1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/file.h>
35 #include <linux/hex.h>
36 #include <linux/init.h>
37 #include <linux/types.h>
38 #include <linux/atomic.h>
39 #include <linux/mm.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/err.h>
43 #include <linux/kthread.h>
44 #include <linux/kernel.h>
45 #include <linux/syscalls.h>
46 #include <linux/spinlock.h>
47 #include <linux/rcupdate.h>
48 #include <linux/mutex.h>
49 #include <linux/gfp.h>
50 #include <linux/pid.h>
51
52 #include <linux/audit.h>
53
54 #include <net/sock.h>
55 #include <net/netlink.h>
56 #include <linux/skbuff.h>
57 #include <linux/security.h>
58 #include <linux/lsm_hooks.h>
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62 #include <net/ip.h>
63 #include <net/ipv6.h>
64 #include <linux/sctp.h>
65
66 #include "audit.h"
67
68 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
69 * (Initialization happens after skb_init is called.) */
70 #define AUDIT_DISABLED -1
71 #define AUDIT_UNINITIALIZED 0
72 #define AUDIT_INITIALIZED 1
73 static int audit_initialized = AUDIT_UNINITIALIZED;
74
75 u32 audit_enabled = AUDIT_OFF;
76 bool audit_ever_enabled = !!AUDIT_OFF;
77
78 EXPORT_SYMBOL_GPL(audit_enabled);
79
80 /* Default state when kernel boots without any parameters. */
81 static u32 audit_default = AUDIT_OFF;
82
83 /* If auditing cannot proceed, audit_failure selects what happens. */
84 static u32 audit_failure = AUDIT_FAIL_PRINTK;
85
86 /* private audit network namespace index */
87 static unsigned int audit_net_id;
88
89 /* Number of modules that provide a security context.
90 List of lsms that provide a security context */
91 static u32 audit_subj_secctx_cnt;
92 static u32 audit_obj_secctx_cnt;
93 static const struct lsm_id *audit_subj_lsms[MAX_LSM_COUNT];
94 static const struct lsm_id *audit_obj_lsms[MAX_LSM_COUNT];
95
96 /**
97 * struct audit_net - audit private network namespace data
98 * @sk: communication socket
99 */
100 struct audit_net {
101 struct sock *sk;
102 };
103
104 /**
105 * struct auditd_connection - kernel/auditd connection state
106 * @pid: auditd PID
107 * @portid: netlink portid
108 * @net: the associated network namespace
109 * @rcu: RCU head
110 *
111 * Description:
112 * This struct is RCU protected; you must either hold the RCU lock for reading
113 * or the associated spinlock for writing.
114 */
115 struct auditd_connection {
116 struct pid *pid;
117 u32 portid;
118 struct net *net;
119 struct rcu_head rcu;
120 };
121 static struct auditd_connection __rcu *auditd_conn;
122 static DEFINE_SPINLOCK(auditd_conn_lock);
123
124 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
125 * to that number per second. This prevents DoS attacks, but results in
126 * audit records being dropped. */
127 static u32 audit_rate_limit;
128
129 /* Number of outstanding audit_buffers allowed.
130 * When set to zero, this means unlimited. */
131 static u32 audit_backlog_limit = 64;
132 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
133 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
134
135 /* The identity of the user shutting down the audit system. */
136 static kuid_t audit_sig_uid = INVALID_UID;
137 static pid_t audit_sig_pid = -1;
138 static struct lsm_prop audit_sig_lsm;
139
140 /* Records can be lost in several ways:
141 0) [suppressed in audit_alloc]
142 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
143 2) out of memory in audit_log_move [alloc_skb]
144 3) suppressed due to audit_rate_limit
145 4) suppressed due to audit_backlog_limit
146 */
147 static atomic_t audit_lost = ATOMIC_INIT(0);
148
149 /* Monotonically increasing sum of time the kernel has spent
150 * waiting while the backlog limit is exceeded.
151 */
152 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
153
154 /* Hash for inode-based rules */
155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
156
157 static struct kmem_cache *audit_buffer_cache;
158
159 /* queue msgs to send via kauditd_task */
160 static struct sk_buff_head audit_queue;
161 /* queue msgs due to temporary unicast send problems */
162 static struct sk_buff_head audit_retry_queue;
163 /* queue msgs waiting for new auditd connection */
164 static struct sk_buff_head audit_hold_queue;
165
166 /* queue servicing thread */
167 static struct task_struct *kauditd_task;
168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
169
170 /* waitqueue for callers who are blocked on the audit backlog */
171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
172
173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
174 .mask = -1,
175 .features = 0,
176 .lock = 0,};
177
178 static char *audit_feature_names[2] = {
179 "only_unset_loginuid",
180 "loginuid_immutable",
181 };
182
183 /**
184 * struct audit_ctl_mutex - serialize requests from userspace
185 * @lock: the mutex used for locking
186 * @owner: the task which owns the lock
187 *
188 * Description:
189 * This is the lock struct used to ensure we only process userspace requests
190 * in an orderly fashion. We can't simply use a mutex/lock here because we
191 * need to track lock ownership so we don't end up blocking the lock owner in
192 * audit_log_start() or similar.
193 */
194 static struct audit_ctl_mutex {
195 struct mutex lock;
196 void *owner;
197 } audit_cmd_mutex;
198
199 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
200 * audit records. Since printk uses a 1024 byte buffer, this buffer
201 * should be at least that large. */
202 #define AUDIT_BUFSIZ 1024
203
204 /* The audit_buffer is used when formatting an audit record. The caller
205 * locks briefly to get the record off the freelist or to allocate the
206 * buffer, and locks briefly to send the buffer to the netlink layer or
207 * to place it on a transmit queue. Multiple audit_buffers can be in
208 * use simultaneously. */
209 struct audit_buffer {
210 struct sk_buff *skb; /* the skb for audit_log functions */
211 struct sk_buff_head skb_list; /* formatted skbs, ready to send */
212 struct audit_context *ctx; /* NULL or associated context */
213 struct audit_stamp stamp; /* audit stamp for these records */
214 gfp_t gfp_mask;
215 };
216
217 struct audit_reply {
218 __u32 portid;
219 struct net *net;
220 struct sk_buff *skb;
221 };
222
223 /**
224 * auditd_test_task - Check to see if a given task is an audit daemon
225 * @task: the task to check
226 *
227 * Description:
228 * Return 1 if the task is a registered audit daemon, 0 otherwise.
229 */
auditd_test_task(struct task_struct * task)230 int auditd_test_task(struct task_struct *task)
231 {
232 int rc;
233 struct auditd_connection *ac;
234
235 rcu_read_lock();
236 ac = rcu_dereference(auditd_conn);
237 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
238 rcu_read_unlock();
239
240 return rc;
241 }
242
243 /**
244 * audit_ctl_lock - Take the audit control lock
245 */
audit_ctl_lock(void)246 void audit_ctl_lock(void)
247 {
248 mutex_lock(&audit_cmd_mutex.lock);
249 audit_cmd_mutex.owner = current;
250 }
251
252 /**
253 * audit_ctl_unlock - Drop the audit control lock
254 */
audit_ctl_unlock(void)255 void audit_ctl_unlock(void)
256 {
257 audit_cmd_mutex.owner = NULL;
258 mutex_unlock(&audit_cmd_mutex.lock);
259 }
260
261 /**
262 * audit_ctl_owner_current - Test to see if the current task owns the lock
263 *
264 * Description:
265 * Return true if the current task owns the audit control lock, false if it
266 * doesn't own the lock.
267 */
audit_ctl_owner_current(void)268 static bool audit_ctl_owner_current(void)
269 {
270 return (current == audit_cmd_mutex.owner);
271 }
272
273 /**
274 * auditd_pid_vnr - Return the auditd PID relative to the namespace
275 *
276 * Description:
277 * Returns the PID in relation to the namespace, 0 on failure.
278 */
auditd_pid_vnr(void)279 static pid_t auditd_pid_vnr(void)
280 {
281 pid_t pid;
282 const struct auditd_connection *ac;
283
284 rcu_read_lock();
285 ac = rcu_dereference(auditd_conn);
286 if (!ac || !ac->pid)
287 pid = 0;
288 else
289 pid = pid_vnr(ac->pid);
290 rcu_read_unlock();
291
292 return pid;
293 }
294
295 /**
296 * audit_cfg_lsm - Identify a security module as providing a secctx.
297 * @lsmid: LSM identity
298 * @flags: which contexts are provided
299 *
300 * Description:
301 * Increments the count of the security modules providing a secctx.
302 * If the LSM id is already in the list leave it alone.
303 */
audit_cfg_lsm(const struct lsm_id * lsmid,int flags)304 void audit_cfg_lsm(const struct lsm_id *lsmid, int flags)
305 {
306 int i;
307
308 if (flags & AUDIT_CFG_LSM_SECCTX_SUBJECT) {
309 for (i = 0 ; i < audit_subj_secctx_cnt; i++)
310 if (audit_subj_lsms[i] == lsmid)
311 return;
312 audit_subj_lsms[audit_subj_secctx_cnt++] = lsmid;
313 }
314 if (flags & AUDIT_CFG_LSM_SECCTX_OBJECT) {
315 for (i = 0 ; i < audit_obj_secctx_cnt; i++)
316 if (audit_obj_lsms[i] == lsmid)
317 return;
318 audit_obj_lsms[audit_obj_secctx_cnt++] = lsmid;
319 }
320 }
321
322 /**
323 * audit_get_sk - Return the audit socket for the given network namespace
324 * @net: the destination network namespace
325 *
326 * Description:
327 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
328 * that a reference is held for the network namespace while the sock is in use.
329 */
audit_get_sk(const struct net * net)330 static struct sock *audit_get_sk(const struct net *net)
331 {
332 struct audit_net *aunet;
333
334 if (!net)
335 return NULL;
336
337 aunet = net_generic(net, audit_net_id);
338 return aunet->sk;
339 }
340
audit_panic(const char * message)341 void audit_panic(const char *message)
342 {
343 switch (audit_failure) {
344 case AUDIT_FAIL_SILENT:
345 break;
346 case AUDIT_FAIL_PRINTK:
347 if (printk_ratelimit())
348 pr_err("%s\n", message);
349 break;
350 case AUDIT_FAIL_PANIC:
351 panic("audit: %s\n", message);
352 break;
353 }
354 }
355
audit_rate_check(void)356 static inline int audit_rate_check(void)
357 {
358 static unsigned long last_check = 0;
359 static int messages = 0;
360 static DEFINE_SPINLOCK(lock);
361 unsigned long flags;
362 unsigned long now;
363 int retval = 0;
364
365 if (!audit_rate_limit)
366 return 1;
367
368 spin_lock_irqsave(&lock, flags);
369 if (++messages < audit_rate_limit) {
370 retval = 1;
371 } else {
372 now = jiffies;
373 if (time_after(now, last_check + HZ)) {
374 last_check = now;
375 messages = 0;
376 retval = 1;
377 }
378 }
379 spin_unlock_irqrestore(&lock, flags);
380
381 return retval;
382 }
383
384 /**
385 * audit_log_lost - conditionally log lost audit message event
386 * @message: the message stating reason for lost audit message
387 *
388 * Emit at least 1 message per second, even if audit_rate_check is
389 * throttling.
390 * Always increment the lost messages counter.
