1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
8 * All Rights Reserved.
9 *
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
18 *
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20 * 2006.
21 *
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24 *
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
27 *
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/init.h>
35 #include <asm/types.h>
36 #include <linux/atomic.h>
37 #include <linux/fs.h>
38 #include <linux/namei.h>
39 #include <linux/mm.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/mount.h>
43 #include <linux/socket.h>
44 #include <linux/mqueue.h>
45 #include <linux/audit.h>
46 #include <linux/personality.h>
47 #include <linux/time.h>
48 #include <linux/netlink.h>
49 #include <linux/compiler.h>
50 #include <asm/unistd.h>
51 #include <linux/security.h>
52 #include <linux/list.h>
53 #include <linux/binfmts.h>
54 #include <linux/highmem.h>
55 #include <linux/syscalls.h>
56 #include <asm/syscall.h>
57 #include <linux/capability.h>
58 #include <linux/fs_struct.h>
59 #include <linux/compat.h>
60 #include <linux/ctype.h>
61 #include <linux/string.h>
62 #include <linux/uaccess.h>
63 #include <linux/fsnotify_backend.h>
64 #include <uapi/linux/limits.h>
65 #include <uapi/linux/netfilter/nf_tables.h>
66 #include <uapi/linux/openat2.h> // struct open_how
67 #include <uapi/linux/fanotify.h>
68
69 #include "audit.h"
70
71 /* flags stating the success for a syscall */
72 #define AUDITSC_INVALID 0
73 #define AUDITSC_SUCCESS 1
74 #define AUDITSC_FAILURE 2
75
76 /* no execve audit message should be longer than this (userspace limits),
77 * see the note near the top of audit_log_execve_info() about this value */
78 #define MAX_EXECVE_AUDIT_LEN 7500
79
80 /* max length to print of cmdline/proctitle value during audit */
81 #define MAX_PROCTITLE_AUDIT_LEN 128
82
83 /* number of audit rules */
84 int audit_n_rules;
85
86 /* determines whether we collect data for signals sent */
87 int audit_signals;
88
89 struct audit_aux_data {
90 struct audit_aux_data *next;
91 int type;
92 };
93
94 /* Number of target pids per aux struct. */
95 #define AUDIT_AUX_PIDS 16
96
97 struct audit_aux_data_pids {
98 struct audit_aux_data d;
99 pid_t target_pid[AUDIT_AUX_PIDS];
100 kuid_t target_auid[AUDIT_AUX_PIDS];
101 kuid_t target_uid[AUDIT_AUX_PIDS];
102 unsigned int target_sessionid[AUDIT_AUX_PIDS];
103 struct lsm_prop target_ref[AUDIT_AUX_PIDS];
104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
105 int pid_count;
106 };
107
108 struct audit_aux_data_bprm_fcaps {
109 struct audit_aux_data d;
110 struct audit_cap_data fcap;
111 unsigned int fcap_ver;
112 struct audit_cap_data old_pcap;
113 struct audit_cap_data new_pcap;
114 };
115
116 struct audit_tree_refs {
117 struct audit_tree_refs *next;
118 struct audit_chunk *c[31];
119 };
120
121 struct audit_nfcfgop_tab {
122 enum audit_nfcfgop op;
123 const char *s;
124 };
125
126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
127 { AUDIT_XT_OP_REGISTER, "xt_register" },
128 { AUDIT_XT_OP_REPLACE, "xt_replace" },
129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" },
147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" },
148 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
149 };
150
audit_match_perm(struct audit_context * ctx,int mask)151 static int audit_match_perm(struct audit_context *ctx, int mask)
152 {
153 unsigned n;
154
155 if (unlikely(!ctx))
156 return 0;
157 n = ctx->major;
158
159 switch (audit_classify_syscall(ctx->arch, n)) {
160 case AUDITSC_NATIVE:
161 if ((mask & AUDIT_PERM_WRITE) &&
162 audit_match_class(AUDIT_CLASS_WRITE, n))
163 return 1;
164 if ((mask & AUDIT_PERM_READ) &&
165 audit_match_class(AUDIT_CLASS_READ, n))
166 return 1;
167 if ((mask & AUDIT_PERM_ATTR) &&
168 audit_match_class(AUDIT_CLASS_CHATTR, n))
169 return 1;
170 return 0;
171 case AUDITSC_COMPAT: /* 32bit on biarch */
172 if ((mask & AUDIT_PERM_WRITE) &&
173 audit_match_class(AUDIT_CLASS_WRITE_32, n))
174 return 1;
175 if ((mask & AUDIT_PERM_READ) &&
176 audit_match_class(AUDIT_CLASS_READ_32, n))
177 return 1;
178 if ((mask & AUDIT_PERM_ATTR) &&
179 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
180 return 1;
181 return 0;
182 case AUDITSC_OPEN:
183 return mask & ACC_MODE(ctx->argv[1]);
184 case AUDITSC_OPENAT:
185 return mask & ACC_MODE(ctx->argv[2]);
186 case AUDITSC_SOCKETCALL:
187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
188 case AUDITSC_EXECVE:
189 return mask & AUDIT_PERM_EXEC;
190 case AUDITSC_OPENAT2:
191 return mask & ACC_MODE((u32)ctx->openat2.flags);
192 default:
193 return 0;
194 }
195 }
196
audit_match_filetype(struct audit_context * ctx,int val)197 static int audit_match_filetype(struct audit_context *ctx, int val)
198 {
199 struct audit_names *n;
200 umode_t mode = (umode_t)val;
201
202 if (unlikely(!ctx))
203 return 0;
204
205 list_for_each_entry(n, &ctx->names_list, list) {
206 if ((n->ino != AUDIT_INO_UNSET) &&
207 ((n->mode & S_IFMT) == mode))
208 return 1;
209 }
210
211 return 0;
212 }
213
214 /*
215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
216 * ->first_trees points to its beginning, ->trees - to the current end of data.
217 * ->tree_count is the number of free entries in array pointed to by ->trees.
218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
220 * it's going to remain 1-element for almost any setup) until we free context itself.
221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
222 */
223
audit_set_auditable(struct audit_context * ctx)224 static void audit_set_auditable(struct audit_context *ctx)
225 {
226 if (!ctx->prio) {
227 ctx->prio = 1;
228 ctx->current_state = AUDIT_STATE_RECORD;
229 }
230 }
231
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)232 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
233 {
234 struct audit_tree_refs *p = ctx->trees;
235 int left = ctx->tree_count;
236
237 if (likely(left)) {
238 p->c[--left] = chunk;
239 ctx->tree_count = left;
240 return 1;
241 }
242 if (!p)
243 return 0;
244 p = p->next;
245 if (p) {
246 p->c[30] = chunk;
247 ctx->trees = p;
248 ctx->tree_count = 30;
249 return 1;
250 }
251 return 0;
252 }
253
grow_tree_refs(struct audit_context * ctx)254 static int grow_tree_refs(struct audit_context *ctx)
255 {
256 struct audit_tree_refs *p = ctx->trees;
257
258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
259 if (!ctx->trees) {
260 ctx->trees = p;
261 return 0;
262 }
263 if (p)
264 p->next = ctx->trees;
265 else
266 ctx->first_trees = ctx->trees;
267 ctx->tree_count = 31;
268 return 1;
269 }
270
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)271 static void unroll_tree_refs(struct audit_context *ctx,
272 struct audit_tree_refs *p, int count)
273 {
274 struct audit_tree_refs *q;
275 int n;
276
277 if (!p) {
278 /* we started with empty chain */
279 p = ctx->first_trees;
280 count = 31;
281 /* if the very first allocation has failed, nothing to do */
282 if (!p)
283 return;
284 }
285 n = count;
286 for (q = p; q != ctx->trees; q = q->next, n = 31) {
287 while (n--) {
288 audit_put_chunk(q->c[n]);
289 q->c[n] = NULL;
290 }
291 }
292 while (n-- > ctx->tree_count) {
293 audit_put_chunk(q->c[n]);
294 q->c[n] = NULL;
295 }
296 ctx->trees = p;
297 ctx->tree_count = count;
298 }
299
free_tree_refs(struct audit_context * ctx)300 static void free_tree_refs(struct audit_context *ctx)
301 {
302 struct audit_tree_refs *p, *q;
303
304 for (p = ctx->first_trees; p; p = q) {
305 q = p->next;
306 kfree(p);
307 }
308 }
309
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)310 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
311 {
312 struct audit_tree_refs *p;
313 int n;
314
315 if (!tree)
316 return 0;
317 /* full ones */
318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
319 for (n = 0; n < 31; n++)
320 if (audit_tree_match(p->c[n], tree))
321 return 1;
322 }
323 /* partial */
324 if (p) {
325 for (n = ctx->tree_count; n < 31; n++)
326 if (audit_tree_match(p->c[n], tree))
327 return 1;
328 }
329 return 0;
330 }
331
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)332 static int audit_compare_uid(kuid_t uid,
333 struct audit_names *name,
334 struct audit_field *f,
335 struct audit_context *ctx)
336 {
337 struct audit_names *n;
338 int rc;
339
340 if (name) {
341 rc = audit_uid_comparator(uid, f->op, name->uid);
342 if (rc)
343 return rc;
344 }
345
346 if (ctx) {
347 list_for_each_entry(n, &ctx->names_list, list) {
348 rc = audit_uid_comparator(uid, f->op, n->uid);
349 if (rc)
350 return rc;
351 }
352 }
353 return 0;
354 }
355
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)356 static int audit_compare_gid(kgid_t gid,
357 struct audit_names *name,
358 struct audit_field *f,
359 struct audit_context *ctx)
360 {
361 struct audit_names *n;
362 int rc;
363
364 if (name) {
365 rc = audit_gid_comparator(gid, f->op, name->gid);
366 if (rc)
367 return rc;
368 }
369
370 if (ctx) {
371 list_for_each_entry(n, &ctx->names_list, list) {
372 rc = audit_gid_comparator(gid, f->op, n->gid);
373 if (rc)
374 return rc;
375 }
376 }
377 return 0;
378 }
379
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)380 static int audit_field_compare(struct task_struct *tsk,
381 const struct cred *cred,
382 struct audit_field *f,
383 struct audit_context *ctx,
384 struct audit_names *name)
385 {
386 switch (f->val) {
387 /* process to file object comparisons */
388 case AUDIT_COMPARE_UID_TO_OBJ_UID:
389 return audit_compare_uid(cred->uid, name, f, ctx);
390 case AUDIT_COMPARE_GID_TO_OBJ_GID:
391 return audit_compare_gid(cred->gid, name, f, ctx);
392 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
393 return audit_compare_uid(cred->euid, name, f, ctx);
394 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
395 return audit_compare_gid(cred->egid, name, f, ctx);
396 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
398 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
399 return audit_compare_uid(cred->suid, name, f, ctx);
400 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
401 return audit_compare_gid(cred->sgid, name, f, ctx);
402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
403 return audit_compare_uid(cred->fsuid, name, f, ctx);
404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
405 return audit_compare_gid(cred->fsgid, name, f, ctx);
406 /* uid comparisons */
407 case AUDIT_COMPARE_UID_TO_AUID:
408 return audit_uid_comparator(cred->uid, f->op,
409 audit_get_loginuid(tsk));
410 case AUDIT_COMPARE_UID_TO_EUID:
411 return audit_uid_comparator(cred->uid, f->op, cred->euid);
412 case AUDIT_COMPARE_UID_TO_SUID:
413 return audit_uid_comparator(cred->uid, f->op, cred->suid);
414 case AUDIT_COMPARE_UID_TO_FSUID:
415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
416 /* auid comparisons */
417 case AUDIT_COMPARE_AUID_TO_EUID:
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419 cred->euid);
420 case AUDIT_COMPARE_AUID_TO_SUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->suid);
423 case AUDIT_COMPARE_AUID_TO_FSUID:
424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425 cred->fsuid);
426 /* euid comparisons */
427 case AUDIT_COMPARE_EUID_TO_SUID:
428 return audit_uid_comparator(cred->euid, f->op, cred->suid);
429 case AUDIT_COMPARE_EUID_TO_FSUID:
430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
431 /* suid comparisons */
432 case AUDIT_COMPARE_SUID_TO_FSUID:
433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
434 /* gid comparisons */
435 case AUDIT_COMPARE_GID_TO_EGID:
436 return audit_gid_comparator(cred->gid, f->op, cred->egid);
437 case AUDIT_COMPARE_GID_TO_SGID:
438 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
439 case AUDIT_COMPARE_GID_TO_FSGID:
440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
441 /* egid comparisons */
442 case AUDIT_COMPARE_EGID_TO_SGID:
443 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
444 case AUDIT_COMPARE_EGID_TO_FSGID:
445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
446 /* sgid comparison */
447 case AUDIT_COMPARE_SGID_TO_FSGID:
448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
449 default:
450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
451 return 0;
452 }
453 return 0;
454 }
455
456 /* Determine if any context name data matches a rule's watch data */
457 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
458 * otherwise.
