1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/atomic.h> 38 #include <linux/mm.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 41 #include <linux/err.h> 42 #include <linux/kthread.h> 43 #include <linux/kernel.h> 44 #include <linux/syscalls.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 48 #include <linux/gfp.h> 49 #include <linux/pid.h> 50 51 #include <linux/audit.h> 52 53 #include <net/sock.h> 54 #include <net/netlink.h> 55 #include <linux/skbuff.h> 56 #include <linux/security.h> 57 #include <linux/lsm_hooks.h> 58 #include <linux/freezer.h> 59 #include <linux/pid_namespace.h> 60 #include <net/netns/generic.h> 61 #include <net/ip.h> 62 #include <net/ipv6.h> 63 #include <linux/sctp.h> 64 65 #include "audit.h" 66 67 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 68 * (Initialization happens after skb_init is called.) */ 69 #define AUDIT_DISABLED -1 70 #define AUDIT_UNINITIALIZED 0 71 #define AUDIT_INITIALIZED 1 72 static int audit_initialized = AUDIT_UNINITIALIZED; 73 74 u32 audit_enabled = AUDIT_OFF; 75 bool audit_ever_enabled = !!AUDIT_OFF; 76 77 EXPORT_SYMBOL_GPL(audit_enabled); 78 79 /* Default state when kernel boots without any parameters. */ 80 static u32 audit_default = AUDIT_OFF; 81 82 /* If auditing cannot proceed, audit_failure selects what happens. */ 83 static u32 audit_failure = AUDIT_FAIL_PRINTK; 84 85 /* private audit network namespace index */ 86 static unsigned int audit_net_id; 87 88 /* Number of modules that provide a security context. 89 List of lsms that provide a security context */ 90 static u32 audit_subj_secctx_cnt; 91 static u32 audit_obj_secctx_cnt; 92 static const struct lsm_id *audit_subj_lsms[MAX_LSM_COUNT]; 93 static const struct lsm_id *audit_obj_lsms[MAX_LSM_COUNT]; 94 95 /** 96 * struct audit_net - audit private network namespace data 97 * @sk: communication socket 98 */ 99 struct audit_net { 100 struct sock *sk; 101 }; 102 103 /** 104 * struct auditd_connection - kernel/auditd connection state 105 * @pid: auditd PID 106 * @portid: netlink portid 107 * @net: the associated network namespace 108 * @rcu: RCU head 109 * 110 * Description: 111 * This struct is RCU protected; you must either hold the RCU lock for reading 112 * or the associated spinlock for writing. 113 */ 114 struct auditd_connection { 115 struct pid *pid; 116 u32 portid; 117 struct net *net; 118 struct rcu_head rcu; 119 }; 120 static struct auditd_connection __rcu *auditd_conn; 121 static DEFINE_SPINLOCK(auditd_conn_lock); 122 123 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 124 * to that number per second. This prevents DoS attacks, but results in 125 * audit records being dropped. */ 126 static u32 audit_rate_limit; 127 128 /* Number of outstanding audit_buffers allowed. 129 * When set to zero, this means unlimited. */ 130 static u32 audit_backlog_limit = 64; 131 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 132 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 133 134 /* The identity of the user shutting down the audit system. */ 135 static kuid_t audit_sig_uid = INVALID_UID; 136 static pid_t audit_sig_pid = -1; 137 static struct lsm_prop audit_sig_lsm; 138 139 /* Records can be lost in several ways: 140 0) [suppressed in audit_alloc] 141 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 142 2) out of memory in audit_log_move [alloc_skb] 143 3) suppressed due to audit_rate_limit 144 4) suppressed due to audit_backlog_limit 145 */ 146 static atomic_t audit_lost = ATOMIC_INIT(0); 147 148 /* Monotonically increasing sum of time the kernel has spent 149 * waiting while the backlog limit is exceeded. 150 */ 151 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); 152 153 /* Hash for inode-based rules */ 154 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 155 156 static struct kmem_cache *audit_buffer_cache; 157 158 /* queue msgs to send via kauditd_task */ 159 static struct sk_buff_head audit_queue; 160 /* queue msgs due to temporary unicast send problems */ 161 static struct sk_buff_head audit_retry_queue; 162 /* queue msgs waiting for new auditd connection */ 163 static struct sk_buff_head audit_hold_queue; 164 165 /* queue servicing thread */ 166 static struct task_struct *kauditd_task; 167 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 168 169 /* waitqueue for callers who are blocked on the audit backlog */ 170 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 171 172 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 173 .mask = -1, 174 .features = 0, 175 .lock = 0,}; 176 177 static char *audit_feature_names[2] = { 178 "only_unset_loginuid", 179 "loginuid_immutable", 180 }; 181 182 /** 183 * struct audit_ctl_mutex - serialize requests from userspace 184 * @lock: the mutex used for locking 185 * @owner: the task which owns the lock 186 * 187 * Description: 188 * This is the lock struct used to ensure we only process userspace requests 189 * in an orderly fashion. We can't simply use a mutex/lock here because we 190 * need to track lock ownership so we don't end up blocking the lock owner in 191 * audit_log_start() or similar. 192 */ 193 static struct audit_ctl_mutex { 194 struct mutex lock; 195 void *owner; 196 } audit_cmd_mutex; 197 198 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 199 * audit records. Since printk uses a 1024 byte buffer, this buffer 200 * should be at least that large. */ 201 #define AUDIT_BUFSIZ 1024 202 203 /* The audit_buffer is used when formatting an audit record. The caller 204 * locks briefly to get the record off the freelist or to allocate the 205 * buffer, and locks briefly to send the buffer to the netlink layer or 206 * to place it on a transmit queue. Multiple audit_buffers can be in 207 * use simultaneously. */ 208 struct audit_buffer { 209 struct sk_buff *skb; /* the skb for audit_log functions */ 210 struct sk_buff_head skb_list; /* formatted skbs, ready to send */ 211 struct audit_context *ctx; /* NULL or associated context */ 212 struct audit_stamp stamp; /* audit stamp for these records */ 213 gfp_t gfp_mask; 214 }; 215 216 struct audit_reply { 217 __u32 portid; 218 struct net *net; 219 struct sk_buff *skb; 220 }; 221 222 /** 223 * auditd_test_task - Check to see if a given task is an audit daemon 224 * @task: the task to check 225 * 226 * Description: 227 * Return 1 if the task is a registered audit daemon, 0 otherwise. 228 */ 229 int auditd_test_task(struct task_struct *task) 230 { 231 int rc; 232 struct auditd_connection *ac; 233 234 rcu_read_lock(); 235 ac = rcu_dereference(auditd_conn); 236 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 237 rcu_read_unlock(); 238 239 return rc; 240 } 241 242 /** 243 * audit_ctl_lock - Take the audit control lock 244 */ 245 void audit_ctl_lock(void) 246 { 247 mutex_lock(&audit_cmd_mutex.lock); 248 audit_cmd_mutex.owner = current; 249 } 250 251 /** 252 * audit_ctl_unlock - Drop the audit control lock 253 */ 254 void audit_ctl_unlock(void) 255 { 256 audit_cmd_mutex.owner = NULL; 257 mutex_unlock(&audit_cmd_mutex.lock); 258 } 259 260 /** 261 * audit_ctl_owner_current - Test to see if the current task owns the lock 262 * 263 * Description: 264 * Return true if the current task owns the audit control lock, false if it 265 * doesn't own the lock. 266 */ 267 static bool audit_ctl_owner_current(void) 268 { 269 return (current == audit_cmd_mutex.owner); 270 } 271 272 /** 273 * auditd_pid_vnr - Return the auditd PID relative to the namespace 274 * 275 * Description: 276 * Returns the PID in relation to the namespace, 0 on failure. 277 */ 278 static pid_t auditd_pid_vnr(void) 279 { 280 pid_t pid; 281 const struct auditd_connection *ac; 282 283 rcu_read_lock(); 284 ac = rcu_dereference(auditd_conn); 285 if (!ac || !ac->pid) 286 pid = 0; 287 else 288 pid = pid_vnr(ac->pid); 289 rcu_read_unlock(); 290 291 return pid; 292 } 293 294 /** 295 * audit_cfg_lsm - Identify a security module as providing a secctx. 296 * @lsmid: LSM identity 297 * @flags: which contexts are provided 298 * 299 * Description: 300 * Increments the count of the security modules providing a secctx. 301 * If the LSM id is already in the list leave it alone. 302 */ 303 void audit_cfg_lsm(const struct lsm_id *lsmid, int flags) 304 { 305 int i; 306 307 if (flags & AUDIT_CFG_LSM_SECCTX_SUBJECT) { 308 for (i = 0 ; i < audit_subj_secctx_cnt; i++) 309 if (audit_subj_lsms[i] == lsmid) 310 return; 311 audit_subj_lsms[audit_subj_secctx_cnt++] = lsmid; 312 } 313 if (flags & AUDIT_CFG_LSM_SECCTX_OBJECT) { 314 for (i = 0 ; i < audit_obj_secctx_cnt; i++) 315 if (audit_obj_lsms[i] == lsmid) 316 return; 317 audit_obj_lsms[audit_obj_secctx_cnt++] = lsmid; 318 } 319 } 320 321 /** 322 * audit_get_sk - Return the audit socket for the given network namespace 323 * @net: the destination network namespace 324 * 325 * Description: 326 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 327 * that a reference is held for the network namespace while the sock is in use. 328 */ 329 static struct sock *audit_get_sk(const struct net *net) 330 { 331 struct audit_net *aunet; 332 333 if (!net) 334 return NULL; 335 336 aunet = net_generic(net, audit_net_id); 337 return aunet->sk; 338 } 339 340 void audit_panic(const char *message) 341 { 342 switch (audit_failure) { 343 case AUDIT_FAIL_SILENT: 344 break; 345 case AUDIT_FAIL_PRINTK: 346 if (printk_ratelimit()) 347 pr_err("%s\n", message); 348 break; 349 case AUDIT_FAIL_PANIC: 350 panic("audit: %s\n", message); 351 break; 352 } 353 } 354 355 static inline int audit_rate_check(void) 356 { 357 static unsigned long last_check = 0; 358 static int messages = 0; 359 static DEFINE_SPINLOCK(lock); 360 unsigned long flags; 361 unsigned long now; 362 int retval = 0; 363 364 if (!audit_rate_limit) 365 return 1; 366 367 spin_lock_irqsave(&lock, flags); 368 if (++messages < audit_rate_limit) { 369 retval = 1; 370 } else { 371 now = jiffies; 372 if (time_after(now, last_check + HZ)) { 373 last_check = now; 374 messages = 0; 375 retval = 1; 376 } 377 } 378 spin_unlock_irqrestore(&lock, flags); 379 380 return retval; 381 } 382 383 /** 384 * audit_log_lost - conditionally log lost audit message event 385 * @message: the message stating reason for lost audit message 386 * 387 * Emit at least 1 message per second, even if audit_rate_check is 388 * throttling. 