stamp * stamp)1879 static inline void audit_get_stamp(struct audit_context *ctx,
1880 struct audit_stamp *stamp)
1881 {
1882 if (!ctx || !auditsc_get_stamp(ctx, stamp)) {
1883 ktime_get_coarse_real_ts64(&stamp->ctime);
1884 stamp->serial = audit_serial();
1885 }
1886 }
1887
1888 /**
1889 * audit_log_start - obtain an audit buffer
1890 * @ctx: audit_context (may be NULL)
1891 * @gfp_mask: type of allocation
1892 * @type: audit message type
1893 *
1894 * Returns audit_buffer pointer on success or NULL on error.
1895 *
1896 * Obtain an audit buffer. This routine does locking to obtain the
1897 * audit buffer, but then no locking is required for calls to
1898 * audit_log_*format. If the task (ctx) is a task that is currently in a
1899 * syscall, then the syscall is marked as auditable and an audit record
1900 * will be written at syscall exit. If there is no associated task, then
1901 * task context (ctx) should be NULL.
1902 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1903 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1904 int type)
1905 {
1906 struct audit_buffer *ab;
1907
1908 if (audit_initialized != AUDIT_INITIALIZED)
1909 return NULL;
1910
1911 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1912 return NULL;
1913
1914 /* NOTE: don't ever fail/sleep on these two conditions:
1915 * 1. auditd generated record - since we need auditd to drain the
1916 * queue; also, when we are checking for auditd, compare PIDs using
1917 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1918 * using a PID anchored in the caller's namespace
1919 * 2. generator holding the audit_cmd_mutex - we don't want to block
1920 * while holding the mutex, although we do penalize the sender
1921 * later in audit_receive() when it is safe to block
1922 */
1923 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1924 long stime = audit_backlog_wait_time;
1925
1926 while (audit_backlog_limit &&
1927 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1928 /* wake kauditd to try and flush the queue */
1929 wake_up_interruptible(&kauditd_wait);
1930
1931 /* sleep if we are allowed and we haven't exhausted our
1932 * backlog wait limit */
1933 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1934 long rtime = stime;
1935
1936 DECLARE_WAITQUEUE(wait, current);
1937
1938 add_wait_queue_exclusive(&audit_backlog_wait,
1939 &wait);
1940 set_current_state(TASK_UNINTERRUPTIBLE);
1941 stime = schedule_timeout(rtime);
1942 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1943 remove_wait_queue(&audit_backlog_wait, &wait);
1944 } else {
1945 if (audit_rate_check() && printk_ratelimit())
1946 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1947 skb_queue_len(&audit_queue),
1948 audit_backlog_limit);
1949 audit_log_lost("backlog limit exceeded");
1950 return NULL;
1951 }
1952 }
1953 }
1954
1955 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1956 if (!ab) {
1957 audit_log_lost("out of memory in audit_log_start");
1958 return NULL;
1959 }
1960
1961 audit_get_stamp(ab->ctx, &ab->stamp);
1962 /* cancel dummy context to enable supporting records */
1963 if (ctx)
1964 ctx->dummy = 0;
1965 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1966 (unsigned long long)ab->stamp.ctime.tv_sec,
1967 ab->stamp.ctime.tv_nsec/1000000,
1968 ab->stamp.serial);
1969
1970 return ab;
1971 }
1972
1973 /**
1974 * audit_expand - expand skb in the audit buffer
1975 * @ab: audit_buffer
1976 * @extra: space to add at tail of the skb
1977 *
1978 * Returns 0 (no space) on failed expansion, or available space if
1979 * successful.