459 *
460 * If task_creation is true, this is an explicit indication that we are
461 * filtering a task rule at task creation time. This and tsk == current are
462 * the only situations where tsk->cred may be accessed without an rcu read lock.
463 */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)464 static int audit_filter_rules(struct task_struct *tsk,
465 struct audit_krule *rule,
466 struct audit_context *ctx,
467 struct audit_names *name,
468 enum audit_state *state,
469 bool task_creation)
470 {
471 const struct cred *cred;
472 int i, need_sid = 1;
473 struct lsm_prop prop = { };
474 unsigned int sessionid;
475
476 if (ctx && rule->prio <= ctx->prio)
477 return 0;
478
479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480
481 for (i = 0; i < rule->field_count; i++) {
482 struct audit_field *f = &rule->fields[i];
483 struct audit_names *n;
484 int result = 0;
485 pid_t pid;
486
487 switch (f->type) {
488 case AUDIT_PID:
489 pid = task_tgid_nr(tsk);
490 result = audit_comparator(pid, f->op, f->val);
491 break;
492 case AUDIT_PPID:
493 if (ctx) {
494 if (!ctx->ppid)
495 ctx->ppid = task_ppid_nr(tsk);
496 result = audit_comparator(ctx->ppid, f->op, f->val);
497 }
498 break;
499 case AUDIT_EXE:
500 result = audit_exe_compare(tsk, rule->exe);
501 if (f->op == Audit_not_equal)
502 result = !result;
503 break;
504 case AUDIT_UID:
505 result = audit_uid_comparator(cred->uid, f->op, f->uid);
506 break;
507 case AUDIT_EUID:
508 result = audit_uid_comparator(cred->euid, f->op, f->uid);
509 break;
510 case AUDIT_SUID:
511 result = audit_uid_comparator(cred->suid, f->op, f->uid);
512 break;
513 case AUDIT_FSUID:
514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515 break;
516 case AUDIT_GID:
517 result = audit_gid_comparator(cred->gid, f->op, f->gid);
518 if (f->op == Audit_equal) {
519 if (!result)
520 result = groups_search(cred->group_info, f->gid);
521 } else if (f->op == Audit_not_equal) {
522 if (result)
523 result = !groups_search(cred->group_info, f->gid);
524 }
525 break;
526 case AUDIT_EGID:
527 result = audit_gid_comparator(cred->egid, f->op, f->gid);
528 if (f->op == Audit_equal) {
529 if (!result)
530 result = groups_search(cred->group_info, f->gid);
531 } else if (f->op == Audit_not_equal) {
532 if (result)
533 result = !groups_search(cred->group_info, f->gid);
534 }
535 break;
536 case AUDIT_SGID:
537 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538 break;
539 case AUDIT_FSGID:
540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
541 break;
542 case AUDIT_SESSIONID:
543 sessionid = audit_get_sessionid(tsk);
544 result = audit_comparator(sessionid, f->op, f->val);
545 break;
546 case AUDIT_PERS:
547 result = audit_comparator(tsk->personality, f->op, f->val);
548 break;
549 case AUDIT_ARCH:
550 if (ctx)
551 result = audit_comparator(ctx->arch, f->op, f->val);
552 break;
553
554 case AUDIT_EXIT:
555 if (ctx && ctx->return_valid != AUDITSC_INVALID)
556 result = audit_comparator(ctx->return_code, f->op, f->val);
557 break;
558 case AUDIT_SUCCESS:
559 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
560 if (f->val)
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
562 else
563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
564 }
565 break;
566 case AUDIT_DEVMAJOR:
567 if (name) {
568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569 audit_comparator(MAJOR(name->rdev), f->op, f->val))
570 ++result;
571 } else if (ctx) {
572 list_for_each_entry(n, &ctx->names_list, list) {
573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_DEVMINOR:
582 if (name) {
583 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584 audit_comparator(MINOR(name->rdev), f->op, f->val))
585 ++result;
586 } else if (ctx) {
587 list_for_each_entry(n, &ctx->names_list, list) {
588 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
590 ++result;
591 break;
592 }
593 }
594 }
595 break;
596 case AUDIT_INODE:
597 if (name)
598 result = audit_comparator(name->ino, f->op, f->val);
599 else if (ctx) {
600 list_for_each_entry(n, &ctx->names_list, list) {
601 if (audit_comparator(n->ino, f->op, f->val)) {
602 ++result;
603 break;
604 }
605 }
606 }
607 break;
608 case AUDIT_OBJ_UID:
609 if (name) {
610 result = audit_uid_comparator(name->uid, f->op, f->uid);
611 } else if (ctx) {
612 list_for_each_entry(n, &ctx->names_list, list) {
613 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
614 ++result;
615 break;
616 }
617 }
618 }
619 break;
620 case AUDIT_OBJ_GID:
621 if (name) {
622 result = audit_gid_comparator(name->gid, f->op, f->gid);
623 } else if (ctx) {
624 list_for_each_entry(n, &ctx->names_list, list) {
625 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
626 ++result;
627 break;
628 }
629 }
630 }
631 break;
632 case AUDIT_WATCH:
633 if (name) {
634 result = audit_watch_compare(rule->watch,
635 name->ino,
636 name->dev);
637 if (f->op == Audit_not_equal)
638 result = !result;
639 }
640 break;
641 case AUDIT_DIR:
642 if (ctx) {
643 result = match_tree_refs(ctx, rule->tree);
644 if (f->op == Audit_not_equal)
645 result = !result;
646 }
647 break;
648 case AUDIT_LOGINUID:
649 result = audit_uid_comparator(audit_get_loginuid(tsk),
650 f->op, f->uid);
651 break;
652 case AUDIT_LOGINUID_SET:
653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654 break;
655 case AUDIT_SADDR_FAM:
656 if (ctx && ctx->sockaddr)
657 result = audit_comparator(ctx->sockaddr->ss_family,
658 f->op, f->val);
659 break;
660 case AUDIT_SUBJ_USER:
661 case AUDIT_SUBJ_ROLE:
662 case AUDIT_SUBJ_TYPE:
663 case AUDIT_SUBJ_SEN:
664 case AUDIT_SUBJ_CLR:
665 /* NOTE: this may return negative values indicating
666 a temporary error. We simply treat this as a
667 match for now to avoid losing information that
668 may be wanted. An error message will also be
669 logged upon error */
670 if (f->lsm_rule) {
671 if (need_sid) {
672 /* @tsk should always be equal to
673 * @current with the exception of
674 * fork()/copy_process() in which case
675 * the new @tsk creds are still a dup
676 * of @current's creds so we can still
677 * use
678 * security_current_getlsmprop_subj()
679 * here even though it always refs
680 * @current's creds
681 */
682 security_current_getlsmprop_subj(&prop);
683 need_sid = 0;
684 }
685 result = security_audit_rule_match(&prop,
686 f->type,
687 f->op,
688 f->lsm_rule);
689 }
690 break;
691 case AUDIT_OBJ_USER:
692 case AUDIT_OBJ_ROLE:
693 case AUDIT_OBJ_TYPE:
694 case AUDIT_OBJ_LEV_LOW:
695 case AUDIT_OBJ_LEV_HIGH:
696 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
697 also applies here */
698 if (f->lsm_rule) {
699 /* Find files that match */
700 if (name) {
701 result = security_audit_rule_match(
702 &name->oprop,
703 f->type,
704 f->op,
705 f->lsm_rule);
706 } else if (ctx) {
707 list_for_each_entry(n, &ctx->names_list, list) {
708 if (security_audit_rule_match(
709 &n->oprop,
710 f->type,
711 f->op,
712 f->lsm_rule)) {
713 ++result;
714 break;
715 }
716 }
717 }
718 /* Find ipc objects that match */
719 if (!ctx || ctx->type != AUDIT_IPC)
720 break;
721 if (security_audit_rule_match(&ctx->ipc.oprop,
722 f->type, f->op,
723 f->lsm_rule))
724 ++result;
725 }
726 break;
727 case AUDIT_ARG0:
728 case AUDIT_ARG1:
729 case AUDIT_ARG2:
730 case AUDIT_ARG3:
731 if (ctx)
732 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
733 break;
734 case AUDIT_FILTERKEY:
735 /* ignore this field for filtering */
736 result = 1;
737 break;
738 case AUDIT_PERM:
739 result = audit_match_perm(ctx, f->val);
740 if (f->op == Audit_not_equal)
741 result = !result;
742 break;
743 case AUDIT_FILETYPE:
744 result = audit_match_filetype(ctx, f->val);
745 if (f->op == Audit_not_equal)
746 result = !result;
747 break;
748 case AUDIT_FIELD_COMPARE:
749 result = audit_field_compare(tsk, cred, f, ctx, name);
750 break;
751 }
752 if (!result)
753 return 0;
754 }
755
756 if (ctx) {
757 if (rule->filterkey) {
758 kfree(ctx->filterkey);
759 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
760 }
761 ctx->prio = rule->prio;
762 }
763 switch (rule->action) {
764 case AUDIT_NEVER:
765 *state = AUDIT_STATE_DISABLED;
766 break;
767 case AUDIT_ALWAYS:
768 *state = AUDIT_STATE_RECORD;
769 break;
770 }
771 return 1;
772 }
773
774 /* At process creation time, we can determine if system-call auditing is
775 * completely disabled for this task. Since we only have the task
776 * structure at this point, we can only check uid and gid.
777 */
audit_filter_task(struct task_struct * tsk,char ** key)778 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
779 {
780 struct audit_entry *e;
781 enum audit_state state;
782
783 rcu_read_lock();
784 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
785 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
786 &state, true)) {
787 if (state == AUDIT_STATE_RECORD)
788 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
789 rcu_read_unlock();
790 return state;
791 }
792 }
793 rcu_read_unlock();
794 return AUDIT_STATE_BUILD;
795 }
796
audit_in_mask(const struct audit_krule * rule,unsigned long val)797 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
798 {
799 int word, bit;
800
801 if (val > 0xffffffff)
802 return false;
803
804 word = AUDIT_WORD(val);
805 if (word >= AUDIT_BITMASK_SIZE)
806 return false;
807
808 bit = AUDIT_BIT(val);
809
810 return rule->mask[word] & bit;
811 }
812
813 /**
814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
815 * @tsk: associated task
816 * @ctx: audit context
817 * @list: audit filter list
818 * @name: audit_name (can be NULL)
819 * @op: current syscall/uring_op
820 *
821 * Run the udit filters specified in @list against @tsk using @ctx,
822 * @name, and @op, as necessary; the caller is responsible for ensuring
823 * that the call is made while the RCU read lock is held. The @name
824 * parameter can be NULL, but all others must be specified.
825 * Returns 1/true if the filter finds a match, 0/false if none are found.