389 * Always increment the lost messages counter. 390 */ 391 void audit_log_lost(const char *message) 392 { 393 static unsigned long last_msg = 0; 394 static DEFINE_SPINLOCK(lock); 395 unsigned long flags; 396 unsigned long now; 397 int print; 398 399 atomic_inc(&audit_lost); 400 401 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 402 403 if (!print) { 404 spin_lock_irqsave(&lock, flags); 405 now = jiffies; 406 if (time_after(now, last_msg + HZ)) { 407 print = 1; 408 last_msg = now; 409 } 410 spin_unlock_irqrestore(&lock, flags); 411 } 412 413 if (print) { 414 if (printk_ratelimit()) 415 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 416 atomic_read(&audit_lost), 417 audit_rate_limit, 418 audit_backlog_limit); 419 audit_panic(message); 420 } 421 } 422 423 static int audit_log_config_change(char *function_name, u32 new, u32 old, 424 int allow_changes) 425 { 426 struct audit_buffer *ab; 427 int rc = 0; 428 429 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 430 if (unlikely(!ab)) 431 return rc; 432 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 433 audit_log_session_info(ab); 434 rc = audit_log_task_context(ab); 435 if (rc) 436 allow_changes = 0; /* Something weird, deny request */ 437 audit_log_format(ab, " res=%d", allow_changes); 438 audit_log_end(ab); 439 return rc; 440 } 441 442 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 443 { 444 int allow_changes, rc = 0; 445 u32 old = *to_change; 446 447 /* check if we are locked */ 448 if (audit_enabled == AUDIT_LOCKED) 449 allow_changes = 0; 450 else 451 allow_changes = 1; 452 453 if (audit_enabled != AUDIT_OFF) { 454 rc = audit_log_config_change(function_name, new, old, allow_changes); 455 if (rc) 456 allow_changes = 0; 457 } 458 459 /* If we are allowed, make the change */ 460 if (allow_changes == 1) 461 *to_change = new; 462 /* Not allowed, update reason */ 463 else if (rc == 0) 464 rc = -EPERM; 465 return rc; 466 } 467 468 static int audit_set_rate_limit(u32 limit) 469 { 470 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 471 } 472 473 static int audit_set_backlog_limit(u32 limit) 474 { 475 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 476 } 477 478 static int audit_set_backlog_wait_time(u32 timeout) 479 { 480 return audit_do_config_change("audit_backlog_wait_time", 481 &audit_backlog_wait_time, timeout); 482 } 483 484 static int audit_set_enabled(u32 state) 485 { 486 int rc; 487 if (state > AUDIT_LOCKED) 488 return -EINVAL; 489 490 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 491 if (!rc) 492 audit_ever_enabled |= !!state; 493 494 return rc; 495 } 496 497 static int audit_set_failure(u32 state) 498 { 499 if (state != AUDIT_FAIL_SILENT 500 && state != AUDIT_FAIL_PRINTK 501 && state != AUDIT_FAIL_PANIC) 502 return -EINVAL; 503 504 return audit_do_config_change("audit_failure", &audit_failure, state); 505 } 506 507 /** 508 * auditd_conn_free - RCU helper to release an auditd connection struct 509 * @rcu: RCU head 510 * 511 * Description: 512 * Drop any references inside the auditd connection tracking struct and free 513 * the memory. 514 */ 515 static void auditd_conn_free(struct rcu_head *rcu) 516 { 517 struct auditd_connection *ac; 518 519 ac = container_of(rcu, struct auditd_connection, rcu); 520 put_pid(ac->pid); 521 put_net(ac->net); 522 kfree(ac); 523 } 524 525 /** 526 * auditd_set - Set/Reset the auditd connection state 527 * @pid: auditd PID 528 * @portid: auditd netlink portid 529 * @net: auditd network namespace pointer 530 * @skb: the netlink command from the audit daemon 531 * @ack: netlink ack flag, cleared if ack'd here 532 * 533 * Description: 534 * This function will obtain and drop network namespace references as 535 * necessary. Returns zero on success, negative values on failure. 536 */ 537 static int auditd_set(struct pid *pid, u32 portid, struct net *net, 538 struct sk_buff *skb, bool *ack) 539 { 540 unsigned long flags; 541 struct auditd_connection *ac_old, *ac_new; 542 struct nlmsghdr *nlh; 543 544 if (!pid || !net) 545 return -EINVAL; 546 547 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 548 if (!ac_new) 549 return -ENOMEM; 550 ac_new->pid = get_pid(pid); 551 ac_new->portid = portid; 552 ac_new->net = get_net(net); 553 554 /* send the ack now to avoid a race with the queue backlog */ 555 if (*ack) { 556 nlh = nlmsg_hdr(skb); 557 netlink_ack(skb, nlh, 0, NULL); 558 *ack = false; 559 } 560 561 spin_lock_irqsave(&auditd_conn_lock, flags); 562 ac_old = rcu_dereference_protected(auditd_conn, 563 lockdep_is_held(&auditd_conn_lock)); 564 rcu_assign_pointer(auditd_conn, ac_new); 565 spin_unlock_irqrestore(&auditd_conn_lock, flags); 566 567 if (ac_old) 568 call_rcu(&ac_old->rcu, auditd_conn_free); 569 570 return 0; 571 } 572 573 /** 574 * kauditd_printk_skb - Print the audit record to the ring buffer 575 * @skb: audit record 576 * 577 * Whatever the reason, this packet may not make it to the auditd connection 578 * so write it via printk so the information isn't completely lost. 579 */ 580 static void kauditd_printk_skb(struct sk_buff *skb) 581 { 582 struct nlmsghdr *nlh = nlmsg_hdr(skb); 583 char *data = nlmsg_data(nlh); 584 585 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 586 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 587 } 588 589 /** 590 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 591 * @skb: audit record 592 * @error: error code (unused) 593 * 594 * Description: 595 * This should only be used by the kauditd_thread when it fails to flush the 596 * hold queue. 597 */ 598 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error) 599 { 600 /* put the record back in the queue */ 601 skb_queue_tail(&audit_hold_queue, skb); 602 } 603 604 /** 605 * kauditd_hold_skb - Queue an audit record, waiting for auditd 606 * @skb: audit record 607 * @error: error code 608 * 609 * Description: 610 * Queue the audit record, waiting for an instance of auditd. When this 611 * function is called we haven't given up yet on sending the record, but things 612 * are not looking good. The first thing we want to do is try to write the 613 * record via printk and then see if we want to try and hold on to the record 614 * and queue it, if we have room. If we want to hold on to the record, but we 615 * don't have room, record a record lost message. 616 */ 617 static void kauditd_hold_skb(struct sk_buff *skb, int error) 618 { 619 /* at this point it is uncertain if we will ever send this to auditd so 620 * try to send the message via printk before we go any further */ 621 kauditd_printk_skb(skb); 622 623 /* can we just silently drop the message? */ 624 if (!audit_default) 625 goto drop; 626 627 /* the hold queue is only for when the daemon goes away completely, 628 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the 629 * record on the retry queue unless it's full, in which case drop it 630 */ 631 if (error == -EAGAIN) { 632 if (!audit_backlog_limit || 633 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 634 skb_queue_tail(&audit_retry_queue, skb); 635 return; 636 } 637 audit_log_lost("kauditd retry queue overflow"); 638 goto drop; 639 } 640 641 /* if we have room in the hold queue, queue the message */ 642 if (!audit_backlog_limit || 643 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 644 skb_queue_tail(&audit_hold_queue, skb); 645 return; 646 } 647 648 /* we have no other options - drop the message */ 649 audit_log_lost("kauditd hold queue overflow"); 650 drop: 651 kfree_skb(skb); 652 } 653 654 /** 655 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 656 * @skb: audit record 657 * @error: error code (unused) 658 * 659 * Description: 660 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 661 * but for some reason we are having problems sending it audit records so 662 * queue the given record and attempt to resend. 663 */ 664 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error) 665 { 666 if (!audit_backlog_limit || 667 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 668 skb_queue_tail(&audit_retry_queue, skb); 669 return; 670 } 671 672 /* we have to drop the record, send it via printk as a last effort */ 673 kauditd_printk_skb(skb); 674 audit_log_lost("kauditd retry queue overflow"); 675 kfree_skb(skb); 676 } 677 678 /** 679 * auditd_reset - Disconnect the auditd connection 680 * @ac: auditd connection state 681 * 682 * Description: 683 * Break the auditd/kauditd connection and move all the queued records into the 684 * hold queue in case auditd reconnects. It is important to note that the @ac 685 * pointer should never be dereferenced inside this function as it may be NULL 686 * or invalid, you can only compare the memory address! If @ac is NULL then 687 * the connection will always be reset. 688 */ 689 static void auditd_reset(const struct auditd_connection *ac) 690 { 691 unsigned long flags; 692 struct sk_buff *skb; 693 struct auditd_connection *ac_old; 694 695 /* if it isn't already broken, break the connection */ 696 spin_lock_irqsave(&auditd_conn_lock, flags); 697 ac_old = rcu_dereference_protected(auditd_conn, 698 lockdep_is_held(&auditd_conn_lock)); 699 if (ac && ac != ac_old) { 700 /* someone already registered a new auditd connection */ 701 spin_unlock_irqrestore(&auditd_conn_lock, flags); 702 return; 703 } 704 rcu_assign_pointer(auditd_conn, NULL); 705 spin_unlock_irqrestore(&auditd_conn_lock, flags); 706 707 if (ac_old) 708 call_rcu(&ac_old->rcu, auditd_conn_free); 709 710 /* flush the retry queue to the hold queue, but don't touch the main 711 * queue since we need to process that normally for multicast */ 712 while ((skb = skb_dequeue(&audit_retry_queue))) 713 kauditd_hold_skb(skb, -ECONNREFUSED); 714 } 715 716 /** 717 * auditd_send_unicast_skb - Send a record via unicast to auditd 718 * @skb: audit record 719 * 720 * Description: 721 * Send a skb to the audit daemon, returns positive/zero values on success and 722 * negative values on failure; in all cases the skb will be consumed by this 723 * function. If the send results in -ECONNREFUSED the connection with auditd 724 * will be reset. This function may sleep so callers should not hold any locks 725 * where this would cause a problem. 