391 */
audit_log_lost(const char * message)392 void audit_log_lost(const char *message)
393 {
394 static unsigned long last_msg = 0;
395 static DEFINE_SPINLOCK(lock);
396 unsigned long flags;
397 unsigned long now;
398 int print;
399
400 atomic_inc(&audit_lost);
401
402 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
403
404 if (!print) {
405 spin_lock_irqsave(&lock, flags);
406 now = jiffies;
407 if (time_after(now, last_msg + HZ)) {
408 print = 1;
409 last_msg = now;
410 }
411 spin_unlock_irqrestore(&lock, flags);
412 }
413
414 if (print) {
415 if (printk_ratelimit())
416 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
417 atomic_read(&audit_lost),
418 audit_rate_limit,
419 audit_backlog_limit);
420 audit_panic(message);
421 }
422 }
423
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)424 static int audit_log_config_change(char *function_name, u32 new, u32 old,
425 int allow_changes)
426 {
427 struct audit_buffer *ab;
428 int rc = 0;
429
430 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
431 if (unlikely(!ab))
432 return rc;
433 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
434 audit_log_session_info(ab);
435 rc = audit_log_task_context(ab);
436 if (rc)
437 allow_changes = 0; /* Something weird, deny request */
438 audit_log_format(ab, " res=%d", allow_changes);
439 audit_log_end(ab);
440 return rc;
441 }
442
audit_do_config_change(char * function_name,u32 * to_change,u32 new)443 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
444 {
445 int allow_changes, rc = 0;
446 u32 old = *to_change;
447
448 /* check if we are locked */
449 if (audit_enabled == AUDIT_LOCKED)
450 allow_changes = 0;
451 else
452 allow_changes = 1;
453
454 if (audit_enabled != AUDIT_OFF) {
455 rc = audit_log_config_change(function_name, new, old, allow_changes);
456 if (rc)
457 allow_changes = 0;
458 }
459
460 /* If we are allowed, make the change */
461 if (allow_changes == 1)
462 *to_change = new;
463 /* Not allowed, update reason */
464 else if (rc == 0)
465 rc = -EPERM;
466 return rc;
467 }
468
audit_set_rate_limit(u32 limit)469 static int audit_set_rate_limit(u32 limit)
470 {
471 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
472 }
473
audit_set_backlog_limit(u32 limit)474 static int audit_set_backlog_limit(u32 limit)
475 {
476 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
477 }
478
audit_set_backlog_wait_time(u32 timeout)479 static int audit_set_backlog_wait_time(u32 timeout)
480 {
481 return audit_do_config_change("audit_backlog_wait_time",
482 &audit_backlog_wait_time, timeout);
483 }
484
audit_set_enabled(u32 state)485 static int audit_set_enabled(u32 state)
486 {
487 int rc;
488 if (state > AUDIT_LOCKED)
489 return -EINVAL;
490
491 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
492 if (!rc)
493 audit_ever_enabled |= !!state;
494
495 return rc;
496 }
497
audit_set_failure(u32 state)498 static int audit_set_failure(u32 state)
499 {
500 if (state != AUDIT_FAIL_SILENT
501 && state != AUDIT_FAIL_PRINTK
502 && state != AUDIT_FAIL_PANIC)
503 return -EINVAL;
504
505 return audit_do_config_change("audit_failure", &audit_failure, state);
506 }
507
508 /**
509 * auditd_conn_free - RCU helper to release an auditd connection struct
510 * @rcu: RCU head
511 *
512 * Description:
513 * Drop any references inside the auditd connection tracking struct and free
514 * the memory.
515 */
auditd_conn_free(struct rcu_head * rcu)516 static void auditd_conn_free(struct rcu_head *rcu)
517 {
518 struct auditd_connection *ac;
519
520 ac = container_of(rcu, struct auditd_connection, rcu);
521 put_pid(ac->pid);
522 put_net(ac->net);
523 kfree(ac);
524 }
525
526 /**
527 * auditd_set - Set/Reset the auditd connection state
528 * @pid: auditd PID
529 * @portid: auditd netlink portid
530 * @net: auditd network namespace pointer
531 * @skb: the netlink command from the audit daemon
532 * @ack: netlink ack flag, cleared if ack'd here
533 *
534 * Description:
535 * This function will obtain and drop network namespace references as
536 * necessary. Returns zero on success, negative values on failure.
537 */
auditd_set(struct pid * pid,u32 portid,struct net * net,struct sk_buff * skb,bool * ack)538 static int auditd_set(struct pid *pid, u32 portid, struct net *net,
539 struct sk_buff *skb, bool *ack)
540 {
541 unsigned long flags;
542 struct auditd_connection *ac_old, *ac_new;
543 struct nlmsghdr *nlh;
544
545 if (!pid || !net)
546 return -EINVAL;
547
548 ac_new = kzalloc_obj(*ac_new, GFP_KERNEL);
549 if (!ac_new)
550 return -ENOMEM;
551 ac_new->pid = get_pid(pid);
552 ac_new->portid = portid;
553 ac_new->net = get_net(net);
554
555 /* send the ack now to avoid a race with the queue backlog */
556 if (*ack) {
557 nlh = nlmsg_hdr(skb);
558 netlink_ack(skb, nlh, 0, NULL);
559 *ack = false;
560 }
561
562 spin_lock_irqsave(&auditd_conn_lock, flags);
563 ac_old = rcu_dereference_protected(auditd_conn,
564 lockdep_is_held(&auditd_conn_lock));
565 rcu_assign_pointer(auditd_conn, ac_new);
566 spin_unlock_irqrestore(&auditd_conn_lock, flags);
567
568 if (ac_old)
569 call_rcu(&ac_old->rcu, auditd_conn_free);
570
571 return 0;
572 }
573
574 /**
575 * kauditd_printk_skb - Print the audit record to the ring buffer
576 * @skb: audit record
577 *
578 * Whatever the reason, this packet may not make it to the auditd connection
579 * so write it via printk so the information isn't completely lost.
580 */
kauditd_printk_skb(struct sk_buff * skb)581 static void kauditd_printk_skb(struct sk_buff *skb)
582 {
583 struct nlmsghdr *nlh = nlmsg_hdr(skb);
584 char *data = nlmsg_data(nlh);
585
586 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
587 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
588 }
589
590 /**
591 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
592 * @skb: audit record
593 * @error: error code (unused)
594 *
595 * Description:
596 * This should only be used by the kauditd_thread when it fails to flush the
597 * hold queue.
598 */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)599 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
600 {
601 /* put the record back in the queue */
602 skb_queue_tail(&audit_hold_queue, skb);
603 }
604
605 /**
606 * kauditd_hold_skb - Queue an audit record, waiting for auditd
607 * @skb: audit record
608 * @error: error code
609 *
610 * Description:
611 * Queue the audit record, waiting for an instance of auditd. When this
612 * function is called we haven't given up yet on sending the record, but things
613 * are not looking good. The first thing we want to do is try to write the
614 * record via printk and then see if we want to try and hold on to the record
615 * and queue it, if we have room. If we want to hold on to the record, but we
616 * don't have room, record a record lost message.
617 */
kauditd_hold_skb(struct sk_buff * skb,int error)618 static void kauditd_hold_skb(struct sk_buff *skb, int error)
619 {
620 /* at this point it is uncertain if we will ever send this to auditd so
621 * try to send the message via printk before we go any further */
622 kauditd_printk_skb(skb);
623
624 /* can we just silently drop the message? */
625 if (!audit_default)
626 goto drop;
627
628 /* the hold queue is only for when the daemon goes away completely,
629 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
630 * record on the retry queue unless it's full, in which case drop it
631 */
632 if (error == -EAGAIN) {
633 if (!audit_backlog_limit ||
634 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
635 skb_queue_tail(&audit_retry_queue, skb);
636 return;
637 }
638 audit_log_lost("kauditd retry queue overflow");
639 goto drop;
640 }
641
642 /* if we have room in the hold queue, queue the message */
643 if (!audit_backlog_limit ||
644 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
645 skb_queue_tail(&audit_hold_queue, skb);
646 return;
647 }
648
649 /* we have no other options - drop the message */
650 audit_log_lost("kauditd hold queue overflow");
651 drop:
652 kfree_skb(skb);
653 }
654
655 /**
656 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
657 * @skb: audit record
658 * @error: error code (unused)
659 *
660 * Description:
661 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
662 * but for some reason we are having problems sending it audit records so
663 * queue the given record and attempt to resend.
664 */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)665 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
666 {
667 if (!audit_backlog_limit ||
668 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
669 skb_queue_tail(&audit_retry_queue, skb);
670 return;
671 }
672
673 /* we have to drop the record, send it via printk as a last effort */
674 kauditd_printk_skb(skb);
675 audit_log_lost("kauditd retry queue overflow");
676 kfree_skb(skb);
677 }
678
679 /**
680 * auditd_reset - Disconnect the auditd connection
681 * @ac: auditd connection state
682 *
683 * Description:
684 * Break the auditd/kauditd connection and move all the queued records into the
685 * hold queue in case auditd reconnects. It is important to note that the @ac
686 * pointer should never be dereferenced inside this function as it may be NULL
687 * or invalid, you can only compare the memory address! If @ac is NULL then
688 * the connection will always be reset.
689 */
auditd_reset(const struct auditd_connection * ac)690 static void auditd_reset(const struct auditd_connection *ac)
691 {
692 unsigned long flags;
693 struct sk_buff *skb;
694 struct auditd_connection *ac_old;
695
696 /* if it isn't already broken, break the connection */
697 spin_lock_irqsave(&auditd_conn_lock, flags);
698 ac_old = rcu_dereference_protected(auditd_conn,
699 lockdep_is_held(&auditd_conn_lock));
700 if (ac && ac != ac_old) {
701 /* someone already registered a new auditd connection */
702 spin_unlock_irqrestore(&auditd_conn_lock, flags);
703 return;
704 }
705 rcu_assign_pointer(auditd_conn, NULL);
706 spin_unlock_irqrestore(&auditd_conn_lock, flags);
707
708 if (ac_old)
709 call_rcu(&ac_old->rcu, auditd_conn_free);
710
711 /* flush the retry queue to the hold queue, but don't touch the main
712 * queue since we need to process that normally for multicast */
713 while ((skb = skb_dequeue(&audit_retry_queue)))
714 kauditd_hold_skb(skb, -ECONNREFUSED);
715 }
716
717 /**
718 * auditd_send_unicast_skb - Send a record via unicast to auditd
719 * @skb: audit record
720 *
721 * Description:
722 * Send a skb to the audit daemon, returns positive/zero values on success and
723 * negative values on failure; in all cases the skb will be consumed by this
724 * function. If the send results in -ECONNREFUSED the connection with auditd
725 * will be reset. This function may sleep so callers should not hold any locks
726 * where this would cause a problem.