826 */
__audit_filter_op(struct task_struct * tsk,struct audit_context * ctx,struct list_head * list,struct audit_names * name,unsigned long op)827 static int __audit_filter_op(struct task_struct *tsk,
828 struct audit_context *ctx,
829 struct list_head *list,
830 struct audit_names *name,
831 unsigned long op)
832 {
833 struct audit_entry *e;
834 enum audit_state state;
835
836 list_for_each_entry_rcu(e, list, list) {
837 if (audit_in_mask(&e->rule, op) &&
838 audit_filter_rules(tsk, &e->rule, ctx, name,
839 &state, false)) {
840 ctx->current_state = state;
841 return 1;
842 }
843 }
844 return 0;
845 }
846
847 /**
848 * audit_filter_uring - apply filters to an io_uring operation
849 * @tsk: associated task
850 * @ctx: audit context
851 */
audit_filter_uring(struct task_struct * tsk,struct audit_context * ctx)852 static void audit_filter_uring(struct task_struct *tsk,
853 struct audit_context *ctx)
854 {
855 if (auditd_test_task(tsk))
856 return;
857
858 rcu_read_lock();
859 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
860 NULL, ctx->uring_op);
861 rcu_read_unlock();
862 }
863
864 /* At syscall exit time, this filter is called if the audit_state is
865 * not low enough that auditing cannot take place, but is also not
866 * high enough that we already know we have to write an audit record
867 * (i.e., the state is AUDIT_STATE_BUILD).
868 */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx)869 static void audit_filter_syscall(struct task_struct *tsk,
870 struct audit_context *ctx)
871 {
872 if (auditd_test_task(tsk))
873 return;
874
875 rcu_read_lock();
876 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
877 NULL, ctx->major);
878 rcu_read_unlock();
879 }
880
881 /*
882 * Given an audit_name check the inode hash table to see if they match.
883 * Called holding the rcu read lock to protect the use of audit_inode_hash
884 */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)885 static int audit_filter_inode_name(struct task_struct *tsk,
886 struct audit_names *n,
887 struct audit_context *ctx)
888 {
889 int h = audit_hash_ino((u32)n->ino);
890 struct list_head *list = &audit_inode_hash[h];
891
892 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
893 }
894
895 /* At syscall exit time, this filter is called if any audit_names have been
896 * collected during syscall processing. We only check rules in sublists at hash
897 * buckets applicable to the inode numbers in audit_names.
898 * Regarding audit_state, same rules apply as for audit_filter_syscall().
899 */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)900 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
901 {
902 struct audit_names *n;
903
904 if (auditd_test_task(tsk))
905 return;
906
907 rcu_read_lock();
908
909 list_for_each_entry(n, &ctx->names_list, list) {
910 if (audit_filter_inode_name(tsk, n, ctx))
911 break;
912 }
913 rcu_read_unlock();
914 }
915
audit_proctitle_free(struct audit_context * context)916 static inline void audit_proctitle_free(struct audit_context *context)
917 {
918 kfree(context->proctitle.value);
919 context->proctitle.value = NULL;
920 context->proctitle.len = 0;
921 }
922
audit_free_module(struct audit_context * context)923 static inline void audit_free_module(struct audit_context *context)
924 {
925 if (context->type == AUDIT_KERN_MODULE) {
926 kfree(context->module.name);
927 context->module.name = NULL;
928 }
929 }
audit_free_names(struct audit_context * context)930 static inline void audit_free_names(struct audit_context *context)
931 {
932 struct audit_names *n, *next;
933
934 list_for_each_entry_safe(n, next, &context->names_list, list) {
935 list_del(&n->list);
936 if (n->name)
937 putname(n->name);
938 if (n->should_free)
939 kfree(n);
940 }
941 context->name_count = 0;
942 path_put(&context->pwd);
943 context->pwd.dentry = NULL;
944 context->pwd.mnt = NULL;
945 }
946
audit_free_aux(struct audit_context * context)947 static inline void audit_free_aux(struct audit_context *context)
948 {
949 struct audit_aux_data *aux;
950
951 while ((aux = context->aux)) {
952 context->aux = aux->next;
953 kfree(aux);
954 }
955 context->aux = NULL;
956 while ((aux = context->aux_pids)) {
957 context->aux_pids = aux->next;
958 kfree(aux);
959 }
960 context->aux_pids = NULL;
961 }
962
963 /**
964 * audit_reset_context - reset a audit_context structure
965 * @ctx: the audit_context to reset
966 *
967 * All fields in the audit_context will be reset to an initial state, all
968 * references held by fields will be dropped, and private memory will be
969 * released. When this function returns the audit_context will be suitable
970 * for reuse, so long as the passed context is not NULL or a dummy context.
971 */
audit_reset_context(struct audit_context * ctx)972 static void audit_reset_context(struct audit_context *ctx)
973 {
974 if (!ctx)
975 return;
976
977 /* if ctx is non-null, reset the "ctx->context" regardless */
978 ctx->context = AUDIT_CTX_UNUSED;
979 if (ctx->dummy)
980 return;
981
982 /*
983 * NOTE: It shouldn't matter in what order we release the fields, so
984 * release them in the order in which they appear in the struct;
985 * this gives us some hope of quickly making sure we are
986 * resetting the audit_context properly.
987 *
988 * Other things worth mentioning:
989 * - we don't reset "dummy"
990 * - we don't reset "state", we do reset "current_state"
991 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
992 * - much of this is likely overkill, but play it safe for now
993 * - we really need to work on improving the audit_context struct
994 */
995
996 ctx->current_state = ctx->state;
997 ctx->stamp.serial = 0;
998 ctx->stamp.ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
999 ctx->major = 0;
1000 ctx->uring_op = 0;
1001 memset(ctx->argv, 0, sizeof(ctx->argv));
1002 ctx->return_code = 0;
1003 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1004 ctx->return_valid = AUDITSC_INVALID;
1005 audit_free_names(ctx);
1006 if (ctx->state != AUDIT_STATE_RECORD) {
1007 kfree(ctx->filterkey);
1008 ctx->filterkey = NULL;
1009 }
1010 audit_free_aux(ctx);
1011 kfree(ctx->sockaddr);
1012 ctx->sockaddr = NULL;
1013 ctx->sockaddr_len = 0;
1014 ctx->ppid = 0;
1015 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1016 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1017 ctx->personality = 0;
1018 ctx->arch = 0;
1019 ctx->target_pid = 0;
1020 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1021 ctx->target_sessionid = 0;
1022 lsmprop_init(&ctx->target_ref);
1023 ctx->target_comm[0] = '\0';
1024 unroll_tree_refs(ctx, NULL, 0);
1025 WARN_ON(!list_empty(&ctx->killed_trees));
1026 audit_free_module(ctx);
1027 ctx->fds[0] = -1;
1028 ctx->type = 0; /* reset last for audit_free_*() */
1029 }
1030
audit_alloc_context(enum audit_state state)1031 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1032 {
1033 struct audit_context *context;
1034
1035 context = kzalloc(sizeof(*context), GFP_KERNEL);
1036 if (!context)
1037 return NULL;
1038 context->context = AUDIT_CTX_UNUSED;
1039 context->state = state;
1040 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1041 INIT_LIST_HEAD(&context->killed_trees);
1042 INIT_LIST_HEAD(&context->names_list);
1043 context->fds[0] = -1;
1044 context->return_valid = AUDITSC_INVALID;
1045 return context;
1046 }
1047
1048 /**
1049 * audit_alloc - allocate an audit context block for a task
1050 * @tsk: task
1051 *
1052 * Filter on the task information and allocate a per-task audit context
1053 * if necessary. Doing so turns on system call auditing for the
1054 * specified task. This is called from copy_process, so no lock is
1055 * needed.
1056 */
audit_alloc(struct task_struct * tsk)1057 int audit_alloc(struct task_struct *tsk)
1058 {
1059 struct audit_context *context;
1060 enum audit_state state;
1061 char *key = NULL;
1062
1063 if (likely(!audit_ever_enabled))
1064 return 0;
1065
1066 state = audit_filter_task(tsk, &key);
1067 if (state == AUDIT_STATE_DISABLED) {
1068 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1069 return 0;
1070 }
1071
1072 context = audit_alloc_context(state);
1073 if (!context) {
1074 kfree(key);
1075 audit_log_lost("out of memory in audit_alloc");
1076 return -ENOMEM;
1077 }
1078 context->filterkey = key;
1079
1080 audit_set_context(tsk, context);
1081 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1082 return 0;
1083 }
1084
audit_free_context(struct audit_context * context)1085 static inline void audit_free_context(struct audit_context *context)
1086 {
1087 /* resetting is extra work, but it is likely just noise */
1088 audit_reset_context(context);
1089 audit_proctitle_free(context);
1090 free_tree_refs(context);
1091 kfree(context->filterkey);
1092 kfree(context);
1093 }
1094
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,struct lsm_prop * prop,char * comm)1095 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1096 kuid_t auid, kuid_t uid,
1097 unsigned int sessionid, struct lsm_prop *prop,
1098 char *comm)
1099 {
1100 struct audit_buffer *ab;
1101 int rc = 0;
1102
1103 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1104 if (!ab)
1105 return rc;
1106
1107 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1108 from_kuid(&init_user_ns, auid),
1109 from_kuid(&init_user_ns, uid), sessionid);
1110 if (lsmprop_is_set(prop) && audit_log_obj_ctx(ab, prop))
1111 rc = 1;
1112
1113 audit_log_format(ab, " ocomm=");
1114 audit_log_untrustedstring(ab, comm);
1115 audit_log_end(ab);
1116
1117 return rc;
1118 }
1119
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)1120 static void audit_log_execve_info(struct audit_context *context,
1121 struct audit_buffer **ab)
1122 {
1123 long len_max;
1124 long len_rem;
1125 long len_full;
1126 long len_buf;
1127 long len_abuf = 0;
1128 long len_tmp;
1129 bool require_data;
1130 bool encode;
1131 unsigned int iter;
1132 unsigned int arg;
1133 char *buf_head;
1134 char *buf;
1135 const char __user *p = (const char __user *)current->mm->arg_start;
1136
1137 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1138 * data we put in the audit record for this argument (see the
1139 * code below) ... at this point in time 96 is plenty */
1140 char abuf[96];
1141
1142 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1143 * current value of 7500 is not as important as the fact that it
1144 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1145 * room if we go over a little bit in the logging below */
1146 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1147 len_max = MAX_EXECVE_AUDIT_LEN;
1148
1149 /* scratch buffer to hold the userspace args */
1150 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1151 if (!buf_head) {
1152 audit_panic("out of memory for argv string");
1153 return;
1154 }
1155 buf = buf_head;
1156
1157 audit_log_format(*ab, "argc=%d", context->execve.argc);
1158
1159 len_rem = len_max;
1160 len_buf = 0;
1161 len_full = 0;
1162 require_data = true;
1163 encode = false;
1164 iter = 0;
1165 arg = 0;
1166 do {
1167 /* NOTE: we don't ever want to trust this value for anything
1168 * serious, but the audit record format insists we
1169 * provide an argument length for really long arguments,
1170 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1171 * to use strncpy_from_user() to obtain this value for
1172 * recording in the log, although we don't use it
1173 * anywhere here to avoid a double-fetch problem */
1174 if (len_full == 0)
1175 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1176
1177 /* read more data from userspace */
1178 if (require_data) {
1179 /* can we make more room in the buffer? */
1180 if (buf != buf_head) {
1181 memmove(buf_head, buf, len_buf);
1182 buf = buf_head;
1183 }
1184
1185 /* fetch as much as we can of the argument */
1186 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1187 len_max - len_buf);
1188 if (len_tmp == -EFAULT) {
1189 /* unable to copy from userspace */
1190 send_sig(SIGKILL, current, 0);
1191 goto out;
1192 } else if (len_tmp == (len_max - len_buf)) {
1193 /* buffer is not large enough */
1194 require_data = true;
1195 /* NOTE: if we are going to span multiple
1196 * buffers force the encoding so we stand
1197 * a chance at a sane len_full value and
1198 * consistent record encoding */
1199 encode = true;
1200 len_full = len_full * 2;
1201 p += len_tmp;
1202 } else {
1203 require_data = false;
1204 if (!encode)
1205 encode = audit_string_contains_control(
1206 buf, len_tmp);
1207 /* try to use a trusted value for len_full */
1208 if (len_full < len_max)
1209 len_full = (encode ?