726 */ 727 static int auditd_send_unicast_skb(struct sk_buff *skb) 728 { 729 int rc; 730 u32 portid; 731 struct net *net; 732 struct sock *sk; 733 struct auditd_connection *ac; 734 735 /* NOTE: we can't call netlink_unicast while in the RCU section so 736 * take a reference to the network namespace and grab local 737 * copies of the namespace, the sock, and the portid; the 738 * namespace and sock aren't going to go away while we hold a 739 * reference and if the portid does become invalid after the RCU 740 * section netlink_unicast() should safely return an error */ 741 742 rcu_read_lock(); 743 ac = rcu_dereference(auditd_conn); 744 if (!ac) { 745 rcu_read_unlock(); 746 kfree_skb(skb); 747 rc = -ECONNREFUSED; 748 goto err; 749 } 750 net = get_net(ac->net); 751 sk = audit_get_sk(net); 752 portid = ac->portid; 753 rcu_read_unlock(); 754 755 rc = netlink_unicast(sk, skb, portid, 0); 756 put_net(net); 757 if (rc < 0) 758 goto err; 759 760 return rc; 761 762 err: 763 if (ac && rc == -ECONNREFUSED) 764 auditd_reset(ac); 765 return rc; 766 } 767 768 /** 769 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 770 * @sk: the sending sock 771 * @portid: the netlink destination 772 * @queue: the skb queue to process 773 * @retry_limit: limit on number of netlink unicast failures 774 * @skb_hook: per-skb hook for additional processing 775 * @err_hook: hook called if the skb fails the netlink unicast send 776 * 777 * Description: 778 * Run through the given queue and attempt to send the audit records to auditd, 779 * returns zero on success, negative values on failure. It is up to the caller 780 * to ensure that the @sk is valid for the duration of this function. 781 * 782 */ 783 static int kauditd_send_queue(struct sock *sk, u32 portid, 784 struct sk_buff_head *queue, 785 unsigned int retry_limit, 786 void (*skb_hook)(struct sk_buff *skb), 787 void (*err_hook)(struct sk_buff *skb, int error)) 788 { 789 int rc = 0; 790 struct sk_buff *skb = NULL; 791 struct sk_buff *skb_tail; 792 unsigned int failed = 0; 793 794 /* NOTE: kauditd_thread takes care of all our locking, we just use 795 * the netlink info passed to us (e.g. sk and portid) */ 796 797 skb_tail = skb_peek_tail(queue); 798 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) { 799 /* call the skb_hook for each skb we touch */ 800 if (skb_hook) 801 (*skb_hook)(skb); 802 803 /* can we send to anyone via unicast? */ 804 if (!sk) { 805 if (err_hook) 806 (*err_hook)(skb, -ECONNREFUSED); 807 continue; 808 } 809 810 retry: 811 /* grab an extra skb reference in case of error */ 812 skb_get(skb); 813 rc = netlink_unicast(sk, skb, portid, 0); 814 if (rc < 0) { 815 /* send failed - try a few times unless fatal error */ 816 if (++failed >= retry_limit || 817 rc == -ECONNREFUSED || rc == -EPERM) { 818 sk = NULL; 819 if (err_hook) 820 (*err_hook)(skb, rc); 821 if (rc == -EAGAIN) 822 rc = 0; 823 /* continue to drain the queue */ 824 continue; 825 } else 826 goto retry; 827 } else { 828 /* skb sent - drop the extra reference and continue */ 829 consume_skb(skb); 830 failed = 0; 831 } 832 } 833 834 return (rc >= 0 ? 0 : rc); 835 } 836 837 /* 838 * kauditd_send_multicast_skb - Send a record to any multicast listeners 839 * @skb: audit record 840 * 841 * Description: 842 * Write a multicast message to anyone listening in the initial network 843 * namespace. This function doesn't consume an skb as might be expected since 844 * it has to copy it anyways. 845 */ 846 static void kauditd_send_multicast_skb(struct sk_buff *skb) 847 { 848 struct sk_buff *copy; 849 struct sock *sock = audit_get_sk(&init_net); 850 struct nlmsghdr *nlh; 851 852 /* NOTE: we are not taking an additional reference for init_net since 853 * we don't have to worry about it going away */ 854 855 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 856 return; 857 858 /* 859 * The seemingly wasteful skb_copy() rather than bumping the refcount 860 * using skb_get() is necessary because non-standard mods are made to 861 * the skb by the original kaudit unicast socket send routine. The 862 * existing auditd daemon assumes this breakage. Fixing this would 863 * require co-ordinating a change in the established protocol between 864 * the kaudit kernel subsystem and the auditd userspace code. There is 865 * no reason for new multicast clients to continue with this 866 * non-compliance. 867 */ 868 copy = skb_copy(skb, GFP_KERNEL); 869 if (!copy) 870 return; 871 nlh = nlmsg_hdr(copy); 872 nlh->nlmsg_len = skb->len; 873 874 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 875 } 876 877 /** 878 * kauditd_thread - Worker thread to send audit records to userspace 879 * @dummy: unused 880 */ 881 static int kauditd_thread(void *dummy) 882 { 883 int rc; 884 u32 portid = 0; 885 struct net *net = NULL; 886 struct sock *sk = NULL; 887 struct auditd_connection *ac; 888 889 #define UNICAST_RETRIES 5 890 891 set_freezable(); 892 while (!kthread_should_stop()) { 893 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 894 rcu_read_lock(); 895 ac = rcu_dereference(auditd_conn); 896 if (!ac) { 897 rcu_read_unlock(); 898 goto main_queue; 899 } 900 net = get_net(ac->net); 901 sk = audit_get_sk(net); 902 portid = ac->portid; 903 rcu_read_unlock(); 904 905 /* attempt to flush the hold queue */ 906 rc = kauditd_send_queue(sk, portid, 907 &audit_hold_queue, UNICAST_RETRIES, 908 NULL, kauditd_rehold_skb); 909 if (rc < 0) { 910 sk = NULL; 911 auditd_reset(ac); 912 goto main_queue; 913 } 914 915 /* attempt to flush the retry queue */ 916 rc = kauditd_send_queue(sk, portid, 917 &audit_retry_queue, UNICAST_RETRIES, 918 NULL, kauditd_hold_skb); 919 if (rc < 0) { 920 sk = NULL; 921 auditd_reset(ac); 922 goto main_queue; 923 } 924 925 main_queue: 926 /* process the main queue - do the multicast send and attempt 927 * unicast, dump failed record sends to the retry queue; if 928 * sk == NULL due to previous failures we will just do the 929 * multicast send and move the record to the hold queue */ 930 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 931 kauditd_send_multicast_skb, 932 (sk ? 933 kauditd_retry_skb : kauditd_hold_skb)); 934 if (ac && rc < 0) 935 auditd_reset(ac); 936 sk = NULL; 937 938 /* drop our netns reference, no auditd sends past this line */ 939 if (net) { 940 put_net(net); 941 net = NULL; 942 } 943 944 /* we have processed all the queues so wake everyone */ 945 wake_up(&audit_backlog_wait); 946 947 /* NOTE: we want to wake up if there is anything on the queue, 948 * regardless of if an auditd is connected, as we need to 949 * do the multicast send and rotate records from the 950 * main queue to the retry/hold queues */ 951 wait_event_freezable(kauditd_wait, 952 (skb_queue_len(&audit_queue) ? 1 : 0)); 953 } 954 955 return 0; 956 } 957 958 int audit_send_list_thread(void *_dest) 959 { 960 struct audit_netlink_list *dest = _dest; 961 struct sk_buff *skb; 962 struct sock *sk = audit_get_sk(dest->net); 963 964 /* wait for parent to finish and send an ACK */ 965 audit_ctl_lock(); 966 audit_ctl_unlock(); 967 968 while ((skb = __skb_dequeue(&dest->q)) != NULL) 969 netlink_unicast(sk, skb, dest->portid, 0); 970 971 put_net(dest->net); 972 kfree(dest); 973 974 return 0; 975 } 976 977 struct sk_buff *audit_make_reply(int seq, int type, int done, 978 int multi, const void *payload, int size) 979 { 980 struct sk_buff *skb; 981 struct nlmsghdr *nlh; 982 void *data; 983 int flags = multi ? NLM_F_MULTI : 0; 984 int t = done ? NLMSG_DONE : type; 985 986 skb = nlmsg_new(size, GFP_KERNEL); 987 if (!skb) 988 return NULL; 989 990 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 991 if (!nlh) 992 goto out_kfree_skb; 993 data = nlmsg_data(nlh); 994 memcpy(data, payload, size); 995 return skb; 996 997 out_kfree_skb: 998 kfree_skb(skb); 999 return NULL; 1000 } 1001 1002 static void audit_free_reply(struct audit_reply *reply) 1003 { 1004 if (!reply) 1005 return; 1006 1007 kfree_skb(reply->skb); 1008 if (reply->net) 1009 put_net(reply->net); 1010 kfree(reply); 1011 } 1012 1013 static int audit_send_reply_thread(void *arg) 1014 { 1015 struct audit_reply *reply = (struct audit_reply *)arg; 1016 1017 audit_ctl_lock(); 1018 audit_ctl_unlock(); 1019 1020 /* Ignore failure. It'll only happen if the sender goes away, 1021 because our timeout is set to infinite. */ 1022 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 1023 reply->skb = NULL; 1024 audit_free_reply(reply); 1025 return 0; 1026 } 1027 1028 /** 1029 * audit_send_reply - send an audit reply message via netlink 1030 * @request_skb: skb of request we are replying to (used to target the reply) 1031 * @seq: sequence number 1032 * @type: audit message type 1033 * @done: done (last) flag 1034 * @multi: multi-part message flag 1035 * @payload: payload data 1036 * @size: payload size 1037 * 1038 * Allocates a skb, builds the netlink message, and sends it to the port id. 1039 */ 1040 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 1041 int multi, const void *payload, int size) 1042 { 1043 struct task_struct *tsk; 1044 struct audit_reply *reply; 1045 1046 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 1047 if (!reply) 1048 return; 1049 1050 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 1051 if (!reply->skb) 1052 goto err; 1053 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 1054 reply->portid = NETLINK_CB(request_skb).portid; 1055 1056 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 1057 if (IS_ERR(tsk)) 1058 goto err; 1059 1060 return; 1061 1062 err: 1063 audit_free_reply(reply); 1064 } 1065 1066 /* 1067 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 1068 * control messages. 1069 */ 1070 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1071 { 1072 int err = 0; 1073 1074 /* Only support initial user namespace for now. */ 1075 /* 1076 * We return ECONNREFUSED because it tricks userspace into thinking 1077 * that audit was not configured into the kernel. Lots of users 1078 * configure their PAM stack (because that's what the distro does) 1079 * to reject login if unable to send messages to audit. If we return 1080 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1081 * configured in and will let login proceed. If we return EPERM 1082 * userspace will reject all logins. This should be removed when we 1083 * support non init namespaces!! 