727 */
auditd_send_unicast_skb(struct sk_buff * skb)728 static int auditd_send_unicast_skb(struct sk_buff *skb)
729 {
730 int rc;
731 u32 portid;
732 struct net *net;
733 struct sock *sk;
734 struct auditd_connection *ac;
735
736 /* NOTE: we can't call netlink_unicast while in the RCU section so
737 * take a reference to the network namespace and grab local
738 * copies of the namespace, the sock, and the portid; the
739 * namespace and sock aren't going to go away while we hold a
740 * reference and if the portid does become invalid after the RCU
741 * section netlink_unicast() should safely return an error */
742
743 rcu_read_lock();
744 ac = rcu_dereference(auditd_conn);
745 if (!ac) {
746 rcu_read_unlock();
747 kfree_skb(skb);
748 rc = -ECONNREFUSED;
749 goto err;
750 }
751 net = get_net(ac->net);
752 sk = audit_get_sk(net);
753 portid = ac->portid;
754 rcu_read_unlock();
755
756 rc = netlink_unicast(sk, skb, portid, 0);
757 put_net(net);
758 if (rc < 0)
759 goto err;
760
761 return rc;
762
763 err:
764 if (ac && rc == -ECONNREFUSED)
765 auditd_reset(ac);
766 return rc;
767 }
768
769 /**
770 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
771 * @sk: the sending sock
772 * @portid: the netlink destination
773 * @queue: the skb queue to process
774 * @retry_limit: limit on number of netlink unicast failures
775 * @skb_hook: per-skb hook for additional processing
776 * @err_hook: hook called if the skb fails the netlink unicast send
777 *
778 * Description:
779 * Run through the given queue and attempt to send the audit records to auditd,
780 * returns zero on success, negative values on failure. It is up to the caller
781 * to ensure that the @sk is valid for the duration of this function.
782 *
783 */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))784 static int kauditd_send_queue(struct sock *sk, u32 portid,
785 struct sk_buff_head *queue,
786 unsigned int retry_limit,
787 void (*skb_hook)(struct sk_buff *skb),
788 void (*err_hook)(struct sk_buff *skb, int error))
789 {
790 int rc = 0;
791 struct sk_buff *skb = NULL;
792 struct sk_buff *skb_tail;
793 unsigned int failed = 0;
794
795 /* NOTE: kauditd_thread takes care of all our locking, we just use
796 * the netlink info passed to us (e.g. sk and portid) */
797
798 skb_tail = skb_peek_tail(queue);
799 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
800 /* call the skb_hook for each skb we touch */
801 if (skb_hook)
802 (*skb_hook)(skb);
803
804 /* can we send to anyone via unicast? */
805 if (!sk) {
806 if (err_hook)
807 (*err_hook)(skb, -ECONNREFUSED);
808 continue;
809 }
810
811 retry:
812 /* grab an extra skb reference in case of error */
813 skb_get(skb);
814 rc = netlink_unicast(sk, skb, portid, 0);
815 if (rc < 0) {
816 /* send failed - try a few times unless fatal error */
817 if (++failed >= retry_limit ||
818 rc == -ECONNREFUSED || rc == -EPERM) {
819 sk = NULL;
820 if (err_hook)
821 (*err_hook)(skb, rc);
822 if (rc == -EAGAIN)
823 rc = 0;
824 /* continue to drain the queue */
825 continue;
826 } else
827 goto retry;
828 } else {
829 /* skb sent - drop the extra reference and continue */
830 consume_skb(skb);
831 failed = 0;
832 }
833 }
834
835 return (rc >= 0 ? 0 : rc);
836 }
837
838 /*
839 * kauditd_send_multicast_skb - Send a record to any multicast listeners
840 * @skb: audit record
841 *
842 * Description:
843 * Write a multicast message to anyone listening in the initial network
844 * namespace. This function doesn't consume an skb as might be expected since
845 * it has to copy it anyways.
846 */
kauditd_send_multicast_skb(struct sk_buff * skb)847 static void kauditd_send_multicast_skb(struct sk_buff *skb)
848 {
849 struct sk_buff *copy;
850 struct sock *sock = audit_get_sk(&init_net);
851 struct nlmsghdr *nlh;
852
853 /* NOTE: we are not taking an additional reference for init_net since
854 * we don't have to worry about it going away */
855
856 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
857 return;
858
859 /*
860 * The seemingly wasteful skb_copy() rather than bumping the refcount
861 * using skb_get() is necessary because non-standard mods are made to
862 * the skb by the original kaudit unicast socket send routine. The
863 * existing auditd daemon assumes this breakage. Fixing this would
864 * require co-ordinating a change in the established protocol between
865 * the kaudit kernel subsystem and the auditd userspace code. There is
866 * no reason for new multicast clients to continue with this
867 * non-compliance.
868 */
869 copy = skb_copy(skb, GFP_KERNEL);
870 if (!copy)
871 return;
872 nlh = nlmsg_hdr(copy);
873 nlh->nlmsg_len = skb->len;
874
875 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
876 }
877
878 /**
879 * kauditd_thread - Worker thread to send audit records to userspace
880 * @dummy: unused
881 */
kauditd_thread(void * dummy)882 static int kauditd_thread(void *dummy)
883 {
884 int rc;
885 u32 portid = 0;
886 struct net *net = NULL;
887 struct sock *sk = NULL;
888 struct auditd_connection *ac;
889
890 #define UNICAST_RETRIES 5
891
892 set_freezable();
893 while (!kthread_should_stop()) {
894 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
895 rcu_read_lock();
896 ac = rcu_dereference(auditd_conn);
897 if (!ac) {
898 rcu_read_unlock();
899 goto main_queue;
900 }
901 net = get_net(ac->net);
902 sk = audit_get_sk(net);
903 portid = ac->portid;
904 rcu_read_unlock();
905
906 /* attempt to flush the hold queue */
907 rc = kauditd_send_queue(sk, portid,
908 &audit_hold_queue, UNICAST_RETRIES,
909 NULL, kauditd_rehold_skb);
910 if (rc < 0) {
911 sk = NULL;
912 auditd_reset(ac);
913 goto main_queue;
914 }
915
916 /* attempt to flush the retry queue */
917 rc = kauditd_send_queue(sk, portid,
918 &audit_retry_queue, UNICAST_RETRIES,
919 NULL, kauditd_hold_skb);
920 if (rc < 0) {
921 sk = NULL;
922 auditd_reset(ac);
923 goto main_queue;
924 }
925
926 main_queue:
927 /* process the main queue - do the multicast send and attempt
928 * unicast, dump failed record sends to the retry queue; if
929 * sk == NULL due to previous failures we will just do the
930 * multicast send and move the record to the hold queue */
931 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
932 kauditd_send_multicast_skb,
933 (sk ?
934 kauditd_retry_skb : kauditd_hold_skb));
935 if (ac && rc < 0)
936 auditd_reset(ac);
937 sk = NULL;
938
939 /* drop our netns reference, no auditd sends past this line */
940 if (net) {
941 put_net(net);
942 net = NULL;
943 }
944
945 /* we have processed all the queues so wake everyone */
946 wake_up(&audit_backlog_wait);
947
948 /* NOTE: we want to wake up if there is anything on the queue,
949 * regardless of if an auditd is connected, as we need to
950 * do the multicast send and rotate records from the
951 * main queue to the retry/hold queues */
952 wait_event_freezable(kauditd_wait,
953 (skb_queue_len(&audit_queue) ? 1 : 0));
954 }
955
956 return 0;
957 }
958
audit_send_list_thread(void * _dest)959 int audit_send_list_thread(void *_dest)
960 {
961 struct audit_netlink_list *dest = _dest;
962 struct sk_buff *skb;
963 struct sock *sk = audit_get_sk(dest->net);
964
965 /* wait for parent to finish and send an ACK */
966 audit_ctl_lock();
967 audit_ctl_unlock();
968
969 while ((skb = __skb_dequeue(&dest->q)) != NULL)
970 netlink_unicast(sk, skb, dest->portid, 0);
971
972 put_net(dest->net);
973 kfree(dest);
974
975 return 0;
976 }
977
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)978 struct sk_buff *audit_make_reply(int seq, int type, int done,
979 int multi, const void *payload, int size)
980 {
981 struct sk_buff *skb;
982 struct nlmsghdr *nlh;
983 void *data;
984 int flags = multi ? NLM_F_MULTI : 0;
985 int t = done ? NLMSG_DONE : type;
986
987 skb = nlmsg_new(size, GFP_KERNEL);
988 if (!skb)
989 return NULL;
990
991 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
992 if (!nlh)
993 goto out_kfree_skb;
994 data = nlmsg_data(nlh);
995 memcpy(data, payload, size);
996 return skb;
997
998 out_kfree_skb:
999 kfree_skb(skb);
1000 return NULL;
1001 }
1002
audit_free_reply(struct audit_reply * reply)1003 static void audit_free_reply(struct audit_reply *reply)
1004 {
1005 if (!reply)
1006 return;
1007
1008 kfree_skb(reply->skb);
1009 if (reply->net)
1010 put_net(reply->net);
1011 kfree(reply);
1012 }
1013
audit_send_reply_thread(void * arg)1014 static int audit_send_reply_thread(void *arg)
1015 {
1016 struct audit_reply *reply = (struct audit_reply *)arg;
1017
1018 audit_ctl_lock();
1019 audit_ctl_unlock();
1020
1021 /* Ignore failure. It'll only happen if the sender goes away,
1022 because our timeout is set to infinite. */
1023 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
1024 reply->skb = NULL;
1025 audit_free_reply(reply);
1026 return 0;
1027 }
1028
1029 /**
1030 * audit_send_reply - send an audit reply message via netlink
1031 * @request_skb: skb of request we are replying to (used to target the reply)
1032 * @seq: sequence number
1033 * @type: audit message type
1034 * @done: done (last) flag
1035 * @multi: multi-part message flag
1036 * @payload: payload data
1037 * @size: payload size
1038 *
1039 * Allocates a skb, builds the netlink message, and sends it to the port id.
1040 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)1041 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1042 int multi, const void *payload, int size)
1043 {
1044 struct task_struct *tsk;
1045 struct audit_reply *reply;
1046
1047 reply = kzalloc_obj(*reply, GFP_KERNEL);
1048 if (!reply)
1049 return;
1050
1051 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1052 if (!reply->skb)
1053 goto err;
1054 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1055 reply->portid = NETLINK_CB(request_skb).portid;
1056
1057 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1058 if (IS_ERR(tsk))
1059 goto err;
1060
1061 return;
1062
1063 err:
1064 audit_free_reply(reply);
1065 }
1066
1067 /*
1068 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1069 * control messages.
1070 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1071 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1072 {
1073 int err = 0;
1074
1075 /* Only support initial user namespace for now. */
1076 /*
1077 * We return ECONNREFUSED because it tricks userspace into thinking
1078 * that audit was not configured into the kernel. Lots of users
1079 * configure their PAM stack (because that's what the distro does)
1080 * to reject login if unable to send messages to audit. If we return
1081 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1082 * configured in and will let login proceed. If we return EPERM
1083 * userspace will reject all logins. This should be removed when we
1084 * support non init namespaces!!