1210 len_tmp * 2 : len_tmp);
1211 p += len_tmp + 1;
1212 }
1213 len_buf += len_tmp;
1214 buf_head[len_buf] = '\0';
1215
1216 /* length of the buffer in the audit record? */
1217 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1218 }
1219
1220 /* write as much as we can to the audit log */
1221 if (len_buf >= 0) {
1222 /* NOTE: some magic numbers here - basically if we
1223 * can't fit a reasonable amount of data into the
1224 * existing audit buffer, flush it and start with
1225 * a new buffer */
1226 if ((sizeof(abuf) + 8) > len_rem) {
1227 len_rem = len_max;
1228 audit_log_end(*ab);
1229 *ab = audit_log_start(context,
1230 GFP_KERNEL, AUDIT_EXECVE);
1231 if (!*ab)
1232 goto out;
1233 }
1234
1235 /* create the non-arg portion of the arg record */
1236 len_tmp = 0;
1237 if (require_data || (iter > 0) ||
1238 ((len_abuf + sizeof(abuf)) > len_rem)) {
1239 if (iter == 0) {
1240 len_tmp += snprintf(&abuf[len_tmp],
1241 sizeof(abuf) - len_tmp,
1242 " a%d_len=%lu",
1243 arg, len_full);
1244 }
1245 len_tmp += snprintf(&abuf[len_tmp],
1246 sizeof(abuf) - len_tmp,
1247 " a%d[%d]=", arg, iter++);
1248 } else
1249 len_tmp += snprintf(&abuf[len_tmp],
1250 sizeof(abuf) - len_tmp,
1251 " a%d=", arg);
1252 WARN_ON(len_tmp >= sizeof(abuf));
1253 abuf[sizeof(abuf) - 1] = '\0';
1254
1255 /* log the arg in the audit record */
1256 audit_log_format(*ab, "%s", abuf);
1257 len_rem -= len_tmp;
1258 len_tmp = len_buf;
1259 if (encode) {
1260 if (len_abuf > len_rem)
1261 len_tmp = len_rem / 2; /* encoding */
1262 audit_log_n_hex(*ab, buf, len_tmp);
1263 len_rem -= len_tmp * 2;
1264 len_abuf -= len_tmp * 2;
1265 } else {
1266 if (len_abuf > len_rem)
1267 len_tmp = len_rem - 2; /* quotes */
1268 audit_log_n_string(*ab, buf, len_tmp);
1269 len_rem -= len_tmp + 2;
1270 /* don't subtract the "2" because we still need
1271 * to add quotes to the remaining string */
1272 len_abuf -= len_tmp;
1273 }
1274 len_buf -= len_tmp;
1275 buf += len_tmp;
1276 }
1277
1278 /* ready to move to the next argument? */
1279 if ((len_buf == 0) && !require_data) {
1280 arg++;
1281 iter = 0;
1282 len_full = 0;
1283 require_data = true;
1284 encode = false;
1285 }
1286 } while (arg < context->execve.argc);
1287
1288 /* NOTE: the caller handles the final audit_log_end() call */
1289
1290 out:
1291 kfree(buf_head);
1292 }
1293
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1294 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1295 kernel_cap_t *cap)
1296 {
1297 if (cap_isclear(*cap)) {
1298 audit_log_format(ab, " %s=0", prefix);
1299 return;
1300 }
1301 audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1302 }
1303
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1304 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1305 {
1306 if (name->fcap_ver == -1) {
1307 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1308 return;
1309 }
1310 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1311 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1312 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1313 name->fcap.fE, name->fcap_ver,
1314 from_kuid(&init_user_ns, name->fcap.rootid));
1315 }
1316
audit_log_time(struct audit_context * context,struct audit_buffer ** ab)1317 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1318 {
1319 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1320 const struct timespec64 *tk = &context->time.tk_injoffset;
1321 static const char * const ntp_name[] = {
1322 "offset",
1323 "freq",
1324 "status",
1325 "tai",
1326 "tick",
1327 "adjust",
1328 };
1329 int type;
1330
1331 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1332 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1333 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1334 if (!*ab) {
1335 *ab = audit_log_start(context,
1336 GFP_KERNEL,
1337 AUDIT_TIME_ADJNTPVAL);
1338 if (!*ab)
1339 return;
1340 }
1341 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1342 ntp_name[type],
1343 ntp->vals[type].oldval,
1344 ntp->vals[type].newval);
1345 audit_log_end(*ab);
1346 *ab = NULL;
1347 }
1348 }
1349 }
1350 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1351 if (!*ab) {
1352 *ab = audit_log_start(context, GFP_KERNEL,
1353 AUDIT_TIME_INJOFFSET);
1354 if (!*ab)
1355 return;
1356 }
1357 audit_log_format(*ab, "sec=%lli nsec=%li",
1358 (long long)tk->tv_sec, tk->tv_nsec);
1359 audit_log_end(*ab);
1360 *ab = NULL;
1361 }
1362 }
1363
show_special(struct audit_context * context,int * call_panic)1364 static void show_special(struct audit_context *context, int *call_panic)
1365 {
1366 struct audit_buffer *ab;
1367 int i;
1368
1369 ab = audit_log_start(context, GFP_KERNEL, context->type);
1370 if (!ab)
1371 return;
1372
1373 switch (context->type) {
1374 case AUDIT_SOCKETCALL: {
1375 int nargs = context->socketcall.nargs;
1376
1377 audit_log_format(ab, "nargs=%d", nargs);
1378 for (i = 0; i < nargs; i++)
1379 audit_log_format(ab, " a%d=%lx", i,
1380 context->socketcall.args[i]);
1381 break; }
1382 case AUDIT_IPC:
1383 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1384 from_kuid(&init_user_ns, context->ipc.uid),
1385 from_kgid(&init_user_ns, context->ipc.gid),
1386 context->ipc.mode);
1387 if (lsmprop_is_set(&context->ipc.oprop)) {
1388 if (audit_log_obj_ctx(ab, &context->ipc.oprop))
1389 *call_panic = 1;
1390 }
1391 if (context->ipc.has_perm) {
1392 audit_log_end(ab);
1393 ab = audit_log_start(context, GFP_KERNEL,
1394 AUDIT_IPC_SET_PERM);
1395 if (unlikely(!ab))
1396 return;
1397 audit_log_format(ab,
1398 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1399 context->ipc.qbytes,
1400 context->ipc.perm_uid,
1401 context->ipc.perm_gid,
1402 context->ipc.perm_mode);
1403 }
1404 break;
1405 case AUDIT_MQ_OPEN:
1406 audit_log_format(ab,
1407 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1408 "mq_msgsize=%ld mq_curmsgs=%ld",
1409 context->mq_open.oflag, context->mq_open.mode,
1410 context->mq_open.attr.mq_flags,
1411 context->mq_open.attr.mq_maxmsg,
1412 context->mq_open.attr.mq_msgsize,
1413 context->mq_open.attr.mq_curmsgs);
1414 break;
1415 case AUDIT_MQ_SENDRECV:
1416 audit_log_format(ab,
1417 "mqdes=%d msg_len=%zd msg_prio=%u "
1418 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1419 context->mq_sendrecv.mqdes,
1420 context->mq_sendrecv.msg_len,
1421 context->mq_sendrecv.msg_prio,
1422 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1423 context->mq_sendrecv.abs_timeout.tv_nsec);
1424 break;
1425 case AUDIT_MQ_NOTIFY:
1426 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1427 context->mq_notify.mqdes,
1428 context->mq_notify.sigev_signo);
1429 break;
1430 case AUDIT_MQ_GETSETATTR: {
1431 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1432
1433 audit_log_format(ab,
1434 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1435 "mq_curmsgs=%ld ",
1436 context->mq_getsetattr.mqdes,
1437 attr->mq_flags, attr->mq_maxmsg,
1438 attr->mq_msgsize, attr->mq_curmsgs);
1439 break; }
1440 case AUDIT_CAPSET:
1441 audit_log_format(ab, "pid=%d", context->capset.pid);
1442 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1443 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1444 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1445 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1446 break;
1447 case AUDIT_MMAP:
1448 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1449 context->mmap.flags);
1450 break;
1451 case AUDIT_OPENAT2:
1452 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1453 context->openat2.flags,
1454 context->openat2.mode,
1455 context->openat2.resolve);
1456 break;
1457 case AUDIT_EXECVE:
1458 audit_log_execve_info(context, &ab);
1459 break;
1460 case AUDIT_KERN_MODULE:
1461 audit_log_format(ab, "name=");
1462 if (context->module.name) {
1463 audit_log_untrustedstring(ab, context->module.name);
1464 } else
1465 audit_log_format(ab, "(null)");
1466
1467 break;
1468 case AUDIT_TIME_ADJNTPVAL:
1469 case AUDIT_TIME_INJOFFSET:
1470 /* this call deviates from the rest, eating the buffer */
1471 audit_log_time(context, &ab);
1472 break;
1473 }
1474 audit_log_end(ab);
1475 }
1476
audit_proctitle_rtrim(char * proctitle,int len)1477 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1478 {
1479 char *end = proctitle + len - 1;
1480
1481 while (end > proctitle && !isprint(*end))
1482 end--;
1483
1484 /* catch the case where proctitle is only 1 non-print character */
1485 len = end - proctitle + 1;
1486 len -= isprint(proctitle[len-1]) == 0;
1487 return len;
1488 }
1489
1490 /*
1491 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1492 * @context: audit_context for the task
1493 * @n: audit_names structure with reportable details
1494 * @path: optional path to report instead of audit_names->name
1495 * @record_num: record number to report when handling a list of names
1496 * @call_panic: optional pointer to int that will be updated if secid fails
1497 */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)1498 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1499 const struct path *path, int record_num, int *call_panic)
1500 {
1501 struct audit_buffer *ab;
1502
1503 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1504 if (!ab)
1505 return;
1506
1507 audit_log_format(ab, "item=%d", record_num);
1508
1509 if (path)
1510 audit_log_d_path(ab, " name=", path);
1511 else if (n->name) {
1512 switch (n->name_len) {
1513 case AUDIT_NAME_FULL:
1514 /* log the full path */
1515 audit_log_format(ab, " name=");
1516 audit_log_untrustedstring(ab, n->name->name);
1517 break;
1518 case 0:
1519 /* name was specified as a relative path and the
1520 * directory component is the cwd
1521 */
1522 if (context->pwd.dentry && context->pwd.mnt)
1523 audit_log_d_path(ab, " name=", &context->pwd);
1524 else
1525 audit_log_format(ab, " name=(null)");
1526 break;
1527 default:
1528 /* log the name's directory component */
1529 audit_log_format(ab, " name=");
1530 audit_log_n_untrustedstring(ab, n->name->name,
1531 n->name_len);
1532 }
1533 } else
1534 audit_log_format(ab, " name=(null)");
1535
1536 if (n->ino != AUDIT_INO_UNSET)
1537 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1538 n->ino,
1539 MAJOR(n->dev),
1540 MINOR(n->dev),
1541 n->mode,
1542 from_kuid(&init_user_ns, n->uid),
1543 from_kgid(&init_user_ns, n->gid),
1544 MAJOR(n->rdev),
1545 MINOR(n->rdev));
1546 if (lsmprop_is_set(&n->oprop) &&
1547 audit_log_obj_ctx(ab, &n->oprop))
1548 *call_panic = 2;
1549
1550 /* log the audit_names record type */
1551 switch (n->type) {
1552 case AUDIT_TYPE_NORMAL:
1553 audit_log_format(ab, " nametype=NORMAL");
1554 break;
1555 case AUDIT_TYPE_PARENT:
1556 audit_log_format(ab, " nametype=PARENT");
1557 break;
1558 case AUDIT_TYPE_CHILD_DELETE:
1559 audit_log_format(ab, " nametype=DELETE");
1560 break;
1561 case AUDIT_TYPE_CHILD_CREATE:
1562 audit_log_format(ab, " nametype=CREATE");
1563 break;
1564 default:
1565 audit_log_format(ab, " nametype=UNKNOWN");
1566 break;
1567 }
1568
1569 audit_log_fcaps(ab, n);
1570 audit_log_end(ab);
1571 }
1572
audit_log_proctitle(void)1573 static void audit_log_proctitle(void)
1574 {
1575 int res;
1576 char *buf;
1577 char *msg = "(null)";
1578 int len = strlen(msg);
1579 struct audit_context *context = audit_context();
1580 struct audit_buffer *ab;
1581