1980 */
audit_expand(struct audit_buffer * ab,int extra)1981 static inline int audit_expand(struct audit_buffer *ab, int extra)
1982 {
1983 struct sk_buff *skb = ab->skb;
1984 int oldtail = skb_tailroom(skb);
1985 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1986 int newtail = skb_tailroom(skb);
1987
1988 if (ret < 0) {
1989 audit_log_lost("out of memory in audit_expand");
1990 return 0;
1991 }
1992
1993 skb->truesize += newtail - oldtail;
1994 return newtail;
1995 }
1996
1997 /*
1998 * Format an audit message into the audit buffer. If there isn't enough
1999 * room in the audit buffer, more room will be allocated and vsnprint
2000 * will be called a second time. Currently, we assume that a printk
2001 * can't format message larger than 1024 bytes, so we don't either.
2002 */
2003 static __printf(2, 0)
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)2004 void audit_log_vformat(struct audit_buffer *ab, const char *fmt, va_list args)
2005 {
2006 int len, avail;
2007 struct sk_buff *skb;
2008 va_list args2;
2009
2010 if (!ab)
2011 return;
2012
2013 BUG_ON(!ab->skb);
2014 skb = ab->skb;
2015 avail = skb_tailroom(skb);
2016 if (avail == 0) {
2017 avail = audit_expand(ab, AUDIT_BUFSIZ);
2018 if (!avail)
2019 goto out;
2020 }
2021 va_copy(args2, args);
2022 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
2023 if (len >= avail) {
2024 /* The printk buffer is 1024 bytes long, so if we get
2025 * here and AUDIT_BUFSIZ is at least 1024, then we can
2026 * log everything that printk could have logged. */
2027 avail = audit_expand(ab,
2028 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
2029 if (!avail)
2030 goto out_va_end;
2031 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
2032 }
2033 if (len > 0)
2034 skb_put(skb, len);
2035 out_va_end:
2036 va_end(args2);
2037 out:
2038 return;
2039 }
2040
2041 /**
2042 * audit_log_format - format a message into the audit buffer.
2043 * @ab: audit_buffer
2044 * @fmt: format string
2045 * @...: optional parameters matching @fmt string
2046 *
2047 * All the work is done in audit_log_vformat.
2048 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)2049 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2050 {
2051 va_list args;
2052
2053 if (!ab)
2054 return;
2055 va_start(args, fmt);
2056 audit_log_vformat(ab, fmt, args);
2057 va_end(args);
2058 }
2059
2060 /**
2061 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2062 * @ab: the audit_buffer
2063 * @buf: buffer to convert to hex
2064 * @len: length of @buf to be converted
2065 *
2066 * No return value; failure to expand is silently ignored.
2067 *
2068 * This function will take the passed buf and convert it into a string of
2069 * ascii hex digits. The new string is placed onto the skb.
2070 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)2071 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2072 size_t len)
2073 {
2074 int i, avail, new_len;
2075 unsigned char *ptr;
2076 struct sk_buff *skb;
2077
2078 if (!ab)
2079 return;
2080
2081 BUG_ON(!ab->skb);
2082 skb = ab->skb;
2083 avail = skb_tailroom(skb);
2084 new_len = len<<1;
2085 if (new_len >= avail) {
2086 /* Round the buffer request up to the next multiple */
2087 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2088 avail = audit_expand(ab, new_len);
2089 if (!avail)
2090 return;
2091 }
2092
2093 ptr = skb_tail_pointer(skb);
2094 for (i = 0; i < len; i++)
2095 ptr = hex_byte_pack_upper(ptr, buf[i]);
2096 *ptr = 0;
2097 skb_put(skb, len << 1); /* new string is twice the old string */
2098 }
2099
2100 /*
2101 * Format a string of no more than slen characters into the audit buffer,
2102 * enclosed in quote marks.