1084 */ 1085 if (current_user_ns() != &init_user_ns) 1086 return -ECONNREFUSED; 1087 1088 switch (msg_type) { 1089 case AUDIT_LIST: 1090 case AUDIT_ADD: 1091 case AUDIT_DEL: 1092 return -EOPNOTSUPP; 1093 case AUDIT_GET: 1094 case AUDIT_SET: 1095 case AUDIT_GET_FEATURE: 1096 case AUDIT_SET_FEATURE: 1097 case AUDIT_LIST_RULES: 1098 case AUDIT_ADD_RULE: 1099 case AUDIT_DEL_RULE: 1100 case AUDIT_SIGNAL_INFO: 1101 case AUDIT_TTY_GET: 1102 case AUDIT_TTY_SET: 1103 case AUDIT_TRIM: 1104 case AUDIT_MAKE_EQUIV: 1105 /* Only support auditd and auditctl in initial pid namespace 1106 * for now. */ 1107 if (task_active_pid_ns(current) != &init_pid_ns) 1108 return -EPERM; 1109 1110 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1111 err = -EPERM; 1112 break; 1113 case AUDIT_USER: 1114 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1115 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1116 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1117 err = -EPERM; 1118 break; 1119 default: /* bad msg */ 1120 err = -EINVAL; 1121 } 1122 1123 return err; 1124 } 1125 1126 static void audit_log_common_recv_msg(struct audit_context *context, 1127 struct audit_buffer **ab, u16 msg_type) 1128 { 1129 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1130 pid_t pid = task_tgid_nr(current); 1131 1132 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1133 *ab = NULL; 1134 return; 1135 } 1136 1137 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1138 if (unlikely(!*ab)) 1139 return; 1140 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1141 audit_log_session_info(*ab); 1142 audit_log_task_context(*ab); 1143 } 1144 1145 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1146 u16 msg_type) 1147 { 1148 audit_log_common_recv_msg(NULL, ab, msg_type); 1149 } 1150 1151 static int is_audit_feature_set(int i) 1152 { 1153 return af.features & AUDIT_FEATURE_TO_MASK(i); 1154 } 1155 1156 static int audit_get_feature(struct sk_buff *skb) 1157 { 1158 u32 seq; 1159 1160 seq = nlmsg_hdr(skb)->nlmsg_seq; 1161 1162 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1163 1164 return 0; 1165 } 1166 1167 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1168 u32 old_lock, u32 new_lock, int res) 1169 { 1170 struct audit_buffer *ab; 1171 1172 if (audit_enabled == AUDIT_OFF) 1173 return; 1174 1175 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1176 if (!ab) 1177 return; 1178 audit_log_task_info(ab); 1179 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1180 audit_feature_names[which], !!old_feature, !!new_feature, 1181 !!old_lock, !!new_lock, res); 1182 audit_log_end(ab); 1183 } 1184 1185 static int audit_set_feature(struct audit_features *uaf) 1186 { 1187 int i; 1188 1189 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1190 1191 /* if there is ever a version 2 we should handle that here */ 1192 1193 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1194 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1195 u32 old_feature, new_feature, old_lock, new_lock; 1196 1197 /* if we are not changing this feature, move along */ 1198 if (!(feature & uaf->mask)) 1199 continue; 1200 1201 old_feature = af.features & feature; 1202 new_feature = uaf->features & feature; 1203 new_lock = (uaf->lock | af.lock) & feature; 1204 old_lock = af.lock & feature; 1205 1206 /* are we changing a locked feature? */ 1207 if (old_lock && (new_feature != old_feature)) { 1208 audit_log_feature_change(i, old_feature, new_feature, 1209 old_lock, new_lock, 0); 1210 return -EPERM; 1211 } 1212 } 1213 /* nothing invalid, do the changes */ 1214 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1215 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1216 u32 old_feature, new_feature, old_lock, new_lock; 1217 1218 /* if we are not changing this feature, move along */ 1219 if (!(feature & uaf->mask)) 1220 continue; 1221 1222 old_feature = af.features & feature; 1223 new_feature = uaf->features & feature; 1224 old_lock = af.lock & feature; 1225 new_lock = (uaf->lock | af.lock) & feature; 1226 1227 if (new_feature != old_feature) 1228 audit_log_feature_change(i, old_feature, new_feature, 1229 old_lock, new_lock, 1); 1230 1231 if (new_feature) 1232 af.features |= feature; 1233 else 1234 af.features &= ~feature; 1235 af.lock |= new_lock; 1236 } 1237 1238 return 0; 1239 } 1240 1241 static int audit_replace(struct pid *pid) 1242 { 1243 pid_t pvnr; 1244 struct sk_buff *skb; 1245 1246 pvnr = pid_vnr(pid); 1247 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1248 if (!skb) 1249 return -ENOMEM; 1250 return auditd_send_unicast_skb(skb); 1251 } 1252 1253 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh, 1254 bool *ack) 1255 { 1256 u32 seq; 1257 void *data; 1258 int data_len; 1259 int err; 1260 struct audit_buffer *ab; 1261 u16 msg_type = nlh->nlmsg_type; 1262 struct audit_sig_info *sig_data; 1263 struct lsm_context lsmctx = { NULL, 0, 0 }; 1264 1265 err = audit_netlink_ok(skb, msg_type); 1266 if (err) 1267 return err; 1268 1269 seq = nlh->nlmsg_seq; 1270 data = nlmsg_data(nlh); 1271 data_len = nlmsg_len(nlh); 1272 1273 switch (msg_type) { 1274 case AUDIT_GET: { 1275 struct audit_status s; 1276 memset(&s, 0, sizeof(s)); 1277 s.enabled = audit_enabled; 1278 s.failure = audit_failure; 1279 /* NOTE: use pid_vnr() so the PID is relative to the current 1280 * namespace */ 1281 s.pid = auditd_pid_vnr(); 1282 s.rate_limit = audit_rate_limit; 1283 s.backlog_limit = audit_backlog_limit; 1284 s.lost = atomic_read(&audit_lost); 1285 s.backlog = skb_queue_len(&audit_queue); 1286 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1287 s.backlog_wait_time = audit_backlog_wait_time; 1288 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual); 1289 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1290 break; 1291 } 1292 case AUDIT_SET: { 1293 struct audit_status s; 1294 memset(&s, 0, sizeof(s)); 1295 /* guard against past and future API changes */ 1296 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1297 if (s.mask & AUDIT_STATUS_ENABLED) { 1298 err = audit_set_enabled(s.enabled); 1299 if (err < 0) 1300 return err; 1301 } 1302 if (s.mask & AUDIT_STATUS_FAILURE) { 1303 err = audit_set_failure(s.failure); 1304 if (err < 0) 1305 return err; 1306 } 1307 if (s.mask & AUDIT_STATUS_PID) { 1308 /* NOTE: we are using the vnr PID functions below 1309 * because the s.pid value is relative to the 1310 * namespace of the caller; at present this 1311 * doesn't matter much since you can really only 1312 * run auditd from the initial pid namespace, but 1313 * something to keep in mind if this changes */ 1314 pid_t new_pid = s.pid; 1315 pid_t auditd_pid; 1316 struct pid *req_pid = task_tgid(current); 1317 1318 /* Sanity check - PID values must match. Setting 1319 * pid to 0 is how auditd ends auditing. */ 1320 if (new_pid && (new_pid != pid_vnr(req_pid))) 1321 return -EINVAL; 1322 1323 /* test the auditd connection */ 1324 audit_replace(req_pid); 1325 1326 auditd_pid = auditd_pid_vnr(); 1327 if (auditd_pid) { 1328 /* replacing a healthy auditd is not allowed */ 1329 if (new_pid) { 1330 audit_log_config_change("audit_pid", 1331 new_pid, auditd_pid, 0); 1332 return -EEXIST; 1333 } 1334 /* only current auditd can unregister itself */ 1335 if (pid_vnr(req_pid) != auditd_pid) { 1336 audit_log_config_change("audit_pid", 1337 new_pid, auditd_pid, 0); 1338 return -EACCES; 1339 } 1340 } 1341 1342 if (new_pid) { 1343 /* register a new auditd connection */ 1344 err = auditd_set(req_pid, 1345 NETLINK_CB(skb).portid, 1346 sock_net(NETLINK_CB(skb).sk), 1347 skb, ack); 1348 if (audit_enabled != AUDIT_OFF) 1349 audit_log_config_change("audit_pid", 1350 new_pid, 1351 auditd_pid, 1352 err ? 0 : 1); 1353 if (err) 1354 return err; 1355 1356 /* try to process any backlog */ 1357 wake_up_interruptible(&kauditd_wait); 1358 } else { 1359 if (audit_enabled != AUDIT_OFF) 1360 audit_log_config_change("audit_pid", 1361 new_pid, 1362 auditd_pid, 1); 1363 1364 /* unregister the auditd connection */ 1365 auditd_reset(NULL); 1366 } 1367 } 1368 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1369 err = audit_set_rate_limit(s.rate_limit); 1370 if (err < 0) 1371 return err; 1372 } 1373 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1374 err = audit_set_backlog_limit(s.backlog_limit); 1375 if (err < 0) 1376 return err; 1377 } 1378 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1379 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1380 return -EINVAL; 1381 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1382 return -EINVAL; 1383 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1384 if (err < 0) 1385 return err; 1386 } 1387 if (s.mask == AUDIT_STATUS_LOST) { 1388 u32 lost = atomic_xchg(&audit_lost, 0); 1389 1390 audit_log_config_change("lost", 0, lost, 1); 1391 return lost; 1392 } 1393 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { 1394 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0); 1395 1396 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1); 1397 return actual; 1398 } 1399 break; 1400 } 1401 case AUDIT_GET_FEATURE: 1402 err = audit_get_feature(skb); 1403 if (err) 1404 return err; 1405 break; 1406 case AUDIT_SET_FEATURE: 1407 if (data_len < sizeof(struct audit_features)) 1408 return -EINVAL; 1409 err = audit_set_feature(data); 1410 if (err) 1411 return err; 1412 break; 1413 case AUDIT_USER: 1414 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1415 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1416 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1417 return 0; 1418 /* exit early if there isn't at least one character to print */ 1419 if (data_len < 2) 1420 return -EINVAL; 1421 1422 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1423 if (err == 1) { /* match or error */ 1424 char *str = data; 1425 1426 err = 0; 1427 if (msg_type == AUDIT_USER_TTY) { 1428 err = tty_audit_push(); 1429 if (err) 1430 break; 1431 } 1432 audit_log_user_recv_msg(&ab, msg_type); 1433 if (msg_type != AUDIT_USER_TTY) { 1434 /* ensure NULL termination */ 1435 str[data_len - 1] = '\0'; 1436 audit_log_format(ab, " msg='%.