1085 */
1086 if (current_user_ns() != &init_user_ns)
1087 return -ECONNREFUSED;
1088
1089 switch (msg_type) {
1090 case AUDIT_LIST:
1091 case AUDIT_ADD:
1092 case AUDIT_DEL:
1093 return -EOPNOTSUPP;
1094 case AUDIT_GET:
1095 case AUDIT_SET:
1096 case AUDIT_GET_FEATURE:
1097 case AUDIT_SET_FEATURE:
1098 case AUDIT_LIST_RULES:
1099 case AUDIT_ADD_RULE:
1100 case AUDIT_DEL_RULE:
1101 case AUDIT_SIGNAL_INFO:
1102 case AUDIT_TTY_GET:
1103 case AUDIT_TTY_SET:
1104 case AUDIT_TRIM:
1105 case AUDIT_MAKE_EQUIV:
1106 /* Only support auditd and auditctl in initial pid namespace
1107 * for now. */
1108 if (task_active_pid_ns(current) != &init_pid_ns)
1109 return -EPERM;
1110
1111 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1112 err = -EPERM;
1113 break;
1114 case AUDIT_USER:
1115 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1116 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1117 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1118 err = -EPERM;
1119 break;
1120 default: /* bad msg */
1121 err = -EINVAL;
1122 }
1123
1124 return err;
1125 }
1126
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1127 static void audit_log_common_recv_msg(struct audit_context *context,
1128 struct audit_buffer **ab, u16 msg_type)
1129 {
1130 uid_t uid = from_kuid(&init_user_ns, current_uid());
1131 pid_t pid = task_tgid_nr(current);
1132
1133 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1134 *ab = NULL;
1135 return;
1136 }
1137
1138 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1139 if (unlikely(!*ab))
1140 return;
1141 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1142 audit_log_session_info(*ab);
1143 audit_log_task_context(*ab);
1144 }
1145
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1146 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1147 u16 msg_type)
1148 {
1149 audit_log_common_recv_msg(NULL, ab, msg_type);
1150 }
1151
is_audit_feature_set(int i)1152 static int is_audit_feature_set(int i)
1153 {
1154 return af.features & AUDIT_FEATURE_TO_MASK(i);
1155 }
1156
audit_get_feature(struct sk_buff * skb)1157 static int audit_get_feature(struct sk_buff *skb)
1158 {
1159 u32 seq;
1160
1161 seq = nlmsg_hdr(skb)->nlmsg_seq;
1162
1163 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1164
1165 return 0;
1166 }
1167
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1168 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1169 u32 old_lock, u32 new_lock, int res)
1170 {
1171 struct audit_buffer *ab;
1172
1173 if (audit_enabled == AUDIT_OFF)
1174 return;
1175
1176 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1177 if (!ab)
1178 return;
1179 audit_log_task_info(ab);
1180 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1181 audit_feature_names[which], !!old_feature, !!new_feature,
1182 !!old_lock, !!new_lock, res);
1183 audit_log_end(ab);
1184 }
1185
audit_set_feature(struct audit_features * uaf)1186 static int audit_set_feature(struct audit_features *uaf)
1187 {
1188 int i;
1189
1190 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1191
1192 /* if there is ever a version 2 we should handle that here */
1193
1194 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1195 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1196 u32 old_feature, new_feature, old_lock, new_lock;
1197
1198 /* if we are not changing this feature, move along */
1199 if (!(feature & uaf->mask))
1200 continue;
1201
1202 old_feature = af.features & feature;
1203 new_feature = uaf->features & feature;
1204 new_lock = (uaf->lock | af.lock) & feature;
1205 old_lock = af.lock & feature;
1206
1207 /* are we changing a locked feature? */
1208 if (old_lock && (new_feature != old_feature)) {
1209 audit_log_feature_change(i, old_feature, new_feature,
1210 old_lock, new_lock, 0);
1211 return -EPERM;
1212 }
1213 }
1214 /* nothing invalid, do the changes */
1215 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1216 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1217 u32 old_feature, new_feature, old_lock, new_lock;
1218
1219 /* if we are not changing this feature, move along */
1220 if (!(feature & uaf->mask))
1221 continue;
1222
1223 old_feature = af.features & feature;
1224 new_feature = uaf->features & feature;
1225 old_lock = af.lock & feature;
1226 new_lock = (uaf->lock | af.lock) & feature;
1227
1228 if (new_feature != old_feature)
1229 audit_log_feature_change(i, old_feature, new_feature,
1230 old_lock, new_lock, 1);
1231
1232 if (new_feature)
1233 af.features |= feature;
1234 else
1235 af.features &= ~feature;
1236 af.lock |= new_lock;
1237 }
1238
1239 return 0;
1240 }
1241
audit_replace(struct pid * pid)1242 static int audit_replace(struct pid *pid)
1243 {
1244 pid_t pvnr;
1245 struct sk_buff *skb;
1246
1247 pvnr = pid_vnr(pid);
1248 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1249 if (!skb)
1250 return -ENOMEM;
1251 return auditd_send_unicast_skb(skb);
1252 }
1253
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh,bool * ack)1254 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1255 bool *ack)
1256 {
1257 u32 seq;
1258 void *data;
1259 int data_len;
1260 int err;
1261 struct audit_buffer *ab;
1262 u16 msg_type = nlh->nlmsg_type;
1263 struct audit_sig_info *sig_data;
1264 struct lsm_context lsmctx = { NULL, 0, 0 };
1265
1266 err = audit_netlink_ok(skb, msg_type);
1267 if (err)
1268 return err;
1269
1270 seq = nlh->nlmsg_seq;
1271 data = nlmsg_data(nlh);
1272 data_len = nlmsg_len(nlh);
1273
1274 switch (msg_type) {
1275 case AUDIT_GET: {
1276 struct audit_status s;
1277 memset(&s, 0, sizeof(s));
1278 s.enabled = audit_enabled;
1279 s.failure = audit_failure;
1280 /* NOTE: use pid_vnr() so the PID is relative to the current
1281 * namespace */
1282 s.pid = auditd_pid_vnr();
1283 s.rate_limit = audit_rate_limit;
1284 s.backlog_limit = audit_backlog_limit;
1285 s.lost = atomic_read(&audit_lost);
1286 s.backlog = skb_queue_len(&audit_queue);
1287 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1288 s.backlog_wait_time = audit_backlog_wait_time;
1289 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1290 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1291 break;
1292 }
1293 case AUDIT_SET: {
1294 struct audit_status s;
1295 memset(&s, 0, sizeof(s));
1296 /* guard against past and future API changes */
1297 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1298 if (s.mask & AUDIT_STATUS_ENABLED) {
1299 err = audit_set_enabled(s.enabled);
1300 if (err < 0)
1301 return err;
1302 }
1303 if (s.mask & AUDIT_STATUS_FAILURE) {
1304 err = audit_set_failure(s.failure);
1305 if (err < 0)
1306 return err;
1307 }
1308 if (s.mask & AUDIT_STATUS_PID) {
1309 /* NOTE: we are using the vnr PID functions below
1310 * because the s.pid value is relative to the
1311 * namespace of the caller; at present this
1312 * doesn't matter much since you can really only
1313 * run auditd from the initial pid namespace, but
1314 * something to keep in mind if this changes */
1315 pid_t new_pid = s.pid;
1316 pid_t auditd_pid;
1317 struct pid *req_pid = task_tgid(current);
1318
1319 /* Sanity check - PID values must match. Setting
1320 * pid to 0 is how auditd ends auditing. */
1321 if (new_pid && (new_pid != pid_vnr(req_pid)))
1322 return -EINVAL;
1323
1324 /* test the auditd connection */
1325 audit_replace(req_pid);
1326
1327 auditd_pid = auditd_pid_vnr();
1328 if (auditd_pid) {
1329 /* replacing a healthy auditd is not allowed */
1330 if (new_pid) {
1331 audit_log_config_change("audit_pid",
1332 new_pid, auditd_pid, 0);
1333 return -EEXIST;
1334 }
1335 /* only current auditd can unregister itself */
1336 if (pid_vnr(req_pid) != auditd_pid) {
1337 audit_log_config_change("audit_pid",
1338 new_pid, auditd_pid, 0);
1339 return -EACCES;
1340 }
1341 }
1342
1343 if (new_pid) {
1344 /* register a new auditd connection */
1345 err = auditd_set(req_pid,
1346 NETLINK_CB(skb).portid,
1347 sock_net(NETLINK_CB(skb).sk),
1348 skb, ack);
1349 if (audit_enabled != AUDIT_OFF)
1350 audit_log_config_change("audit_pid",
1351 new_pid,
1352 auditd_pid,
1353 err ? 0 : 1);
1354 if (err)
1355 return err;
1356
1357 /* try to process any backlog */
1358 wake_up_interruptible(&kauditd_wait);
1359 } else {
1360 if (audit_enabled != AUDIT_OFF)
1361 audit_log_config_change("audit_pid",
1362 new_pid,
1363 auditd_pid, 1);
1364
1365 /* unregister the auditd connection */
1366 auditd_reset(NULL);
1367 }
1368 }
1369 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1370 err = audit_set_rate_limit(s.rate_limit);
1371 if (err < 0)
1372 return err;
1373 }
1374 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1375 err = audit_set_backlog_limit(s.backlog_limit);
1376 if (err < 0)
1377 return err;
1378 }
1379 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1380 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1381 return -EINVAL;
1382 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1383 return -EINVAL;
1384 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1385 if (err < 0)
1386 return err;
1387 }
1388 if (s.mask == AUDIT_STATUS_LOST) {
1389 u32 lost = atomic_xchg(&audit_lost, 0);
1390
1391 audit_log_config_change("lost", 0, lost, 1);
1392 return lost;
1393 }
1394 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1395 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1396
1397 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1398 return actual;
1399 }
1400 break;
1401 }
1402 case AUDIT_GET_FEATURE:
1403 err = audit_get_feature(skb);
1404 if (err)
1405 return err;
1406 break;
1407 case AUDIT_SET_FEATURE:
1408 if (data_len < sizeof(struct audit_features))
1409 return -EINVAL;
1410 err = audit_set_feature(data);
1411 if (err)
1412 return err;
1413 break;
1414 case AUDIT_USER:
1415 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1416 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1417 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1418 return 0;
1419 /* exit early if there isn't at least one character to print */
1420 if (data_len < 2)
1421 return -EINVAL;
1422
1423 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1424 if (err == 1) { /* match or error */
1425 char *str = data;
1426
1427 err = 0;
1428 if (msg_type == AUDIT_USER_TTY) {
1429 err = tty_audit_push();
1430 if (err)
1431 break;
1432 }
1433 audit_log_user_recv_msg(&ab, msg_type);
1434 if (msg_type != AUDIT_USER_TTY) {
1435 /* ensure NULL termination */
1436 str[data_len - 1] = '\0';
1437 audit_log_format(ab, " msg='%.*s'",
1438 AUDIT_MESSAGE_TEXT_MAX,
1439 str);
1440 } else {
1441 audit_log_format(ab, " data=");
1442 if (str[data_len - 1] == '\0')
1443 data_len--;
1444 audit_log_n_untrustedstring(ab, str, data_len);
1445 }
1446 audit_log_end(ab);
1447 }
1448 break;
1449 case AUDIT_ADD_RULE:
1450 case AUDIT_DEL_RULE:
1451 if (data_len < sizeof(struct audit_rule_data))
1452 return -EINVAL;
1453 if (audit_enabled == AUDIT_LOCKED) {
1454 audit_log_common_recv_msg(audit_context(), &ab,
1455 AUDIT_CONFIG_CHANGE);
1456 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1457 msg_type == AUDIT_ADD_RULE ?