2103 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2104 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2105 size_t slen)
2106 {
2107 int avail, new_len;
2108 unsigned char *ptr;
2109 struct sk_buff *skb;
2110
2111 if (!ab)
2112 return;
2113
2114 BUG_ON(!ab->skb);
2115 skb = ab->skb;
2116 avail = skb_tailroom(skb);
2117 new_len = slen + 3; /* enclosing quotes + null terminator */
2118 if (new_len > avail) {
2119 avail = audit_expand(ab, new_len);
2120 if (!avail)
2121 return;
2122 }
2123 ptr = skb_tail_pointer(skb);
2124 *ptr++ = '"';
2125 memcpy(ptr, string, slen);
2126 ptr += slen;
2127 *ptr++ = '"';
2128 *ptr = 0;
2129 skb_put(skb, slen + 2); /* don't include null terminator */
2130 }
2131
2132 /**
2133 * audit_string_contains_control - does a string need to be logged in hex
2134 * @string: string to be checked
2135 * @len: max length of the string to check
2136 */
audit_string_contains_control(const char * string,size_t len)2137 bool audit_string_contains_control(const char *string, size_t len)
2138 {
2139 const unsigned char *p;
2140 for (p = string; p < (const unsigned char *)string + len; p++) {
2141 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2142 return true;
2143 }
2144 return false;
2145 }
2146
2147 /**
2148 * audit_log_n_untrustedstring - log a string that may contain random characters
2149 * @ab: audit_buffer
2150 * @string: string to be logged
2151 * @len: length of string (not including trailing null)
2152 *
2153 * This code will escape a string that is passed to it if the string
2154 * contains a control character, unprintable character, double quote mark,
2155 * or a space. Unescaped strings will start and end with a double quote mark.
2156 * Strings that are escaped are printed in hex (2 digits per char).
2157 *
2158 * The caller specifies the number of characters in the string to log, which may
2159 * or may not be the entire string.
2160 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2161 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2162 size_t len)
2163 {
2164 if (audit_string_contains_control(string, len))
2165 audit_log_n_hex(ab, string, len);
2166 else
2167 audit_log_n_string(ab, string, len);
2168 }
2169
2170 /**
2171 * audit_log_untrustedstring - log a string that may contain random characters
2172 * @ab: audit_buffer
2173 * @string: string to be logged
2174 *
2175 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2176 * determine string length.
2177 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2178 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2179 {
2180 audit_log_n_untrustedstring(ab, string, strlen(string));
2181 }
2182
2183 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2184 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2185 const struct path *path)
2186 {
2187 char *p, *pathname;
2188
2189 if (prefix)
2190 audit_log_format(ab, "%s", prefix);
2191
2192 /* We will allow 11 spaces for ' (deleted)' to be appended */
2193 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2194 if (!pathname) {
2195 audit_log_format(ab, "\"<no_memory>\"");
2196 return;
2197 }
2198 p = d_path(path, pathname, PATH_MAX+11);
2199 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2200 /* FIXME: can we save some information here? */
2201 audit_log_format(ab, "\"<too_long>\"");
2202 } else
2203 audit_log_untrustedstring(ab, p);
2204 kfree(pathname);
2205 }
2206
audit_log_session_info(struct audit_buffer * ab)2207 void audit_log_session_info(struct audit_buffer *ab)
2208 {
2209 unsigned int sessionid = audit_get_sessionid(current);
2210 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2211
2212 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2213 }
2214
audit_log_key(struct audit_buffer * ab,char * key)2215 void audit_log_key(struct audit_buffer *ab, char *key)
2216 {
2217 audit_log_format(ab, " key=");
2218 if (key)
2219 audit_log_untrustedstring(ab, key);
2220 else
2221 audit_log_format(ab, "(null)");
2222 }
2223
2224 /**
2225 * audit_buffer_aux_new - Add an aux record buffer to the skb list
2226 * @ab: audit_buffer
2227 * @type: message type
2228 *
2229 * Aux records are allocated and added to the skb list of
2230 * the "main" record. The ab->skb is reset to point to the
2231 * aux record on its creation. When the aux record in complete
2232 * ab->skb has to be reset to point to the "main" record.
2233 * This allows the audit_log_ functions to be ignorant of
2234 * which kind of record it is logging to. It also avoids adding
2235 * special data for aux records.