1582 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1583 if (!ab)
1584 return; /* audit_panic or being filtered */
1585
1586 audit_log_format(ab, "proctitle=");
1587
1588 /* Not cached */
1589 if (!context->proctitle.value) {
1590 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1591 if (!buf)
1592 goto out;
1593 /* Historically called this from procfs naming */
1594 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1595 if (res == 0) {
1596 kfree(buf);
1597 goto out;
1598 }
1599 res = audit_proctitle_rtrim(buf, res);
1600 if (res == 0) {
1601 kfree(buf);
1602 goto out;
1603 }
1604 context->proctitle.value = buf;
1605 context->proctitle.len = res;
1606 }
1607 msg = context->proctitle.value;
1608 len = context->proctitle.len;
1609 out:
1610 audit_log_n_untrustedstring(ab, msg, len);
1611 audit_log_end(ab);
1612 }
1613
1614 /**
1615 * audit_log_uring - generate a AUDIT_URINGOP record
1616 * @ctx: the audit context
1617 */
audit_log_uring(struct audit_context * ctx)1618 static void audit_log_uring(struct audit_context *ctx)
1619 {
1620 struct audit_buffer *ab;
1621 const struct cred *cred;
1622
1623 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1624 if (!ab)
1625 return;
1626 cred = current_cred();
1627 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1628 if (ctx->return_valid != AUDITSC_INVALID)
1629 audit_log_format(ab, " success=%s exit=%ld",
1630 str_yes_no(ctx->return_valid ==
1631 AUDITSC_SUCCESS),
1632 ctx->return_code);
1633 audit_log_format(ab,
1634 " items=%d"
1635 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1636 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1637 ctx->name_count,
1638 task_ppid_nr(current), task_tgid_nr(current),
1639 from_kuid(&init_user_ns, cred->uid),
1640 from_kgid(&init_user_ns, cred->gid),
1641 from_kuid(&init_user_ns, cred->euid),
1642 from_kuid(&init_user_ns, cred->suid),
1643 from_kuid(&init_user_ns, cred->fsuid),
1644 from_kgid(&init_user_ns, cred->egid),
1645 from_kgid(&init_user_ns, cred->sgid),
1646 from_kgid(&init_user_ns, cred->fsgid));
1647 audit_log_task_context(ab);
1648 audit_log_key(ab, ctx->filterkey);
1649 audit_log_end(ab);
1650 }
1651
audit_log_exit(void)1652 static void audit_log_exit(void)
1653 {
1654 int i, call_panic = 0;
1655 struct audit_context *context = audit_context();
1656 struct audit_buffer *ab;
1657 struct audit_aux_data *aux;
1658 struct audit_names *n;
1659
1660 context->personality = current->personality;
1661
1662 switch (context->context) {
1663 case AUDIT_CTX_SYSCALL:
1664 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1665 if (!ab)
1666 return;
1667 audit_log_format(ab, "arch=%x syscall=%d",
1668 context->arch, context->major);
1669 if (context->personality != PER_LINUX)
1670 audit_log_format(ab, " per=%lx", context->personality);
1671 if (context->return_valid != AUDITSC_INVALID)
1672 audit_log_format(ab, " success=%s exit=%ld",
1673 str_yes_no(context->return_valid ==
1674 AUDITSC_SUCCESS),
1675 context->return_code);
1676 audit_log_format(ab,
1677 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1678 context->argv[0],
1679 context->argv[1],
1680 context->argv[2],
1681 context->argv[3],
1682 context->name_count);
1683 audit_log_task_info(ab);
1684 audit_log_key(ab, context->filterkey);
1685 audit_log_end(ab);
1686 break;
1687 case AUDIT_CTX_URING:
1688 audit_log_uring(context);
1689 break;
1690 default:
1691 BUG();
1692 break;
1693 }
1694
1695 for (aux = context->aux; aux; aux = aux->next) {
1696
1697 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1698 if (!ab)
1699 continue; /* audit_panic has been called */
1700
1701 switch (aux->type) {
1702
1703 case AUDIT_BPRM_FCAPS: {
1704 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1705
1706 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1707 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1708 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1709 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1710 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1711 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1712 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1713 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1714 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1715 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1716 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1717 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1718 audit_log_format(ab, " frootid=%d",
1719 from_kuid(&init_user_ns,
1720 axs->fcap.rootid));
1721 break; }
1722
1723 }
1724 audit_log_end(ab);
1725 }
1726
1727 if (context->type)
1728 show_special(context, &call_panic);
1729
1730 if (context->fds[0] >= 0) {
1731 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1732 if (ab) {
1733 audit_log_format(ab, "fd0=%d fd1=%d",
1734 context->fds[0], context->fds[1]);
1735 audit_log_end(ab);
1736 }
1737 }
1738
1739 if (context->sockaddr_len) {
1740 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1741 if (ab) {
1742 audit_log_format(ab, "saddr=");
1743 audit_log_n_hex(ab, (void *)context->sockaddr,
1744 context->sockaddr_len);
1745 audit_log_end(ab);
1746 }
1747 }
1748
1749 for (aux = context->aux_pids; aux; aux = aux->next) {
1750 struct audit_aux_data_pids *axs = (void *)aux;
1751
1752 for (i = 0; i < axs->pid_count; i++)
1753 if (audit_log_pid_context(context, axs->target_pid[i],
1754 axs->target_auid[i],
1755 axs->target_uid[i],
1756 axs->target_sessionid[i],
1757 &axs->target_ref[i],
1758 axs->target_comm[i]))
1759 call_panic = 1;
1760 }
1761
1762 if (context->target_pid &&
1763 audit_log_pid_context(context, context->target_pid,
1764 context->target_auid, context->target_uid,
1765 context->target_sessionid,
1766 &context->target_ref,
1767 context->target_comm))
1768 call_panic = 1;
1769
1770 if (context->pwd.dentry && context->pwd.mnt) {
1771 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1772 if (ab) {
1773 audit_log_d_path(ab, "cwd=", &context->pwd);
1774 audit_log_end(ab);
1775 }
1776 }
1777
1778 i = 0;
1779 list_for_each_entry(n, &context->names_list, list) {
1780 if (n->hidden)
1781 continue;
1782 audit_log_name(context, n, NULL, i++, &call_panic);
1783 }
1784
1785 if (context->context == AUDIT_CTX_SYSCALL)
1786 audit_log_proctitle();
1787
1788 /* Send end of event record to help user space know we are finished */
1789 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1790 if (ab)
1791 audit_log_end(ab);
1792 if (call_panic)
1793 audit_panic("error in audit_log_exit()");
1794 }
1795
1796 /**
1797 * __audit_free - free a per-task audit context
1798 * @tsk: task whose audit context block to free
1799 *
1800 * Called from copy_process, do_exit, and the io_uring code
1801 */
__audit_free(struct task_struct * tsk)1802 void __audit_free(struct task_struct *tsk)
1803 {
1804 struct audit_context *context = tsk->audit_context;
1805
1806 if (!context)
1807 return;
1808
1809 /* this may generate CONFIG_CHANGE records */
1810 if (!list_empty(&context->killed_trees))
1811 audit_kill_trees(context);
1812
1813 /* We are called either by do_exit() or the fork() error handling code;
1814 * in the former case tsk == current and in the latter tsk is a
1815 * random task_struct that doesn't have any meaningful data we
1816 * need to log via audit_log_exit().
1817 */
1818 if (tsk == current && !context->dummy) {
1819 context->return_valid = AUDITSC_INVALID;
1820 context->return_code = 0;
1821 if (context->context == AUDIT_CTX_SYSCALL) {
1822 audit_filter_syscall(tsk, context);
1823 audit_filter_inodes(tsk, context);
1824 if (context->current_state == AUDIT_STATE_RECORD)
1825 audit_log_exit();
1826 } else if (context->context == AUDIT_CTX_URING) {
1827 /* TODO: verify this case is real and valid */
1828 audit_filter_uring(tsk, context);
1829 audit_filter_inodes(tsk, context);
1830 if (context->current_state == AUDIT_STATE_RECORD)
1831 audit_log_uring(context);
1832 }
1833 }
1834
1835 audit_set_context(tsk, NULL);
1836 audit_free_context(context);
1837 }
1838
1839 /**
1840 * audit_return_fixup - fixup the return codes in the audit_context
1841 * @ctx: the audit_context
1842 * @success: true/false value to indicate if the operation succeeded or not
1843 * @code: operation return code
1844 *
1845 * We need to fixup the return code in the audit logs if the actual return
1846 * codes are later going to be fixed by the arch specific signal handlers.
1847 */
audit_return_fixup(struct audit_context * ctx,int success,long code)1848 static void audit_return_fixup(struct audit_context *ctx,
1849 int success, long code)
1850 {
1851 /*
1852 * This is actually a test for:
1853 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1854 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1855 *
1856 * but is faster than a bunch of ||
1857 */
1858 if (unlikely(code <= -ERESTARTSYS) &&
1859 (code >= -ERESTART_RESTARTBLOCK) &&
1860 (code != -ENOIOCTLCMD))
1861 ctx->return_code = -EINTR;
1862 else
1863 ctx->return_code = code;
1864 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1865 }
1866
1867 /**
1868 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1869 * @op: the io_uring opcode
1870 *
1871 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1872 * operations. This function should only ever be called from
1873 * audit_uring_entry() as we rely on the audit context checking present in that
1874 * function.
1875 */
__audit_uring_entry(u8 op)1876 void __audit_uring_entry(u8 op)
1877 {
1878 struct audit_context *ctx = audit_context();
1879
1880 if (ctx->state == AUDIT_STATE_DISABLED)
1881 return;
1882
1883 /*
1884 * NOTE: It's possible that we can be called from the process' context
1885 * before it returns to userspace, and before audit_syscall_exit()
1886 * is called. In this case there is not much to do, just record
1887 * the io_uring details and return.
1888 */
1889 ctx->uring_op = op;
1890 if (ctx->context == AUDIT_CTX_SYSCALL)
1891 return;
1892
1893 ctx->dummy = !audit_n_rules;
1894 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1895 ctx->prio = 0;
1896
1897 ctx->context = AUDIT_CTX_URING;
1898 ctx->current_state = ctx->state;
1899 ktime_get_coarse_real_ts64(&ctx->stamp.ctime);
1900 }
1901
1902 /**
1903 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1904 * @success: true/false value to indicate if the operation succeeded or not
1905 * @code: operation return code
1906 *
1907 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1908 * operations. This function should only ever be called from
1909 * audit_uring_exit() as we rely on the audit context checking present in that
1910 * function.
1911 */
__audit_uring_exit(int success,long code)1912 void __audit_uring_exit(int success, long code)
1913 {
1914 struct audit_context *ctx = audit_context();
1915
1916 if (ctx->dummy) {
1917 if (ctx->context != AUDIT_CTX_URING)
1918 return;
1919 goto out;
1920 }
1921
1922 audit_return_fixup(ctx, success, code);
1923 if (ctx->context == AUDIT_CTX_SYSCALL) {
1924 /*
1925 * NOTE: See the note in __audit_uring_entry() about the case
1926 * where we may be called from process context before we
1927 * return to userspace via audit_syscall_exit(). In this
1928 * case we simply emit a URINGOP record and bail, the
1929 * normal syscall exit handling will take care of
1930 * everything else.