*s'", 1437 AUDIT_MESSAGE_TEXT_MAX, 1438 str); 1439 } else { 1440 audit_log_format(ab, " data="); 1441 if (str[data_len - 1] == '\0') 1442 data_len--; 1443 audit_log_n_untrustedstring(ab, str, data_len); 1444 } 1445 audit_log_end(ab); 1446 } 1447 break; 1448 case AUDIT_ADD_RULE: 1449 case AUDIT_DEL_RULE: 1450 if (data_len < sizeof(struct audit_rule_data)) 1451 return -EINVAL; 1452 if (audit_enabled == AUDIT_LOCKED) { 1453 audit_log_common_recv_msg(audit_context(), &ab, 1454 AUDIT_CONFIG_CHANGE); 1455 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1456 msg_type == AUDIT_ADD_RULE ? 1457 "add_rule" : "remove_rule", 1458 audit_enabled); 1459 audit_log_end(ab); 1460 return -EPERM; 1461 } 1462 err = audit_rule_change(msg_type, seq, data, data_len); 1463 break; 1464 case AUDIT_LIST_RULES: 1465 err = audit_list_rules_send(skb, seq); 1466 break; 1467 case AUDIT_TRIM: 1468 audit_trim_trees(); 1469 audit_log_common_recv_msg(audit_context(), &ab, 1470 AUDIT_CONFIG_CHANGE); 1471 audit_log_format(ab, " op=trim res=1"); 1472 audit_log_end(ab); 1473 break; 1474 case AUDIT_MAKE_EQUIV: { 1475 void *bufp = data; 1476 u32 sizes[2]; 1477 size_t msglen = data_len; 1478 char *old, *new; 1479 1480 err = -EINVAL; 1481 if (msglen < 2 * sizeof(u32)) 1482 break; 1483 memcpy(sizes, bufp, 2 * sizeof(u32)); 1484 bufp += 2 * sizeof(u32); 1485 msglen -= 2 * sizeof(u32); 1486 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1487 if (IS_ERR(old)) { 1488 err = PTR_ERR(old); 1489 break; 1490 } 1491 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1492 if (IS_ERR(new)) { 1493 err = PTR_ERR(new); 1494 kfree(old); 1495 break; 1496 } 1497 /* OK, here comes... */ 1498 err = audit_tag_tree(old, new); 1499 1500 audit_log_common_recv_msg(audit_context(), &ab, 1501 AUDIT_CONFIG_CHANGE); 1502 audit_log_format(ab, " op=make_equiv old="); 1503 audit_log_untrustedstring(ab, old); 1504 audit_log_format(ab, " new="); 1505 audit_log_untrustedstring(ab, new); 1506 audit_log_format(ab, " res=%d", !err); 1507 audit_log_end(ab); 1508 kfree(old); 1509 kfree(new); 1510 break; 1511 } 1512 case AUDIT_SIGNAL_INFO: 1513 if (lsmprop_is_set(&audit_sig_lsm)) { 1514 err = security_lsmprop_to_secctx(&audit_sig_lsm, 1515 &lsmctx, LSM_ID_UNDEF); 1516 if (err < 0) 1517 return err; 1518 } 1519 sig_data = kmalloc(struct_size(sig_data, ctx, lsmctx.len), 1520 GFP_KERNEL); 1521 if (!sig_data) { 1522 if (lsmprop_is_set(&audit_sig_lsm)) 1523 security_release_secctx(&lsmctx); 1524 return -ENOMEM; 1525 } 1526 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1527 sig_data->pid = audit_sig_pid; 1528 if (lsmprop_is_set(&audit_sig_lsm)) { 1529 memcpy(sig_data->ctx, lsmctx.context, lsmctx.len); 1530 security_release_secctx(&lsmctx); 1531 } 1532 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1533 sig_data, struct_size(sig_data, ctx, 1534 lsmctx.len)); 1535 kfree(sig_data); 1536 break; 1537 case AUDIT_TTY_GET: { 1538 struct audit_tty_status s; 1539 unsigned int t; 1540 1541 t = READ_ONCE(current->signal->audit_tty); 1542 s.enabled = t & AUDIT_TTY_ENABLE; 1543 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1544 1545 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1546 break; 1547 } 1548 case AUDIT_TTY_SET: { 1549 struct audit_tty_status s, old; 1550 struct audit_buffer *ab; 1551 unsigned int t; 1552 1553 memset(&s, 0, sizeof(s)); 1554 /* guard against past and future API changes */ 1555 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1556 /* check if new data is valid */ 1557 if ((s.enabled != 0 && s.enabled != 1) || 1558 (s.log_passwd != 0 && s.log_passwd != 1)) 1559 err = -EINVAL; 1560 1561 if (err) 1562 t = READ_ONCE(current->signal->audit_tty); 1563 else { 1564 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1565 t = xchg(¤t->signal->audit_tty, t); 1566 } 1567 old.enabled = t & AUDIT_TTY_ENABLE; 1568 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1569 1570 audit_log_common_recv_msg(audit_context(), &ab, 1571 AUDIT_CONFIG_CHANGE); 1572 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1573 " old-log_passwd=%d new-log_passwd=%d res=%d", 1574 old.enabled, s.enabled, old.log_passwd, 1575 s.log_passwd, !err); 1576 audit_log_end(ab); 1577 break; 1578 } 1579 default: 1580 err = -EINVAL; 1581 break; 1582 } 1583 1584 return err < 0 ? err : 0; 1585 } 1586 1587 /** 1588 * audit_receive - receive messages from a netlink control socket 1589 * @skb: the message buffer 1590 * 1591 * Parse the provided skb and deal with any messages that may be present, 1592 * malformed skbs are discarded. 1593 */ 1594 static void audit_receive(struct sk_buff *skb) 1595 { 1596 struct nlmsghdr *nlh; 1597 bool ack; 1598 /* 1599 * len MUST be signed for nlmsg_next to be able to dec it below 0 1600 * if the nlmsg_len was not aligned 1601 */ 1602 int len; 1603 int err; 1604 1605 nlh = nlmsg_hdr(skb); 1606 len = skb->len; 1607 1608 audit_ctl_lock(); 1609 while (nlmsg_ok(nlh, len)) { 1610 ack = nlh->nlmsg_flags & NLM_F_ACK; 1611 err = audit_receive_msg(skb, nlh, &ack); 1612 1613 /* send an ack if the user asked for one and audit_receive_msg 1614 * didn't already do it, or if there was an error. */ 1615 if (ack || err) 1616 netlink_ack(skb, nlh, err, NULL); 1617 1618 nlh = nlmsg_next(nlh, &len); 1619 } 1620 audit_ctl_unlock(); 1621 1622 /* can't block with the ctrl lock, so penalize the sender now */ 1623 if (audit_backlog_limit && 1624 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1625 DECLARE_WAITQUEUE(wait, current); 1626 1627 /* wake kauditd to try and flush the queue */ 1628 wake_up_interruptible(&kauditd_wait); 1629 1630 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1631 set_current_state(TASK_UNINTERRUPTIBLE); 1632 schedule_timeout(audit_backlog_wait_time); 1633 remove_wait_queue(&audit_backlog_wait, &wait); 1634 } 1635 } 1636 1637 /* Log information about who is connecting to the audit multicast socket */ 1638 static void audit_log_multicast(int group, const char *op, int err) 1639 { 1640 const struct cred *cred; 1641 struct tty_struct *tty; 1642 char comm[sizeof(current->comm)]; 1643 struct audit_buffer *ab; 1644 1645 if (!audit_enabled) 1646 return; 1647 1648 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1649 if (!ab) 1650 return; 1651 1652 cred = current_cred(); 1653 tty = audit_get_tty(); 1654 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1655 task_tgid_nr(current), 1656 from_kuid(&init_user_ns, cred->uid), 1657 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1658 tty ? tty_name(tty) : "(none)", 1659 audit_get_sessionid(current)); 1660 audit_put_tty(tty); 1661 audit_log_task_context(ab); /* subj= */ 1662 audit_log_format(ab, " comm="); 1663 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1664 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1665 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1666 audit_log_end(ab); 1667 } 1668 1669 /* Run custom bind function on netlink socket group connect or bind requests. */ 1670 static int audit_multicast_bind(struct net *net, int group) 1671 { 1672 int err = 0; 1673 1674 if (!capable(CAP_AUDIT_READ)) 1675 err = -EPERM; 1676 audit_log_multicast(group, "connect", err); 1677 return err; 1678 } 1679 1680 static void audit_multicast_unbind(struct net *net, int group) 1681 { 1682 audit_log_multicast(group, "disconnect", 0); 1683 } 1684 1685 static int __net_init audit_net_init(struct net *net) 1686 { 1687 struct netlink_kernel_cfg cfg = { 1688 .input = audit_receive, 1689 .bind = audit_multicast_bind, 1690 .unbind = audit_multicast_unbind, 1691 .flags = NL_CFG_F_NONROOT_RECV, 1692 .groups = AUDIT_NLGRP_MAX, 1693 }; 1694 1695 struct audit_net *aunet = net_generic(net, audit_net_id); 1696 1697 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1698 if (aunet->sk == NULL) { 1699 audit_panic("cannot initialize netlink socket in namespace"); 1700 return -ENOMEM; 1701 } 1702 /* limit the timeout in case auditd is blocked/stopped */ 1703 aunet->sk->sk_sndtimeo = HZ / 10; 1704 1705 return 0; 1706 } 1707 1708 static void __net_exit audit_net_exit(struct net *net) 1709 { 1710 struct audit_net *aunet = net_generic(net, audit_net_id); 1711 1712 /* NOTE: you would think that we would want to check the auditd 1713 * connection and potentially reset it here if it lives in this 1714 * namespace, but since the auditd connection tracking struct holds a 1715 * reference to this namespace (see auditd_set()) we are only ever 1716 * going to get here after that connection has been released */ 1717 1718 netlink_kernel_release(aunet->sk); 1719 } 1720 1721 static struct pernet_operations audit_net_ops __net_initdata = { 1722 .init = audit_net_init, 1723 .exit = audit_net_exit, 1724 .id = &audit_net_id, 1725 .size = sizeof(struct audit_net), 1726 }; 1727 1728 /* Initialize audit support at boot time. */ 1729 static int __init audit_init(void) 1730 { 1731 int i; 1732 1733 if (audit_initialized == AUDIT_DISABLED) 1734 return 0; 1735 1736 audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC); 1737 1738 skb_queue_head_init(&audit_queue); 1739 skb_queue_head_init(&audit_retry_queue); 1740 skb_queue_head_init(&audit_hold_queue); 1741 1742 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1743 INIT_LIST_HEAD(&audit_inode_hash[i]); 1744 1745 mutex_init(&audit_cmd_mutex.lock); 1746 audit_cmd_mutex.owner = NULL; 1747 1748 pr_info("initializing netlink subsys (%s)\n", 1749 str_enabled_disabled(audit_default)); 1750 register_pernet_subsys(&audit_net_ops); 1751 1752 audit_initialized = AUDIT_INITIALIZED; 1753 1754 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1755 if (IS_ERR(kauditd_task)) { 1756 int err = PTR_ERR(kauditd_task); 1757 panic("audit: failed to start the kauditd thread (%d)\n", err); 1758 } 1759 1760 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1761 "state=initialized audit_enabled=%u res=1", 1762 audit_enabled); 1763 1764 return 0; 1765 } 1766 postcore_initcall(audit_init); 1767 1768 /* 1769 * Process kernel command-line parameter at boot time. 1770 * audit={0|off} or audit={1|on}. 1771 */ 1772 static int __init audit_enable(char *str) 1773 { 1774 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1775 audit_default = AUDIT_OFF; 1776 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1777 audit_default = AUDIT_ON; 1778 else { 1779 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1780 audit_default = AUDIT_ON; 1781 } 1782 1783 if (audit_default == AUDIT_OFF) 1784 audit_initialized = AUDIT_DISABLED; 1785 if (audit_set_enabled(audit_default)) 1786 pr_err("audit: error setting audit state (%d)\n", 1787 audit_default); 1788 1789 pr_info("%s\n", audit_default ? 