1458 "add_rule" : "remove_rule",
1459 audit_enabled);
1460 audit_log_end(ab);
1461 return -EPERM;
1462 }
1463 err = audit_rule_change(msg_type, seq, data, data_len);
1464 break;
1465 case AUDIT_LIST_RULES:
1466 err = audit_list_rules_send(skb, seq);
1467 break;
1468 case AUDIT_TRIM:
1469 audit_trim_trees();
1470 audit_log_common_recv_msg(audit_context(), &ab,
1471 AUDIT_CONFIG_CHANGE);
1472 audit_log_format(ab, " op=trim res=1");
1473 audit_log_end(ab);
1474 break;
1475 case AUDIT_MAKE_EQUIV: {
1476 void *bufp = data;
1477 u32 sizes[2];
1478 size_t msglen = data_len;
1479 char *old, *new;
1480
1481 err = -EINVAL;
1482 if (msglen < 2 * sizeof(u32))
1483 break;
1484 memcpy(sizes, bufp, 2 * sizeof(u32));
1485 bufp += 2 * sizeof(u32);
1486 msglen -= 2 * sizeof(u32);
1487 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1488 if (IS_ERR(old)) {
1489 err = PTR_ERR(old);
1490 break;
1491 }
1492 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1493 if (IS_ERR(new)) {
1494 err = PTR_ERR(new);
1495 kfree(old);
1496 break;
1497 }
1498 /* OK, here comes... */
1499 err = audit_tag_tree(old, new);
1500
1501 audit_log_common_recv_msg(audit_context(), &ab,
1502 AUDIT_CONFIG_CHANGE);
1503 audit_log_format(ab, " op=make_equiv old=");
1504 audit_log_untrustedstring(ab, old);
1505 audit_log_format(ab, " new=");
1506 audit_log_untrustedstring(ab, new);
1507 audit_log_format(ab, " res=%d", !err);
1508 audit_log_end(ab);
1509 kfree(old);
1510 kfree(new);
1511 break;
1512 }
1513 case AUDIT_SIGNAL_INFO:
1514 if (lsmprop_is_set(&audit_sig_lsm)) {
1515 err = security_lsmprop_to_secctx(&audit_sig_lsm,
1516 &lsmctx, LSM_ID_UNDEF);
1517 if (err < 0)
1518 return err;
1519 }
1520 sig_data = kmalloc_flex(*sig_data, ctx, lsmctx.len, GFP_KERNEL);
1521 if (!sig_data) {
1522 if (lsmprop_is_set(&audit_sig_lsm))
1523 security_release_secctx(&lsmctx);
1524 return -ENOMEM;
1525 }
1526 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1527 sig_data->pid = audit_sig_pid;
1528 if (lsmprop_is_set(&audit_sig_lsm)) {
1529 memcpy(sig_data->ctx, lsmctx.context, lsmctx.len);
1530 security_release_secctx(&lsmctx);
1531 }
1532 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1533 sig_data, struct_size(sig_data, ctx,
1534 lsmctx.len));
1535 kfree(sig_data);
1536 break;
1537 case AUDIT_TTY_GET: {
1538 struct audit_tty_status s;
1539 unsigned int t;
1540
1541 t = READ_ONCE(current->signal->audit_tty);
1542 s.enabled = t & AUDIT_TTY_ENABLE;
1543 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1544
1545 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1546 break;
1547 }
1548 case AUDIT_TTY_SET: {
1549 struct audit_tty_status s, old;
1550 struct audit_buffer *ab;
1551 unsigned int t;
1552
1553 memset(&s, 0, sizeof(s));
1554 /* guard against past and future API changes */
1555 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1556 /* check if new data is valid */
1557 if ((s.enabled != 0 && s.enabled != 1) ||
1558 (s.log_passwd != 0 && s.log_passwd != 1))
1559 err = -EINVAL;
1560
1561 if (err)
1562 t = READ_ONCE(current->signal->audit_tty);
1563 else {
1564 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1565 t = xchg(¤t->signal->audit_tty, t);
1566 }
1567 old.enabled = t & AUDIT_TTY_ENABLE;
1568 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1569
1570 audit_log_common_recv_msg(audit_context(), &ab,
1571 AUDIT_CONFIG_CHANGE);
1572 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1573 " old-log_passwd=%d new-log_passwd=%d res=%d",
1574 old.enabled, s.enabled, old.log_passwd,
1575 s.log_passwd, !err);
1576 audit_log_end(ab);
1577 break;
1578 }
1579 default:
1580 err = -EINVAL;
1581 break;
1582 }
1583
1584 return err < 0 ? err : 0;
1585 }
1586
1587 /**
1588 * audit_receive - receive messages from a netlink control socket
1589 * @skb: the message buffer
1590 *
1591 * Parse the provided skb and deal with any messages that may be present,
1592 * malformed skbs are discarded.
1593 */
audit_receive(struct sk_buff * skb)1594 static void audit_receive(struct sk_buff *skb)
1595 {
1596 struct nlmsghdr *nlh;
1597 bool ack;
1598 /*
1599 * len MUST be signed for nlmsg_next to be able to dec it below 0
1600 * if the nlmsg_len was not aligned
1601 */
1602 int len;
1603 int err;
1604
1605 nlh = nlmsg_hdr(skb);
1606 len = skb->len;
1607
1608 audit_ctl_lock();
1609 while (nlmsg_ok(nlh, len)) {
1610 ack = nlh->nlmsg_flags & NLM_F_ACK;
1611 err = audit_receive_msg(skb, nlh, &ack);
1612
1613 /* send an ack if the user asked for one and audit_receive_msg
1614 * didn't already do it, or if there was an error. */
1615 if (ack || err)
1616 netlink_ack(skb, nlh, err, NULL);
1617
1618 nlh = nlmsg_next(nlh, &len);
1619 }
1620 audit_ctl_unlock();
1621
1622 /* can't block with the ctrl lock, so penalize the sender now */
1623 if (audit_backlog_limit &&
1624 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1625 DECLARE_WAITQUEUE(wait, current);
1626
1627 /* wake kauditd to try and flush the queue */
1628 wake_up_interruptible(&kauditd_wait);
1629
1630 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1631 set_current_state(TASK_UNINTERRUPTIBLE);
1632 schedule_timeout(audit_backlog_wait_time);
1633 remove_wait_queue(&audit_backlog_wait, &wait);
1634 }
1635 }
1636
1637 /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1638 static void audit_log_multicast(int group, const char *op, int err)
1639 {
1640 const struct cred *cred;
1641 struct tty_struct *tty;
1642 char comm[sizeof(current->comm)];
1643 struct audit_buffer *ab;
1644
1645 if (!audit_enabled)
1646 return;
1647
1648 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1649 if (!ab)
1650 return;
1651
1652 cred = current_cred();
1653 tty = audit_get_tty();
1654 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1655 task_tgid_nr(current),
1656 from_kuid(&init_user_ns, cred->uid),
1657 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1658 tty ? tty_name(tty) : "(none)",
1659 audit_get_sessionid(current));
1660 audit_put_tty(tty);
1661 audit_log_task_context(ab); /* subj= */
1662 audit_log_format(ab, " comm=");
1663 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1664 audit_log_d_path_exe(ab, current->mm); /* exe= */
1665 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1666 audit_log_end(ab);
1667 }
1668
1669 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1670 static int audit_multicast_bind(struct net *net, int group)
1671 {
1672 int err = 0;
1673
1674 if (!capable(CAP_AUDIT_READ))
1675 err = -EPERM;
1676 audit_log_multicast(group, "connect", err);
1677 return err;
1678 }
1679
audit_multicast_unbind(struct net * net,int group)1680 static void audit_multicast_unbind(struct net *net, int group)
1681 {
1682 audit_log_multicast(group, "disconnect", 0);
1683 }
1684
audit_net_init(struct net * net)1685 static int __net_init audit_net_init(struct net *net)
1686 {
1687 struct netlink_kernel_cfg cfg = {
1688 .input = audit_receive,
1689 .bind = audit_multicast_bind,
1690 .unbind = audit_multicast_unbind,
1691 .flags = NL_CFG_F_NONROOT_RECV,
1692 .groups = AUDIT_NLGRP_MAX,
1693 };
1694
1695 struct audit_net *aunet = net_generic(net, audit_net_id);
1696
1697 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1698 if (aunet->sk == NULL) {
1699 audit_panic("cannot initialize netlink socket in namespace");
1700 return -ENOMEM;
1701 }
1702 /* limit the timeout in case auditd is blocked/stopped */
1703 aunet->sk->sk_sndtimeo = HZ / 10;
1704
1705 return 0;
1706 }
1707
audit_net_exit(struct net * net)1708 static void __net_exit audit_net_exit(struct net *net)
1709 {
1710 struct audit_net *aunet = net_generic(net, audit_net_id);
1711
1712 /* NOTE: you would think that we would want to check the auditd
1713 * connection and potentially reset it here if it lives in this
1714 * namespace, but since the auditd connection tracking struct holds a
1715 * reference to this namespace (see auditd_set()) we are only ever
1716 * going to get here after that connection has been released */
1717
1718 netlink_kernel_release(aunet->sk);
1719 }
1720
1721 static struct pernet_operations audit_net_ops __net_initdata = {
1722 .init = audit_net_init,
1723 .exit = audit_net_exit,
1724 .id = &audit_net_id,
1725 .size = sizeof(struct audit_net),
1726 };
1727
1728 /* Initialize audit support at boot time. */
audit_init(void)1729 static int __init audit_init(void)
1730 {
1731 int i;
1732
1733 if (audit_initialized == AUDIT_DISABLED)
1734 return 0;
1735
1736 audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC);
1737
1738 skb_queue_head_init(&audit_queue);
1739 skb_queue_head_init(&audit_retry_queue);
1740 skb_queue_head_init(&audit_hold_queue);
1741
1742 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1743 INIT_LIST_HEAD(&audit_inode_hash[i]);
1744
1745 mutex_init(&audit_cmd_mutex.lock);
1746 audit_cmd_mutex.owner = NULL;
1747
1748 pr_info("initializing netlink subsys (%s)\n",
1749 str_enabled_disabled(audit_default));
1750 register_pernet_subsys(&audit_net_ops);
1751
1752 audit_initialized = AUDIT_INITIALIZED;
1753
1754 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1755 if (IS_ERR(kauditd_task)) {
1756 int err = PTR_ERR(kauditd_task);
1757 panic("audit: failed to start the kauditd thread (%d)\n", err);
1758 }
1759
1760 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1761 "state=initialized audit_enabled=%u res=1",
1762 audit_enabled);
1763
1764 return 0;
1765 }
1766 postcore_initcall(audit_init);
1767
1768 /*
1769 * Process kernel command-line parameter at boot time.
1770 * audit={0|off} or audit={1|on}.
1771 */
audit_enable(char * str)1772 static int __init audit_enable(char *str)
1773 {
1774 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1775 audit_default = AUDIT_OFF;
1776 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1777 audit_default = AUDIT_ON;
1778 else {
1779 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1780 audit_default = AUDIT_ON;
1781 }
1782
1783 if (audit_default == AUDIT_OFF)
1784 audit_initialized = AUDIT_DISABLED;
1785 if (audit_set_enabled(audit_default))
1786 pr_err("audit: error setting audit state (%d)\n",
1787 audit_default);
1788
1789 pr_info("%s\n", audit_default ?
1790 "enabled (after initialization)" : "disabled (until reboot)");
1791
1792 return 1;
1793 }
1794 __setup("audit=", audit_enable);
1795
1796 /* Process kernel command-line parameter at boot time.