1931 * It is also worth mentioning that when we are called,
1932 * the current process creds may differ from the creds
1933 * used during the normal syscall processing; keep that
1934 * in mind if/when we move the record generation code.
1935 */
1936
1937 /*
1938 * We need to filter on the syscall info here to decide if we
1939 * should emit a URINGOP record. I know it seems odd but this
1940 * solves the problem where users have a filter to block *all*
1941 * syscall records in the "exit" filter; we want to preserve
1942 * the behavior here.
1943 */
1944 audit_filter_syscall(current, ctx);
1945 if (ctx->current_state != AUDIT_STATE_RECORD)
1946 audit_filter_uring(current, ctx);
1947 audit_filter_inodes(current, ctx);
1948 if (ctx->current_state != AUDIT_STATE_RECORD)
1949 return;
1950
1951 audit_log_uring(ctx);
1952 return;
1953 }
1954
1955 /* this may generate CONFIG_CHANGE records */
1956 if (!list_empty(&ctx->killed_trees))
1957 audit_kill_trees(ctx);
1958
1959 /* run through both filters to ensure we set the filterkey properly */
1960 audit_filter_uring(current, ctx);
1961 audit_filter_inodes(current, ctx);
1962 if (ctx->current_state != AUDIT_STATE_RECORD)
1963 goto out;
1964 audit_log_exit();
1965
1966 out:
1967 audit_reset_context(ctx);
1968 }
1969
1970 /**
1971 * __audit_syscall_entry - fill in an audit record at syscall entry
1972 * @major: major syscall type (function)
1973 * @a1: additional syscall register 1
1974 * @a2: additional syscall register 2
1975 * @a3: additional syscall register 3
1976 * @a4: additional syscall register 4
1977 *
1978 * Fill in audit context at syscall entry. This only happens if the
1979 * audit context was created when the task was created and the state or
1980 * filters demand the audit context be built. If the state from the
1981 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1982 * then the record will be written at syscall exit time (otherwise, it
1983 * will only be written if another part of the kernel requests that it
1984 * be written).
1985 */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)1986 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1987 unsigned long a3, unsigned long a4)
1988 {
1989 struct audit_context *context = audit_context();
1990 enum audit_state state;
1991
1992 if (!audit_enabled || !context)
1993 return;
1994
1995 WARN_ON(context->context != AUDIT_CTX_UNUSED);
1996 WARN_ON(context->name_count);
1997 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
1998 audit_panic("unrecoverable error in audit_syscall_entry()");
1999 return;
2000 }
2001
2002 state = context->state;
2003 if (state == AUDIT_STATE_DISABLED)
2004 return;
2005
2006 context->dummy = !audit_n_rules;
2007 if (!context->dummy && state == AUDIT_STATE_BUILD) {
2008 context->prio = 0;
2009 if (auditd_test_task(current))
2010 return;
2011 }
2012
2013 context->arch = syscall_get_arch(current);
2014 context->major = major;
2015 context->argv[0] = a1;
2016 context->argv[1] = a2;
2017 context->argv[2] = a3;
2018 context->argv[3] = a4;
2019 context->context = AUDIT_CTX_SYSCALL;
2020 context->current_state = state;
2021 ktime_get_coarse_real_ts64(&context->stamp.ctime);
2022 }
2023
2024 /**
2025 * __audit_syscall_exit - deallocate audit context after a system call
2026 * @success: success value of the syscall
2027 * @return_code: return value of the syscall
2028 *
2029 * Tear down after system call. If the audit context has been marked as
2030 * auditable (either because of the AUDIT_STATE_RECORD state from
2031 * filtering, or because some other part of the kernel wrote an audit
2032 * message), then write out the syscall information. In call cases,
2033 * free the names stored from getname().
2034 */
__audit_syscall_exit(int success,long return_code)2035 void __audit_syscall_exit(int success, long return_code)
2036 {
2037 struct audit_context *context = audit_context();
2038
2039 if (!context || context->dummy ||
2040 context->context != AUDIT_CTX_SYSCALL)
2041 goto out;
2042
2043 /* this may generate CONFIG_CHANGE records */
2044 if (!list_empty(&context->killed_trees))
2045 audit_kill_trees(context);
2046
2047 audit_return_fixup(context, success, return_code);
2048 /* run through both filters to ensure we set the filterkey properly */
2049 audit_filter_syscall(current, context);
2050 audit_filter_inodes(current, context);
2051 if (context->current_state != AUDIT_STATE_RECORD)
2052 goto out;
2053
2054 audit_log_exit();
2055
2056 out:
2057 audit_reset_context(context);
2058 }
2059
handle_one(const struct inode * inode)2060 static inline void handle_one(const struct inode *inode)
2061 {
2062 struct audit_context *context;
2063 struct audit_tree_refs *p;
2064 struct audit_chunk *chunk;
2065 int count;
2066
2067 if (likely(!inode->i_fsnotify_marks))
2068 return;
2069 context = audit_context();
2070 p = context->trees;
2071 count = context->tree_count;
2072 rcu_read_lock();
2073 chunk = audit_tree_lookup(inode);
2074 rcu_read_unlock();
2075 if (!chunk)
2076 return;
2077 if (likely(put_tree_ref(context, chunk)))
2078 return;
2079 if (unlikely(!grow_tree_refs(context))) {
2080 pr_warn("out of memory, audit has lost a tree reference\n");
2081 audit_set_auditable(context);
2082 audit_put_chunk(chunk);
2083 unroll_tree_refs(context, p, count);
2084 return;
2085 }
2086 put_tree_ref(context, chunk);
2087 }
2088
handle_path(const struct dentry * dentry)2089 static void handle_path(const struct dentry *dentry)
2090 {
2091 struct audit_context *context;
2092 struct audit_tree_refs *p;
2093 const struct dentry *d, *parent;
2094 struct audit_chunk *drop;
2095 unsigned long seq;
2096 int count;
2097
2098 context = audit_context();
2099 p = context->trees;
2100 count = context->tree_count;
2101 retry:
2102 drop = NULL;
2103 d = dentry;
2104 rcu_read_lock();
2105 seq = read_seqbegin(&rename_lock);
2106 for (;;) {
2107 struct inode *inode = d_backing_inode(d);
2108
2109 if (inode && unlikely(inode->i_fsnotify_marks)) {
2110 struct audit_chunk *chunk;
2111
2112 chunk = audit_tree_lookup(inode);
2113 if (chunk) {
2114 if (unlikely(!put_tree_ref(context, chunk))) {
2115 drop = chunk;
2116 break;
2117 }
2118 }
2119 }
2120 parent = d->d_parent;
2121 if (parent == d)
2122 break;
2123 d = parent;
2124 }
2125 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2126 rcu_read_unlock();
2127 if (!drop) {
2128 /* just a race with rename */
2129 unroll_tree_refs(context, p, count);
2130 goto retry;
2131 }
2132 audit_put_chunk(drop);
2133 if (grow_tree_refs(context)) {
2134 /* OK, got more space */
2135 unroll_tree_refs(context, p, count);
2136 goto retry;
2137 }
2138 /* too bad */
2139 pr_warn("out of memory, audit has lost a tree reference\n");
2140 unroll_tree_refs(context, p, count);
2141 audit_set_auditable(context);
2142 return;
2143 }
2144 rcu_read_unlock();
2145 }
2146
audit_alloc_name(struct audit_context * context,unsigned char type)2147 static struct audit_names *audit_alloc_name(struct audit_context *context,
2148 unsigned char type)
2149 {
2150 struct audit_names *aname;
2151
2152 if (context->name_count < AUDIT_NAMES) {
2153 aname = &context->preallocated_names[context->name_count];
2154 memset(aname, 0, sizeof(*aname));
2155 } else {
2156 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2157 if (!aname)
2158 return NULL;
2159 aname->should_free = true;
2160 }
2161
2162 aname->ino = AUDIT_INO_UNSET;
2163 aname->type = type;
2164 list_add_tail(&aname->list, &context->names_list);
2165
2166 context->name_count++;
2167 if (!context->pwd.dentry)
2168 get_fs_pwd(current->fs, &context->pwd);
2169 return aname;
2170 }
2171
2172 /**
2173 * __audit_reusename - fill out filename with info from existing entry
2174 * @uptr: userland ptr to pathname
2175 *
2176 * Search the audit_names list for the current audit context. If there is an
2177 * existing entry with a matching "uptr" then return the filename
2178 * associated with that audit_name. If not, return NULL.
2179 */
2180 struct filename *
__audit_reusename(const __user char * uptr)2181 __audit_reusename(const __user char *uptr)
2182 {
2183 struct audit_context *context = audit_context();
2184 struct audit_names *n;
2185
2186 list_for_each_entry(n, &context->names_list, list) {
2187 if (!n->name)
2188 continue;
2189 if (n->name->uptr == uptr)
2190 return refname(n->name);
2191 }
2192 return NULL;
2193 }
2194
2195 /**
2196 * __audit_getname - add a name to the list
2197 * @name: name to add
2198 *
2199 * Add a name to the list of audit names for this context.
2200 * Called from fs/namei.c:getname().
2201 */
__audit_getname(struct filename * name)2202 void __audit_getname(struct filename *name)
2203 {
2204 struct audit_context *context = audit_context();
2205 struct audit_names *n;
2206
2207 if (context->context == AUDIT_CTX_UNUSED)
2208 return;
2209
2210 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2211 if (!n)
2212 return;
2213
2214 n->name = name;
2215 n->name_len = AUDIT_NAME_FULL;
2216 name->aname = n;
2217 refname(name);
2218 }
2219
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)2220 static inline int audit_copy_fcaps(struct audit_names *name,
2221 const struct dentry *dentry)
2222 {
2223 struct cpu_vfs_cap_data caps;
2224 int rc;
2225
2226 if (!dentry)
2227 return 0;
2228
2229 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2230 if (rc)
2231 return rc;
2232
2233 name->fcap.permitted = caps.permitted;
2234 name->fcap.inheritable = caps.inheritable;
2235 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2236 name->fcap.rootid = caps.rootid;
2237 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2238 VFS_CAP_REVISION_SHIFT;
2239
2240 return 0;
2241 }
2242
2243 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode,unsigned int flags)2244 static void audit_copy_inode(struct audit_names *name,
2245 const struct dentry *dentry,
2246 struct inode *inode, unsigned int flags)
2247 {
2248 name->ino = inode->i_ino;
2249 name->dev = inode->i_sb->s_dev;
2250 name->mode = inode->i_mode;
2251 name->uid = inode->i_uid;
2252 name->gid = inode->i_gid;
2253 name->rdev = inode->i_rdev;
2254 security_inode_getlsmprop(inode, &name->oprop);
2255 if (flags & AUDIT_INODE_NOEVAL) {
2256 name->fcap_ver = -1;
2257 return;
2258 }
2259 audit_copy_fcaps(name, dentry);
2260 }
2261
2262 /**
2263 * __audit_inode - store the inode and device from a lookup
2264 * @name: name being audited
2265 * @dentry: dentry being audited
2266 * @flags: attributes for this particular entry
2267 */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)2268 void __audit_inode(struct filename *name, const struct dentry *dentry,
2269 unsigned int flags)
2270 {
2271 struct audit_context *context = audit_context();
2272 struct inode *inode = d_backing_inode(dentry);
2273 struct audit_names *n;
2274 bool parent = flags & AUDIT_INODE_PARENT;
2275 struct audit_entry *e;
2276 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2277 int i;
2278
2279 if (context->context == AUDIT_CTX_UNUSED)
2280 return;
2281
2282 rcu_read_lock();
2283 list_for_each_entry_rcu(e, list, list) {
2284 for (i = 0; i < e->rule.field_count; i++) {
2285 struct audit_field *f = &e->rule.fields[i];
2286
2287 if (f->type == AUDIT_FSTYPE
2288 && audit_comparator(inode->i_sb->s_magic,
2289 f->op, f->val)
2290 && e->rule.action == AUDIT_NEVER) {
2291 rcu_read_unlock();
2292 return;
2293 }
2294 }
2295 }
2296 rcu_read_unlock();
2297
2298 if (!name)
2299 goto out_alloc;
2300
2301 /*
2302 * If we have a pointer to an audit_names entry already, then we can
2303 * just use it directly if the type is correct.