2236 *
2237 * On success ab->skb will point to the new aux record.
2238 * Returns 0 on success, -ENOMEM should allocation fail.
2239 */
audit_buffer_aux_new(struct audit_buffer * ab,int type)2240 static int audit_buffer_aux_new(struct audit_buffer *ab, int type)
2241 {
2242 WARN_ON(ab->skb != skb_peek(&ab->skb_list));
2243
2244 ab->skb = nlmsg_new(AUDIT_BUFSIZ, ab->gfp_mask);
2245 if (!ab->skb)
2246 goto err;
2247 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
2248 goto err;
2249 skb_queue_tail(&ab->skb_list, ab->skb);
2250
2251 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
2252 (unsigned long long)ab->stamp.ctime.tv_sec,
2253 ab->stamp.ctime.tv_nsec/1000000,
2254 ab->stamp.serial);
2255
2256 return 0;
2257
2258 err:
2259 kfree_skb(ab->skb);
2260 ab->skb = skb_peek(&ab->skb_list);
2261 return -ENOMEM;
2262 }
2263
2264 /**
2265 * audit_buffer_aux_end - Switch back to the "main" record from an aux record
2266 * @ab: audit_buffer
2267 *
2268 * Restores the "main" audit record to ab->skb.
2269 */
audit_buffer_aux_end(struct audit_buffer * ab)2270 static void audit_buffer_aux_end(struct audit_buffer *ab)
2271 {
2272 ab->skb = skb_peek(&ab->skb_list);
2273 }
2274
2275 /**
2276 * audit_log_subj_ctx - Add LSM subject information
2277 * @ab: audit_buffer
2278 * @prop: LSM subject properties.
2279 *
2280 * Add a subj= field and, if necessary, a AUDIT_MAC_TASK_CONTEXTS record.
2281 */
audit_log_subj_ctx(struct audit_buffer * ab,struct lsm_prop * prop)2282 int audit_log_subj_ctx(struct audit_buffer *ab, struct lsm_prop *prop)
2283 {
2284 struct lsm_context ctx;
2285 char *space = "";
2286 int error;
2287 int i;
2288
2289 security_current_getlsmprop_subj(prop);
2290 if (!lsmprop_is_set(prop))
2291 return 0;
2292
2293 if (audit_subj_secctx_cnt < 2) {
2294 error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF);
2295 if (error < 0) {
2296 if (error != -EINVAL)
2297 goto error_path;
2298 return 0;
2299 }
2300 audit_log_format(ab, " subj=%s", ctx.context);
2301 security_release_secctx(&ctx);
2302 return 0;
2303 }
2304 /* Multiple LSMs provide contexts. Include an aux record. */
2305 audit_log_format(ab, " subj=?");
2306 error = audit_buffer_aux_new(ab, AUDIT_MAC_TASK_CONTEXTS);
2307 if (error)
2308 goto error_path;
2309
2310 for (i = 0; i < audit_subj_secctx_cnt; i++) {
2311 error = security_lsmprop_to_secctx(prop, &ctx,
2312 audit_subj_lsms[i]->id);
2313 if (error < 0) {
2314 /*
2315 * Don't print anything. An LSM like BPF could
2316 * claim to support contexts, but only do so under
2317 * certain conditions.