1797 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1798 static int __init audit_backlog_limit_set(char *str)
1799 {
1800 u32 audit_backlog_limit_arg;
1801
1802 pr_info("audit_backlog_limit: ");
1803 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1804 pr_cont("using default of %u, unable to parse %s\n",
1805 audit_backlog_limit, str);
1806 return 1;
1807 }
1808
1809 audit_backlog_limit = audit_backlog_limit_arg;
1810 pr_cont("%d\n", audit_backlog_limit);
1811
1812 return 1;
1813 }
1814 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1815
audit_buffer_free(struct audit_buffer * ab)1816 static void audit_buffer_free(struct audit_buffer *ab)
1817 {
1818 struct sk_buff *skb;
1819
1820 if (!ab)
1821 return;
1822
1823 while ((skb = skb_dequeue(&ab->skb_list)))
1824 kfree_skb(skb);
1825 kmem_cache_free(audit_buffer_cache, ab);
1826 }
1827
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1828 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1829 gfp_t gfp_mask, int type)
1830 {
1831 struct audit_buffer *ab;
1832
1833 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1834 if (!ab)
1835 return NULL;
1836
1837 skb_queue_head_init(&ab->skb_list);
1838
1839 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1840 if (!ab->skb)
1841 goto err;
1842
1843 skb_queue_tail(&ab->skb_list, ab->skb);
1844
1845 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1846 goto err;
1847
1848 ab->ctx = ctx;
1849 ab->gfp_mask = gfp_mask;
1850
1851 return ab;
1852
1853 err:
1854 audit_buffer_free(ab);
1855 return NULL;
1856 }
1857
1858 /**
1859 * audit_serial - compute a serial number for the audit record
1860 *
1861 * Compute a serial number for the audit record. Audit records are
1862 * written to user-space as soon as they are generated, so a complete
1863 * audit record may be written in several pieces. The timestamp of the
1864 * record and this serial number are used by the user-space tools to
1865 * determine which pieces belong to the same audit record. The
1866 * (timestamp,serial) tuple is unique for each syscall and is live from
1867 * syscall entry to syscall exit.
1868 *
1869 * NOTE: Another possibility is to store the formatted records off the
1870 * audit context (for those records that have a context), and emit them
1871 * all at syscall exit. However, this could delay the reporting of
1872 * significant errors until syscall exit (or never, if the system
1873 * halts).
1874 */
audit_serial(void)1875 unsigned int audit_serial(void)
1876 {
1877 static atomic_t serial = ATOMIC_INIT(0);
1878
1879 return atomic_inc_return(&serial);
1880 }
1881
audit_get_stamp(struct audit_context * ctx,struct audit_stamp * stamp)1882 static inline void audit_get_stamp(struct audit_context *ctx,
1883 struct audit_stamp *stamp)
1884 {
1885 if (!ctx || !auditsc_get_stamp(ctx, stamp)) {
1886 ktime_get_coarse_real_ts64(&stamp->ctime);
1887 stamp->serial = audit_serial();
1888 }
1889 }
1890
1891 /**
1892 * audit_log_start - obtain an audit buffer
1893 * @ctx: audit_context (may be NULL)
1894 * @gfp_mask: type of allocation
1895 * @type: audit message type
1896 *
1897 * Returns audit_buffer pointer on success or NULL on error.
1898 *
1899 * Obtain an audit buffer. This routine does locking to obtain the
1900 * audit buffer, but then no locking is required for calls to
1901 * audit_log_*format. If the task (ctx) is a task that is currently in a
1902 * syscall, then the syscall is marked as auditable and an audit record
1903 * will be written at syscall exit. If there is no associated task, then
1904 * task context (ctx) should be NULL.
1905 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1906 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1907 int type)
1908 {
1909 struct audit_buffer *ab;
1910
1911 if (audit_initialized != AUDIT_INITIALIZED)
1912 return NULL;
1913
1914 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1915 return NULL;
1916
1917 /* NOTE: don't ever fail/sleep on these two conditions:
1918 * 1. auditd generated record - since we need auditd to drain the
1919 * queue; also, when we are checking for auditd, compare PIDs using
1920 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1921 * using a PID anchored in the caller's namespace
1922 * 2. generator holding the audit_cmd_mutex - we don't want to block
1923 * while holding the mutex, although we do penalize the sender
1924 * later in audit_receive() when it is safe to block
1925 */
1926 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1927 long stime = audit_backlog_wait_time;
1928
1929 while (audit_backlog_limit &&
1930 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1931 /* wake kauditd to try and flush the queue */
1932 wake_up_interruptible(&kauditd_wait);
1933
1934 /* sleep if we are allowed and we haven't exhausted our
1935 * backlog wait limit */
1936 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1937 long rtime = stime;
1938
1939 DECLARE_WAITQUEUE(wait, current);
1940
1941 add_wait_queue_exclusive(&audit_backlog_wait,
1942 &wait);
1943 set_current_state(TASK_UNINTERRUPTIBLE);
1944 stime = schedule_timeout(rtime);
1945 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1946 remove_wait_queue(&audit_backlog_wait, &wait);
1947 } else {
1948 if (audit_rate_check() && printk_ratelimit())
1949 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1950 skb_queue_len(&audit_queue),
1951 audit_backlog_limit);
1952 audit_log_lost("backlog limit exceeded");
1953 return NULL;
1954 }
1955 }
1956 }
1957
1958 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1959 if (!ab) {
1960 audit_log_lost("out of memory in audit_log_start");
1961 return NULL;
1962 }
1963
1964 audit_get_stamp(ab->ctx, &ab->stamp);
1965 /* cancel dummy context to enable supporting records */
1966 if (ctx)
1967 ctx->dummy = 0;
1968 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1969 (unsigned long long)ab->stamp.ctime.tv_sec,
1970 ab->stamp.ctime.tv_nsec/1000000,
1971 ab->stamp.serial);
1972
1973 return ab;
1974 }
1975
1976 /**
1977 * audit_expand - expand skb in the audit buffer
1978 * @ab: audit_buffer
1979 * @extra: space to add at tail of the skb
1980 *
1981 * Returns 0 (no space) on failed expansion, or available space if
1982 * successful.
1983 */
audit_expand(struct audit_buffer * ab,int extra)1984 static inline int audit_expand(struct audit_buffer *ab, int extra)
1985 {
1986 struct sk_buff *skb = ab->skb;
1987 int oldtail = skb_tailroom(skb);
1988 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1989 int newtail = skb_tailroom(skb);
1990
1991 if (ret < 0) {
1992 audit_log_lost("out of memory in audit_expand");
1993 return 0;
1994 }
1995
1996 skb->truesize += newtail - oldtail;
1997 return newtail;
1998 }
1999
2000 /*
2001 * Format an audit message into the audit buffer. If there isn't enough
2002 * room in the audit buffer, more room will be allocated and vsnprint
2003 * will be called a second time. Currently, we assume that a printk
2004 * can't format message larger than 1024 bytes, so we don't either.
2005 */
2006 static __printf(2, 0)
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)2007 void audit_log_vformat(struct audit_buffer *ab, const char *fmt, va_list args)
2008 {
2009 int len, avail;
2010 struct sk_buff *skb;
2011 va_list args2;
2012
2013 if (!ab)
2014 return;
2015
2016 BUG_ON(!ab->skb);
2017 skb = ab->skb;
2018 avail = skb_tailroom(skb);
2019 if (avail == 0) {
2020 avail = audit_expand(ab, AUDIT_BUFSIZ);
2021 if (!avail)
2022 goto out;
2023 }
2024 va_copy(args2, args);
2025 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
2026 if (len >= avail) {
2027 /* The printk buffer is 1024 bytes long, so if we get
2028 * here and AUDIT_BUFSIZ is at least 1024, then we can
2029 * log everything that printk could have logged. */
2030 avail = audit_expand(ab,
2031 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
2032 if (!avail)
2033 goto out_va_end;
2034 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
2035 }
2036 if (len > 0)
2037 skb_put(skb, len);
2038 out_va_end:
2039 va_end(args2);
2040 out:
2041 return;
2042 }
2043
2044 /**
2045 * audit_log_format - format a message into the audit buffer.
2046 * @ab: audit_buffer
2047 * @fmt: format string
2048 * @...: optional parameters matching @fmt string
2049 *
2050 * All the work is done in audit_log_vformat.
2051 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)2052 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2053 {
2054 va_list args;
2055
2056 if (!ab)
2057 return;
2058 va_start(args, fmt);
2059 audit_log_vformat(ab, fmt, args);
2060 va_end(args);
2061 }
2062
2063 /**
2064 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2065 * @ab: the audit_buffer
2066 * @buf: buffer to convert to hex
2067 * @len: length of @buf to be converted
2068 *
2069 * No return value; failure to expand is silently ignored.
2070 *
2071 * This function will take the passed buf and convert it into a string of
2072 * ascii hex digits. The new string is placed onto the skb.
2073 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)2074 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2075 size_t len)
2076 {
2077 int i, avail, new_len;
2078 unsigned char *ptr;
2079 struct sk_buff *skb;
2080
2081 if (!ab)
2082 return;
2083
2084 BUG_ON(!ab->skb);
2085 skb = ab->skb;
2086 avail = skb_tailroom(skb);
2087 new_len = len<<1;
2088 if (new_len >= avail) {
2089 /* Round the buffer request up to the next multiple */
2090 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2091 avail = audit_expand(ab, new_len);
2092 if (!avail)
2093 return;
2094 }
2095
2096 ptr = skb_tail_pointer(skb);
2097 for (i = 0; i < len; i++)
2098 ptr = hex_byte_pack_upper(ptr, buf[i]);
2099 *ptr = 0;
2100 skb_put(skb, len << 1); /* new string is twice the old string */
2101 }
2102
2103 /*
2104 * Format a string of no more than slen characters into the audit buffer,
2105 * enclosed in quote marks.
2106 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2107 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2108 size_t slen)
2109 {
2110 int avail, new_len;
2111 unsigned char *ptr;
2112 struct sk_buff *skb;
2113
2114 if (!ab)
2115 return;
2116
2117 BUG_ON(!ab->skb);
2118 skb = ab->skb;
2119 avail = skb_tailroom(skb);
2120 new_len = slen + 3; /* enclosing quotes + null terminator */
2121 if (new_len > avail) {
2122 avail = audit_expand(ab, new_len);
2123 if (!avail)
2124 return;
2125 }
2126 ptr = skb_tail_pointer(skb);
2127 *ptr++ = '"';
2128 memcpy(ptr, string, slen);
2129 ptr += slen;
2130 *ptr++ = '"';
2131 *ptr = 0;
2132 skb_put(skb, slen + 2); /* don't include null terminator */
2133 }
2134
2135 /**
2136 * audit_string_contains_control - does a string need to be logged in hex
2137 * @string: string to be checked
2138 * @len: max length of the string to check
2139 */
audit_string_contains_control(const char * string,size_t len)2140 bool audit_string_contains_control(const char *string, size_t len)
2141 {
2142 const unsigned char *p;
2143 for (p = string; p < (const unsigned char *)string + len; p++) {
2144 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2145 return true;
2146 }
2147 return false;
2148 }
2149
2150 /**
2151 * audit_log_n_untrustedstring - log a string that may contain random characters
2152 * @ab: audit_buffer
2153 * @string: string to be logged
2154 * @len: length of string (not including trailing null)
2155 *
2156 * This code will escape a string that is passed to it if the string
2157 * contains a control character, unprintable character, double quote mark,
2158 * or a space. Unescaped strings will start and end with a double quote mark.
2159 * Strings that are escaped are printed in hex (2 digits per char).
2160 *
2161 * The caller specifies the number of characters in the string to log, which may
2162 * or may not be the entire string.
2163 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2164 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2165 size_t len)
2166 {
2167 if (audit_string_contains_control(string, len))
2168 audit_log_n_hex(ab, string, len);
2169 else
2170 audit_log_n_string(ab, string, len);
2171 }
2172
2173 /**
2174 * audit_log_untrustedstring - log a string that may contain random characters
2175 * @ab: audit_buffer
2176 * @string: string to be logged
2177 *
2178 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2179 * determine string length.