2304 */
2305 n = name->aname;
2306 if (n) {
2307 if (parent) {
2308 if (n->type == AUDIT_TYPE_PARENT ||
2309 n->type == AUDIT_TYPE_UNKNOWN)
2310 goto out;
2311 } else {
2312 if (n->type != AUDIT_TYPE_PARENT)
2313 goto out;
2314 }
2315 }
2316
2317 list_for_each_entry_reverse(n, &context->names_list, list) {
2318 if (n->ino) {
2319 /* valid inode number, use that for the comparison */
2320 if (n->ino != inode->i_ino ||
2321 n->dev != inode->i_sb->s_dev)
2322 continue;
2323 } else if (n->name) {
2324 /* inode number has not been set, check the name */
2325 if (strcmp(n->name->name, name->name))
2326 continue;
2327 } else
2328 /* no inode and no name (?!) ... this is odd ... */
2329 continue;
2330
2331 /* match the correct record type */
2332 if (parent) {
2333 if (n->type == AUDIT_TYPE_PARENT ||
2334 n->type == AUDIT_TYPE_UNKNOWN)
2335 goto out;
2336 } else {
2337 if (n->type != AUDIT_TYPE_PARENT)
2338 goto out;
2339 }
2340 }
2341
2342 out_alloc:
2343 /* unable to find an entry with both a matching name and type */
2344 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2345 if (!n)
2346 return;
2347 if (name) {
2348 n->name = name;
2349 refname(name);
2350 }
2351
2352 out:
2353 if (parent) {
2354 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2355 n->type = AUDIT_TYPE_PARENT;
2356 if (flags & AUDIT_INODE_HIDDEN)
2357 n->hidden = true;
2358 } else {
2359 n->name_len = AUDIT_NAME_FULL;
2360 n->type = AUDIT_TYPE_NORMAL;
2361 }
2362 handle_path(dentry);
2363 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2364 }
2365
__audit_file(const struct file * file)2366 void __audit_file(const struct file *file)
2367 {
2368 __audit_inode(NULL, file->f_path.dentry, 0);
2369 }
2370
2371 /**
2372 * __audit_inode_child - collect inode info for created/removed objects
2373 * @parent: inode of dentry parent
2374 * @dentry: dentry being audited
2375 * @type: AUDIT_TYPE_* value that we're looking for
2376 *
2377 * For syscalls that create or remove filesystem objects, audit_inode
2378 * can only collect information for the filesystem object's parent.
2379 * This call updates the audit context with the child's information.
2380 * Syscalls that create a new filesystem object must be hooked after
2381 * the object is created. Syscalls that remove a filesystem object
2382 * must be hooked prior, in order to capture the target inode during
2383 * unsuccessful attempts.
2384 */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)2385 void __audit_inode_child(struct inode *parent,
2386 const struct dentry *dentry,
2387 const unsigned char type)
2388 {
2389 struct audit_context *context = audit_context();
2390 struct inode *inode = d_backing_inode(dentry);
2391 const struct qstr *dname = &dentry->d_name;
2392 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2393 struct audit_entry *e;
2394 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2395 int i;
2396
2397 if (context->context == AUDIT_CTX_UNUSED)
2398 return;
2399
2400 rcu_read_lock();
2401 list_for_each_entry_rcu(e, list, list) {
2402 for (i = 0; i < e->rule.field_count; i++) {
2403 struct audit_field *f = &e->rule.fields[i];
2404
2405 if (f->type == AUDIT_FSTYPE
2406 && audit_comparator(parent->i_sb->s_magic,
2407 f->op, f->val)
2408 && e->rule.action == AUDIT_NEVER) {
2409 rcu_read_unlock();
2410 return;
2411 }
2412 }
2413 }
2414 rcu_read_unlock();
2415
2416 if (inode)
2417 handle_one(inode);
2418
2419 /* look for a parent entry first */
2420 list_for_each_entry(n, &context->names_list, list) {
2421 if (!n->name ||
2422 (n->type != AUDIT_TYPE_PARENT &&
2423 n->type != AUDIT_TYPE_UNKNOWN))
2424 continue;
2425
2426 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2427 !audit_compare_dname_path(dname,
2428 n->name->name, n->name_len)) {
2429 if (n->type == AUDIT_TYPE_UNKNOWN)
2430 n->type = AUDIT_TYPE_PARENT;
2431 found_parent = n;
2432 break;
2433 }
2434 }
2435
2436 cond_resched();
2437
2438 /* is there a matching child entry? */
2439 list_for_each_entry(n, &context->names_list, list) {
2440 /* can only match entries that have a name */
2441 if (!n->name ||
2442 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2443 continue;
2444
2445 if (!strcmp(dname->name, n->name->name) ||
2446 !audit_compare_dname_path(dname, n->name->name,
2447 found_parent ?
2448 found_parent->name_len :
2449 AUDIT_NAME_FULL)) {
2450 if (n->type == AUDIT_TYPE_UNKNOWN)
2451 n->type = type;
2452 found_child = n;
2453 break;
2454 }
2455 }
2456
2457 if (!found_parent) {
2458 /* create a new, "anonymous" parent record */
2459 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2460 if (!n)
2461 return;
2462 audit_copy_inode(n, NULL, parent, 0);
2463 }
2464
2465 if (!found_child) {
2466 found_child = audit_alloc_name(context, type);
2467 if (!found_child)
2468 return;
2469
2470 /* Re-use the name belonging to the slot for a matching parent
2471 * directory. All names for this context are relinquished in
2472 * audit_free_names() */
2473 if (found_parent) {
2474 found_child->name = found_parent->name;
2475 found_child->name_len = AUDIT_NAME_FULL;
2476 refname(found_child->name);
2477 }
2478 }
2479
2480 if (inode)
2481 audit_copy_inode(found_child, dentry, inode, 0);
2482 else
2483 found_child->ino = AUDIT_INO_UNSET;
2484 }
2485 EXPORT_SYMBOL_GPL(__audit_inode_child);
2486
2487 /**
2488 * auditsc_get_stamp - get local copies of audit_context values
2489 * @ctx: audit_context for the task
2490 * @stamp: timestamp to record
2491 *
2492 * Also sets the context as auditable.
2493 */
auditsc_get_stamp(struct audit_context * ctx,struct audit_stamp * stamp)2494 int auditsc_get_stamp(struct audit_context *ctx, struct audit_stamp *stamp)
2495 {
2496 if (ctx->context == AUDIT_CTX_UNUSED)
2497 return 0;
2498 if (!ctx->stamp.serial)
2499 ctx->stamp.serial = audit_serial();
2500 *stamp = ctx->stamp;
2501 if (!ctx->prio) {
2502 ctx->prio = 1;
2503 ctx->current_state = AUDIT_STATE_RECORD;
2504 }
2505 return 1;
2506 }
2507
2508 /**
2509 * __audit_mq_open - record audit data for a POSIX MQ open
2510 * @oflag: open flag
2511 * @mode: mode bits
2512 * @attr: queue attributes
2513 *
2514 */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2515 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2516 {
2517 struct audit_context *context = audit_context();
2518
2519 if (attr)
2520 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2521 else
2522 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2523
2524 context->mq_open.oflag = oflag;
2525 context->mq_open.mode = mode;
2526
2527 context->type = AUDIT_MQ_OPEN;
2528 }
2529
2530 /**
2531 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2532 * @mqdes: MQ descriptor
2533 * @msg_len: Message length
2534 * @msg_prio: Message priority
2535 * @abs_timeout: Message timeout in absolute time
2536 *
2537 */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2538 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2539 const struct timespec64 *abs_timeout)
2540 {
2541 struct audit_context *context = audit_context();
2542 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2543
2544 if (abs_timeout)
2545 memcpy(p, abs_timeout, sizeof(*p));
2546 else
2547 memset(p, 0, sizeof(*p));
2548
2549 context->mq_sendrecv.mqdes = mqdes;
2550 context->mq_sendrecv.msg_len = msg_len;
2551 context->mq_sendrecv.msg_prio = msg_prio;
2552
2553 context->type = AUDIT_MQ_SENDRECV;
2554 }
2555
2556 /**
2557 * __audit_mq_notify - record audit data for a POSIX MQ notify
2558 * @mqdes: MQ descriptor
2559 * @notification: Notification event
2560 *
2561 */
2562
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2563 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2564 {
2565 struct audit_context *context = audit_context();
2566
2567 if (notification)
2568 context->mq_notify.sigev_signo = notification->sigev_signo;
2569 else
2570 context->mq_notify.sigev_signo = 0;
2571
2572 context->mq_notify.mqdes = mqdes;
2573 context->type = AUDIT_MQ_NOTIFY;
2574 }
2575
2576 /**
2577 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2578 * @mqdes: MQ descriptor
2579 * @mqstat: MQ flags
2580 *
2581 */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2582 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2583 {
2584 struct audit_context *context = audit_context();
2585
2586 context->mq_getsetattr.mqdes = mqdes;
2587 context->mq_getsetattr.mqstat = *mqstat;
2588 context->type = AUDIT_MQ_GETSETATTR;
2589 }
2590
2591 /**
2592 * __audit_ipc_obj - record audit data for ipc object
2593 * @ipcp: ipc permissions
2594 *
2595 */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2596 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2597 {
2598 struct audit_context *context = audit_context();
2599
2600 context->ipc.uid = ipcp->uid;
2601 context->ipc.gid = ipcp->gid;
2602 context->ipc.mode = ipcp->mode;
2603 context->ipc.has_perm = 0;
2604 security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
2605 context->type = AUDIT_IPC;
2606 }
2607
2608 /**
2609 * __audit_ipc_set_perm - record audit data for new ipc permissions
2610 * @qbytes: msgq bytes
2611 * @uid: msgq user id
2612 * @gid: msgq group id
2613 * @mode: msgq mode (permissions)
2614 *
2615 * Called only after audit_ipc_obj().
2616 */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2617 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2618 {
2619 struct audit_context *context = audit_context();
2620
2621 context->ipc.qbytes = qbytes;
2622 context->ipc.perm_uid = uid;
2623 context->ipc.perm_gid = gid;
2624 context->ipc.perm_mode = mode;
2625 context->ipc.has_perm = 1;
2626 }
2627
__audit_bprm(struct linux_binprm * bprm)2628 void __audit_bprm(struct linux_binprm *bprm)
2629 {
2630 struct audit_context *context = audit_context();
2631
2632 context->type = AUDIT_EXECVE;
2633 context->execve.argc = bprm->argc;
2634 }
2635
2636
2637 /**
2638 * __audit_socketcall - record audit data for sys_socketcall
2639 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2640 * @args: args array
2641 *
2642 */
__audit_socketcall(int nargs,unsigned long * args)2643 int __audit_socketcall(int nargs, unsigned long *args)
2644 {
2645 struct audit_context *context = audit_context();
2646
2647 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2648 return -EINVAL;
2649 context->type = AUDIT_SOCKETCALL;
2650 context->socketcall.nargs = nargs;
2651 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2652 return 0;
2653 }
2654
2655 /**
2656 * __audit_fd_pair - record audit data for pipe and socketpair
2657 * @fd1: the first file descriptor
2658 * @fd2: the second file descriptor
2659 *
2660 */
__audit_fd_pair(int fd1,int fd2)2661 void __audit_fd_pair(int fd1, int fd2)
2662 {
2663 struct audit_context *context = audit_context();
2664
2665 context->fds[0] = fd1;
2666 context->fds[1] = fd2;
2667 }
2668
2669 /**
2670 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2671 * @len: data length in user space
2672 * @a: data address in kernel space
2673 *
2674 * Returns 0 for success or NULL context or < 0 on error.