1790 "enabled (after initialization)" : "disabled (until reboot)"); 1791 1792 return 1; 1793 } 1794 __setup("audit=", audit_enable); 1795 1796 /* Process kernel command-line parameter at boot time. 1797 * audit_backlog_limit=<n> */ 1798 static int __init audit_backlog_limit_set(char *str) 1799 { 1800 u32 audit_backlog_limit_arg; 1801 1802 pr_info("audit_backlog_limit: "); 1803 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1804 pr_cont("using default of %u, unable to parse %s\n", 1805 audit_backlog_limit, str); 1806 return 1; 1807 } 1808 1809 audit_backlog_limit = audit_backlog_limit_arg; 1810 pr_cont("%d\n", audit_backlog_limit); 1811 1812 return 1; 1813 } 1814 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1815 1816 static void audit_buffer_free(struct audit_buffer *ab) 1817 { 1818 struct sk_buff *skb; 1819 1820 if (!ab) 1821 return; 1822 1823 while ((skb = skb_dequeue(&ab->skb_list))) 1824 kfree_skb(skb); 1825 kmem_cache_free(audit_buffer_cache, ab); 1826 } 1827 1828 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1829 gfp_t gfp_mask, int type) 1830 { 1831 struct audit_buffer *ab; 1832 1833 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1834 if (!ab) 1835 return NULL; 1836 1837 skb_queue_head_init(&ab->skb_list); 1838 1839 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1840 if (!ab->skb) 1841 goto err; 1842 1843 skb_queue_tail(&ab->skb_list, ab->skb); 1844 1845 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1846 goto err; 1847 1848 ab->ctx = ctx; 1849 ab->gfp_mask = gfp_mask; 1850 1851 return ab; 1852 1853 err: 1854 audit_buffer_free(ab); 1855 return NULL; 1856 } 1857 1858 /** 1859 * audit_serial - compute a serial number for the audit record 1860 * 1861 * Compute a serial number for the audit record. Audit records are 1862 * written to user-space as soon as they are generated, so a complete 1863 * audit record may be written in several pieces. The timestamp of the 1864 * record and this serial number are used by the user-space tools to 1865 * determine which pieces belong to the same audit record. The 1866 * (timestamp,serial) tuple is unique for each syscall and is live from 1867 * syscall entry to syscall exit. 1868 * 1869 * NOTE: Another possibility is to store the formatted records off the 1870 * audit context (for those records that have a context), and emit them 1871 * all at syscall exit. However, this could delay the reporting of 1872 * significant errors until syscall exit (or never, if the system 1873 * halts). 1874 */ 1875 unsigned int audit_serial(void) 1876 { 1877 static atomic_t serial = ATOMIC_INIT(0); 1878 1879 return atomic_inc_return(&serial); 1880 } 1881 1882 static inline void audit_get_stamp(struct audit_context *ctx, 1883 struct audit_stamp *stamp) 1884 { 1885 if (!ctx || !auditsc_get_stamp(ctx, stamp)) { 1886 ktime_get_coarse_real_ts64(&stamp->ctime); 1887 stamp->serial = audit_serial(); 1888 } 1889 } 1890 1891 /** 1892 * audit_log_start - obtain an audit buffer 1893 * @ctx: audit_context (may be NULL) 1894 * @gfp_mask: type of allocation 1895 * @type: audit message type 1896 * 1897 * Returns audit_buffer pointer on success or NULL on error. 1898 * 1899 * Obtain an audit buffer. This routine does locking to obtain the 1900 * audit buffer, but then no locking is required for calls to 1901 * audit_log_*format. If the task (ctx) is a task that is currently in a 1902 * syscall, then the syscall is marked as auditable and an audit record 1903 * will be written at syscall exit. If there is no associated task, then 1904 * task context (ctx) should be NULL. 1905 */ 1906 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1907 int type) 1908 { 1909 struct audit_buffer *ab; 1910 1911 if (audit_initialized != AUDIT_INITIALIZED) 1912 return NULL; 1913 1914 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1915 return NULL; 1916 1917 /* NOTE: don't ever fail/sleep on these two conditions: 1918 * 1. auditd generated record - since we need auditd to drain the 1919 * queue; also, when we are checking for auditd, compare PIDs using 1920 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1921 * using a PID anchored in the caller's namespace 1922 * 2. generator holding the audit_cmd_mutex - we don't want to block 1923 * while holding the mutex, although we do penalize the sender 1924 * later in audit_receive() when it is safe to block 1925 */ 1926 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1927 long stime = audit_backlog_wait_time; 1928 1929 while (audit_backlog_limit && 1930 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1931 /* wake kauditd to try and flush the queue */ 1932 wake_up_interruptible(&kauditd_wait); 1933 1934 /* sleep if we are allowed and we haven't exhausted our 1935 * backlog wait limit */ 1936 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1937 long rtime = stime; 1938 1939 DECLARE_WAITQUEUE(wait, current); 1940 1941 add_wait_queue_exclusive(&audit_backlog_wait, 1942 &wait); 1943 set_current_state(TASK_UNINTERRUPTIBLE); 1944 stime = schedule_timeout(rtime); 1945 atomic_add(rtime - stime, &audit_backlog_wait_time_actual); 1946 remove_wait_queue(&audit_backlog_wait, &wait); 1947 } else { 1948 if (audit_rate_check() && printk_ratelimit()) 1949 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1950 skb_queue_len(&audit_queue), 1951 audit_backlog_limit); 1952 audit_log_lost("backlog limit exceeded"); 1953 return NULL; 1954 } 1955 } 1956 } 1957 1958 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1959 if (!ab) { 1960 audit_log_lost("out of memory in audit_log_start"); 1961 return NULL; 1962 } 1963 1964 audit_get_stamp(ab->ctx, &ab->stamp); 1965 /* cancel dummy context to enable supporting records */ 1966 if (ctx) 1967 ctx->dummy = 0; 1968 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1969 (unsigned long long)ab->stamp.ctime.tv_sec, 1970 ab->stamp.ctime.tv_nsec/1000000, 1971 ab->stamp.serial); 1972 1973 return ab; 1974 } 1975 1976 /** 1977 * audit_expand - expand skb in the audit buffer 1978 * @ab: audit_buffer 1979 * @extra: space to add at tail of the skb 1980 * 1981 * Returns 0 (no space) on failed expansion, or available space if 1982 * successful. 1983 */ 1984 static inline int audit_expand(struct audit_buffer *ab, int extra) 1985 { 1986 struct sk_buff *skb = ab->skb; 1987 int oldtail = skb_tailroom(skb); 1988 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1989 int newtail = skb_tailroom(skb); 1990 1991 if (ret < 0) { 1992 audit_log_lost("out of memory in audit_expand"); 1993 return 0; 1994 } 1995 1996 skb->truesize += newtail - oldtail; 1997 return newtail; 1998 } 1999 2000 /* 2001 * Format an audit message into the audit buffer. If there isn't enough 2002 * room in the audit buffer, more room will be allocated and vsnprint 2003 * will be called a second time. Currently, we assume that a printk 2004 * can't format message larger than 1024 bytes, so we don't either. 2005 */ 2006 static __printf(2, 0) 2007 void audit_log_vformat(struct audit_buffer *ab, const char *fmt, va_list args) 2008 { 2009 int len, avail; 2010 struct sk_buff *skb; 2011 va_list args2; 2012 2013 if (!ab) 2014 return; 2015 2016 BUG_ON(!ab->skb); 2017 skb = ab->skb; 2018 avail = skb_tailroom(skb); 2019 if (avail == 0) { 2020 avail = audit_expand(ab, AUDIT_BUFSIZ); 2021 if (!avail) 2022 goto out; 2023 } 2024 va_copy(args2, args); 2025 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 2026 if (len >= avail) { 2027 /* The printk buffer is 1024 bytes long, so if we get 2028 * here and AUDIT_BUFSIZ is at least 1024, then we can 2029 * log everything that printk could have logged. */ 2030 avail = audit_expand(ab, 2031 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 2032 if (!avail) 2033 goto out_va_end; 2034 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 2035 } 2036 if (len > 0) 2037 skb_put(skb, len); 2038 out_va_end: 2039 va_end(args2); 2040 out: 2041 return; 2042 } 2043 2044 /** 2045 * audit_log_format - format a message into the audit buffer. 2046 * @ab: audit_buffer 2047 * @fmt: format string 2048 * @...: optional parameters matching @fmt string 2049 * 2050 * All the work is done in audit_log_vformat. 2051 */ 2052 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 2053 { 2054 va_list args; 2055 2056 if (!ab) 2057 return; 2058 va_start(args, fmt); 2059 audit_log_vformat(ab, fmt, args); 2060 va_end(args); 2061 } 2062 2063 /** 2064 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 2065 * @ab: the audit_buffer 2066 * @buf: buffer to convert to hex 2067 * @len: length of @buf to be converted 2068 * 2069 * No return value; failure to expand is silently ignored. 2070 * 2071 * This function will take the passed buf and convert it into a string of 2072 * ascii hex digits. The new string is placed onto the skb. 2073 */ 2074 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 2075 size_t len) 2076 { 2077 int i, avail, new_len; 2078 unsigned char *ptr; 2079 struct sk_buff *skb; 2080 2081 if (!ab) 2082 return; 2083 2084 BUG_ON(!ab->skb); 2085 skb = ab->skb; 2086 avail = skb_tailroom(skb); 2087 new_len = len<<1; 2088 if (new_len >= avail) { 2089 /* Round the buffer request up to the next multiple */ 2090 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 2091 avail = audit_expand(ab, new_len); 2092 if (!avail) 2093 return; 2094 } 2095 2096 ptr = skb_tail_pointer(skb); 2097 for (i = 0; i < len; i++) 2098 ptr = hex_byte_pack_upper(ptr, buf[i]); 2099 *ptr = 0; 2100 skb_put(skb, len << 1); /* new string is twice the old string */ 2101 } 2102 2103 /* 2104 * Format a string of no more than slen characters into the audit buffer, 2105 * enclosed in quote marks. 