2180 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2181 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2182 {
2183 audit_log_n_untrustedstring(ab, string, strlen(string));
2184 }
2185
2186 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2187 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2188 const struct path *path)
2189 {
2190 char *p, *pathname;
2191
2192 if (prefix)
2193 audit_log_format(ab, "%s", prefix);
2194
2195 /* We will allow 11 spaces for ' (deleted)' to be appended */
2196 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2197 if (!pathname) {
2198 audit_log_format(ab, "\"<no_memory>\"");
2199 return;
2200 }
2201 p = d_path(path, pathname, PATH_MAX+11);
2202 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2203 /* FIXME: can we save some information here? */
2204 audit_log_format(ab, "\"<too_long>\"");
2205 } else
2206 audit_log_untrustedstring(ab, p);
2207 kfree(pathname);
2208 }
2209
audit_log_session_info(struct audit_buffer * ab)2210 void audit_log_session_info(struct audit_buffer *ab)
2211 {
2212 unsigned int sessionid = audit_get_sessionid(current);
2213 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2214
2215 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2216 }
2217
audit_log_key(struct audit_buffer * ab,char * key)2218 void audit_log_key(struct audit_buffer *ab, char *key)
2219 {
2220 audit_log_format(ab, " key=");
2221 if (key)
2222 audit_log_untrustedstring(ab, key);
2223 else
2224 audit_log_format(ab, "(null)");
2225 }
2226
2227 /**
2228 * audit_buffer_aux_new - Add an aux record buffer to the skb list
2229 * @ab: audit_buffer
2230 * @type: message type
2231 *
2232 * Aux records are allocated and added to the skb list of
2233 * the "main" record. The ab->skb is reset to point to the
2234 * aux record on its creation. When the aux record in complete
2235 * ab->skb has to be reset to point to the "main" record.
2236 * This allows the audit_log_ functions to be ignorant of
2237 * which kind of record it is logging to. It also avoids adding
2238 * special data for aux records.
2239 *
2240 * On success ab->skb will point to the new aux record.
2241 * Returns 0 on success, -ENOMEM should allocation fail.
2242 */
audit_buffer_aux_new(struct audit_buffer * ab,int type)2243 static int audit_buffer_aux_new(struct audit_buffer *ab, int type)
2244 {
2245 WARN_ON(ab->skb != skb_peek(&ab->skb_list));
2246
2247 ab->skb = nlmsg_new(AUDIT_BUFSIZ, ab->gfp_mask);
2248 if (!ab->skb)
2249 goto err;
2250 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
2251 goto err;
2252 skb_queue_tail(&ab->skb_list, ab->skb);
2253
2254 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
2255 (unsigned long long)ab->stamp.ctime.tv_sec,
2256 ab->stamp.ctime.tv_nsec/1000000,
2257 ab->stamp.serial);
2258
2259 return 0;
2260
2261 err:
2262 kfree_skb(ab->skb);
2263 ab->skb = skb_peek(&ab->skb_list);
2264 return -ENOMEM;
2265 }
2266
2267 /**
2268 * audit_buffer_aux_end - Switch back to the "main" record from an aux record
2269 * @ab: audit_buffer
2270 *
2271 * Restores the "main" audit record to ab->skb.
2272 */
audit_buffer_aux_end(struct audit_buffer * ab)2273 static void audit_buffer_aux_end(struct audit_buffer *ab)
2274 {
2275 ab->skb = skb_peek(&ab->skb_list);
2276 }
2277
2278 /**
2279 * audit_log_subj_ctx - Add LSM subject information
2280 * @ab: audit_buffer
2281 * @prop: LSM subject properties.
2282 *
2283 * Add a subj= field and, if necessary, a AUDIT_MAC_TASK_CONTEXTS record.
2284 */
audit_log_subj_ctx(struct audit_buffer * ab,struct lsm_prop * prop)2285 int audit_log_subj_ctx(struct audit_buffer *ab, struct lsm_prop *prop)
2286 {
2287 struct lsm_context ctx;
2288 char *space = "";
2289 int error;
2290 int i;
2291
2292 security_current_getlsmprop_subj(prop);
2293 if (!lsmprop_is_set(prop))
2294 return 0;
2295
2296 if (audit_subj_secctx_cnt < 2) {
2297 error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF);
2298 if (error < 0) {
2299 if (error != -EINVAL)
2300 goto error_path;
2301 return 0;
2302 }
2303 audit_log_format(ab, " subj=%s", ctx.context);
2304 security_release_secctx(&ctx);
2305 return 0;
2306 }
2307 /* Multiple LSMs provide contexts. Include an aux record. */
2308 audit_log_format(ab, " subj=?");
2309 error = audit_buffer_aux_new(ab, AUDIT_MAC_TASK_CONTEXTS);
2310 if (error)
2311 goto error_path;
2312
2313 for (i = 0; i < audit_subj_secctx_cnt; i++) {
2314 error = security_lsmprop_to_secctx(prop, &ctx,
2315 audit_subj_lsms[i]->id);
2316 if (error < 0) {
2317 /*
2318 * Don't print anything. An LSM like BPF could
2319 * claim to support contexts, but only do so under
2320 * certain conditions.
2321 */
2322 if (error == -EOPNOTSUPP)
2323 continue;
2324 if (error != -EINVAL)
2325 audit_panic("error in audit_log_subj_ctx");
2326 } else {
2327 audit_log_format(ab, "%ssubj_%s=%s", space,
2328 audit_subj_lsms[i]->name, ctx.context);
2329 space = " ";
2330 security_release_secctx(&ctx);
2331 }
2332 }
2333 audit_buffer_aux_end(ab);
2334 return 0;
2335
2336 error_path:
2337 audit_panic("error in audit_log_subj_ctx");
2338 return error;
2339 }
2340 EXPORT_SYMBOL(audit_log_subj_ctx);
2341
audit_log_task_context(struct audit_buffer * ab)2342 int audit_log_task_context(struct audit_buffer *ab)
2343 {
2344 struct lsm_prop prop;
2345
2346 security_current_getlsmprop_subj(&prop);
2347 return audit_log_subj_ctx(ab, &prop);
2348 }
2349 EXPORT_SYMBOL(audit_log_task_context);
2350
audit_log_obj_ctx(struct audit_buffer * ab,struct lsm_prop * prop)2351 int audit_log_obj_ctx(struct audit_buffer *ab, struct lsm_prop *prop)
2352 {
2353 int i;
2354 int rc;
2355 int error = 0;
2356 char *space = "";
2357 struct lsm_context ctx;
2358
2359 if (audit_obj_secctx_cnt < 2) {
2360 error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF);
2361 if (error < 0) {
2362 if (error != -EINVAL)
2363 goto error_path;
2364 return error;
2365 }
2366 audit_log_format(ab, " obj=%s", ctx.context);
2367 security_release_secctx(&ctx);
2368 return 0;
2369 }
2370 audit_log_format(ab, " obj=?");
2371 error = audit_buffer_aux_new(ab, AUDIT_MAC_OBJ_CONTEXTS);
2372 if (error)
2373 goto error_path;
2374
2375 for (i = 0; i < audit_obj_secctx_cnt; i++) {
2376 rc = security_lsmprop_to_secctx(prop, &ctx,
2377 audit_obj_lsms[i]->id);
2378 if (rc < 0) {
2379 audit_log_format(ab, "%sobj_%s=?", space,
2380 audit_obj_lsms[i]->name);
2381 if (rc != -EINVAL)
2382 audit_panic("error in audit_log_obj_ctx");
2383 error = rc;
2384 } else {
2385 audit_log_format(ab, "%sobj_%s=%s", space,
2386 audit_obj_lsms[i]->name, ctx.context);
2387 security_release_secctx(&ctx);
2388 }
2389 space = " ";
2390 }
2391
2392 audit_buffer_aux_end(ab);
2393 return error;
2394
2395 error_path:
2396 audit_panic("error in audit_log_obj_ctx");
2397 return error;
2398 }
2399
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2400 void audit_log_d_path_exe(struct audit_buffer *ab,
2401 struct mm_struct *mm)
2402 {
2403 struct file *exe_file;
2404
2405 if (!mm)
2406 goto out_null;
2407
2408 exe_file = get_mm_exe_file(mm);
2409 if (!exe_file)
2410 goto out_null;
2411
2412 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2413 fput(exe_file);
2414 return;
2415 out_null:
2416 audit_log_format(ab, " exe=(null)");
2417 }
2418
audit_get_tty(void)2419 struct tty_struct *audit_get_tty(void)
2420 {
2421 struct tty_struct *tty = NULL;
2422 unsigned long flags;
2423
2424 spin_lock_irqsave(¤t->sighand->siglock, flags);
2425 if (current->signal)
2426 tty = tty_kref_get(current->signal->tty);
2427 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
2428 return tty;
2429 }
2430
audit_put_tty(struct tty_struct * tty)2431 void audit_put_tty(struct tty_struct *tty)
2432 {
2433 tty_kref_put(tty);
2434 }
2435
audit_log_task_info(struct audit_buffer * ab)2436 void audit_log_task_info(struct audit_buffer *ab)
2437 {
2438 const struct cred *cred;
2439 char comm[sizeof(current->comm)];
2440 struct tty_struct *tty;
2441
2442 if (!ab)
2443 return;
2444
2445 cred = current_cred();
2446 tty = audit_get_tty();
2447 audit_log_format(ab,
2448 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2449 " euid=%u suid=%u fsuid=%u"
2450 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2451 task_ppid_nr(current),
2452 task_tgid_nr(current),
2453 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2454 from_kuid(&init_user_ns, cred->uid),
2455 from_kgid(&init_user_ns, cred->gid),
2456 from_kuid(&init_user_ns, cred->euid),
2457 from_kuid(&init_user_ns, cred->suid),
2458 from_kuid(&init_user_ns, cred->fsuid),
2459 from_kgid(&init_user_ns, cred->egid),
2460 from_kgid(&init_user_ns, cred->sgid),
2461 from_kgid(&init_user_ns, cred->fsgid),
2462 tty ? tty_name(tty) : "(none)",
2463 audit_get_sessionid(current));
2464 audit_put_tty(tty);
2465 audit_log_format(ab, " comm=");
2466 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2467 audit_log_d_path_exe(ab, current->mm);
2468 audit_log_task_context(ab);
2469 }
2470 EXPORT_SYMBOL(audit_log_task_info);
2471
2472 /**
2473 * audit_log_path_denied - report a path restriction denial
2474 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2475 * @operation: specific operation name
2476 */
audit_log_path_denied(int type,const char * operation)2477 void audit_log_path_denied(int type, const char *operation)
2478 {
2479 struct audit_buffer *ab;
2480
2481 if (!audit_enabled)
2482 return;
2483
2484 /* Generate log with subject, operation, outcome. */
2485 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2486 if (!ab)
2487 return;
2488 audit_log_format(ab, "op=%s", operation);
2489 audit_log_task_info(ab);
2490 audit_log_format(ab, " res=0");
2491 audit_log_end(ab);
2492 }
2493
audit_log_nf_skb(struct audit_buffer * ab,const struct sk_buff * skb,u8 nfproto)2494 int audit_log_nf_skb(struct audit_buffer *ab,
2495 const struct sk_buff *skb, u8 nfproto)
2496 {