2318 */
2319 if (error == -EOPNOTSUPP)
2320 continue;
2321 if (error != -EINVAL)
2322 audit_panic("error in audit_log_subj_ctx");
2323 } else {
2324 audit_log_format(ab, "%ssubj_%s=%s", space,
2325 audit_subj_lsms[i]->name, ctx.context);
2326 space = " ";
2327 security_release_secctx(&ctx);
2328 }
2329 }
2330 audit_buffer_aux_end(ab);
2331 return 0;
2332
2333 error_path:
2334 audit_panic("error in audit_log_subj_ctx");
2335 return error;
2336 }
2337 EXPORT_SYMBOL(audit_log_subj_ctx);
2338
audit_log_task_context(struct audit_buffer * ab)2339 int audit_log_task_context(struct audit_buffer *ab)
2340 {
2341 struct lsm_prop prop;
2342
2343 security_current_getlsmprop_subj(&prop);
2344 return audit_log_subj_ctx(ab, &prop);
2345 }
2346 EXPORT_SYMBOL(audit_log_task_context);
2347
audit_log_obj_ctx(struct audit_buffer * ab,struct lsm_prop * prop)2348 int audit_log_obj_ctx(struct audit_buffer *ab, struct lsm_prop *prop)
2349 {
2350 int i;
2351 int rc;
2352 int error = 0;
2353 char *space = "";
2354 struct lsm_context ctx;
2355
2356 if (audit_obj_secctx_cnt < 2) {
2357 error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF);
2358 if (error < 0) {
2359 if (error != -EINVAL)
2360 goto error_path;
2361 return error;
2362 }
2363 audit_log_format(ab, " obj=%s", ctx.context);
2364 security_release_secctx(&ctx);
2365 return 0;
2366 }
2367 audit_log_format(ab, " obj=?");
2368 error = audit_buffer_aux_new(ab, AUDIT_MAC_OBJ_CONTEXTS);
2369 if (error)
2370 goto error_path;
2371
2372 for (i = 0; i < audit_obj_secctx_cnt; i++) {
2373 rc = security_lsmprop_to_secctx(prop, &ctx,
2374 audit_obj_lsms[i]->id);
2375 if (rc < 0) {
2376 audit_log_format(ab, "%sobj_%s=?", space,
2377 audit_obj_lsms[i]->name);
2378 if (rc != -EINVAL)
2379 audit_panic("error in audit_log_obj_ctx");
2380 error = rc;
2381 } else {
2382 audit_log_format(ab, "%sobj_%s=%s", space,
2383 audit_obj_lsms[i]->name, ctx.context);
2384 security_release_secctx(&ctx);
2385 }
2386 space = " ";
2387 }
2388
2389 audit_buffer_aux_end(ab);
2390 return error;
2391
2392 error_path:
2393 audit_panic("error in audit_log_obj_ctx");
2394 return error;
2395 }
2396
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2397 void audit_log_d_path_exe(struct audit_buffer *ab,
2398 struct mm_struct *mm)
2399 {
2400 struct file *exe_file;
2401
2402 if (!mm)
2403 goto out_null;
2404
2405 exe_file = get_mm_exe_file(mm);
2406 if (!exe_file)
2407 goto out_null;
2408
2409 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2410 fput(exe_file);
2411 return;
2412 out_null:
2413 audit_log_format(ab, " exe=(null)");
2414 }
2415
audit_get_tty(void)2416 struct tty_struct *audit_get_tty(void)
2417 {
2418 struct tty_struct *tty = NULL;
2419 unsigned long flags;
2420
2421 spin_lock_irqsave(¤t->sighand->siglock, flags);
2422 if (current->signal)
2423 tty = tty_kref_get(current->signal->tty);
2424 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
2425 return tty;
2426 }
2427
audit_put_tty(struct tty_struct * tty)2428 void audit_put_tty(struct tty_struct *tty)
2429 {
2430 tty_kref_put(tty);
2431 }
2432
audit_log_task_info(struct audit_buffer * ab)2433 void audit_log_task_info(struct audit_buffer *ab)
2434 {
2435 const struct cred *cred;
2436 char comm[sizeof(current->comm)];
2437 struct tty_struct *tty;
2438
2439 if (!ab)
2440 return;
2441
2442 cred = current_cred();
2443 tty = audit_get_tty();
2444 audit_log_format(ab,
2445 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2446 " euid=%u suid=%u fsuid=%u"
2447 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2448 task_ppid_nr(current),
2449 task_tgid_nr(current),
2450 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2451 from_kuid(&init_user_ns, cred->uid),
2452 from_kgid(&init_user_ns, cred->gid),
2453 from_kuid(&init_user_ns, cred->euid),
2454 from_kuid(&init_user_ns, cred->suid),
2455 from_kuid(&init_user_ns, cred->fsuid),
2456 from_kgid(&init_user_ns, cred->egid),
2457 from_kgid(&init_user_ns, cred->sgid),