2106 */ 2107 void audit_log_n_string(struct audit_buffer *ab, const char *string, 2108 size_t slen) 2109 { 2110 int avail, new_len; 2111 unsigned char *ptr; 2112 struct sk_buff *skb; 2113 2114 if (!ab) 2115 return; 2116 2117 BUG_ON(!ab->skb); 2118 skb = ab->skb; 2119 avail = skb_tailroom(skb); 2120 new_len = slen + 3; /* enclosing quotes + null terminator */ 2121 if (new_len > avail) { 2122 avail = audit_expand(ab, new_len); 2123 if (!avail) 2124 return; 2125 } 2126 ptr = skb_tail_pointer(skb); 2127 *ptr++ = '"'; 2128 memcpy(ptr, string, slen); 2129 ptr += slen; 2130 *ptr++ = '"'; 2131 *ptr = 0; 2132 skb_put(skb, slen + 2); /* don't include null terminator */ 2133 } 2134 2135 /** 2136 * audit_string_contains_control - does a string need to be logged in hex 2137 * @string: string to be checked 2138 * @len: max length of the string to check 2139 */ 2140 bool audit_string_contains_control(const char *string, size_t len) 2141 { 2142 const unsigned char *p; 2143 for (p = string; p < (const unsigned char *)string + len; p++) { 2144 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2145 return true; 2146 } 2147 return false; 2148 } 2149 2150 /** 2151 * audit_log_n_untrustedstring - log a string that may contain random characters 2152 * @ab: audit_buffer 2153 * @string: string to be logged 2154 * @len: length of string (not including trailing null) 2155 * 2156 * This code will escape a string that is passed to it if the string 2157 * contains a control character, unprintable character, double quote mark, 2158 * or a space. Unescaped strings will start and end with a double quote mark. 2159 * Strings that are escaped are printed in hex (2 digits per char). 2160 * 2161 * The caller specifies the number of characters in the string to log, which may 2162 * or may not be the entire string. 2163 */ 2164 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2165 size_t len) 2166 { 2167 if (audit_string_contains_control(string, len)) 2168 audit_log_n_hex(ab, string, len); 2169 else 2170 audit_log_n_string(ab, string, len); 2171 } 2172 2173 /** 2174 * audit_log_untrustedstring - log a string that may contain random characters 2175 * @ab: audit_buffer 2176 * @string: string to be logged 2177 * 2178 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2179 * determine string length. 2180 */ 2181 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2182 { 2183 audit_log_n_untrustedstring(ab, string, strlen(string)); 2184 } 2185 2186 /* This is a helper-function to print the escaped d_path */ 2187 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2188 const struct path *path) 2189 { 2190 char *p, *pathname; 2191 2192 if (prefix) 2193 audit_log_format(ab, "%s", prefix); 2194 2195 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2196 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2197 if (!pathname) { 2198 audit_log_format(ab, "\"<no_memory>\""); 2199 return; 2200 } 2201 p = d_path(path, pathname, PATH_MAX+11); 2202 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2203 /* FIXME: can we save some information here? */ 2204 audit_log_format(ab, "\"<too_long>\""); 2205 } else 2206 audit_log_untrustedstring(ab, p); 2207 kfree(pathname); 2208 } 2209 2210 void audit_log_session_info(struct audit_buffer *ab) 2211 { 2212 unsigned int sessionid = audit_get_sessionid(current); 2213 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2214 2215 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2216 } 2217 2218 void audit_log_key(struct audit_buffer *ab, char *key) 2219 { 2220 audit_log_format(ab, " key="); 2221 if (key) 2222 audit_log_untrustedstring(ab, key); 2223 else 2224 audit_log_format(ab, "(null)"); 2225 } 2226 2227 /** 2228 * audit_buffer_aux_new - Add an aux record buffer to the skb list 2229 * @ab: audit_buffer 2230 * @type: message type 2231 * 2232 * Aux records are allocated and added to the skb list of 2233 * the "main" record. The ab->skb is reset to point to the 2234 * aux record on its creation. When the aux record in complete 2235 * ab->skb has to be reset to point to the "main" record. 2236 * This allows the audit_log_ functions to be ignorant of 2237 * which kind of record it is logging to. It also avoids adding 2238 * special data for aux records. 2239 * 2240 * On success ab->skb will point to the new aux record. 2241 * Returns 0 on success, -ENOMEM should allocation fail. 2242 */ 2243 static int audit_buffer_aux_new(struct audit_buffer *ab, int type) 2244 { 2245 WARN_ON(ab->skb != skb_peek(&ab->skb_list)); 2246 2247 ab->skb = nlmsg_new(AUDIT_BUFSIZ, ab->gfp_mask); 2248 if (!ab->skb) 2249 goto err; 2250 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 2251 goto err; 2252 skb_queue_tail(&ab->skb_list, ab->skb); 2253 2254 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 2255 (unsigned long long)ab->stamp.ctime.tv_sec, 2256 ab->stamp.ctime.tv_nsec/1000000, 2257 ab->stamp.serial); 2258 2259 return 0; 2260 2261 err: 2262 kfree_skb(ab->skb); 2263 ab->skb = skb_peek(&ab->skb_list); 2264 return -ENOMEM; 2265 } 2266 2267 /** 2268 * audit_buffer_aux_end - Switch back to the "main" record from an aux record 2269 * @ab: audit_buffer 2270 * 2271 * Restores the "main" audit record to ab->skb. 2272 */ 2273 static void audit_buffer_aux_end(struct audit_buffer *ab) 2274 { 2275 ab->skb = skb_peek(&ab->skb_list); 2276 } 2277 2278 /** 2279 * audit_log_subj_ctx - Add LSM subject information 2280 * @ab: audit_buffer 2281 * @prop: LSM subject properties. 2282 * 2283 * Add a subj= field and, if necessary, a AUDIT_MAC_TASK_CONTEXTS record. 2284 */ 2285 int audit_log_subj_ctx(struct audit_buffer *ab, struct lsm_prop *prop) 2286 { 2287 struct lsm_context ctx; 2288 char *space = ""; 2289 int error; 2290 int i; 2291 2292 security_current_getlsmprop_subj(prop); 2293 if (!lsmprop_is_set(prop)) 2294 return 0; 2295 2296 if (audit_subj_secctx_cnt < 2) { 2297 error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF); 2298 if (error < 0) { 2299 if (error != -EINVAL) 2300 goto error_path; 2301 return 0; 2302 } 2303 audit_log_format(ab, " subj=%s", ctx.context); 2304 security_release_secctx(&ctx); 2305 return 0; 2306 } 2307 /* Multiple LSMs provide contexts. Include an aux record. */ 2308 audit_log_format(ab, " subj=?"); 2309 error = audit_buffer_aux_new(ab, AUDIT_MAC_TASK_CONTEXTS); 2310 if (error) 2311 goto error_path; 2312 2313 for (i = 0; i < audit_subj_secctx_cnt; i++) { 2314 error = security_lsmprop_to_secctx(prop, &ctx, 2315 audit_subj_lsms[i]->id); 2316 if (error < 0) { 2317 /* 2318 * Don't print anything. An LSM like BPF could 2319 * claim to support contexts, but only do so under 2320 * certain conditions. 2321 */ 2322 if (error == -EOPNOTSUPP) 2323 continue; 2324 if (error != -EINVAL) 2325 audit_panic("error in audit_log_subj_ctx"); 2326 } else { 2327 audit_log_format(ab, "%ssubj_%s=%s", space, 2328 audit_subj_lsms[i]->name, ctx.context); 2329 space = " "; 2330 security_release_secctx(&ctx); 2331 } 2332 } 2333 audit_buffer_aux_end(ab); 2334 return 0; 2335 2336 error_path: 2337 audit_panic("error in audit_log_subj_ctx"); 2338 return error; 2339 } 2340 EXPORT_SYMBOL(audit_log_subj_ctx); 2341 2342 int audit_log_task_context(struct audit_buffer *ab) 2343 { 2344 struct lsm_prop prop; 2345 2346 security_current_getlsmprop_subj(&prop); 2347 return audit_log_subj_ctx(ab, &prop); 2348 } 2349 EXPORT_SYMBOL(audit_log_task_context); 2350 2351 int audit_log_obj_ctx(struct audit_buffer *ab, struct lsm_prop *prop) 2352 { 2353 int i; 2354 int rc; 2355 int error = 0; 2356 char *space = ""; 2357 struct lsm_context ctx; 2358 2359 if (audit_obj_secctx_cnt < 2) { 2360 error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF); 2361 if (error < 0) { 2362 if (error != -EINVAL) 2363 goto error_path; 2364 return error; 2365 } 2366 audit_log_format(ab, " obj=%s", ctx.context); 2367 security_release_secctx(&ctx); 2368 return 0; 2369 } 2370 audit_log_format(ab, " obj=?"); 2371 error = audit_buffer_aux_new(ab, AUDIT_MAC_OBJ_CONTEXTS); 2372 if (error) 2373 goto error_path; 2374 2375 for (i = 0; i < audit_obj_secctx_cnt; i++) { 2376 rc = security_lsmprop_to_secctx(prop, &ctx, 2377 audit_obj_lsms[i]->id); 2378 if (rc < 0) { 2379 audit_log_format(ab, "%sobj_%s=?", space, 2380 audit_obj_lsms[i]->name); 2381 if (rc != -EINVAL) 2382 audit_panic("error in audit_log_obj_ctx"); 2383 error = rc; 2384 } else { 2385 audit_log_format(ab, "%sobj_%s=%s", space, 2386 audit_obj_lsms[i]->name, ctx.context); 2387 security_release_secctx(&ctx); 2388 } 2389 space = " "; 2390 } 2391 2392 audit_buffer_aux_end(ab); 2393 return error; 2394 2395 error_path: 2396 audit_panic("error in audit_log_obj_ctx"); 2397 return error; 2398 } 2399 2400 void audit_log_d_path_exe(struct audit_buffer *ab, 2401 struct mm_struct *mm) 2402 { 2403 struct file *exe_file; 2404 2405 if (!mm) 2406 goto out_null; 2407 2408 exe_file = get_mm_exe_file(mm); 2409 if (!exe_file) 2410 goto out_null; 2411 2412 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2413 fput(exe_file); 2414 return; 2415 out_null: 2416 audit_log_format(ab, " exe=(null)"); 2417 } 2418 2419 struct tty_struct *audit_get_tty(void) 2420 { 2421 struct tty_struct *tty = NULL; 2422 unsigned long flags; 2423 2424 spin_lock_irqsave(¤t->sighand->siglock, flags); 2425 if (current->signal) 2426 tty = tty_kref_get(current->signal->tty); 2427 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2428 return tty; 2429 } 2430 2431 void audit_put_tty(struct tty_struct *tty) 2432 { 2433 tty_kref_put(tty); 2434 } 2435 2436 void audit_log_task_info(struct audit_buffer *ab) 2437 { 2438 const struct cred *cred; 2439 char comm[sizeof(current->comm)]; 2440 struct tty_struct *tty; 2441 2442 if (!ab) 2443 return; 2444 2445 cred = current_cred(); 2446 tty = audit_get_tty(); 2447 audit_log_format(ab, 2448 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2449 " euid=%u suid=%u fsuid=%u" 2450 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2451 task_ppid_nr(current), 2452 task_tgid_nr(current), 2453 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2454 from_kuid(&init_user_ns, cred->uid), 2455 from_kgid(&init_user_ns, cred->gid), 2456 from_kuid(&init_user_ns, cred->euid), 2457 from_kuid(&init_user_ns, cred->suid), 2458 from_kuid(&init_user_ns, cred->fsuid), 2459 from_kgid(&init_user_ns, cred->egid), 2460 from_kgid(&init_user_ns, cred->sgid), 2461 from_kgid(&init_user_ns, cred->fsgid), 2462 tty ? tty_name(tty) : "(none)", 2463 audit_get_sessionid(current)); 2464 audit_put_tty(tty); 2465 audit_log_format(ab, " comm="); 2466 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2467 audit_log_d_path_exe(ab, current->mm); 2468 audit_log_task_context(ab); 2469 } 2470 EXPORT_SYMBOL(audit_log_task_info); 2471 