2497 /* find the IP protocol in the case of NFPROTO_BRIDGE */
2498 if (nfproto == NFPROTO_BRIDGE) {
2499 switch (eth_hdr(skb)->h_proto) {
2500 case htons(ETH_P_IP):
2501 nfproto = NFPROTO_IPV4;
2502 break;
2503 case htons(ETH_P_IPV6):
2504 nfproto = NFPROTO_IPV6;
2505 break;
2506 default:
2507 goto unknown_proto;
2508 }
2509 }
2510
2511 switch (nfproto) {
2512 case NFPROTO_IPV4: {
2513 struct iphdr iph;
2514 const struct iphdr *ih;
2515
2516 ih = skb_header_pointer(skb, skb_network_offset(skb),
2517 sizeof(iph), &iph);
2518 if (!ih)
2519 return -ENOMEM;
2520
2521 switch (ih->protocol) {
2522 case IPPROTO_TCP: {
2523 struct tcphdr _tcph;
2524 const struct tcphdr *th;
2525
2526 th = skb_header_pointer(skb, skb_transport_offset(skb),
2527 sizeof(_tcph), &_tcph);
2528 if (!th)
2529 return -ENOMEM;
2530
2531 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu sport=%hu dport=%hu",
2532 &ih->saddr, &ih->daddr, ih->protocol,
2533 ntohs(th->source), ntohs(th->dest));
2534 break;
2535 }
2536 case IPPROTO_UDP:
2537 case IPPROTO_UDPLITE: {
2538 struct udphdr _udph;
2539 const struct udphdr *uh;
2540
2541 uh = skb_header_pointer(skb, skb_transport_offset(skb),
2542 sizeof(_udph), &_udph);
2543 if (!uh)
2544 return -ENOMEM;
2545
2546 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu sport=%hu dport=%hu",
2547 &ih->saddr, &ih->daddr, ih->protocol,
2548 ntohs(uh->source), ntohs(uh->dest));
2549 break;
2550 }
2551 case IPPROTO_SCTP: {
2552 struct sctphdr _sctph;
2553 const struct sctphdr *sh;
2554
2555 sh = skb_header_pointer(skb, skb_transport_offset(skb),
2556 sizeof(_sctph), &_sctph);
2557 if (!sh)
2558 return -ENOMEM;
2559
2560 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu sport=%hu dport=%hu",
2561 &ih->saddr, &ih->daddr, ih->protocol,
2562 ntohs(sh->source), ntohs(sh->dest));
2563 break;
2564 }
2565 default:
2566 audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu",
2567 &ih->saddr, &ih->daddr, ih->protocol);
2568 }
2569
2570 break;
2571 }
2572 case NFPROTO_IPV6: {
2573 struct ipv6hdr iph;
2574 const struct ipv6hdr *ih;
2575 u8 nexthdr;
2576 __be16 frag_off;
2577
2578 ih = skb_header_pointer(skb, skb_network_offset(skb),
2579 sizeof(iph), &iph);
2580 if (!ih)
2581 return -ENOMEM;
2582
2583 nexthdr = ih->nexthdr;
2584 ipv6_skip_exthdr(skb, skb_network_offset(skb) + sizeof(iph),
2585 &nexthdr, &frag_off);
2586
2587 switch (nexthdr) {
2588 case IPPROTO_TCP: {
2589 struct tcphdr _tcph;
2590 const struct tcphdr *th;
2591
2592 th = skb_header_pointer(skb, skb_transport_offset(skb),
2593 sizeof(_tcph), &_tcph);
2594 if (!th)
2595 return -ENOMEM;
2596
2597 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu sport=%hu dport=%hu",
2598 &ih->saddr, &ih->daddr, nexthdr,
2599 ntohs(th->source), ntohs(th->dest));
2600 break;
2601 }
2602 case IPPROTO_UDP:
2603 case IPPROTO_UDPLITE: {
2604 struct udphdr _udph;
2605 const struct udphdr *uh;
2606
2607 uh = skb_header_pointer(skb, skb_transport_offset(skb),
2608 sizeof(_udph), &_udph);
2609 if (!uh)
2610 return -ENOMEM;
2611
2612 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu sport=%hu dport=%hu",
2613 &ih->saddr, &ih->daddr, nexthdr,
2614 ntohs(uh->source), ntohs(uh->dest));
2615 break;
2616 }
2617 case IPPROTO_SCTP: {
2618 struct sctphdr _sctph;
2619 const struct sctphdr *sh;
2620
2621 sh = skb_header_pointer(skb, skb_transport_offset(skb),
2622 sizeof(_sctph), &_sctph);
2623 if (!sh)
2624 return -ENOMEM;
2625
2626 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu sport=%hu dport=%hu",
2627 &ih->saddr, &ih->daddr, nexthdr,
2628 ntohs(sh->source), ntohs(sh->dest));
2629 break;
2630 }
2631 default:
2632 audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu",
2633 &ih->saddr, &ih->daddr, nexthdr);
2634 }
2635
2636 break;
2637 }
2638 default:
2639 goto unknown_proto;
2640 }
2641
2642 return 0;
2643
2644 unknown_proto:
2645 audit_log_format(ab, " saddr=? daddr=? proto=?");
2646 return -EPFNOSUPPORT;
2647 }
2648 EXPORT_SYMBOL(audit_log_nf_skb);
2649
2650 /* global counter which is incremented every time something logs in */
2651 static atomic_t session_id = ATOMIC_INIT(0);
2652
audit_set_loginuid_perm(kuid_t loginuid)2653 static int audit_set_loginuid_perm(kuid_t loginuid)
2654 {
2655 /* if we are unset, we don't need privs */
2656 if (!audit_loginuid_set(current))
2657 return 0;
2658 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2659 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2660 return -EPERM;
2661 /* it is set, you need permission */
2662 if (!capable(CAP_AUDIT_CONTROL))
2663 return -EPERM;
2664 /* reject if this is not an unset and we don't allow that */
2665 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2666 && uid_valid(loginuid))
2667 return -EPERM;
2668 return 0;
2669 }
2670
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2671 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2672 unsigned int oldsessionid,
2673 unsigned int sessionid, int rc)
2674 {
2675 struct audit_buffer *ab;
2676 uid_t uid, oldloginuid, loginuid;
2677 struct tty_struct *tty;
2678
2679 if (!audit_enabled)
2680 return;
2681
2682 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2683 if (!ab)
2684 return;
2685
2686 uid = from_kuid(&init_user_ns, task_uid(current));
2687 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2688 loginuid = from_kuid(&init_user_ns, kloginuid);
2689 tty = audit_get_tty();
2690
2691 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2692 audit_log_task_context(ab);
2693 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2694 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2695 oldsessionid, sessionid, !rc);
2696 audit_put_tty(tty);
2697 audit_log_end(ab);
2698 }
2699
2700 /**
2701 * audit_set_loginuid - set current task's loginuid
2702 * @loginuid: loginuid value
2703 *
2704 * Returns 0.
2705 *
2706 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2707 */
audit_set_loginuid(kuid_t loginuid)2708 int audit_set_loginuid(kuid_t loginuid)
2709 {
2710 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2711 kuid_t oldloginuid;
2712 int rc;
2713
2714 oldloginuid = audit_get_loginuid(current);
2715 oldsessionid = audit_get_sessionid(current);
2716
2717 rc = audit_set_loginuid_perm(loginuid);
2718 if (rc)
2719 goto out;
2720
2721 /* are we setting or clearing? */
2722 if (uid_valid(loginuid)) {
2723 sessionid = (unsigned int)atomic_inc_return(&session_id);
2724 if (unlikely(sessionid == AUDIT_SID_UNSET))
2725 sessionid = (unsigned int)atomic_inc_return(&session_id);
2726 }
2727
2728 current->sessionid = sessionid;
2729 current->loginuid = loginuid;
2730 out:
2731 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2732 return rc;
2733 }
2734
2735 /**
2736 * audit_signal_info - record signal info for shutting down audit subsystem
2737 * @sig: signal value
2738 * @t: task being signaled
2739 *
2740 * If the audit subsystem is being terminated, record the task (pid)
2741 * and uid that is doing that.
2742 */
audit_signal_info(int sig,struct task_struct * t)2743 int audit_signal_info(int sig, struct task_struct *t)
2744 {
2745 kuid_t uid = current_uid(), auid;
2746
2747 if (auditd_test_task(t) &&
2748 (sig == SIGTERM || sig == SIGHUP ||
2749 sig == SIGUSR1 || sig == SIGUSR2)) {
2750 audit_sig_pid = task_tgid_nr(current);
2751 auid = audit_get_loginuid(current);
2752 if (uid_valid(auid))
2753 audit_sig_uid = auid;
2754 else
2755 audit_sig_uid = uid;
2756 security_current_getlsmprop_subj(&audit_sig_lsm);
2757 }
2758
2759 return audit_signal_info_syscall(t);
2760 }
2761
2762 /**
2763 * __audit_log_end - enqueue one audit record
2764 * @skb: the buffer to send
2765 */
__audit_log_end(struct sk_buff * skb)2766 static void __audit_log_end(struct sk_buff *skb)
2767 {
2768 struct nlmsghdr *nlh;
2769
2770 if (audit_rate_check()) {
2771 /* setup the netlink header, see the comments in
2772 * kauditd_send_multicast_skb() for length quirks */
2773 nlh = nlmsg_hdr(skb);
2774 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2775
2776 /* queue the netlink packet */
2777 skb_queue_tail(&audit_queue, skb);
2778 } else {
2779 audit_log_lost("rate limit exceeded");
2780 kfree_skb(skb);
2781 }
2782 }
2783
2784 /**
2785 * audit_log_end - end one audit record
2786 * @ab: the audit_buffer
2787 *
2788 * We can not do a netlink send inside an irq context because it blocks (last
2789 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2790 * queue and a kthread is scheduled to remove them from the queue outside the
2791 * irq context. May be called in any context.
2792 */
audit_log_end(struct audit_buffer * ab)2793 void audit_log_end(struct audit_buffer *ab)
2794 {
2795 struct sk_buff *skb;
2796
2797 if (!ab)
2798 return;
2799
2800 while ((skb = skb_dequeue(&ab->skb_list)))
2801 __audit_log_end(skb);
2802
2803 /* poke the kauditd thread */
2804 wake_up_interruptible(&kauditd_wait);
2805
2806 audit_buffer_free(ab);
2807 }
2808
2809 /**
2810 * audit_log - Log an audit record
2811 * @ctx: audit context
2812 * @gfp_mask: type of allocation
2813 * @type: audit message type
2814 * @fmt: format string to use
2815 * @...: variable parameters matching the format string
2816 *
2817 * This is a convenience function that calls audit_log_start,
2818 * audit_log_vformat, and audit_log_end. It may be called
2819 * in any context.
2820 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2821 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2822 const char *fmt, ...)
2823 {
2824 struct audit_buffer *ab;
2825 va_list args;
2826
2827 ab = audit_log_start(ctx, gfp_mask, type);
2828 if (ab) {
2829 va_start(args, fmt);
2830 audit_log_vformat(ab, fmt, args);
2831 va_end(args);
2832 audit_log_end(ab);
2833 }
2834 }
2835
2836 EXPORT_SYMBOL(audit_log_start);
2837 EXPORT_SYMBOL(audit_log_end);
2838 EXPORT_SYMBOL(audit_log_format);
2839 EXPORT_SYMBOL(audit_log);
2840