2458 from_kgid(&init_user_ns, cred->fsgid),
2459 tty ? tty_name(tty) : "(none)",
2460 audit_get_sessionid(current));
2461 audit_put_tty(tty);
2462 audit_log_format(ab, " comm=");
2463 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2464 audit_log_d_path_exe(ab, current->mm);
2465 audit_log_task_context(ab);
2466 }
2467 EXPORT_SYMBOL(audit_log_task_info);
2468
2469 /**
2470 * audit_log_path_denied - report a path restriction denial
2471 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2472 * @operation: specific operation name
2473 */
audit_log_path_denied(int type,const char * operation)2474 void audit_log_path_denied(int type, const char *operation)
2475 {
2476 struct audit_buffer *ab;
2477
2478 if (!audit_enabled)
2479 return;
2480
2481 /* Generate log with subject, operation, outcome. */
2482 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2483 if (!ab)
2484 return;
2485 audit_log_format(ab, "op=%s", operation);
2486 audit_log_task_info(ab);
2487 audit_log_format(ab, " res=0");
2488 audit_log_end(ab);
2489 }
2490
2491 /* global counter which is incremented every time something logs in */
2492 static atomic_t session_id = ATOMIC_INIT(0);
2493
audit_set_loginuid_perm(kuid_t loginuid)2494 static int audit_set_loginuid_perm(kuid_t loginuid)
2495 {
2496 /* if we are unset, we don't need privs */
2497 if (!audit_loginuid_set(current))
2498 return 0;
2499 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2500 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2501 return -EPERM;
2502 /* it is set, you need permission */
2503 if (!capable(CAP_AUDIT_CONTROL))
2504 return -EPERM;
2505 /* reject if this is not an unset and we don't allow that */
2506 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2507 && uid_valid(loginuid))
2508 return -EPERM;
2509 return 0;
2510 }
2511
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2512 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2513 unsigned int oldsessionid,
2514 unsigned int sessionid, int rc)
2515 {
2516 struct audit_buffer *ab;
2517 uid_t uid, oldloginuid, loginuid;
2518 struct tty_struct *tty;
2519
2520 if (!audit_enabled)
2521 return;
2522
2523 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2524 if (!ab)
2525 return;
2526
2527 uid = from_kuid(&init_user_ns, task_uid(current));
2528 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2529 loginuid = from_kuid(&init_user_ns, kloginuid);
2530 tty = audit_get_tty();
2531
2532 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2533 audit_log_task_context(ab);
2534 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2535 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2536 oldsessionid, sessionid, !rc);
2537 audit_put_tty(tty);
2538 audit_log_end(ab);
2539 }
2540
2541 /**
2542 * audit_set_loginuid - set current task's loginuid
2543 * @loginuid: loginuid value
2544 *
2545 * Returns 0.
2546 *
2547 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2548 */
audit_set_loginuid(kuid_t loginuid)2549 int audit_set_loginuid(kuid_t loginuid)
2550 {
2551 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2552 kuid_t oldloginuid;
2553 int rc;
2554
2555 oldloginuid = audit_get_loginuid(current);
2556 oldsessionid = audit_get_sessionid(current);
2557
2558 rc = audit_set_loginuid_perm(loginuid);
2559 if (rc)
2560 goto out;
2561
2562 /* are we setting or clearing? */
2563 if (uid_valid(loginuid)) {
2564 sessionid = (unsigned int)atomic_inc_return(&session_id);
2565 if (unlikely(sessionid == AUDIT_SID_UNSET))
2566 sessionid = (unsigned int)atomic_inc_return(&session_id);
2567 }
2568
2569 current->sessionid = sessionid;
2570 current->loginuid = loginuid;
2571 out:
2572 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2573 return rc;
2574 }
2575
2576 /**
2577 * audit_signal_info - record signal info for shutting down audit subsystem
2578 * @sig: signal value
2579 * @t: task being signaled
2580 *
2581 * If the audit subsystem is being terminated, record the task (pid)
2582 * and uid that is doing that.