2675 */
__audit_sockaddr(int len,void * a)2676 int __audit_sockaddr(int len, void *a)
2677 {
2678 struct audit_context *context = audit_context();
2679
2680 if (!context->sockaddr) {
2681 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2682
2683 if (!p)
2684 return -ENOMEM;
2685 context->sockaddr = p;
2686 }
2687
2688 context->sockaddr_len = len;
2689 memcpy(context->sockaddr, a, len);
2690 return 0;
2691 }
2692
__audit_ptrace(struct task_struct * t)2693 void __audit_ptrace(struct task_struct *t)
2694 {
2695 struct audit_context *context = audit_context();
2696
2697 context->target_pid = task_tgid_nr(t);
2698 context->target_auid = audit_get_loginuid(t);
2699 context->target_uid = task_uid(t);
2700 context->target_sessionid = audit_get_sessionid(t);
2701 strscpy(context->target_comm, t->comm);
2702 security_task_getlsmprop_obj(t, &context->target_ref);
2703 }
2704
2705 /**
2706 * audit_signal_info_syscall - record signal info for syscalls
2707 * @t: task being signaled
2708 *
2709 * If the audit subsystem is being terminated, record the task (pid)
2710 * and uid that is doing that.
2711 */
audit_signal_info_syscall(struct task_struct * t)2712 int audit_signal_info_syscall(struct task_struct *t)
2713 {
2714 struct audit_aux_data_pids *axp;
2715 struct audit_context *ctx = audit_context();
2716 kuid_t t_uid = task_uid(t);
2717
2718 if (!audit_signals || audit_dummy_context())
2719 return 0;
2720
2721 /* optimize the common case by putting first signal recipient directly
2722 * in audit_context */
2723 if (!ctx->target_pid) {
2724 ctx->target_pid = task_tgid_nr(t);
2725 ctx->target_auid = audit_get_loginuid(t);
2726 ctx->target_uid = t_uid;
2727 ctx->target_sessionid = audit_get_sessionid(t);
2728 strscpy(ctx->target_comm, t->comm);
2729 security_task_getlsmprop_obj(t, &ctx->target_ref);
2730 return 0;
2731 }
2732
2733 axp = (void *)ctx->aux_pids;
2734 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2735 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2736 if (!axp)
2737 return -ENOMEM;
2738
2739 axp->d.type = AUDIT_OBJ_PID;
2740 axp->d.next = ctx->aux_pids;
2741 ctx->aux_pids = (void *)axp;
2742 }
2743 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2744
2745 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2746 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2747 axp->target_uid[axp->pid_count] = t_uid;
2748 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2749 security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
2750 strscpy(axp->target_comm[axp->pid_count], t->comm);
2751 axp->pid_count++;
2752
2753 return 0;
2754 }
2755
2756 /**
2757 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2758 * @bprm: pointer to the bprm being processed
2759 * @new: the proposed new credentials
2760 * @old: the old credentials
2761 *
2762 * Simply check if the proc already has the caps given by the file and if not
2763 * store the priv escalation info for later auditing at the end of the syscall
2764 *
2765 * -Eric
2766 */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2767 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2768 const struct cred *new, const struct cred *old)
2769 {
2770 struct audit_aux_data_bprm_fcaps *ax;
2771 struct audit_context *context = audit_context();
2772 struct cpu_vfs_cap_data vcaps;
2773
2774 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2775 if (!ax)
2776 return -ENOMEM;
2777
2778 ax->d.type = AUDIT_BPRM_FCAPS;
2779 ax->d.next = context->aux;
2780 context->aux = (void *)ax;
2781
2782 get_vfs_caps_from_disk(&nop_mnt_idmap,
2783 bprm->file->f_path.dentry, &vcaps);
2784
2785 ax->fcap.permitted = vcaps.permitted;
2786 ax->fcap.inheritable = vcaps.inheritable;
2787 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2788 ax->fcap.rootid = vcaps.rootid;
2789 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2790
2791 ax->old_pcap.permitted = old->cap_permitted;
2792 ax->old_pcap.inheritable = old->cap_inheritable;
2793 ax->old_pcap.effective = old->cap_effective;
2794 ax->old_pcap.ambient = old->cap_ambient;
2795
2796 ax->new_pcap.permitted = new->cap_permitted;
2797 ax->new_pcap.inheritable = new->cap_inheritable;
2798 ax->new_pcap.effective = new->cap_effective;
2799 ax->new_pcap.ambient = new->cap_ambient;
2800 return 0;
2801 }
2802
2803 /**
2804 * __audit_log_capset - store information about the arguments to the capset syscall
2805 * @new: the new credentials
2806 * @old: the old (current) credentials
2807 *
2808 * Record the arguments userspace sent to sys_capset for later printing by the
2809 * audit system if applicable
2810 */
__audit_log_capset(const struct cred * new,const struct cred * old)2811 void __audit_log_capset(const struct cred *new, const struct cred *old)
2812 {
2813 struct audit_context *context = audit_context();
2814
2815 context->capset.pid = task_tgid_nr(current);
2816 context->capset.cap.effective = new->cap_effective;
2817 context->capset.cap.inheritable = new->cap_effective;
2818 context->capset.cap.permitted = new->cap_permitted;
2819 context->capset.cap.ambient = new->cap_ambient;
2820 context->type = AUDIT_CAPSET;
2821 }
2822
__audit_mmap_fd(int fd,int flags)2823 void __audit_mmap_fd(int fd, int flags)
2824 {
2825 struct audit_context *context = audit_context();
2826
2827 context->mmap.fd = fd;
2828 context->mmap.flags = flags;
2829 context->type = AUDIT_MMAP;
2830 }
2831
__audit_openat2_how(struct open_how * how)2832 void __audit_openat2_how(struct open_how *how)
2833 {
2834 struct audit_context *context = audit_context();
2835
2836 context->openat2.flags = how->flags;
2837 context->openat2.mode = how->mode;
2838 context->openat2.resolve = how->resolve;
2839 context->type = AUDIT_OPENAT2;
2840 }
2841
__audit_log_kern_module(const char * name)2842 void __audit_log_kern_module(const char *name)
2843 {
2844 struct audit_context *context = audit_context();
2845
2846 context->module.name = kstrdup(name, GFP_KERNEL);
2847 if (!context->module.name)
2848 audit_log_lost("out of memory in __audit_log_kern_module");
2849 context->type = AUDIT_KERN_MODULE;
2850 }
2851
__audit_fanotify(u32 response,struct fanotify_response_info_audit_rule * friar)2852 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2853 {
2854 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2855 switch (friar->hdr.type) {
2856 case FAN_RESPONSE_INFO_NONE:
2857 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2858 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2859 response, FAN_RESPONSE_INFO_NONE);
2860 break;
2861 case FAN_RESPONSE_INFO_AUDIT_RULE:
2862 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2863 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2864 response, friar->hdr.type, friar->rule_number,
2865 friar->subj_trust, friar->obj_trust);
2866 }
2867 }
2868
__audit_tk_injoffset(struct timespec64 offset)2869 void __audit_tk_injoffset(struct timespec64 offset)
2870 {
2871 struct audit_context *context = audit_context();
2872
2873 /* only set type if not already set by NTP */
2874 if (!context->type)
2875 context->type = AUDIT_TIME_INJOFFSET;
2876 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2877 }
2878
__audit_ntp_log(const struct audit_ntp_data * ad)2879 void __audit_ntp_log(const struct audit_ntp_data *ad)
2880 {
2881 struct audit_context *context = audit_context();
2882 int type;
2883
2884 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2885 if (ad->vals[type].newval != ad->vals[type].oldval) {
2886 /* unconditionally set type, overwriting TK */
2887 context->type = AUDIT_TIME_ADJNTPVAL;
2888 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2889 break;
2890 }
2891 }
2892
__audit_log_nfcfg(const char * name,u8 af,unsigned int nentries,enum audit_nfcfgop op,gfp_t gfp)2893 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2894 enum audit_nfcfgop op, gfp_t gfp)
2895 {
2896 struct audit_buffer *ab;
2897 char comm[sizeof(current->comm)];
2898
2899 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2900 if (!ab)
2901 return;
2902 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2903 name, af, nentries, audit_nfcfgs[op].s);
2904
2905 audit_log_format(ab, " pid=%u", task_tgid_nr(current));
2906 audit_log_task_context(ab); /* subj= */
2907 audit_log_format(ab, " comm=");
2908 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2909 audit_log_end(ab);
2910 }
2911 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2912
audit_log_task(struct audit_buffer * ab)2913 static void audit_log_task(struct audit_buffer *ab)
2914 {
2915 kuid_t auid, uid;
2916 kgid_t gid;
2917 unsigned int sessionid;
2918 char comm[sizeof(current->comm)];
2919
2920 auid = audit_get_loginuid(current);
2921 sessionid = audit_get_sessionid(current);
2922 current_uid_gid(&uid, &gid);
2923
2924 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2925 from_kuid(&init_user_ns, auid),
2926 from_kuid(&init_user_ns, uid),
2927 from_kgid(&init_user_ns, gid),
2928 sessionid);
2929 audit_log_task_context(ab);
2930 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2931 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2932 audit_log_d_path_exe(ab, current->mm);
2933 }
2934
2935 /**
2936 * audit_core_dumps - record information about processes that end abnormally
2937 * @signr: signal value
2938 *
2939 * If a process ends with a core dump, something fishy is going on and we
2940 * should record the event for investigation.
2941 */
audit_core_dumps(long signr)2942 void audit_core_dumps(long signr)
2943 {
2944 struct audit_buffer *ab;
2945
2946 if (!audit_enabled)
2947 return;
2948
2949 if (signr == SIGQUIT) /* don't care for those */
2950 return;
2951
2952 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2953 if (unlikely(!ab))
2954 return;
2955 audit_log_task(ab);
2956 audit_log_format(ab, " sig=%ld res=1", signr);
2957 audit_log_end(ab);
2958 }
2959
2960 /**
2961 * audit_seccomp - record information about a seccomp action
2962 * @syscall: syscall number
2963 * @signr: signal value
2964 * @code: the seccomp action
2965 *
2966 * Record the information associated with a seccomp action. Event filtering for
2967 * seccomp actions that are not to be logged is done in seccomp_log().
2968 * Therefore, this function forces auditing independent of the audit_enabled
2969 * and dummy context state because seccomp actions should be logged even when
2970 * audit is not in use.
2971 */
audit_seccomp(unsigned long syscall,long signr,int code)2972 void audit_seccomp(unsigned long syscall, long signr, int code)
2973 {
2974 struct audit_buffer *ab;
2975
2976 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2977 if (unlikely(!ab))
2978 return;
2979 audit_log_task(ab);
2980 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2981 signr, syscall_get_arch(current), syscall,
2982 in_compat_syscall(), KSTK_EIP(current), code);
2983 audit_log_end(ab);
2984 }
2985
audit_seccomp_actions_logged(const char * names,const char * old_names,int res)2986 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2987 int res)
2988 {
2989 struct audit_buffer *ab;
2990
2991 if (!audit_enabled)
2992 return;
2993
2994 ab = audit_log_start(audit_context(), GFP_KERNEL,
2995 AUDIT_CONFIG_CHANGE);
2996 if (unlikely(!ab))
2997 return;
2998
2999 audit_log_format(ab,
3000 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3001 names, old_names, res);
3002 audit_log_end(ab);
3003 }
3004
audit_killed_trees(void)3005 struct list_head *audit_killed_trees(void)
3006 {
3007 struct audit_context *ctx = audit_context();
3008 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3009 return NULL;
3010 return &ctx->killed_trees;
3011 }
3012