2472 /** 2473 * audit_log_path_denied - report a path restriction denial 2474 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2475 * @operation: specific operation name 2476 */ 2477 void audit_log_path_denied(int type, const char *operation) 2478 { 2479 struct audit_buffer *ab; 2480 2481 if (!audit_enabled) 2482 return; 2483 2484 /* Generate log with subject, operation, outcome. */ 2485 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2486 if (!ab) 2487 return; 2488 audit_log_format(ab, "op=%s", operation); 2489 audit_log_task_info(ab); 2490 audit_log_format(ab, " res=0"); 2491 audit_log_end(ab); 2492 } 2493 2494 int audit_log_nf_skb(struct audit_buffer *ab, 2495 const struct sk_buff *skb, u8 nfproto) 2496 { 2497 /* find the IP protocol in the case of NFPROTO_BRIDGE */ 2498 if (nfproto == NFPROTO_BRIDGE) { 2499 switch (eth_hdr(skb)->h_proto) { 2500 case htons(ETH_P_IP): 2501 nfproto = NFPROTO_IPV4; 2502 break; 2503 case htons(ETH_P_IPV6): 2504 nfproto = NFPROTO_IPV6; 2505 break; 2506 default: 2507 goto unknown_proto; 2508 } 2509 } 2510 2511 switch (nfproto) { 2512 case NFPROTO_IPV4: { 2513 struct iphdr iph; 2514 const struct iphdr *ih; 2515 2516 ih = skb_header_pointer(skb, skb_network_offset(skb), 2517 sizeof(iph), &iph); 2518 if (!ih) 2519 return -ENOMEM; 2520 2521 switch (ih->protocol) { 2522 case IPPROTO_TCP: { 2523 struct tcphdr _tcph; 2524 const struct tcphdr *th; 2525 2526 th = skb_header_pointer(skb, skb_transport_offset(skb), 2527 sizeof(_tcph), &_tcph); 2528 if (!th) 2529 return -ENOMEM; 2530 2531 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu sport=%hu dport=%hu", 2532 &ih->saddr, &ih->daddr, ih->protocol, 2533 ntohs(th->source), ntohs(th->dest)); 2534 break; 2535 } 2536 case IPPROTO_UDP: 2537 case IPPROTO_UDPLITE: { 2538 struct udphdr _udph; 2539 const struct udphdr *uh; 2540 2541 uh = skb_header_pointer(skb, skb_transport_offset(skb), 2542 sizeof(_udph), &_udph); 2543 if (!uh) 2544 return -ENOMEM; 2545 2546 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu sport=%hu dport=%hu", 2547 &ih->saddr, &ih->daddr, ih->protocol, 2548 ntohs(uh->source), ntohs(uh->dest)); 2549 break; 2550 } 2551 case IPPROTO_SCTP: { 2552 struct sctphdr _sctph; 2553 const struct sctphdr *sh; 2554 2555 sh = skb_header_pointer(skb, skb_transport_offset(skb), 2556 sizeof(_sctph), &_sctph); 2557 if (!sh) 2558 return -ENOMEM; 2559 2560 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu sport=%hu dport=%hu", 2561 &ih->saddr, &ih->daddr, ih->protocol, 2562 ntohs(sh->source), ntohs(sh->dest)); 2563 break; 2564 } 2565 default: 2566 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu", 2567 &ih->saddr, &ih->daddr, ih->protocol); 2568 } 2569 2570 break; 2571 } 2572 case NFPROTO_IPV6: { 2573 struct ipv6hdr iph; 2574 const struct ipv6hdr *ih; 2575 u8 nexthdr; 2576 __be16 frag_off; 2577 2578 ih = skb_header_pointer(skb, skb_network_offset(skb), 2579 sizeof(iph), &iph); 2580 if (!ih) 2581 return -ENOMEM; 2582 2583 nexthdr = ih->nexthdr; 2584 ipv6_skip_exthdr(skb, skb_network_offset(skb) + sizeof(iph), 2585 &nexthdr, &frag_off); 2586 2587 switch (nexthdr) { 2588 case IPPROTO_TCP: { 2589 struct tcphdr _tcph; 2590 const struct tcphdr *th; 2591 2592 th = skb_header_pointer(skb, skb_transport_offset(skb), 2593 sizeof(_tcph), &_tcph); 2594 if (!th) 2595 return -ENOMEM; 2596 2597 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu sport=%hu dport=%hu", 2598 &ih->saddr, &ih->daddr, nexthdr, 2599 ntohs(th->source), ntohs(th->dest)); 2600 break; 2601 } 2602 case IPPROTO_UDP: 2603 case IPPROTO_UDPLITE: { 2604 struct udphdr _udph; 2605 const struct udphdr *uh; 2606 2607 uh = skb_header_pointer(skb, skb_transport_offset(skb), 2608 sizeof(_udph), &_udph); 2609 if (!uh) 2610 return -ENOMEM; 2611 2612 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu sport=%hu dport=%hu", 2613 &ih->saddr, &ih->daddr, nexthdr, 2614 ntohs(uh->source), ntohs(uh->dest)); 2615 break; 2616 } 2617 case IPPROTO_SCTP: { 2618 struct sctphdr _sctph; 2619 const struct sctphdr *sh; 2620 2621 sh = skb_header_pointer(skb, skb_transport_offset(skb), 2622 sizeof(_sctph), &_sctph); 2623 if (!sh) 2624 return -ENOMEM; 2625 2626 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu sport=%hu dport=%hu", 2627 &ih->saddr, &ih->daddr, nexthdr, 2628 ntohs(sh->source), ntohs(sh->dest)); 2629 break; 2630 } 2631 default: 2632 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu", 2633 &ih->saddr, &ih->daddr, nexthdr); 2634 } 2635 2636 break; 2637 } 2638 default: 2639 goto unknown_proto; 2640 } 2641 2642 return 0; 2643 2644 unknown_proto: 2645 audit_log_format(ab, " saddr=? daddr=? proto=?"); 2646 return -EPFNOSUPPORT; 2647 } 2648 EXPORT_SYMBOL(audit_log_nf_skb); 2649 2650 /* global counter which is incremented every time something logs in */ 2651 static atomic_t session_id = ATOMIC_INIT(0); 2652 2653 static int audit_set_loginuid_perm(kuid_t loginuid) 2654 { 2655 /* if we are unset, we don't need privs */ 2656 if (!audit_loginuid_set(current)) 2657 return 0; 2658 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2659 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2660 return -EPERM; 2661 /* it is set, you need permission */ 2662 if (!capable(CAP_AUDIT_CONTROL)) 2663 return -EPERM; 2664 /* reject if this is not an unset and we don't allow that */ 2665 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2666 && uid_valid(loginuid)) 2667 return -EPERM; 2668 return 0; 2669 } 2670 2671 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2672 unsigned int oldsessionid, 2673 unsigned int sessionid, int rc) 2674 { 2675 struct audit_buffer *ab; 2676 uid_t uid, oldloginuid, loginuid; 2677 struct tty_struct *tty; 2678 2679 if (!audit_enabled) 2680 return; 2681 2682 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2683 if (!ab) 2684 return; 2685 2686 uid = from_kuid(&init_user_ns, task_uid(current)); 2687 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2688 loginuid = from_kuid(&init_user_ns, kloginuid); 2689 tty = audit_get_tty(); 2690 2691 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2692 audit_log_task_context(ab); 2693 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2694 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2695 oldsessionid, sessionid, !rc); 2696 audit_put_tty(tty); 2697 audit_log_end(ab); 2698 } 2699 2700 /** 2701 * audit_set_loginuid - set current task's loginuid 2702 * @loginuid: loginuid value 2703 * 2704 * Returns 0. 2705 * 2706 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2707 */ 2708 int audit_set_loginuid(kuid_t loginuid) 2709 { 2710 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2711 kuid_t oldloginuid; 2712 int rc; 2713 2714 oldloginuid = audit_get_loginuid(current); 2715 oldsessionid = audit_get_sessionid(current); 2716 2717 rc = audit_set_loginuid_perm(loginuid); 2718 if (rc) 2719 goto out; 2720 2721 /* are we setting or clearing? */ 2722 if (uid_valid(loginuid)) { 2723 sessionid = (unsigned int)atomic_inc_return(&session_id); 2724 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2725 sessionid = (unsigned int)atomic_inc_return(&session_id); 2726 } 2727 2728 current->sessionid = sessionid; 2729 current->loginuid = loginuid; 2730 out: 2731 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2732 return rc; 2733 } 2734 2735 /** 2736 * audit_signal_info - record signal info for shutting down audit subsystem 2737 * @sig: signal value 2738 * @t: task being signaled 2739 * 2740 * If the audit subsystem is being terminated, record the task (pid) 2741 * and uid that is doing that. 2742 */ 2743 int audit_signal_info(int sig, struct task_struct *t) 2744 { 2745 kuid_t uid = current_uid(), auid; 2746 2747 if (auditd_test_task(t) && 2748 (sig == SIGTERM || sig == SIGHUP || 2749 sig == SIGUSR1 || sig == SIGUSR2)) { 2750 audit_sig_pid = task_tgid_nr(current); 2751 auid = audit_get_loginuid(current); 2752 if (uid_valid(auid)) 2753 audit_sig_uid = auid; 2754 else 2755 audit_sig_uid = uid; 2756 security_current_getlsmprop_subj(&audit_sig_lsm); 2757 } 2758 2759 return audit_signal_info_syscall(t); 2760 } 2761 2762 /** 2763 * __audit_log_end - enqueue one audit record 2764 * @skb: the buffer to send 2765 */ 2766 static void __audit_log_end(struct sk_buff *skb) 2767 { 2768 struct nlmsghdr *nlh; 2769 2770 if (audit_rate_check()) { 2771 /* setup the netlink header, see the comments in 2772 * kauditd_send_multicast_skb() for length quirks */ 2773 nlh = nlmsg_hdr(skb); 2774 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2775 2776 /* queue the netlink packet */ 2777 skb_queue_tail(&audit_queue, skb); 2778 } else { 2779 audit_log_lost("rate limit exceeded"); 2780 kfree_skb(skb); 2781 } 2782 } 2783 2784 /** 2785 * audit_log_end - end one audit record 2786 * @ab: the audit_buffer 2787 * 2788 * We can not do a netlink send inside an irq context because it blocks (last 2789 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2790 * queue and a kthread is scheduled to remove them from the queue outside the 2791 * irq context. May be called in any context. 2792 */ 2793 void audit_log_end(struct audit_buffer *ab) 2794 { 2795 struct sk_buff *skb; 2796 2797 if (!ab) 2798 return; 2799 2800 while ((skb = skb_dequeue(&ab->skb_list))) 2801 __audit_log_end(skb); 2802 2803 /* poke the kauditd thread */ 2804 wake_up_interruptible(&kauditd_wait); 2805 2806 audit_buffer_free(ab); 2807 } 2808 2809 /** 2810 * audit_log - Log an audit record 2811 * @ctx: audit context 2812 * @gfp_mask: type of allocation 2813 * @type: audit message type 2814 * @fmt: format string to use 2815 * @...: variable parameters matching the format string 2816 * 2817 * This is a convenience function that calls audit_log_start, 2818 * audit_log_vformat, and audit_log_end. It may be called 2819 * in any context. 2820 */ 2821 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2822 const char *fmt, ...) 2823 { 2824 struct audit_buffer *ab; 2825 va_list args; 2826 2827 ab = audit_log_start(ctx, gfp_mask, type); 2828 if (ab) { 2829 va_start(args, fmt); 2830 audit_log_vformat(ab, fmt, args); 2831 va_end(args); 2832 audit_log_end(ab); 2833 } 2834 } 2835 2836 EXPORT_SYMBOL(audit_log_start); 2837 EXPORT_SYMBOL(audit_log_end); 2838 EXPORT_SYMBOL(audit_log_format); 2839 EXPORT_SYMBOL(audit_log); 2840