2583 */
audit_signal_info(int sig,struct task_struct * t)2584 int audit_signal_info(int sig, struct task_struct *t)
2585 {
2586 kuid_t uid = current_uid(), auid;
2587
2588 if (auditd_test_task(t) &&
2589 (sig == SIGTERM || sig == SIGHUP ||
2590 sig == SIGUSR1 || sig == SIGUSR2)) {
2591 audit_sig_pid = task_tgid_nr(current);
2592 auid = audit_get_loginuid(current);
2593 if (uid_valid(auid))
2594 audit_sig_uid = auid;
2595 else
2596 audit_sig_uid = uid;
2597 security_current_getlsmprop_subj(&audit_sig_lsm);
2598 }
2599
2600 return audit_signal_info_syscall(t);
2601 }
2602
2603 /**
2604 * __audit_log_end - enqueue one audit record
2605 * @skb: the buffer to send
2606 */
__audit_log_end(struct sk_buff * skb)2607 static void __audit_log_end(struct sk_buff *skb)
2608 {
2609 struct nlmsghdr *nlh;
2610
2611 if (audit_rate_check()) {
2612 /* setup the netlink header, see the comments in
2613 * kauditd_send_multicast_skb() for length quirks */
2614 nlh = nlmsg_hdr(skb);
2615 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2616
2617 /* queue the netlink packet */
2618 skb_queue_tail(&audit_queue, skb);
2619 } else {
2620 audit_log_lost("rate limit exceeded");
2621 kfree_skb(skb);
2622 }
2623 }
2624
2625 /**
2626 * audit_log_end - end one audit record
2627 * @ab: the audit_buffer
2628 *
2629 * We can not do a netlink send inside an irq context because it blocks (last
2630 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2631 * queue and a kthread is scheduled to remove them from the queue outside the
2632 * irq context. May be called in any context.
2633 */
audit_log_end(struct audit_buffer * ab)2634 void audit_log_end(struct audit_buffer *ab)
2635 {
2636 struct sk_buff *skb;
2637
2638 if (!ab)
2639 return;
2640
2641 while ((skb = skb_dequeue(&ab->skb_list)))
2642 __audit_log_end(skb);
2643
2644 /* poke the kauditd thread */
2645 wake_up_interruptible(&kauditd_wait);
2646
2647 audit_buffer_free(ab);
2648 }
2649
2650 /**
2651 * audit_log - Log an audit record
2652 * @ctx: audit context
2653 * @gfp_mask: type of allocation
2654 * @type: audit message type
2655 * @fmt: format string to use
2656 * @...: variable parameters matching the format string
2657 *
2658 * This is a convenience function that calls audit_log_start,
2659 * audit_log_vformat, and audit_log_end. It may be called
2660 * in any context.
2661 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2662 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2663 const char *fmt, ...)
2664 {
2665 struct audit_buffer *ab;
2666 va_list args;
2667
2668 ab = audit_log_start(ctx, gfp_mask, type);
2669 if (ab) {
2670 va_start(args, fmt);
2671 audit_log_vformat(ab, fmt, args);
2672 va_end(args);
2673 audit_log_end(ab);
2674 }
2675 }
2676
2677 EXPORT_SYMBOL(audit_log_start);
2678 EXPORT_SYMBOL(audit_log_end);
2679 EXPORT_SYMBOL(audit_log_format);
2680 EXPORT_SYMBOL(audit_log);
2681